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ABSTRACT

Multi-objective reinforcement learning (MORL) aims to optimize multiple con-
flicting objectives for a single agent, where finding Pareto-optimal solutions is
NP-hard and existing algorithms are often centralized with high computational
complexity, limiting their practical applicability. Multi-objective multi-agent re-
inforcement learning (MOMARL) extends MORL to multiple agents, which not
only increases computational complexity exponentially due to the global state-
action space, but also introduces communication challenges, as agents cannot con-
tinuously communicate with a central coordinator in large-scale scenarios. This
necessitates distributed algorithm, where each agent relies only on the information
of its neighbors within a limited range rather than depending on the global scale.
To address these challenges, we propose a distributed MOMARL algorithm in
which each agent leverages only the state of its k-hop neighbors and locally adjust-
s the weights of multiple objectives through a consensus protocol. We introduce
an approximated policy gradient that reduces the dependency on global actions
and a linear function approximation that limits the state space to local neighbor-
hoods. Each agent i’s computational complexity is thus reduced from O(|S||.A|)
with global state-action space in centralized algorithms to O(|Syx[|.A:]) with k-
neighborhood state and local action space. We prove that the algorithm converges
to a Pareto-stationary solution at a rate of O(1/7") and demonstrate in simulations
for robot path planning that our approach achieves higher multi-objective values
than state-of-the-art method.

1 INTRODUCTION

As real-world tasks grow increasingly complex, many scenarios naturally involve multiple con-
flicting objectives, motivating the study of multi-objective reinforcement learning (MORL). For
instance, in robotic path planning (Zhang et al.l 2016)), sa robotic agsent may aim to simultaneously
minimize path length, avoid collisions, and maximize information collection.

Different from the rapid development of traditional reinforcement learning (RL) (Grondman et al,
2012} [Zhang et al, [2021)), research on MORL (Ge et al., |2022; [Stamenkovic et al, [2022) remains
in its infancy due to the inherent conflicts among multiple objectives. Unlike scalar-reward RL, in
MORL the improvement of one objective may degrade others, making standard policy optimization
insufficient. A common approach to tackle MORL is to assign fixed weights to objectives and
reduce the problem to a single-objective RL (Blondin & Halel [2020); however, this requires prior
knowledge of objective importance and may fail to explore the full Pareto front. To address this
limitation, a more rigorous metric is Pareto optimality, where no objective can be improved without
degrading others.

However, for non-convex MORL problems, finding exact Pareto-optimal solutions is NP-hard. Con-
sequently, practical algorithms aim for e-Pareto stationary solutions (Sener & Koltun, 2018]), which
provide a necessary condition for approximate Pareto optimality. On the algorithmic side, for MOR-
L problem with continuous action spaces, (Chen et al.| [2021) proposed an actor-critic MORL al-
gorithm based on deterministic policy gradients (Silver et al.l [2014) to directly optimize multiple
objectives. For MORL with discrete action spaces, (Zhou et al., [2024) introduced a unified multi-
objective actor-critic framework applicable to both discounted and average-reward settings, where
stochastic policy parameters are updated via a multi-gradient descent approach (Désidéri, |2012),
ensuring convergence toward e-Pareto stationary solutions.

The aforementioned methods are all directed towards addressing the MORL problem in a centralized
setting or for a single agent. However, practical applications of MORL problems often involve multi-
agents. For instance, teams of robots need to decide themselves how to explore distinct regions
by simultaneously minimizing energy consumption and travel time. In comparison to the MORL
problem with single-agent, the multi-objective multi-agent problem (MOMARL) (Radulescul, 2020)
is more intricate as it encompasses not only potential conflicts among different objectives but also
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interactions between the distributed agents with limited communication. An intuitive approach to
the MOMARL problem is to consider it as a MORL problem with a single agent, where the state
and action are represented by the joint states and joint actions of all agents, respectively. However,
as the number of agents increases, the size of their joint state-action space grows exponentially,
and in large-scale scenarios, agents cannot communicate with a central coordinator continuously.
These characteristic renders the current algorithms used for solving MORL problems with a single
agent (Chen et al., [2021; |Zhou et al., 2024) unsuitable for large-scale scenarios with multi-agents.
Consequently, the MOMARL problem poses new challenges to the design of scalable algorithms
and their theoretical analysis.

In this paper, we aims to address the following problem: How to develop a fully distributed algorithm
for the MOMARL problem and ensure its convergence to Pareto-stationary of the multi-objective
function? The contributions of this paper are described as follows.

1. We first propose a novel approximated policy gradient for each agent ¢, which reduces the
global action a required by centralized algorithms to the agent’s local action a;. Further-
more, to reduce the dimensionality of state information, we employ a linear function ap-
proximation to restrict agent ¢’s state to the neighborhood state sxr~, encompassing only its

k-hop neighbors. The per-agent computational complexity is thus reduced from O(|S]]A])
in centralized algorithms to O(|Sx=||A;).

2. We propose a novel distributed algorithm in which each agent only uses the policy gradient
information from its immediate neighbors, while collaboratively adjusting the weights of
multiple objectives via a consensus protocol. This design enables the agents to perform
cooperative optimization toward a Pareto-stationary solution, without requiring access to
the policy gradient information of agents beyond the direct neighbors.

3. We prove that the proposed distributed algorithm, despite relying only on local neigh-
borhood information, achieves convergence to an e-Pareto-stationary solution at a rate of
O(1/T), matching the convergence speed of centralized algorithms. Moreover, we run
simulations in a robot path planning environment and show our algorithm converges to
greater multi-objective values as compared to the extension of the latest MORL algorith-
m (Zhou et al.;|2024), and performs close to the central optimum with much shorter running
time.

For the sake of convenience, some key functions in this paper are presented in Table[T]

Table 1: Symbols and functions.

Symbols Annotation
Q" (s,a;0) Global Q-function in the m-th objective under joint policy 7re
Q7 (s,a;0) Local @Q-function of agent 7 in the m-th objective under joint policy e
Qtru,i(s NS AN 0)  Graph-truncated Q-function of agent ¢ in the m-th objective under joint policy e
Vo, Jiru,i(0) Graph-truncated policy gradient of agent ¢ in the m-th objective under joint policy g
Q" (s,a:;0) Action-averaged QQ-function of agent ¢ in the m-th objective under policy g
Vo, Japp,i(0) Approximated policy gradient of agent ¢ in the m-th objective under joint policy me

Q7 (s NE S Qi wi™) Linear approximation function of agent ¢ in the m-th objective

2 THE NEW MOMARL PROBLEM FORMULATION AND PRELIMINARIES

2.1 MODEL OF THE MOMARL PROBLEM

The MOMARL problem is described as (N, M,G(N,E),{Si}ien, {Aitien, {Pitien p,
{r?}ieN’meMpy), where N = {1,--- N} and M = {1,--- , M} represent the agent set and
the objective set, respectively. G = (N , € ) represents the communication network among agents
with & being the set of edgeﬂ For integer k > 1, denote NV* as the r-hop neighborhood of agent
and N, = N\ NF.

State and action: S; and A, represent the local state space and the local action space of agent i,

respectively. Denote § = Hfil S;and A = va:l A; as the global state space and the global action

space, respectively. Denote s = (s1,--- ,sny) € Sand @ = (a1,--- ,an) € A as the global state
and the global action of agents, where s; € S; and a; € A; represent the local state and local action

'For the case of time-varying neighbor agents, our algorithm is still applicable if the agent communicates
intermittently (or delays communication) with its initial neighbor. In the process of convergence analysis of
the algorithm, we just need to introduce an additional error to (22) caused by communication disconnection or
delay.
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of agent i € N, respectively. For integer x > 1, denote s A and aprs as the state and action of
agent ¢’s r-hop neighbors, respectively. Denote Syx = [[ ;¢ Nf Sjand Ay = [[;¢ NF A; as the
state space and the action space of agent ¢’s x-hop neighbors, respectively. Moreover, denote Sy~

and A=, as the state space and the action space of agents excluding agent i’s r-hop nelghbors
respectlvely anx, € Snx,

State transition probability function: P;(s}|sy1,a;) @ Sy x A; x S; — [0,1] is the state
transition probability function of agent i, dependelnt of its l—hbp neighborhood state and its local
action. Denote P(s'|s,a) = Hf\il Pi(silsa1,ai) : 8 x Ax S — [0,1] as the global state
transition probability function. Note that the definition of the state transition probability function
Hf\il Pi(si|s NI a;) is common in the literature. For example, it applies to the scenario of traffic
signal control problem (Chu et al., 2020), where the traffic flow at each intersection is influenced by
the traffic flow at its neighboring intersections and its own signal light.

Initial state distribution: p is the distribution of the initial state s.

Reward function: r"(s;,a;) : S; X A; — R is the reward function of agent ¢ € A in the objective

m € M. Denote s, = (s1,,--- ,Sn,) and a; = (a1 ¢, -+ ,an,) as the global state and the global
action at time ¢, respectlvely The reward of agenti € N in the objective m € M at time ¢ can be
represented as 7', = 1} T (Si0s Qit)-

Discount factor: v = (7, 4M)T € RM with 4™ € (0,1) being the discount factor in the
objective m € M.

Softmax policy: In this paper, we use the parameterized softmax policy 7p, (a;|s;) with parameter
0; € RISillAil | which is described as

exp(ei En a-)
(@ilsi) = =———>—"—, (1)
o Zaé exp(oi,si,a,’i)
where 0; s, o, represents the element corresponding to (s;, a;) in ;. Denote 8 = (6] ,--- ,05)"

RXZ1 IS4l a5 the joint policy parameter of agents and 7rg (als) = Hfil 7o, (a;|s;) be the joint
policy of all agents. Note that the softmax policy is used in RL to ensure the exploration of a-
gents (Zhou et al., [2023} [Zhang et al., [2022)).

In the MOMARL problem, given a joint policy parameter 8, the m-th objective of all agents is

defined as
T"(0) =Eavp |+ S 6 )'riilso = s, ~ mo(lsi)] @
t=0 =1

which is represents the average discounted reward of all agents over all time ¢. The goal of agents in
the MOMARL problem is to find a joint policy parameter € to maximize the following composite
objective, i.e.,

max J (6) = [(J1(8),---, M (8)" € RM. 3)

In order to address the potential conflicts among the J () in , the notions of Pareto-optimality
and e-Pareto-stationarity are introduced as follows.

Definition 1 (Pareto-optimality) A solution 6 dominates solution 0" if and only if J™(0) > J™(6’),

Vm e Mand Im’ € M, J™ (8) > J™ (0"). A solution 0 is Pareto-optimal if it is not dominated
by any other solution.

Considering that finding Pareto-optimal solutions for non-convex MOMARL problems is NP-hard,
it is generally more practical to seek the e-Pareto-stationary solution instead of the Pareto-optimal
solution (Kumar et al., 2019)).

Definition 2 (e-Pareto-stationarity) Define VoJ(0) as the gradient of J(0) respect to 0. A
solution @ is e-Pareto stationary if there exists X = (\,--- AT ¢ RM such that
miny ez Vo (60) AlZ <

Based on Definitions it is obvious that the Pareto-stationarity is a necessary condition for a solu-
tion to be Pareto-optimal. Specifically, in the context of convex MOMARL problems, the solutions
that are Pareto-stationary also qualify as Pareto-optimal. Given the complexity associated with the
MOMARL problem, this paper focuses on developing a distributed scalable algorithm to identify
and achieve Pareto-stationarity.
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2.2  PRELIMINARIES IN THE MOMARL PROBLEM

In the MOMARL problem, for any joint policy parameter 8 and m € M, the global Q-function
Q™ (s, a; 0) in m-th objective is defined as

Q" (5,0:0) = En, | ZZ )'r7ilso = s,a0 = al, “)

t=0 i=1
which represents the value of the stat-action pair (s, a) in m-th objective under join policy 7g. In
the MOMARL problem, given the joint policy parameter 6, define dg’m(s) as the discounted state

visitation distribution, which is represented as
(o)

% (s) = (1—~™) (™)' Pr™ (s, = s|so ~ p), )
t=0
where Pr™®(s; = s|sg ~ p) represents the probability of s; = s at time ¢ under the initial state
distribution p and the joint policy 7rg.
Recall that the policy gradient theorem (Sutton et al., 2000) is the foundation of algorithm design in
RL. Inspired by the theorem, in our MOMARL problem, we also have the following policy gradient
lemma.

Lemma 1 In the MOMARL problem, for any joint policy parameter 0, the gradient of J™(0) in
m-the objective with respect to 0 is given by:

1
VeJ"(0) = —F

T Camdl ™ e [Vologme(als)Q™(s,a;0)],Vm € M. (6)
For the policy gradients involved in Deﬁmtlon Lemma I shows that the calculation of the policy
gradient V¢ J""(0) depends on Q™ (s, a; ), which involves global state-action (s, a). Consequent-
ly, there are two challenges in applylng @ (1) the computational complexity of handling the global
state-action (s, @) in a centralized setting is high; (ii) achieving distributed decision making among
multi-agents with limited communication.

3 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM FOR MOMARL
PROBLEM

Before presenting our proposed method, we first revisit the centralized approach for solving MO-
MARL problems. In the centralized setting, the policy update requires the global state-action pair
(s,a). This immediately leads to an exponential growth of the joint state-action space with the
number of agents, i.e., of order O(|S||.A|). Such computational complexity makes centralized al-
gorithms prohibitive for large-scale systems. Moreover, centralized training implicitly assumes that
agents can constantly communicate with a central controller, which is unrealistic in many real-world
scenarios (e.g., swarm robotics, sensor networks). To overcome these limitations, the natural way
forward is to make the algorithm scalable, meaning that the per-agent computational cost should
remain polynomial in the state-action dimension of its neighbors within a limited range rather than
depending on the global scale. The most effective way to achieve scalability is to design a distribut-
ed algorithm, where (i) each agent ¢ makes decisions independently using only (s N;:,ai), where
sy s the state from its x-hop neighbors and (2) exchanges its local Lagrangian multiplier A; with
its directly neighbors for balancing multiple objectives. This shift from centralized to distributed
design is the key idea underlying our algorithm: by restricting each agent’s decision to local state-
action information and coordinating objective trade-offs through a consensus protocol, we preserve
scalability while maintaining rigorous convergence guarantees.

To reduce the reliance of algorithm on global information, we design a distributed algorithm, where
each agent (i) estimates a local policy gradient based only on its own action, (ii) leverages a linear
approximation restricted to x-hop neighborhood states, and (iii) updates multi-objective weights
through a consensus protocol to cooperatively approach Pareto-stationary solutions.

3.1 A NOVEL APPROXIMATED POLICY

In contrast to the global Q-function utilized in (6], which relies on global state-action information,
we introduce a novel conceptithe “action-averaged )-function” for each agent ¢. This formulation
leverages rewards from agent ¢’s x-hop neighbors to effectively reduce the dependence on the full
joint action a by focusing on the local action a;, as defined below:

o0

@F(s, a;;0) = Er, [% Z(Vm)t Z T;'n(sj,m a;i)|so = 8,0 = ai] @)

t=0 JENT
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To approximate the true policy gradient Vg.J™ () in @, we define Vi, J; (6) as an approximated
policy gradient for agent ¢, derived using the action-averaged Q-function presented in (7)), as follows:

1 _
Vo, I () = ESNdZ*"‘,awwei [an(s,ai;H)Vei logwei(ai|8i)}. (8)

- app,t 1-— ,-Ym

Unlike the policy gradient in centralized algorithm that requires global action a, (8) only requires the
local action a; of agent i. The approximation error between V,.J;7  ;(6) and original Vy, J™(0)

in (6) can be well bounded for the MOMARL problem in the following theorem.

Theorem 1 In the MOMARL problem, given a joint policy me, for any agent i € N and objective

m € M, it holds that
2R
Lmz(,ym)n-&-l- (9)
(1=2m)
The proof of Theorem|[T]is provided in Appendix[A.2] The policy gradient has been approximated so

far by constructing Q1" (s, a;; @) in H and Vg, J;7 ;(6) in lﬁi which reduces the action dimension

of each agent 7 to its local action a;. However, the expression of Q7 (s, a;; 6) still requires the
global state. Therefore, in the following, we will focus on reducing the dimensionality of agents’
state information.

||V9 JHL (0) _ VOiJ"L(O)HQ S

i app,t

3.2 CRITIC STEP: LINEAR FUNCTION APPROXIMATION

Algorithm 1: Linear function approximation

Require: The number of samples K, the learning-rate 7, and £ > 0;

Initialization: Initialize the e-exploration policy wg = Hf\’:m&_, where

o, (ailsi) = (1 —&)me, (ails:) + 4 foralli € N. The initial values of the parameters wy’y, is set as
wio = 0g, foralli € {1,2,--- ,N};

The agents execute the e-exploration policy g and each agent i € N collects a sequence of samples
{(si,ks @ik, 71%) Jo<k<x in m-the objective;

fori=1,2,--- ,Ndo

For each objective m € M, agent i € N\ collects the state information {s; } jenrs of its x-hop neighbors
and reward {rj" } ;e from its x-hop neighbors to form a sample set {sx k, @ik, 7% & o<h<k:
fork=0,1,2,--- ,K —1do
Each agent ¢ € A estimates its local temporal difference error:
T
5'Tk = ¢i(5Nf7k7aiyk) wzlk N E jENE j, -7 ¢Z(S./\/N k+1, Qq, k+1) wZLkv
W1 = Wiy, — 7735%@(3/\/;,“1, az,k+1)
end
end
Output: {w; 'k }ie A, mem

In this subsection, we use the localized stochastic approximation ancji\})ropose a lmear function in
to reduce the dimension of the state-action required by agent 1€ (s N7, ;). Specially, the

linear function Qm (s NF Q5 W ™) of agent i to approximate Qm(s a;; 0) in (7)) is given as

Q' (swrs aizwy®) = diswy, ar) Twi, (10)
where ¢; (s, ai) : Sy x Ai — R is the feature vector mapping and w!™ € R% is the parameter
of agent i in m-th objective. By the definition of @?(s, a;; 0) in l) the parameter with initial value
wy', can be updated by sample sequence {sn% k> @i ks r'j’(}n L JO<k<K as

W1 = Wi — Moy 0 1 Pi (SN5 ket 1, Qi k1), (11
where K is the number of sample for linear parameter training and 47}, is the local temporal differ-
ence error, which is discribed as

.
87, =di(sn s ai) "Wl — N > = A bi(sn k1 Gikeg) | W, (12)
JENF

and 7, is the fixed learning rate of parameters w;". The detailed description of linear function
approximation is given in Algorithm
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3.3 ACTOR STEP: POLICY PARAMETER UPDATE

To estimate the policy gradient and ensure convergence toward a Pareto-stationary solution, we need
to dynamically adjust the weights associated with multiple objectives. In centralized algorithms, this
requires access to all agents’ policy gradients, which is often infeasible and unscalable (Zhou et al.,
2024). To overcome this limitation, we design a distributed algorithm in which agents collaborative-
ly adjust the objective weights through a consensus protocol. This design removes the dependence
on global policy gradient while still enabling cooperative optimization toward Pareto-stationary so-

lution.
To estimate the approximated policy gradient Vo, Ji} , ;(8) in (8), for joint policy e, , our estimate
m

g7 (B) is calculated iteratively based on the sample sequence {(sﬁ’\/ﬁ 1y @) Yo<b<B—1.0<h<H-1:

1 ~
gz f(b + 1) gz t(b) + bivé)z Ja,pp7 (et) (13)

b

b+1 +1

where g/} (0) = 05,4, and
H-1

Vo Tappi(00) = D (™) Gi(Rer o al ) Tl (6) Vo, log ma, , (af 5% ) (14)

h=0

with w!™(¢) being the output of Algorlthm I in {-th iteration of policy parameters. Let g;} =

g7 (B)" and g7* = ((g7)7,- - ,(gN’t)T)T € REL. IS4l Following Pareto-stationarity in

Deﬁnition we denote A} = (A\fL, - AM)T € RM as solution of the following quadratic
programming problem:

M 2

min JI() = H A mH

At:()‘%v"'v)‘iu)—reRM t( t) 'rnZZI tgt 2
s A > 0, [ Al = 1. (15)

For the network G(N, &) among agents, we define its weight matrix as W9 = [w? "] nx N, where
each element w ; represents the weight of the edge from agent j to agent ¢, which is deﬁned as

, [Ty I €N
Wi; = 1_216/\&“&17 J=1
0, otherwise.

By using the definition of W9 in (16), we solve the problem in a distributed way, which is
presented in the following Algorithm 2]

(16)

Algorithm 2: Distributed computation to solve problem of objective Weight adjustment
forall £ > 0;

Initialization: Each agent i € N sets A;(0) = 51/ and chooses step sizes o =
fork=0,1,2,..., Ky —1do
Each agent ¢ 1n1t1ahzes zi0(k) = M N (K)gl™s
form=1,2,--- ,M do
Each agent i initializes yie(k,0) = (@it (k), gi%);
while 3i € N,y (1) # & S0, v (k,0) do
yir(k,li+1) =37 w?jyﬁ(k, l);
h—hL+1
end
Each agent 4 obtains local output y;7; (k);
end
Each agent obtains u; ,(k) = arg min., y;;(k);
Each agent updates A;(k + 1) = (1 — ag) (k) + Qkeyr (k). Where eyr () is an M-dimensional unit
vector with the u; , (k)-th element being 1, and the other elements being 0;

k+2

end
Output: A\ = \;(K,) foralli € N;

In Algorithm [2]each agent iteratively computes policy gradients, engages in consensus steps to eval-
uate the quadratic objective (ref. Lines 5-9), and updates its local weight vector via a Frank-Wolfe
update rule (ref. Lines 12-13). Through repeated consensus and update steps, all agents asymptot-



N -

N=RE- IR - N0 | B~

11
12

13
14
15
16

17

Under review as a conference paper at ICLR 2026

ically agree on the optimal weight vector Xt, thereby achieving a distributed solution that approxi-
mates the centralized Pareto-stationary weighting without requiring global information exchange.

After computing Xt by Algorithm we update the weight A; as

A =1 —=nxe) X1 + nA,tXta a7
where 7 ; is the learning rate of A;. Denote g; = 27]\7{:1 7'g;i", the update of 0., is presented as
0:11 = 6: +n6.:9:, (18)

where 7g ; is the learning rate of policy parameter. In the NMARL problem, the agents can use 6,
to execute the actions based on

3.4 OVERALL DISTRIBUTED ALGORITHM FOR MOMARL PROBLEM

Based on the distributed designs in the previous three subsections, we propose a distributed MO-
MARL algorithm, which is given in Algorithm 3]

Algorithm 3: Distributed algorithm for MOMARL problem
Require: The non-negative integers T', B, H, the learning-rates {nx ¢ }re1,..., 7y and {ne,¢ }ref1,... . 1}3

Initialization: Initialize Ao = ﬁl m € RM the policy parameter 6; 1 € R!Si1XI4il to follow Gaussian
distribution for all ¢ € {1,2,--- | N};

fort =1,2,--- ,Tdo
Initial policy gradient estimation g;";(0) = Oys;|j.4,) forall i € N
Critic step: All agents use Algorithmand output the weight vectors {w;i" (t) }ienr;
Actor step:
forb=0,1,2,--- ,B—1do
All agents execute the joint policy 7, in H — 1 horizon;
Each agent i € V collects a sequence of samples, which includes the state information {s;} ;e
from its x-hop neighbors and its local action information a;, i.e., {(s%-x 4, a% ) Yo<n<w—1;
Each agent ¢ estimates the local policy gradient in m-th objective according to ;
end
All agents calculate g, = gi,(B) by and achieve g{" = ((g7") ", -, (glr\,”,t)T)T for all m € [M];
Compute e by Algorithm [2|as the approximationn solution to problem ;
Update the weight A; acording to (17);
Update the policy parameter ;1 according to (T8);
end
Output: me,_, with T' chosen uniformly from {1,---,T}

Algorithm [3] incorporates linear function approximation in Algorithm ] and distributed consensus-
based adjustment of multiplier objective weights in Algorithm [2| into a unified framework. The
primary advantages are as follows: (1) each agent relies solely on state information from its x-hop
neighbors, thereby avoiding the exponential expansion of the centralized joint state-action space (ref.
Line 9); (2) Each agent in Line 13 only uses the policy gradient estimations of its direct neighbors,
which eliminates the requirement for a central coordinator while supporting collaborative multi-
objective optimization.

4 PARETO-STATIONARY CONVERGENCE OF ALGORITHM [3]

Before the convergence analysis of the algorithm, some assumptions are introduced in the following.

Assumption 1 In the MOMARL problem, for any joint policy parameter 0 and objective m € M,
§z’"”(s, a) satisfies that

inf i 6,m 0. 19
B aRat ) "

Assumption 2 In the MOMARL problem, for any agent i € N and objective m € M, there exists
constant R > 1 such that the instantaneous reward r;”,t at time t > 0 satisfies |r:”t| <R.

Assumption 3 In the MOMARL problem, the network G(N', £) among agents is connected graph.

Assumption ensures that for any joint policy g, (s,a) € 8 x A is visited with a non-zero
probability, Assumption |2 provides an upper bound on the reward, and Assumption [3|is provided
for designing distributed algorithm. Assumptions are standard prerequisite for the convergence
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analysis of RL algorithms (e.g. (Zhou et al.l [2023; Zhang et al) [2022)) and AssumptionE] is com-
monly in (Olfati-Saber & Murray, [2004).

Our process to prove the Pareto-stationary convergence of Algorithm 3|is as follows: (i) We start es-
tablish the smoothness of objective function (i.e., ; (ii) We from the definition of Pareto-stationarity
in Definition 2| and analyze the error between the true gradient Vy, J™(0;) and the calculated gra-
dient g{flt in || (i.e., Lemma ; (iii) We control A; by setting the step size 7g,; to ensure that
Algorithm [3converges to Pareto-stationary solution in Theorem

Lemma 2 In the MOMARL problem, define L ; = max,,cam (1_677]\7,”)3_ For any objective m € M,
the objective J™(0) is L j-smooth.

The detailed proof of Lemma [2] can be found in Appendix Lemma [2] establishes that each
individual objective in the MOMARL problem is L j-smooth with respect to the joint policy pa-
rameters. This smoothness property implies that the gradient of J™ (@) does not change abruptly
when the policy parameters are slightly perturbed, which is crucial for analyzing the stability and
convergence of gradient-based algorithms. In particular, L j-smoothness allows us to control the
error propagation when using approximate gradients or local updates in a distributed setting, and it
forms a key technical result for deriving convergence rates toward Pareto-stationary solutions.

Define €..4;. below as the linear approximation error in Algorithm E}

N — 2
€eritic = SUp Sup sup E[SHP Qz(s./\/f ) A w:,n}{) - QZ‘n(S7 aq; 0)‘ } . (20)
meM 6 ieN S,a;

Based on £.;4;., we further define the gradient approximation error in Section as
gm = 8R2 (,ym)2m+2 + 32 8(7m)2H 8Ecritic (21)

wwtor = [T =)’ G B Gy =)

—_———

Truncation error Sampling error Linear approximation error

Lemma 3 In Algorithm[3] for joint policy parameter 0y, any agent i € N, and objective m € M,
we have

E[[Vo, J™(8:) — 973 113] < €qeton-

The proof of the Lemma 3]is given in Appendix Lemmal[3|provides an upper bound on the error
between the true policy gradient and the estimated gradient g;'; used by each agent in Algorithm@
This result quantifies the approximation error induced by the use of a critic or a finite-horizon esti-

mator in computing policy gradients. Importantly, the bound €7}, . captures the combined effects of

truncation, sampling, and linear function approximation errors. Based on Lemma[3] the convergence
of Algorithm2]is established in the following theorem.

Proposition 1 In Algorithm for any iteration t, we define Gy = (g},---,g") €
RM L1 ISHIAL gnd have the following result:

(i) In Line 10 ofAlgorithm yr (k) = % Ziiﬂzgzl Niom (K)g%, 9%

(ii) In Problem[15] J7 (-) is L{-Lipschitz continuous with L] = 202,,.(G¢), where 0,q,(Gy) is the
largest singular value of G;

(i) [T (A) =TI < 7

The proof of Proposition[I]is presented in AppendixJE} Proposition [T| guarantees that, despite the
distributed nature of the update and the use of only local gradient information from neighbors, the
agents can collectively achieve a close approximation to the globally optimal weight allocation for
combining multiple objectives. This property is fundamental for ensuring the cooperative conver-
gence of the distributed algorithm toward a Pareto-stationary solution. Based on Proposition ] the
Pareto-stationary convergence of Algorithm [3]is presented in the following theorem.

Theorem 2 In Algorithm let g = and Nx ¢ = ﬁ Our policy parameter sequences

1
3Ly’ t+

{6,}1_, generated by Algorithm 3| satisfies:

1 ZT:IE[HV T00) TN <&(1 4 XT: ) +5 max el
T 2 0 t tll2 _(1 — H'YHOC)BT s UbW? me actor

2
+ 8 ( max (¢7,..)? + max L) (22)

Ky +1\mem actor meM (1 - ,ym)4
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The proof of Theorem [2] can be found in Appendix [A.6] Theorem [2] shows that Algorithm [3] can
converge to an approximate Pareto-stationary solution at a rate of O(1/T") with some approximate
error terms. These errors are not significant, as we can control the upper bound of their upper bounds
by setting the feature vector in the linear approximation, sample batch B, sample size H for policy
gradient approximation, and the K for the calculation of objective weights.

5 SIMULATION EXPERIMENTS

In this section, we employ a path planning for multiple robotics to travel environment analogous to
the one described in (Zhou et al., [2023)). While (Zhou et al., 2023)) examines a road network com-
prising 8 nodes, our simulation focuses on a larger network containing 18 nodes. Specifically, the
path planning problems of NV robots (i.e., agents) on a typical acyclic path network in Fig.[T] where
the “blue” nodes in {by, ba, - - - , b5 } represent the set of starting nodes for agents. “purple” node, “o-
range” node, and “green” node in sthe right-hand-side represent the destination nodes of objective 1,
objective 2, and objective 3, respectively. In the path planning problem, the local state space S; of
agent 1€ N is defined as Sl‘ = {bl, b27 bg, b4, b5, C1,C2,C3,C4,Cs, d1, dg, d3, d4, d5, €1,€2, 63}, and
the local action space of agent ¢ € N is defined as A; = {0, 1,2, 3} with 3 being the maximum out
degree of nodes in path network

|
°

8

5

—¥— Obj 1 by Algorithm 3 — Policy gradient by Algorithm 3
0bj 2 by Algorithm 3 175 Policy gradient by Zhou et al., 2024

1 (Objective 1) ~1.2{ — Obj 3 by Algorithm 3
—e— Obj 1 by Zhou et al., 2024 150
Obj 2 by Zhou et al., 2024

2 (Objective 2)
~1.41 —<— Obj 3 by Zhou et al., 2024

s
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Figure 1: (a) Acyclic network. (b,c) The evolution of the objective performance .J(6;) and the norm
of policy gradient [|g; | of the policy sequence generated by Algorithm 3] respectively.

In Network 5-5-5-3, consider agent ¢ at node b. for illustration, the action “0” means that the agent
1 remains stationary at the current node for one time step, while “17”, “2”, and “3” indicate that the
agent i follows the edge (ba, ¢1), edge (bs, ¢2), and edge (bs, c3), respectively. It should be noted
that the agent ¢ remains at the current node even when the action selected by it exceeds the out
degree of the current node. For example, if agent j € N selects the action “3” at node by, then it
will remain stationary at b, for one time step.

The reward settings of each agent include: (i) the time run cost —0.5 at each step; (ii) the collision
penalty when the agents share a path to move; (iii) the additional rewards for achieving different
objectives. Specifically, when an agent reaches objective 1, objective 2, and objective 3, it receives
the additional rewards of 0.5, 1.5, and 1, respectively. In this path planning problem, the agents want
to efficiently reach the destinations while avoiding collision. The objective of agents is to find a joint
policy parameter 6 to maximizes (3).

Our robot path planning problem includes 10 agents, whose initial positions are set to
{b1,ba, b3, by, b5, b1, ba, bs, by, bs }. In this simulation, both the proposed Algorithm [3|and the latest
MORL centralized algorithm from (Zhou et al.,2024) are tested under different random seeds. The
discounted average cumulative reward {J™ (0;) }me{1,2,3} of the policy sequence generated by Al-
gorithm [3| and the centralized algorithm are depicted in Fig. [I(b), where Algorithm [3| outperforms
the centralized algorithm on performance of each objective. The main reason is that the centralized
algorithm applies linear approximation to the global state-action space, causing large errors, whereas
our distributed algorithm only approximates local Q-functions, leading to higher accuracy.

Moreover, the norm of policy gradients (i.e., ||g:||2) generated by Algorithm and the centralized
* t

algorithm are showed in Fig. The norm of the policy gradient in Algorithm [3| exhibits a fast
convergence trend towards to 0. However, the policy gradient in the centralized algorithm does
not converge but fluctuates over many iterations from 0 due to the excessively large state-action
dimension, resulting in a substantial approximation error in the linear approximation.

6 CONCLUSIONS

We propose a distributed algorithm for MOMARL and prove its convergence to a close-to-Pareto-
stationary point. Each agent only requires state-action information (srx, a;), ensuring scalability.
This framework itself is a significant contribution and may inspire other scalable RL methods in
networked systems
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