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Abstract
Fine-tuning is a common approach for adapting large foundational models to downstream tasks.
With growing model and dataset sizes, parameter-efficient techniques have become crucial. A
widely used method is Low-Rank Adaptation (LoRA), which expresses updates as a product of two
low-rank matrices. While effective, LoRA often lags behind full-parameter fine-tuning (FPFT),
and its optimization theory remains underexplored. We show that LoRA and its extensions, Asym-
metric LoRA and Chain of LoRA, face convergence issues. To address this, we propose Random-
ized Asymmetric Chain of LoRA (RAC-LoRA)—a general framework analyzing convergence
rates of LoRA-based methods. Our approach keeps the empirical benefits of LoRA while intro-
ducing algorithmic modifications that ensure provable convergence. The framework bridges FPFT
and low-rank adaptation, guaranteeing convergence to the FPFT solution with explicit rates. We
further provide analysis for smooth non-convex losses under gradient descent, stochastic gradient
descent, and federated learning, supported by experiments.

1. Introduction

Many real-world Deep Learning (DL) applications require adapting large pre-trained models to
specific tasks [8]. This process, known as fine-tuning, adjusts a model from its pre-trained state to
new domains. Fine-tuning is a form of transfer learning, where pre-training knowledge is reused for
specific applications [60].

Parameter-Efficient Fine-Tuning. Full-parameter fine-tuning is effective but impractical for
modern models with billions of parameters. Parameter-Efficient Fine-Tuning (PEFT) [19] reduces
cost by updating only a subset of parameters [51] or adding task-specific modules [65]. PEFT lowers
training time, memory requirements, making it a practical choice for large-scale models [18].
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1.1. Low-Rank Adaptation (LoRA)

A widely used PEFT method is Low-Rank Adaptation (LoRA) [21], motivated by the low intrinsic
dimension of fine-tuning [1, 33]. Instead of updating full weight matrices, LoRA optimizes the
product of two trainable low-rank matrices, added to the pre-trained weights: W = W 0 + α

rBA,
where W 0 ∈ Rm×n, B ∈ Rm×r, A ∈ Rr×n, and r ≪ min{m,n}. Only A,B are trained, while
W 0 stays fixed. The scaling α/r normalizes the update, with A usually Gaussian-initialized and
B set to zero; alternatives are explored in Zhu et al. [67]. This approach reduces computation and
mitigates overfitting [4], enabling efficient fine-tuning in resource-limited settings [59].

1.2. Chain of LoRA (COLA)

Although efficient, LoRA often underperforms full-parameter fine-tuning (FPFT) [4]. To improve,
Xia et al. [64] proposed Chain of LoRA (COLA), which applies multiple LoRA updates iteratively.
At each step, a LoRA module is trained, merged with W 0, and reinitialized. After T iterations, the
model becomes W = W 0 + α

r

∑T−1
t=0 BtAt, with At, Bt the low-rank matrices at step t. Unlike a

single low-rank update, COLA approximates higher-rank adaptations via a sequence of decomposi-
tions, potentially yielding better performance and easier optimization [64].

1.3. Problem Formulation

Supervised learning is typically cast as minimizing a loss function that measures the discrepancy
between predictions and outcomes. Here, we focus on fine-tuning, where a pre-trained model is
adapted to a new task or dataset with efficient parameter updates. We consider the model-agnostic
formulation

min
∆W∈Rm×n

f(W 0 +∆W ), (1)

where W 0 ∈ Rm×n are pre-trained parameters (or those of a single linear layer), and ∆W is the
adaptation term. The function f : Rm×n → R denotes the empirical loss on the adaptation dataset.
Since m× n is typically huge in deep learning, ∆W must have special structure to be practical.

1.4. No Reasonable Theory for Low-Rank Adaptation

A solid theoretical understanding of fine-tuning methods with low-rank updates, such as LoRA and
COLA, is still missing.

• As noted by Sun et al. [58], the LoRA re-parameterization transforms a smooth Lipschitz loss
into a non-smooth one, creating new challenges in addition to handling low-rank updates.
While this hints at difficulties, it does not rule out a proper theory.

• Existing analysis of COLA [64] replaces low-rank optimization over A,B with full-rank op-
timization of ∆W , ignoring the key low-rank structure and making results largely irrelevant.

• LoRA is highly sensitive to hyper-parameters [29, 32], yet no theory explains this issue.
• Most importantly, COLA can fail to converge. In Section 2, we present a simple 3 × 3 ex-

ample showing divergence. Thus, COLA is merely a heuristic, and fixing this is an open
problem—our focus in this work.

Despite their practical success, LoRA and COLA remain heuristics without rigorous theoretical
support, raising concerns about their robustness and reliability in settings beyond current practice.
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Figure 1: Convergence of LoRA, AsymmLoRA, COLA, and our proposed RAC-LoRA on (2).

2. Shining Some Light on LoRA’s Convergence Issues

Most machine learning models are trained by minimizing a loss function using gradient-based meth-
ods [52], typically extensions of Gradient Descent (GD) with stochasticity, momentum, or adaptive
stepsizes [15, 56]. To study LoRA-style methods, we first analyze their behavior under a GD step.
Applying the chain rule, the gradients of the low-rank matrices B,A are ∇B,Af(W + α

rBA) =

α
r

(
∇B⊤f(W + α

rBA)
∇f(W + α

rBA)A⊤

)
, leading to updates A+ = A − ηα

rB
⊤∇f(W + α

rBA), B+ =

B − ηα
r∇f(W + α

rBA)A⊤, where η > 0 is the step size. Since both A,B are trainable, gradients
are multiplied by B⊤ and A⊤, creating a non-trivial structure that complicates analysis and may
disrupt Lipschitz continuity.

Loss of Lipschitz smoothness.

Assumption 1 (Lipschitz Gradient) f is differentiable, and there exists L > 0 such that

∥∇f(W )−∇f(V )∥ ≤ L∥W − V ∥, ∀W,V ∈ Rm×n,

where ∥ · ∥ is the Frobenius norm.

Lipschitz continuity of gradients is central for convergence guarantees [48, 57]. However,
this property generally fails under LoRA. Even if f(W ) is L-smooth, the reparameterized func-
tion f(W 0+BA) is not Lipschitz smooth in variables {A,B}, as proven in Sun et al. [58, Thm. 2].
This loss of smoothness complicates extending standard gradient methods to LoRA.

Numerical counterexample. We illustrate failure modes of LoRA and COLA using the quadratic

f(x) = x⊤Mx+ b⊤x, (2)

with d = 9, M = Diag(10, 1, . . . , 1), and b = (1, . . . , 1)⊤. The function is L-smooth with L = 10.
We represent x ∈ R9 as W ∈ R3×3, use rank r = 1, and set α = r.

Figure 1 shows that with step size 1/L, both LoRA and COLA diverge, while AsymmLoRA
converges to a suboptimal stationary point. With smaller steps, LoRA and COLA converge but still
far from optimal. In contrast, our RAC-LoRA converges linearly to the optimum. These results
highlight divergence, suboptimal convergence, and step-size sensitivity in existing methods, and
demonstrate the reliability of RAC-LoRA.
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Algorithm 1 Randomized Asymmetric Chain of LoRA (RAC-LoRA)
1: Parameters: pre-trained model W 0 ∈ Rm×n, rank r ≪ min{m,n}, learning rate γ > 0,

scaling factor α > 0, chain length T , sketch distribution DB
S (Option 1) or DA

S (Option 2).
2: for t = 0, 1, . . . , T − 1 do
3: Sample a sketch matrix

(Option 1) Bt
S ∼ DB

S (Option 2) At
S ∼ DA

S

4: Using some iterative solver, approximately solve the subproblem
(Option 1) Ât ≈ min

A
f(W t + α

rB
t
SA) (Option 2) B̂t ≈ min

B
f(W t + α

rBAt
S)

5: Apply the update
(Option 1) W t+1 = W t + α

rB
t
SÂ

t (Option 2) W t+1 = W t + α
r B̂

tAt
S

6: end for

3. Randomized Asymmetric Chain of LoRA (RAC-LoRA)

To address convergence issues in LoRA, we propose Randomized Asymmetric Chain of LoRA
(RAC-LoRA). This method combines asymmetric LoRA with a chain structure to ensure convergence
while keeping efficiency. The procedure is summarized in Algorithm 1.

Description of the algorithm. At each block, one matrix is randomly initialized and fixed,
while the other is trainable. This avoids optimization in a restricted subspace and reduces conver-
gence to poor stationary points. Two configurations exist: freeze B and train A, or freeze A and
train B. We formalize these sampling schemes as follows.

Definition 2 (Left Sketch) A “left sketch” (rank r) is ∆W = α
rBSÂ, where BS ∼ DB is sampled

from a fixed distribution (n× r), and only Â is trainable.

Definition 3 (Right Sketch) A “right sketch” (rank r) is ∆W = α
r B̂AS , where AS ∼ DA is

sampled from a fixed distribution (r ×m), and only B̂ is trainable.

In both schemes, the trainable matrix is updated for several epochs, effectively training a LoRA
block in the chain. Formally:
(Option 1) Ât ≈ minA f(W t + α

rB
t
SA), (Option 2) B̂t ≈ minB f(W t + α

rBAt
S).

Finally, the sampled and trained matrices are merged into the model:
(Option 1) W t+1 = W t + α

rB
t
SÂ

t, (Option 2) W t+1 = W t + α
r B̂

tAt
S .

3.1. Derivation of the update step

Without loss of generality, let us focus on the Left Sketch scheme (Definition 2). Specifically, for
each model in the chain, the update rule is given as follows: W t+1 = W t+ α

rB
t
SÂ

t. Next, we apply
the Lipschitz gradient condition (Assumption 1) to the loss function f :

f(U) ≤ f(V ) + ⟨∇f(V ), U − V ⟩+ L

2
∥U − V ∥2F , ∀U, V ∈ Rm×n

Applying this with U = W t, V = Bt
SÂ

t and η ≤ 1
L leads to

f(W t+1) ≤ f(W t) + ⟨(Bt
S)

⊤∇f(W t), Ât⟩+ 1

2η
⟨(Bt

S)
⊤Bt

SÂ
t, Ât⟩.
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Let us minimize the left hand side term in Ât, when the gradient vanishes: (Bt
S)

⊤∇f(W t) +
1
η (B

t
S)

⊤(Bt
S)Â

t = 0. One such solution is given by1 Ât = −η
(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤∇f(W t),
and his leads to the following gradient update:

W t+1 = W t − α

r
ηBt

S

(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤∇f(W t) = W t − γHt
B∇f(W t), (3)

where Ht
B = Bt

S

(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤ is projection matrix and α
r η = γ. Similarly, we can obtain

the update for Right Sketch scheme (Definition 3):

W t+1 = W t − γ∇f(W t)(At
S)

⊤
(
At

S(A
t
S)

⊤
)†

At
S = W t − γ∇f(W t)Ht

A, (4)

where Ht
A = (At

S)
⊤ (At

S(A
t
S)

⊤)†At
S is also projection matrix. We merge the scaling factor α

r with
η into an effective step size γ, simplifying updates. With this, we establish convergence for both
standard and stochastic gradient descent.

3.2. Convergence results

Our analysis relies on the smallest eigenvalue of the expected projection matrix (Section 3.1). A
strictly positive value ensures reliable convergence, so we assume it remains positive.

Assumption 4 Consider a projection matrix H generated by Left Sketch (Def. 2) or Right Sketch
(Def. 3). Assume that sampling distributions DB

S and DA
S are such that the smallest eigenvalue of the

expected projection matrix H generated by sampled matrix is positive: λH
min = λmin [E [H]] > 0.

The projection matrix has eigenvalues 0 or 1, so its minimum is 0, but the expected projection
matrix can have a strictly positive minimum eigenvalue. We require a lower bound on the function.

Remark 5 Assumption 4 is easily satisfied. Let H be the projection matrix as defined below Equa-
tion (4) and assume that the A matrices are drawn from an isotropic distribution (the rows of A
are isotropic). Then H is the projection onto the rank of A, which is a subspace of dimension r
distributed isotropically in Rn. The matrix E[H] is then invariant under rotations, so must be a
scalar multiple of the identity. By taking traces, one finds that E[H] = r

nI so λH
min = r

n .

Assumption 6 Function f is bounded from below by an infimum f⋆ ∈ R.

We now present the convergence result for RAC-LoRA with Gradient Descent (GD) updates.

Theorem 7 Let Assumptions 1 and 4 hold, and let the stepsize satisfy 0 < γ ≤ 1
L . Then, the

iterates of RAC-LoRA (Algorithm 1) with GD updates (Equation 3 or 4) satisfy

E
[∥∥∥∇f(W̃ T )

∥∥∥2] ≤ 2(f(W 0)− f⋆)

λH
minγT

,

where the output W̃ T is chosen uniformly at random from W 0,W 1, . . . ,W T−1.

1. The dagger notation refers to the Moore-Penrose pseudoinverse.
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We obtain sublinear convergence, typical for non-convex problems. To strengthen this, we assume
the Polyak-Łojasiewicz (PL) condition, which extends strong convexity to non-convex functions.

Assumption 8 (PL-condition) Function f satisfies the Polyak-Łojasiewicz (PL) condition with
parameter µ > 0 if 1

2∥∇f(W )∥2 ≥ µ (f(W )− f⋆) for all W ∈ Rm×n, where f⋆ = inf f ,
assumed to be finite.

Next, we establish a convergence rate for RAC-LoRA in the Polyak-Łojasiewicz setting.

Theorem 9 Let Assumptions 1, 4 and 8 hold, and let the stepsize satisfy 0 < γ ≤ 1
L . Then, for

each T ≥ 0, the iterates of RAC-LoRA (Algorithm 1) with GD updates (Equation 3 or 4) satisfy

E
[
f(W T )

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.

We achieved a linear convergence rate, which is significantly better than previous results; how-
ever, this improvement applies to a more limited class of functions. Importantly, we can recover the
classical results of GD by setting λH

min = 1, which corresponds to the full-rank scenario.
The comprehensive analysis of different optimizers and their performance across various set-

tings is provided in the appendix, as summarized in Table 1.
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Table 1: Summary of our theoretical convergence results for RAC-LoRA for solving Problem (1)
when using a specific optimizer for approximately solving the subproblem in Step 4. The
results for the RAC-LoRA + GD combination are described in Section ??, while the proofs
can be found in Appendix F. The results and proofs for all other combinations can be found
in the indicated appendices.

Problem Fine-tuner Subproblem Optimizer Non-convex PL

(1) RAC-LoRA
Gradient Descent

(GD)
O (1/T )
Sec. F.1

O (exp(−T ))
Sec. F.2

(1)+(6) RAC-LoRA
Random Reshuffling

(RR)
O
(
1/T

2
3

)
Sec. G.1

O(1/T 2)
Sec. G.2

(1) RAC-LoRA
Stochastic Gradient Descent

(SGD)
O
(
1/T

1
2

)
Sec. H.1

O (1/T )
Sec. H.2

(1)+(12) Fed-RAC-LoRA
Random Reshuffling

(RR)
O
(
1/T

1
2

)
Sec. I.1

O (1/T )
Sec. I.2

Appendix A. Contributions

To address the aforementioned fundamental issues of LoRA-type heuristics, and to firmly ground the
fine-tuning-via-low-rank adaptation line of work in a theoretically sound algorithmic framework,
we propose a new generic low-rank adaptation framework for which we coin the name Randomized
Asymmetric Chain of LoRA (RAC-LoRA); see Algorithm 1.

• Similarly to COLA [64], our method is iterative: we perform a chain of low-rank updates (see
Step 2 in Algorithm 1). In each step of the chain, one matrix (e.g., A) is chosen randomly
from a pre-defined distribution, and the other (e.g., B) is trainable (see Step 3 in Algorithm 1).
Which of these two update matrices is chosen randomly and which one is trainable is decided
a-priori, and hence our method is asymmetric in nature, similarly to AsymmLoRA [67]. We
propose two options, depending on which matrix is trainable and which one is chosen ran-
domly: in Option 1, A is trainable, and in Option 2, B is trainable.

• In order to make our framework flexible, we offer a variety of strategies for updating the train-
able matrix in each step of the chain. This is possible since in each such step we formulate an
auxiliary optimization subproblem in the trainable matrix, and one can thus choose essentially
any optimizer for approximately solving it (see Step 4 in Algorithm 1). We theoretically an-
alyze several such optimizers within our RAC-LoRA framework, including Gradient Descent
(GD) in Appendix F (however, we include and describe the theorems in Section 3.2), Random
Reshuffling RR in Appendix G, and Stochastic Gradient Descent (SGD) in Appendix H. In
the case of GD and SGD, just a single step of the optimizer is sufficient, and this is what
our analysis accounts for. In the case of RR, we apply a single pass over the data in a ran-
domly reshuffled order. See Table 1 for a quick overview. Our analysis applies to the smooth
nonconvex regime, in which we prove fast sublinear (i.e., O(1/

√
T ), O(1/T ) or O(1/T 2))

convergence rates to a stationary point, and fast linear (i.e., O(exp(−T ))) rates to the globally
optimal solution under the Polyak-Łojasiewicz (PL) condition.
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• The update is applied (see Step 5 in Algorithm 1), and the method moves on to the next step
of the chain.

Experiments. We apply our method to several machine learning tasks. We start from convex
problems with traditional models, such as logistic and linear regression, to provide clear illustrations
of our theoretical findings. In addition, we present empirical analyses for multilayer perception
(MLP) on MNIST and RoBERTa on the GLUE benchmark tasks [61]. See Appendix B.

Federated Learning. Furthermore, we extend our findings from the simple unstructured prob-
lem (1) to the more challenging distributed/federated problem where f has the special form de-
scribed in (12); there we consider solving a distributed optimization problem via our new Fed-RAC-
LoRA method (Algorithm 2). These additional results can be found in Section I. For illustrative
purposes, we provide an analysis for RR as the optimizer for the subproblem; see also Table 1. Pre-
vious research [58] has shown that using a single learnable matrix in this context provides several
key advantages, particularly in terms of preserving privacy, ensuring the correctness of model aggre-
gation, and maintaining stability when adjusting the scaling factor [58]. These benefits are crucial
in Federated Learning [31], where data is distributed across multiple clients, and privacy constraints
must be upheld while performing model updates. Building on this asymmetric approach, we inte-
grate the concept of chained updates to develop Fed-RAC-LoRA, a more robust and scalable dis-
tributed method. Our approach maintains the computational efficiency of the original RAC-LoRA
while ensuring rigorous convergence properties in the distributed setting, offering a theoretically
sound method for large-scale Federated Learning scenarios.
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Figure 2: RAC-LoRA convergence with varying ranks and step sizes on a linear regression problem.

Appendix B. Experiments

In this section, we explore the performance of RAC-LoRA as an optimization algorithm in machine
learning applications. In Appendix B.1 we validate the theoretical results in convex problems, while
in Appendix B.2 we evaluate the method applied to neural networks.

B.1. Convex Optimization Problems

Linear Regression. We conducted our analysis in a controlled setting using linear regression with
quadratic regularization and synthetically generated data. Specifically, we utilized 3,000 samples
for pre-training the model and 1,000 samples for fine-tuning. In this setup, we have d = 100 with
weight matrices of size 10 × 10, and the regularization term is set to 0.0001. As illustrated in
Figure 2, the method converges for various ranks and the convergence speed is proportional to n

r ,
and when the rank is set to the full rank, we observe convergence identical to that of FPFT. We
remark that COLA would suffer from the same divergence behavior as in Figure 1 on this quadratic
problem.

Logistic Regression. Analogous results for logistic regression are shown in Appendix D.

B.2. Non-Convex Optimization Problems

Further experimental results are provided in Appendix E.

B.2.1. RESULTS OF ROBERTA ON NLP TASKS

As in prior work [64, 67], we evaluate low-rank adaptation methods for LLMs using the GLUE
dataset [61].

Methodology. We fine-tuned the roberta-base model [34] on four of the smallest GLUE
tasks to study the behavior of low-rank methods in practical scenarios. For the chained methods,
we use a range of values for the number of chains and epochs per chain hyperparameters. In each
experiment we used rank 2 for the adaptations and trained using the AdamW optimiser [35] with
β parameters 0.9 and 0.999, ϵ = 1 × 10−8, a learning rate of 4 × 10−4 with linear schedule and a
training batch size 8.

Discussion. The results are presented in Table 2. We find that RAC-LoRA performs competi-
tively with other low-rank adaptation methods, but does not outperform Asymmetric LoRA despite
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having greater capacity. We expect RAC-LoRA to outperform Asymmetric LoRA in settings where
there is a benefit to the additional capacity, i.e., those where a full parameter fine tune (FPFT) is
much better than Asymmetric LoRA. The performance of the FPFT in Table 2 shows that the se-
lected GLUE tasks do not provide such a setting. Here, a single low-rank adaptation is already
enough to obtain performance close to that of FPFT. However, this intuition motivates the experi-
ments in ?? B.2.2 where we intentionally restrict capacity of the adaptations to isolate the effect of
the chaining procedure.

Method # Chains # Epochs MRPC CoLA RTE STS-B Avg

FPFT *
1 30, 80, 80, 40

90.2±0.0 63.6±0.0 78.7±0.0 91.2±0.0 80.9
LoRA * 89.7±0.7 63.4±1.2 86.6±0.7 91.5±0.2 82.8

LoRA
1 100

87.7±0.2 60.8±0.2 75.2±1.5 90.2±0.1 78.5
AsymmLoRA 86.9±0.3 58.7±1.0 71.0±3.3 90.4±0.0 76.8
COLA 10 10 88.0±0.8 59.5±1.0 72.1±0.9 90.7±0.2 77.6
RAC-LoRA 10 10 87.0±0.7 58.5±0.1 72.3±1.5 90.3±0.0 77.0

Table 2: Results with RoBERTa-base for rank 2 on tasks from the GLUE benchmark. *: results
taken from the work of [21]. We report Matthews correlation coefficient for COLA, Pear-
son correlation coefficient for STS-B, and accuracy for the remaining tasks. Results are
averaged over 3 seeds and standard deviations are given in the subscript.

B.2.2. RESULTS OF MLPS ON MNIST

In this section, we seek to isolate the effect of the chaining procedure on generalisation performance
by restricting the capacity of the low-rank adaptations. This ensures that a single adaptation is
not sufficient to reach performance comparable with FPFT, allowing us to explore how chaining
adaptations can bridge this gap.

Methodology. We first pre-train a 3-layer MLP on the first five classes (digits 0-4) and then
adapt the network using LoRA-based methods for recognizing the remaining five unseen classes
(digits 5-9). The model is evaluated solely on these unseen classes2. we used rank 1 for the adapta-
tions and trained using the AdamW optimiser [35] with β parameters 0.9 and 0.999, ϵ = 1× 10−8,
a constant learning rate of 2× 10−4 and a training batch size 128.

Discussion. Table 3 shows results for MNIST with different ranks and initialization. LoRA
reaches around 90% of the accuracy of FPFT leaving some margin for improvement when using
the chains. COLA constructs a sequence of LoRA modules, delivering significant accuracy im-
provements over LoRA due to the chaining procedure. The chaining allows COLA to capture richer
features (at the cost of training more parameters). However, both LoRA and COLA lack rigorous
convergence guarantees. AsymmLoRA has been shown empirically to approximate the performance
of LoRA [58] — but again no convergence result is provided. Our proposed method (RAC-LoRA)
enjoys significant accuracy improvements over AsymmLoRA, again due to the chaining procedure.
RAC-LoRA leverages a diverse learning process across different LoRA blocks, which intuitively

2. The setup is inspired by https://github.com/sunildkumar/lora_from_scratch/.
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allows the model to capture a broader range of features. Crucially, RAC-LoRA comes with conver-
gence guarantees (Theorems 7 and 9). Finally, we note that each iteration of RAC-LoRA requires
training only one matrix per LoRA block, while COLA needs training two matrices. This reduction
in trainable parameters may offer advantages in resource-constrained settings, such as Federated
Learning, where minimizing communication costs is critical.

Appendix C. Conclusion

Table 3: MLP results on MNIST with rank r and α
set to 1. In the case of AsymmLoRA and
RAC-LoRA, only the zero-initialized matrix is
trained.

Method DA DB Acc Train Params

FPFT - - 98.0 54,700

LoRA Gaussian Zero 83.8 1K
COLA Gaussian Zero 92.6 1K

LoRA Zero Gaussian 87.0 1K
COLA Zero Gaussian 96.2 1K

AsymmLoRA Gaussian Zero 62.3 133
RAC-LoRA Gaussian Zero 92.0 133

AsymmLoRA Zero Gaussian 81.6 912
RAC-LoRA Zero Gaussian 96.1 912

In this work, we introduced RAC-LoRA,
a framework for parameter-efficient fine-
tuning that enables interpolation between
low-rank adaptation and full parameter
fine-tuning. Motivated by the conver-
gence challenges of LoRA, we propose
the iterative algorithm RAC-LoRA and
provide convergence guarantees across
various settings, including gradient de-
scent, stochastic gradient descent, and
random reshuffling. We extended this
framework to the federated learning
setup, where RAC-LoRA has advantages
over competing algorithms in terms of
communication efficiency. Finally, we
validate our theoretical results empiri-
cally in both convex problems, such as
linear and logistic regression, and non-
convex problems, such as MLPs and
LLMs, finding that its chaining procedure
is advantageous in settings where standard low-rank adaptation approaches (such as LoRA and
AsymmLoRA) fail to capture the richness of full-parameter fine-tuning.
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Appendix D. Results on Convex Optimization Problems

D.1. Logistic Regression

We performed our analysis in a controlled environment using logistic regression with quadratic
regularization on synthetic data. In this configuration, we set d = 100, employed weight matrices
of size 10 × 10, and used 2,000 samples, with the regularization term fixed at 0.1. As shown in
Figure 3, the method demonstrates convergence across different ranks, and when the rank is set to
full rank, we observe convergence that mirrors that of FPFT.
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Figure 3: RAC-LoRA convergence with varying ranks and step sizes on a logistic regression problem.

Appendix E. Results on Non-Convex Optimization Problems

E.1. Additional Results of RoBERTa on NLP Tasks

Table 4 reports additional configurations of the number of epochs per chain and the number of
chains on the GLUE benchmark. These results further corroborate the discussion in Section B.2.

E.2. Ablation on number of epochs per block in the chains

Convergence proof for RAC-LoRA (Corollary 12 and Corollary 14) states that each LoRA module
shall be optimized for one epoch only. However, good approximations can also be obtained using
more epochs per block and hence fewer blocks (i.e., fewer parameters), as we show in Table 5 for
the case of MLP on MNIST.

Similarly, we plot the training loss curves for RoBERTa-base on the RTE dataset in Figure 4.
We observe that all setups reach the same value at convergence with similar speed.
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Figure 4: RAC-LoRA training loss curves at a fixed computational budget for varying epochs for
each block in the chain. RoBERTa-base with rank 2.

18



TOWARD THE FIRST OPTIMIZATION FRAMEWORK FOR LOW-RANK ADAPTATION

Method # Chains # Epochs MRPC CoLA RTE STS-B Avg

FPFT *
1 30, 80, 80, 40

90.2±0.0 63.6±0.0 78.7±0.0 91.2±0.0 80.9
LoRA * 89.7±0.7 63.4±1.2 86.6±0.7 91.5±0.2 82.8

LoRA
1 20

86.8±0.8 58.0±0.4 71.4±0.7 90.3±0.1 76.6
AsymmLoRA 85.5±0.5 56.5±1.5 69.2±0.2 89.6±0.1 75.2

COLA
2 10 87.1±0.2 58.4±1.5 69.9±0.9 90.3±0.2 76.4
10 2 84.2±1.1 54.2±0.4 64.6±1.3 89.1±0.1 73.0

RAC-LoRA
2 10 85.6±1.7 55.3±1.2 68.6±1.0 89.4±0.2 74.7
10 2 85.4±0.4 55.1±1.2 65.5±0.9 89.3±0.1 73.8

LoRA
1 50

88.2±0.3 60.1±0.4 74.4±0.9 90.6±0.1 78.3
AsymmLoRA 86.4±1.0 57.4±0.3 69.9±1.8 90.3±0.1 76.0

COLA
5 10 87.8±1.1 59.3±2.1 71.2±1.2 90.6±0.2 77.2
10 5 87.7±0.5 58.1±1.2 70.9±0.5 90.2±0.2 76.7

RAC-LoRA
5 10 87.2±0.6 57.6±0.5 70.6±0.7 90.2±0.1 76.4
10 5 87.5±0.4 57.8±1.0 70.3±1.2 90.2±0.2 76.5

LoRA
1 100

87.7±0.2 60.8±0.2 75.2±1.5 90.2±0.1 78.5
AsymmLoRA 86.9±0.3 58.7±1.0 71.0±3.3 90.4±0.0 76.8
COLA 10 10 88.0±0.8 59.5±1.0 72.1±0.9 90.7±0.2 77.6
RAC-LoRA 10 10 87.0±0.7 58.5±0.1 72.3±1.5 90.3±0.0 77.0

Table 4: Performance of the methods using RoBERTa-base for rank 2. The experiments are based
on 4 tasks from the GLUE benchmark. * denotes the results reported in [21]. We report
Matthews correlation coefficient for the CoLA dataset, Pearson correlation coefficient for
STS-B, and accuracy for the remaining tasks, with the standard deviations given in the
subscript. The results are obtained using 3 random seeds.

Number of epochs per block

1 2 3 4 5 10

COLA 96.2 95.8 95.9 95.1 95.4 94.5
RAC-LoRA 96.1 95.6 95.6 94.9 94.7 93.9

Table 5: Accuracy at varying epochs for each block in the chained methods (COLA and RAC-LoRA).
The setup is the same as in Table 3, with a zero-initialized A matrix and a Gaussian-
initialized B matrix. To ensure a fair comparison, the product of the number of epochs per
block and the number of blocks is kept constant at 50. The number of trainable parameters
for COLA and RAC-LoRA are 1K and 912, respectively.
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Appendix F. Analysis of RAC-LoRA with Gradient Descent

F.1. Proof of Theorem 7

The proof is provided for Left Sketch (Definition 2). The result for Right Sketch (Definition 3) can
be derived by following the same steps.
Proof We begin by examining the implications of Assumption 1. The relationships between various
conditions associated with Assumption 1 are discussed in detail in Nesterov [48].

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

Using the update rule W t+1 = W t − γHt
B∇f(W t) we get

f(W t+1) ≤f(W t) +
〈
∇f(W t),−γHt

B∇f(W t)
〉
+

L

2

∥∥−γHt
B∇f(W t)

∥∥2
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〈
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〉
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B∇f(W t)

〉
≤f(W t)− γ

〈
∇f(W t), Ht
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Since matrix Ht
B is projection matrix, we have (Ht
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Using the fact that γ ≤ 1
L we have
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2

〈
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Taking expectation we get
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∇f(W t), Ht

B∇f(W t)
〉
| W t

]
≤f(W t)− γ

2

〈
∇f(W t),E

[
Ht

B

]
∇f(W t)

〉
Using an Assumption 4 we have

E
[
f(W t+1) | W t

]
≤E

[
f(W t)− γ

2

〈
∇f(W t), Ht

B∇f(W t)
〉
| W t

]
≤f(W t)− γ

2
λHB
min

∥∥∇f(W t)
∥∥2 .

Subtracting f⋆ from both sides we get
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Taking expectation and using tower property we obtain
γ

2
λHB
minE

[∥∥∇f(W t)
∥∥2] ≤ et − et+1,

where et = E
[
f(W t)
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Finally, we get
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.

Applying argument from Danilova et al. [11] we obtain the result for uniformly chosen point.

F.2. Proof of Theorem 9

The proof is provided for Left Sketch (Definition 2). The result for Right Sketch (Definition 3) can
be derived by following the same steps.
Proof

We start from the inequality 5:

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γ

2
λHB
min

∥∥∇f(W t)
∥∥2 .

Using PL condition
∥∥∇f(W t)

∥∥2 ≥ 2µ
(
f(W t)− f⋆

)
we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γµλHB

min

(
f(W t)− f⋆

)
≤
(
1− γµλHB

min

) (
f(W t)− f⋆

)
.

Once we unroll the recursion we get

E
[
f(W T )

]
− f⋆ ≤

(
1− γµλHB

min

)T (
f(W 0)− f⋆

)
.

In order to obtain ε solution we need to take

T ≥ O

(
L

µ

1

λHB
min

log
1

ε

)
.
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Appendix G. Analysis of RAC-LoRA with Random Reshuffling

The previous results were obtained using full gradients. However, this approach is impractical in
deep learning settings, where calculating full gradients is often infeasible. To analyze stochastic
methods, we consider problem (1), where f has the following special structure:

f(W 0 +∆W ) :=
1

N

N∑
i=1

fi(W
0 +∆W ), (6)

where each function fi represents the individual loss function for one sample and N is total number
of datapoints. Next, we analyze a practical variant of stochastic gradient descent (SGD) known
as Random Reshuffling (RR), which involves sampling without replacement. In this method, the
dataset is shuffled according to a permutation, ensuring that each training sample is used exactly
once during each epoch.

RR is a variant of SGD in which each data point is used exactly once per epoch, also known
as SGD with sampling without replacement. Many efforts have been made to explain why gradi-
ent methods with reshuffling perform so well in practice, across different types of problems. The
convergence rates for incremental gradient methods with random reshuffling in convex optimization
were first explored by Nedić and Bertsekas [47] and later by Bertsekas [3]. In recent years, a lot
of focus has shifted toward strongly convex problems, with studies showing that RR can outper-
form SGD. For example, Recht and Ré [50] were among the first to analyze this for quadratic least
squares problems.

Researchers have also managed to improve results and remove some of the earlier assumptions,
such as second-order smoothness, as seen in works by Jain et al. [22], Safran and Shamir [55] and
Mishchenko et al. [44]. These studies introduced a new way to account for the random permutation’s
variance, making it easier to analyze both convex and strongly convex cases. There have even been
extensions into non-convex settings, with results under the PL condition [2, 49] and general non-
convex smooth cases [36, 42, 44]. More recently, tighter lower bounds for strongly convex and PL
functions have been developed [5].

In recent years, there’s also been growing interest in applying these reshuffling techniques to
distributed and federated learning, which is crucial for training large-scale, decentralized models
[7, 20, 38, 40, 41, 45, 54, 66]

To analyze stochastic methods, we need to make assumptions about the variance. The standard
assumption is that the variance is bounded:

Assumption 10 There exist nonnegative constants σ ≥ 0 such that for any W t ∈ Rm×n we have,

1

N

n∑
i=1

∥∥∇fi
(
W t
)
−∇f

(
W t
)∥∥2 ≤ σ2.

The proof is provided for Left Sketch (Definition 2). The result for Right Sketch (Definition 3)
can be derived by following the same steps.

We consider a method belonging to the class of data permutation methods which is the RR
algorithm. In each epoch t of RR, we sample indices π0, π1, . . . , πN−1 without replacement from
{1, 2, . . . , N}, i.e., {π0, π1, . . . , πN−1} is a random permutation of the set {1, 2 . . . N} and proceed
with N iterates of the form:

W t
i+1 = W t

i − γHt
B∇f(W t

i ).
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We then set W t+1 = W t
N , and repeat the process for a total of T LoRA blocks. We can derive the

effective step:

W t+1 = W t − γHt
B

N−1∑
i=0

∇f(W t
i ) = W t − γHt

BNĝt, (7)

where ĝt = 1
N

∑N−1
i=0 ∇f(W t

i ).

G.1. Analysis of general non-convex setting

Theorem 11 Suppose that Assumption 1 and Assumption 4 hold. Suppose that a stepsize γ > 0
is chosen such that γ ≤ 1

2LN . We choose the output of the method W̃ T uniformly at random from
W 0,W 1, . . . ,W T−1 Then, the iterate W̃ T of RAC-LoRA method (Algorithm 1) with RR updates
(Equation 7) satisfy

E
[∥∥∥∇f(W̃ T )

∥∥∥2] ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht]]− 1

4λ
H
max

)
+

L2γ2λH
maxNσ2(

1− λmax [E [I −Ht]]− 1
4λ

H
max

) .
Remark: Notice that if we choose γ = O(1/T ), the above result yields the rate O(1/T 2).

Proof In this context, and in subsequent discussions, the notation ∥ ·∥ refers to the Frobenius norm,
while ⟨·⟩ denotes the inner product associated with the Frobenius norm.

Now we can apply the L-smoothness:

f(W t+1) ≤ f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

= f(W t) +
〈
∇f(W t),−γHt

BNĝt
〉
+

L

2

∥∥γHt
BNĝt

∥∥2
= f(W t)− γN

〈
∇f(W t), Ht

B ĝ
t
〉
+

L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

(∥∥∇f(W t)
∥∥2 + ∥∥Ht

B ĝ
t
∥∥2 − ∥∥∇f(W t)−Ht

B ĝ
t
∥∥2)+ L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

(∥∥∇f(W t)
∥∥2 + ∥∥Ht

B ĝ
t
∥∥2 − ∥∥∇f(W t)−Ht

B ĝ
t
∥∥2)+ L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

∥∥∇f(W t)
∥∥2 − γN

2

∥∥Ht
B ĝ

t
∥∥2 (1− γLN) +

γN

2

∥∥∇f(W t)−Ht
B ĝ

t
∥∥2 .

Using γ ≤ 1
LN we get

f(W t+1) ≤ f(W t)− γN

2

∥∥∇f(W t)
∥∥2 + γN

2

∥∥∇f(W t)−Ht
B ĝ

t
∥∥2 .

Let us take expectation and subtract f⋆:

E
[
f(W t+1) | W t

]
− f⋆ ≤ f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2 + γN

2
E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
.
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Let us consider the last term:

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
= E

∥∥∥∥∥ 1

N

N−1∑
i=0

∇fπi(W
t)−Ht

B

1

N

N−1∑
i=0

∇fπi(W
t
i )

∥∥∥∥∥
2

| W t


= E

∥∥∥∥∥ 1

N

N−1∑
i=0

∇fπi(W
t) +Ht

B

1

N

N−1∑
i=0

∇fπi(W
t)−Ht

B

1

N

N−1∑
i=0

∇fπi(W
t)−Ht

B

1

N

N−1∑
i=0

∇fπi(W
t
i )

∥∥∥∥∥
2

| W t


Since I −Ht

B and Ht
B are projection matrices generating perpendicular subspaces we have

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
= E

∥∥(I −Ht
B

)
∇f(W t)

∥∥2 + ∥∥∥∥∥Ht
B

1

n

n−1∑
i=0

(
∇fπi(W

t)− fπi(W
t
i )
)∥∥∥∥∥

2

| W t


= E

〈(I −Ht
B

)
∇f(W t),

(
I −Ht

B

)
∇f(W t)

〉
+

∥∥∥∥∥Ht
B

1

N

N−1∑
i=0

(
∇fπi(W

t)− fπi(W
t
i )
)∥∥∥∥∥

2

| W t

 .

Using the property that Ht
B and I −Ht

B are projection matrices we obtain

E
[∥∥∇f(W t)−Htĝt

∥∥2 | W t
]

≤ λmax

[
E
[
I −Ht

]] ∥∥∇f(W t)
∥∥2 + E

[
λmax[H

t]L2 1

N

N−1∑
i=0

∥∥W t −W t
i

∥∥2] .
Since λmax[H

t] = 1 for projections matrix we get

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
≤ λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2 1

N

N−1∑
i=0

E
[∥∥W t −W t

i

∥∥2 | W t
]
.

Now let us consider the last term:

E
[∥∥W t −W t

k

∥∥2] = γ2E

∥∥∥∥∥
k−1∑
i=0

Ht
B∇fπi(W

t
i )

∥∥∥∥∥
2

| W t


= γ2E

∥∥∥∥∥
k−1∑
i=0

Ht
B

(
∇fπi(W

t
i )−∇fπi(W

t)
)
+

k−1∑
i=0

Ht
B∇fπi(W

t)

∥∥∥∥∥
2

| W t


≤ 2γ2kE

[
k−1∑
i=0

(∥∥Ht
B

(
∇fπi(W

t
i )−∇fπi(W

t)
)∥∥2 + 2γ2k2

∥∥Ht
B∇fπi(W

t)
∥∥2) | W t

]

≤ 2γ2kE

[
k−1∑
i=0

(
λmax

[
Ht
] ∥∥W t

i −W t
∥∥2 + 2γ2k2

∥∥Ht
B∇fπi(W

t)
∥∥2) | W t

]

≤ 2γ2kE

[
k−1∑
i=0

(∥∥W t
i −W t

∥∥2 + 2γ2k2λmax

[
E
[
Ht

B

]] ∥∥∇fπi(W
t)
∥∥2) | W t

]
.
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Now, we are ready to sum the inequalities. By using λmax

[
E
[
Ht
]]

= λHB
max and applying Lemma

1 from Mishchenko et al. [44] with Assumption 10, we obtain:

n−1∑
i=0

E
[∥∥W t −W t

i

∥∥2] ≤E

[
N−1∑
i=0

(
2γ2k

k−1∑
i=0

∥∥W t
i −W t

∥∥2 + 2γ2k2λHB
max

∥∥∇fπi(W
t)
∥∥2) | W t

]

≤γ2L2N(N − 1)
N−1∑
i=0

E
[∥∥W t −W t

k

∥∥2]
+

1

3
γ2(N − 1)N(2N − 1)λHB

max

∥∥∇f(W t)
∥∥2 + 1

3
λHB
maxγ

2N(N + 1)σ2.

Using γ ≤ 1
2LN we get

n−1∑
i=0

E
[∥∥W t −W t

i

∥∥2] ≤ 4

3

(
1− γ2L2N(N − 1)

)N−1∑
i=0

E
[∥∥W t −W t

i

∥∥2]
≤ 4

3

(
1

3
γ2(N − 1)N(2N − 1)λHB

max

∥∥∇f(W t)
∥∥2 + 1

3
λHB
maxγ

2N(N + 1)σ2

)
≤ γ2n3λHB

max

∥∥∇f(W t)
∥∥2 + γ2λHB

maxN
2σ2

Plugging to the previous bound we obtain:

E
[∥∥∇f(W t)−Htĝt

∥∥2 | W t
]
≤ λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2γ2N2λHB

max

∥∥∇f(W t)
∥∥2

+ L2γ2λHB
maxNσ2.

Now we have the following

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2

+
γN

2

(
λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2γ2N2λHB

max

∥∥∇f(W t)
∥∥2)

+
γN

2
L2γ2λHB

maxNσ2.

Using γ ≤ 1
2LN we get

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
(8)

+
γN

2
L2γ2λHB

maxNσ2. (9)

After rearranging the terms, we have

γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
≤
(
f(W t)− f⋆

)
−
(
E
[
f(W t+1) | W t

]
− f⋆

)
+

γN

2
L2γ2λHB

maxNσ2.
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Next, we have∥∥∇f(W t)
∥∥2 ≤ 2

γN

1(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4λ
HB
max

) ((f(W t)− f⋆
)
−
(
E
[
f(W t+1) | W t

]
− f⋆

))
+

2

γN

1(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4λ
HB
max

) γN
2

L2γ2λHB
maxNσ2.

Using telescoping property and taking expectation we get

1

T

T−1∑
t=0

∥∥∇f(W t)
∥∥2 ≤ 2

γNT

f(W 0)− f⋆(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4λ
HB
max

)
+

L2γ2λHB
maxNσ2(

1− λmax

[
E
[
I −Ht

B

]]
− 1

4λ
HB
max

) .
Applying argument from Danilova et al. [11] we obtain the result for uniformly chosen point.

Corollary 12 Suppose that Assumption 1 and Assumption 4 hold. Suppose that a stepsize γ > 0 is
chosen such that γ ≤ 1

2LN . Let the updates have a form of several gradient steps (variance σ2 = 0)
We choose the output of the method W̃ T uniformly at random from W 0,W 1, . . . ,W T−1 Then, the
iterate W̃ T of RAC-LoRA method (Algorithm 1) with several GD updates (Equation 3) satisfy

E
[∥∥∥∇f(W̃ T )

∥∥∥2] ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht]]− 1

4λ
H
max

) .
Given that the step size is divided by the number of gradient steps allocated for each LoRA

block, employing multiple gradient steps for a single LoRA block does not provide any significant
benefits. This observation suggests that a single gradient step is adequate for each LoRA block.
Therefore, in practical applications, it is more advantageous to utilize only one epoch per LoRA
block within the training chain. This approach not only streamlines the training process but also
optimizes computational efficiency, allowing for more effective resource allocation without com-
promising the performance of the model.

G.2. Analysis of Polyak-Łojasiewicz setting

Next, we establish the convergence rate for the Polyak-Łojasiewicz setting (Assumption 8).

Theorem 13 Suppose that Assumption 1, Assumption 8 and Assumption 4 hold. Suppose that a
stepsize γ ≥ 0 is chosen such that γ ≤ 1

2NL . Then, the iterates of RAC-LoRA method (Algorithm 1)
with RR updates (Equation 7) satisfy

E
[
f(W T )− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
+

L2γ2λHB
maxNσ2

2
(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4λ
HB
max

) .
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Proof
We start from Equation 8:

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆

− γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
+

γN

2
L2γ2λHB

maxNσ2.

Using PL condition
∥∥∇f(W t)

∥∥2 ≥ 2µ
(
f(W t)− f⋆

)
we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆

− γNµ
(
f(W t)− f⋆

)(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
+

γN

2
L2γ2λHB

maxNσ2.

Taking full expectation we obtain:

E
[
f(W t+1)− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))
E
[
f(W t)− f⋆

]
+

γN

2
L2γ2λHB

maxNσ2.

After unrolling the recursion we obtain

E
[
f(W T )− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
+

L2γ2λHB
maxNσ2

2
(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4λ
HB
max

) .
This finishes the proof.

Corollary 14 Suppose that Assumption 1, Assumption 8 and Assumption 4 hold. Let the updates
have a form of several gradient steps (variance σ2 = 0) Suppose that a stepsize γ ≥ 0 is chosen
such that γ ≤ 1

2NL . Then, the iterates of RAC-LoRA method (Algorithm 1) with several GD updates
(Equation 3) satisfy

E
[
f(W T )− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
.

Since the step size is divided by the number of gradient steps for each LoRA block, using multiple
gradient steps does not offer significant advantages. Thus, a single gradient step per LoRA block
is sufficient. Practically, it is more efficient to use only one epoch per LoRA block in the training
chain.
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Appendix H. Analysis of RAC-LoRA with SGD under the arbitrary data sampling
paradigm

In the previous section, we introduced the Random Reshuffling (RR) method, where each data point
is used exactly once during each epoch, also known as sampling without replacement. This method
has demonstrated strong empirical performance across various optimization tasks. However, in this
section, we shift our focus to the RAC-LoRA framework, where Stochastic Gradient Descent (SGD)
is applied with a more general, arbitrary data sampling procedure, allowing for broader flexibility
in how data is selected and used during training.

The analysis of general sampling schemes in SGD has garnered significant attention in the liter-
ature, particularly in understanding its impact on convergence rates and optimization performance
across different problem classes. For strongly convex functions, general sampling methods have
been rigorously studied in works such as Gower et al. [15], which provide detailed convergence
guarantees and bounds. In the case of general convex optimization problems, Khaled et al. [28] of-
fer a thorough analysis of the performance of SGD under various sampling strategies. Furthermore,
for non-convex settings, both Khaled and Richtárik [25] and Demidovich et al. [12] have explored
how general sampling procedures influence the convergence behavior and optimization efficiency
of SGD, shedding light on its applicability to a wide range of machine learning tasks.

In the following sections, we build on these foundational studies to examine how the flexibility
of general sampling in the RAC-LoRA framework can lead to improved convergence in certain
scenarios, while also maintaining robust performance across different convexity settings.

To conduct this analysis, we introduce a general assumption that extends the standard assump-
tions presented in Khaled and Richtárik [25].

The proof is provided for Right Sketch (Definition 3). The result for Left Sketch (Definition 2)
can be derived by following the same steps.

Assumption 15 (Expected smoothness) The second moment of the stochastic gradient satisfies

E
[
∥g(W )∥2

]
≤ 2A1

(
f(W )− f inf

)
+B1 · ∥∇f(W )∥2 + C1

for some A,B,C ≥ 0 and all W ∈ Rm×n.

Now we can also do stochastic analysis. Let us consider the SGD update for LoRA method:

∆W =
α

r
B̂AS ,

W t+1 = W t +
α

r
B̂tAt

S , B̂t = −γg(W t)(At
S)

⊤
(
At

S(A
t
S)

⊤
)†

Now we have

W t+1 = W t − γg(W t)(At
S)

⊤
(
At

S(A
t
S)

⊤
)†

At
S = W t − γg(W t)Ht

A. (10)
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H.1. Analysis of general non-convex setting

Theorem 16 Suppose that Assumption 1 and Assumption 4 hold. Suppose that a stepsize γ > 0

is chosen such that γ ≤ min

[
1/
√

LA1λH
maxT , 1/

(
LB1

λ
HA
max

λ
HA
min

)]
. Then, the iterate W T of RAC-

LoRA method (Algorithm 1) with SGD updates (Equation 10) satisfy

min
0≤t≤T−1

E
[∥∥∇f(W T )

∥∥2] ≤ 6

λHA
minγT

(
f(W 0)− f⋆

)
+ LC1γ

λHA
max

λHA
min

.

Remark: Notice that if we choose γ = O(1/
√
T ), the above result yields the rate O(1/

√
T ).

Proof We start from L-smoothness:

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

=f(W t) +
〈
∇f(W t),−γg(W t)Ht

A

〉
+

L

2

∥∥−γg(W t)Ht
A

∥∥2
=f(W t)− γ

〈
∇f(W t), g(W t)Ht

A

〉
+

L

2

∥∥−γg(W t)Ht
A

∥∥2 .
Let us take conditional expectation:

E
[
f(W t+1) | W t

]
≤f(W t)− γE

[〈
∇f(W t), g(W t)Ht

A

〉
| W t

]
+

L

2
E
[∥∥−γg(W t)Ht

A

∥∥2 | W t
]
.

Using that g(W t) and Ht
A are independent, so we have

E
[
f(W t+1) | W t

]
≤f(W t)− γ

〈
∇f(W t),E

[
g(W t)

]
E
[
Ht

A

]〉
+

L

2
E
[∥∥−γg(W t)Ht

A

∥∥2 | W t
]

≤f(W t)− γ
〈
∇f(W t),E

[
g(W t)

]
E
[
Ht

A

]〉
+ γ2

L

2
E
[〈
g(W t)Ht

A, g(W
t)Ht

A

〉
| W t

]
≤f(W t)− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+ γ2
L

2
E
[〈
g(W t)Ht

A, g(W
t)Ht

A

〉
| W t

]
.

Using the property of projection matrix Ht
A, we have

E
[
f(W t+1) | W t

]
≤f(W t)− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+ γ2
L

2
λmax

[
E
[
Ht

A

]]
E
[∥∥g(W t)

∥∥2] .
Now we need to use assumption on stochastic gradients. We will use the most general assumption:
ABC – assumption:

E
[
∥g(W t)∥2

]
≤ 2A1(f(W

t)− f⋆) +B1

∥∥∇f(W t)
∥∥2 + C1.
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Now we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+γ2
L

2
λmax

[
E
[
Ht

A

]] (
2A1(f(W

t)− f⋆) +B1

∥∥∇f(W t)
∥∥2 + C1.

)
.

Combining these terms together we get

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2(1− γ

L

2

λmax

[
E
[
Ht

A

]]
λmin

[
E
[
Ht

A

]]B1

)

+ γ2
L

2
λmax

[
E
[
Ht

A

]]
C1. (11)

Using condition on stepsize: 1− γ LB1
2

λmax[E[Ht
A]]

λmin[E[Ht
A]]

≥ 1
2 we get

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− 1

2
γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+ γ2
L

2
λmax

[
E
[
Ht

A

]]
C1.

Using tower property of expectation we obtain

E
[
f(W t+1)− f⋆

]
≤E

[
f(W t)− f⋆

] (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− 1

2
γλmin

[
E
[
Ht

A

]]
E
[∥∥∇f(W t)

∥∥2]
+ γ2

L

2
λmax

[
E
[
Ht

A

]]
C1.

Let us define δt = E
[
f(W t)− f⋆

]
and rt = E

[∥∥∇f(W t)
∥∥2], after reshuffling of terms we obtain

1

2
γλmin

[
E
[
Ht

A

]]
E
[∥∥∇f(W t)

∥∥2] ≤ (1 + γ2A1Lλmax

[
E
[
Ht

A

]])
δt − δt+1 + γ2

LC1

2
λmax

[
E
[
Ht

A

]]
.

Let use fix w−1 > 0 and define wt = wt−1

1+Lγ2Aλmax[E[Ht
A]]

for all t ≥ 0. Multiplying by wt

γ ,

1

2
wtrtλmin

[
E
[
Ht

A

]]
≤wt

γ

(
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
δt − wt

γ
δt+1 + γ

LC1

2
λmax

[
E
[
Ht

A

]]
.

Now we obtain

1

2
wtrtλmin

[
E
[
Ht

A

]]
≤wt−1

γ
δt − wt

γ
δt+1 + γ

LC1

2
λmax

[
E
[
Ht

A

]]
wt.
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Summing up both sides as t = 0, 1, . . . , T − 1 we have,

1

2

T−1∑
t=0

wtrtλmin

[
E
[
Ht

A

]]
≤w−1

γ
δ0 − wT−1

γ
δT + γ

LC1

2
λmax

[
E
[
Ht

A

]] T−1∑
t=0

wt

≤w−1

γ
δ0 + γ

LC1

2
λmax

[
E
[
Ht

A

]] T−1∑
t=0

wt.

Let us define W T =
∑T−1

t=0 wt. Dividing both sides by W T we have,

1

2
min

0≤t≤T−1
rt ≤ 1

W T

T−1∑
t=0

wtrt ≤ w−1

W T

δ0

γ

1

λmin

[
E
[
Ht

A

]] + LC1γ

2

λmax

[
E
[
Ht

A

]]
λmin

[
E
[
Ht

A

]] .
Note that,

W T =

T−1∑
t=0

wt ≥
T−1∑
t=0

min
0≤i≤T−1

wi = TwT−1 =
Tw−1(

1 + Lγ2Aλmax

[
E
[
Ht

A

]])T .
Using this we get

1

2
min

0≤t≤T−1
rt ≤

(
1 + Lγ2A1λmax

[
E
[
Ht

A

]])T
λmin

[
E
[
Ht

A

]]
γT

δ0 +
LC1γ

2

λmax

[
E
[
Ht

A

]]
λmin

[
E
[
Ht

A

]] .
Using the fact that 1 + x ≤ exp(x), we have that(

1 + Lγ2A1λmax

[
E
[
Ht

A

]])T ≤ exp
(
Lγ2A1λmax

[
E
[
Ht

A

]]
T
)
≤ exp(1) ≤ 3

where the second inequality holds because γ ≤ 1/
√
LA1λmax

[
E
[
Ht

A

]]
T by assumption.

Substituting we get,

min
0≤t≤T−1

rt ≤ 6

λmin

[
E
[
Ht

A

]]
γT

(
f(W 0)− f⋆

)
+ LC1γ

λHA
max

λHA
min

.

H.2. Analysis of Polyak-Łojasiewicz setting

In this section we provide analysis of RAC-LoRA method with general SGD update under Polyak-
Łojasiewicz condition (Assumption 8).

Theorem 17 Suppose that Assumption 1, Assumption 8 and Assumption 4 hold. Suppose that a

stepsize γ ≥ 0 is chosen such that γ ≤ min

 µ

2A1L
λ
HA
max

λ
HA
min

, 1/

(
LB1

λ
HA
max

λ
HA
min

). Then, the iterates of

RAC-LoRA method (Algorithm 1) with SGD updates (Equation 10) satisfy

E
[
f(W T )

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.
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Proof
We start from 11:

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2(1− γ

L

2

λmax

[
E
[
Ht

A

]]
λmin

[
E
[
Ht

A

]]B1

)

+ γ2
L

2
λmax

[
E
[
Ht

A

]]
C1.

Using
(
1− γ L

2

λmax[E[Ht
A]]

λmin[E[Ht
A]]

B1

)
≥ 3

4 and PL condition we have

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

)(
1− 3

2
γµλmin

[
E
[
Ht

A

]]
+ γ2A1Lλmax

[
E
[
Ht

A

]])
+ γ2

L

2
λmax

[
E
[
Ht

A

]]
C1.

Using that LA1γλmax

[
E
[
Ht

A

]]
≤ µ

2λmin

[
E
[
Ht

A

]]
we obtain

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1− γµλmin

[
E
[
Ht

A

]])
+ γ2

L

2
λmax

[
E
[
Ht

A

]]
C1.

Taking full expectation and using tower property we obtain:

E
[
f(W t+1)− f⋆

]
≤E

[
f(W t)− f⋆

] (
1− γµλmin

[
E
[
Ht

A

]])
+ γ2

L

2
λmax

[
E
[
Ht

A

]]
C1.

Once we unroll the recursion we obtain

E
[
f(W T )− f⋆

]
≤E

[
f(W 0)− f⋆

] (
1− γµλHA

min

)T
+ γ

L

2µλHA
min

λHA
maxC1.
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Algorithm 2 Federated Randomized Asymmetric Chain of LoRA (Fed-RAC-LoRA)
1: Parameters: initial pre-trained model W 0, rank r, learning rate γ > 0, scaling factor α, server

stepsize β > 0 number of modules in chain T , sample distribution DB
S or DA

S .
2: for t = 0, 1, . . . , T − 1 do
3: Sample a subset (cohort) of clients St

4: (Option 1) Sample a matrix Bt
S (Option 2) Sample a matrix At

S

5: Send the model W t and fixed matrix (Option 1) Bt
S or (Option 2) At

S to clients
6: for m ∈ St do
7: Solve subproblem

(Option 1) Ât
m ≈ min

A
fm(W t +

α

r
Bt

SA) (Option 2) B̂t
m ≈ min

B
fm(W t +

α

r
BAt

S)

8: Send the updates to server (Option 1) Ât
m or (Option 2) B̂t

m

9: end for
10: Merge the updates
11:

(Option 1) W t+1 = W t + β
α

r
Bt

S

1

C

∑
m∈St

Ât
m

12:

(Option 2) W t+1 = W t + β
α

r

1

C

∑
m∈St

B̂t
mAt

S

13: end for

Appendix I. Federated Learning setting

We consider the main optimization problem (1), with f having the double finite-sum structure

f(W 0 +∆W ) :=
1

M

M∑
m=1

1

N

N∑
i=1

fm,i(W
0 +∆W )︸ ︷︷ ︸

fm(W 0+∆W )

, (12)

where M is the total number of clients and N is the number of data points on each client. In
the context of Federated Learning, each client maintains its own local loss function fm, which
also follows a finite-sum structure, reflecting the client’s local data. This formulation captures the
decentralized nature of the learning process, where each client performs computations based on
their local dataset.

Federated Learning (FL) [23, 31] is a distributed machine learning framework that enables mul-
tiple devices or clients to collaboratively train a shared model without sending their raw data to a
central server. In contrast to traditional machine learning, where data is centralized for model train-
ing, Federated Learning allows each client to train a local model using its own data. The clients then
share only the updated model parameters with a central server or aggregator. The server aggregates
these updates to form a new global model, which is then redistributed to the clients for further iter-
ations of the process [31]. Local Training (LT) is a key component of Federated Learning (FL), in
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which each participating client conducts several local optimization steps before synchronizing their
model parameters with the central server.

The analysis of LT marked a significant advancement by eliminating the need for data homo-
geneity assumptions, as demonstrated by Khaled et al. [26, 27]. However, later studies by Wood-
worth et al. [63] and Glasgow et al. [13] revealed that LocalSGD (also known as FedAvg) has
no communication complexity advantage over MinibatchSGD in heterogeneous data settings. Ad-
ditionally, Malinovskiy et al. [37] analyzed LT methods for general fixed-point problems, while
Koloskova et al. [30] explored decentralized aspects of LT.

Although removing the data homogeneity requirement was a major breakthrough, the results
were somewhat discouraging, as they indicated that LT-enhanced GD, or LocalGD, exhibits a sub-
linear convergence rate, which is worse than the linear convergence rate of vanilla GD [62]. The
impact of server-side step sizes was further explored by Malinovsky et al. [41] and Charles and
Konečný [6].

Subsequent LT methods aimed to achieve linear convergence by addressing client drift, which
had hindered earlier approaches. Scaffold, introduced by Karimireddy et al. [24], was the first to
successfully mitigate client drift and achieve a linear convergence rate. Similar methods were later
proposed by Gorbunov et al. [14]. Although this was a significant breakthrough, these methods still
have slightly higher or equal communication complexity compared to vanilla GD.

Mishchenko et al. [46] recently introduced the ProxSkip method, a simple yet effective ap-
proach to Local Training that achieves provable communication acceleration in the smooth strongly
convex regime, even with heterogeneous data. In a follow-up article, Malinovsky et al. [39] ex-
panded on ProxSkip, presenting a broad variance reduction framework. Condat and Richtárik [9]
further applied ProxSkip to complex splitting schemes involving the sum of three operators in a
forward-backward setting. Additionally, Sadiev et al. [53] and Maranjyan et al. [43] improved the
computational complexity of ProxSkip while preserving its communication efficiency. Condat et al.
[10] introduced accelerated Local Training methods allowing client sampling based on ProxSkip,
while Grudzień et al. [16, 17] proposed an accelerated method using the RandProx approach with
primal and dual updates.

In practice, Federated Learning faces a fundamental challenge: it is often infeasible for all
clients to communicate and aggregate updates with the central server simultaneously due to limita-
tions such as network bandwidth, client availability, or resource constraints. Therefore, rather than
requiring all clients to participate in every round of communication, we adopt a strategy in which
only a randomly selected subset of clients is involved in each aggregation step. This approach relies
on uniform sampling of the clients, ensuring that the selection process is unbiased over time.

The method operates as follows: in each communication round, the central server sends the
current global model, denoted by W t, along with the sampled matrix, to the clients chosen to
participate in the current cohort. Each client in this cohort trains a local learnable matrix using an
optimization algorithm (e.g., stochastic gradient descent) based on their local data. After completing
the local updates, the clients send their computed updates (i.e., changes in model parameters) back
to the central server.

Once the server receives these updates, it aggregates them (e.g., by averaging the updates) to
produce an updated global model. In addition to the aggregation, the server may perform an addi-
tional server-side update step to further refine the model before broadcasting it in the next round.
This iterative process of local training, communication, and aggregation continues until convergence
is achieved or a predefined stopping criterion is met.
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The proof is provided for Left Sketch (Definition 2). The result for Right Sketch (Definition 3)
can be derived by following the same steps.

For local optimzier we use Random Reshuffling, where the effective step has a form:

W t
m,i+1 = W t

m,i − γHt
B∇fm,i(W

t
m,i) (13)

The server-side step looks like W t+1 = W t − η̃Ht
B

1
C

∑
m∈St Ât

m.
Let us formulate nesesary assumptions

Assumption 18 (Functional dissimilarity) The variance at the optimum in the non-convex regime
is defined as

∆⋆ def
= f⋆ − 1

M

M∑
m=1

f⋆
m

where f⋆
m = infW fm(W ) and f⋆ = infW f(W ). For each device m, the variance at the optimum

is defined as

∆⋆
m

def
= f⋆ − 1

n

n∑
i=1

f⋆
m,i

where f⋆
m,i = infW fm,i(W )

I.1. Analysis of general non-convex setting

Theorem 19 Suppose that Assumption 1 and Assumption 4 hold. Suppose that stepsizes γ, η̃ > 0 is

chosen such that γn ≤ η̃ ≤ 1−λ
HB
min

4L . Then, the iterate W T of Fed-RAC-LoRA method (Algorithm 2)
with RR updates (Equation 13) satisfy

min
t=0,...,T−1

E
[∥∥∇f

(
W t
)∥∥2] ≤4

(
1 + 4η̃L3γ2N2 + 2L2η̃2 M−C

Cmax{M−1,1}

)T
λmax

[
E
[
I −Ht

B

]]
η̃T

(
f(W 0)− f⋆

)
+

8γ2NL3

λmax

[
E
[
I −Ht

B

]] ( 1

M

M∑
m=1

∆∗
m +N∆∗

)

+
8L2η̃

λmax

[
E
[
I −Ht

B

]] M − C

Cmax{M − 1, 1}
∆∗.

Proof
We start from L-smoothness:

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

≤f(W t)−

〈
∇f(W t), η̃

1

CN

∑
m∈St

N−1∑
i=0

Ht∇f
πt
m,i

m

(
W t

m,i

)〉

+
L

2

∥∥∥∥∥η̃ 1

CN

∑
m∈St

N−1∑
i=0

Ht∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

.
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Now we take expectation with respect to sampling:

ESt

[
f(W t+1)

]
≤f(W t)− η̃ESt

[〈
∇f(W t),

1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m

(
W t

m,i

)〉]

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

〈
∇f(W t),

1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m

(
W t

m,i

)〉

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .

Using 2 ⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2, we have

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2 − η̃

2

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
η̃

2

∥∥∥∥∥∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2 + η̃

2

∥∥∥∥∥∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .
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Now we need to add and subtract Ht
B∇f(W t):

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)−Ht
B∇f(W t) +Ht

B∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)
(
I −Ht

B

)
+

1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)
(
I −Ht

B

)
+

1

MN

M∑
m=1

N−1∑
i=0

Ht
B

(
∇f

πt
m,i

m (W t)−∇f
πt
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Now we take conditional expectation and use tower property:
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Next, we use eigenvalues to obtain bounds:
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Since λmax

[
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B

]
= 1 we have
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Using Lemma 5 from Malinovsky et al. [41] we have
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Using this bound and L-smoothness for the term in second line we obtain:
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Since η̃ ≤ 1
2L we get
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Using lemma 6 from (cite) we obtain
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Plugging this bound we obtain
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Next, we have
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Next, we subtract f⋆ from both sides:
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Taking full expectation we obtain
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Next, we apply lemma from Khaled and Richtárik [25] and obtain
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I.2. Analysis of Polyak-Łojasiewicz setting

Theorem 20
Suppose that Assumption 1, Assumption 8 and Assumption 4 hold. Suppose that stepsizes γ, η̃ >

0 is chosen such that γn ≤ η̃ ≤ 1−λ
HB
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4L . Then, the iterate W T of Fed-RAC-LoRA method (Algorithm
2) with RR updates (Equation 13) satisfy
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Proof We start from
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Using the stepsize γ ≤ 1
4nL we have
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After unrolling the recursion we obtain
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