
DrugAgent: Automating AI-aided Drug Discovery Programming through LLM
Multi-Agent Collaboration

Sizhe Liu1, Yizhou Lu1, Siyu Chen1, Xiyang Hu2, Jieyu Zhao1, Tianfan Fu3, Yue Zhao1

1University of Southern California 2Arizona State University 3Rensselaer Polytechnic Institute

Abstract

Recent advancements in Large Language Models (LLMs)
have opened new avenues for accelerating drug discov-
ery processes. Despite their potential, several critical chal-
lenges remain unsolved, particularly in translating theoret-
ical ideas into practical applications within the highly spe-
cialized field of pharmaceutical research, limiting practition-
ers from leveraging the latest AI development in drug dis-
covery. To this end, we introduce DrugAgent, a multi-agent
framework aimed at automating machine learning (ML) pro-
gramming in drug discovery. DrugAgent incorporates domain
expertise by identifying specific requirements and building
domain-specific tools, while systematically exploring differ-
ent ideas to find effective solutions. A preliminary case study
demonstrates DrugAgent ’s potential to overcome key limita-
tions LLMs face in drug discovery, moving toward AI-driven
innovation. For example, DrugAgent is able to complete the
ML programming pipeline end-to-end, from data acquisition
to performance evaluation for the ADMET prediction task,
and finally select the best model, where the random forest
model achieves an F1 score of 0.92 when predicting absorp-
tion using the PAMPA dataset.

1 Introduction
Artificial intelligence (AI) is driving significant advance-
ments in drug discovery (Huang et al. 2022). Due to the high
cost and time required for experimentally assessing drug
properties, researchers are increasingly looking for ways
to accelerate all stages of drug development (Pushpakom
et al. 2019). Numerous AI-ready datasets and benchmarks
are now available for critical tasks in the drug discovery pro-
cess, such as ADMET prediction, drug-target interaction,
and high-throughput screening (Huang et al. 2021; Chen
et al. 2024; Wang et al. 2024c). Recent advances in deep
learning have shown particular promise in accelerating lead
optimization and predicting drug-target interactions (Huang
et al. 2020), potentially reducing the time and resources
needed for traditional experimental methods.

Performing machine learning (ML) experiments in drug
discovery requires expertise in biology, chemistry, pharma-
ceutical science, and computer science, which creates a sig-
nificant barrier to entry. Large language models (LLMs),
with their ability to reason through complex tasks, present

Copyright © 2025. Preliminary version.

an exciting opportunity to automate ML programming in
the drug discovery process. General frameworks, e.g., MLA-
gentBench (Huang et al. 2024a) and AI-Scientist (Lu et al.
2024a), offer promising solutions for end-to-end ML pro-
gramming. Specialized agents with domain-specific tools
can further enhance the ability to handle complex tasks in
chemistry or biology (Boiko et al. 2023; M. Bran et al. 2024;
Inaba et al. 2023). Despite these, significant challenges re-
main to fully automate drug discovery research with LLMs.
Challenge 1. General-purpose LLMs often lack the spe-
cialized domain knowledge needed to accurately implement
ML experiments in drug discovery. For instance, incorrect
API choices for domain-specific libraries or misunderstand-
ings in raw biological data preprocessing steps can easily
cause problems that are difficult to debug, especially given
the complex codebase typically involved in drug discov-
ery tasks. While frameworks like ChemCrown (M. Bran
et al. 2024) and MultiTool-CoT (Chain of Thought) (Inaba
et al. 2023) provide tools for chemistry tasks like calculating
molecular weight and predicting reactions, they do not fully
solve this problem. These tools are often too simple for ML
programming, indicating the need for a wider set of tools,
from data collection to model evaluation.
Challenge 2. In many ML tasks, LLMs are required to gen-
erate ideas rather than simply implementing a predefined
plan. However, LLM-generated ideas often lack grounding
in practical context (Si, Yang, and Hashimoto 2024), espe-
cially in drug discovery settings. Due to hallucination, an
LLM may confidently propose an idea, yet lack the do-
main knowledge necessary for implementation (Huang et al.
2023). Existing strategies for exploring viable ideas, such
as reasoning and acting (Huang et al. 2024a), generating di-
verse ideas (Lu et al. 2024a; Wang et al. 2024a), or using tree
search (WecoAI 2024), are generally optimized for standard
ML tasks and may be inefficient in scenarios where many
proposed ideas cannot be implemented. Thus, it requires a
strategy that builds on these methods while better aligning
the agent’s idea exploration with its practical knowledge.
Our Solutions. To address these challenges, we propose
DrugAgent, a multi-agent framework to enhance ML pro-
gramming in drug discovery tasks. First, we integrate work-
flows that identify steps requiring domain knowledge, allow-
ing for the development of specialized tools to handle these
tasks before proceeding with coding. Additionally, we in-

troduce a dynamic idea space management approach, where
diverse ideas are generated at the early stage and later up-
dated based on experimental observations, resulting in more
efficient exploration. Finally, we provide an enhanced set of
tools in the form of comprehensive library documentation
that supports essential AI-driven drug discovery tasks, in-
cluding biological data retrieval, molecular fingerprinting,
AI model development, and performance evaluation. These
resources are carefully selected to meet the complex require-
ments of real-world programming processes.
Main Contributions. Our main contributions include:

• Significance. This paper focuses on automating AI-based
drug discovery tasks, which is a life-critical and signifi-
cant problem. To the best of our knowledge, this is the
first attempt to automate AI programming in the context
of drug discovery. Our work allows pharmaceutical scien-
tists to use AI without a coding background and facilitates
AI-based drug discovery research.

• Method. We design an automated LLM-based multi-agent
system that involves coding programming tailored to drug
discovery, which also enables automatic code running and
results collection without human intervention.

• Results. DrugAgent exhibits initial success in automating
a couple of representative AI-based drug discovery tasks.
For example, DrugAgent can build a random forest model
automatically for drug molecular absorption prediction,
achieving an F1 score of 0.920 on the PAMPA dataset.

2 Related Works
2.1 LLM Agents
An LLM agent is a system that uses large language models
to interact with users or other systems, perform tasks, and
make decisions autonomously. Empowered by LLMs, LLM
agents have the capability to perform multi-step reasoning,
planning, and action execution beyond static text genera-
tion (Wang et al. 2024b). Previous works have equipped
LLM agents with modules to dynamically interact with ex-
ternal tools, retrieve information, and adapt based on real-
time feedback (Schick et al. 2023; Yoon, Kim, and Oh 2024;
Qin et al. 2023; Ravuru, Sakhinana, and Runkana 2024;
Lála et al. 2023). This allows them to solve complex, evolv-
ing tasks such as code writing, long-term reasoning, and
decision-making in various contexts (Guo et al. 2024; Jiang
et al. 2024). In this work, we tailor the LLM multi-agent
framework to drug discovery tasks.

2.2 LLM for ML Programming
Recent work has focused on accelerating traditionally man-
ual research processes by automating ML programming.
AIDE acts as a data science agent, exploring a vast solution
space and iteratively refining its approach to reach optimal
solutions (WecoAI 2024). AutoKaggle introduces a special-
ized multi-agent framework for Kaggle data science compe-
titions (Li et al. 2024b). AI-Scientist enables LLMs to con-
duct research autonomously, from idea generation to paper
drafting, focusing on ML-related topics (Lu et al. 2024a).
In parallel, benchmarks have been developed that provide a

suite of 13 tasks to evaluate LLMs’ capabilities in conduct-
ing ML programming (Huang et al. 2024a). However, exist-
ing works cannot handle domain-specific ML tasks requir-
ing complex domain knowledge, e.g., AI-aided drug discov-
ery. To address this, we design workflows to insert domain
knowledge and call domain-specific tools automatically.

2.3 LLM for Biomedical Discovery
Many studies have highlighted the applications of LLMs
in biomedical discovery, particularly when integrated with
domain-specific tools. For instance, ChemCrown demon-
strates the potential of LLM agents in organic synthesis,
drug discovery, and material design (M. Bran et al. 2024).
Similarly, MMedAgent is a multimodal medical agent de-
signed to handle complex language and multimodal tasks,
demonstrating LLM versatility in medical applications (Li
et al. 2024a). The multi-agent approach is exemplified by
ClinicalAgent (Yue et al. 2024), which introduces a frame-
work for clinical trial outcome prediction by decomposing
it into subproblems, allowing individual agents to collabo-
rate and generate a comprehensive outcome. However, exist-
ing ML programming agents may lack the domain-specific
knowledge needed for biomedical tasks, while biomedical
agents are not typically equipped with ML-specific exper-
tise. To bridge this gap, we introduce DrugAgent, a multi-
agent LLM system that integrates ML programming capa-
bilities with biomedical knowledge, targeting the unique re-
quirements of ML tasks in drug discovery.

3 Methodology
We introduce DrugAgent, an automated and innovative
LLM multi-agent framework designed to streamline AI-
aided drug discovery tasks. As illustrated in Figure 1, Dru-
gAgent integrates two key components: the LLM Instructor
(§3.2), which identifies domain-specific knowledge require-
ments and prepares necessary tools, and the LLM Planner
(§3.3), which manages and refines the exploration of ideas
to optimize task performance. Before detailing these com-
ponents and their roles, we define the problem in §3.1.

3.1 Problem Formulation
We address the challenge of automating ML programming
tasks in the domain of drug discovery. These tasks involve
the integration of natural language instructions with com-
putational tools to produce accurate and efficient solutions.
Following Huang et al. (2024a), an ML programming task is
defined by the following components:

• Task Description: A natural language specification out-
lining the objectives and constraints of the task.

• Starter Files: A set of initial resources, such as datasets
or code templates, to support task execution.

• Evaluator: A performance metric function to assess the
quality of the task output.

An agent must interpret the task description, utilize the
starter files, and execute a sequence of actions to generate
a solution. These actions include reading and writing files,

Pre-trained
Models

For Each
Idea

Test
Generation

Unit Test
pass?

Domain Tool Construction

Documentation

Code
Generation

Self Debugging

Construction
Complete

Random
Forest

GCN

Final Code &
Self Debugging

Research Task
(eg: ADMET)

Coder

Dataset Downloading

Fingerprinting
Planner Instructor

Construction Failed

......

Identified Domain Knowledge

Idea Space

Report Best
Idea

Coder

Figure 1: Framework overview of DrugAgent. Given an AI-based drug discovery task described in natural language (i.e., user’s
input, e.g., design an AI model to predict Absorption (one of the ADMET properties) using the PAMPA dataset (Siramshetty,
Shah et al. 2021), the LLM Planner first produces a couple of potential ideas (e.g., GCN (graph convolutional network) (Kipf
and Welling 2016), random forest, pretrained model (such as ChemBERTa (Chithrananda, Grand, and Ramsundar 2020))).
Then, for each idea, the LLM Instructor transfers the idea into code based on domain knowledge (e.g., dataset acquisition and
molecular fingerprinting). Then, the Coder debugs and implements the code and evaluates the performance. Finally, all the
results are collected and the best idea is reported (e.g., random forest achieves the best performance in predicting absorption).

preprocessing data, implementing ML models, and execut-
ing Python programs. The primary challenge lies in align-
ing abstract task descriptions with their practical implemen-
tation, particularly when domain-specific knowledge is re-
quired. The goal is to develop an autonomous system ca-
pable of efficiently handling these tasks while minimizing
errors and improving success rates.

3.2 LLM Instructor: Domain-specific Knowledge
Identification and Tool Preparation

Motivation. Drug discovery is a highly specialized and
complex domain that demands precise integration of ML and
domain expertise. Although using LLMs offers significant
potential to automate and accelerate ML programming in
this field, we observe that LLMs often fail to bridge the gap
between general-purpose reasoning and the specific needs
of drug discovery tasks. This failure arises from hallucina-
tion (Huang et al. 2023, 2024b), where LLMs generate in-
correct or unrealistic outputs due to a lack of understanding
of domain-specific requirements. For example, inappropri-
ate preprocessing of SMILES strings or incorrect API us-
age for molecular operations can lead to costly debugging
and failed experiments. These limitations highlight the ur-
gent need for a mechanism to explicitly identify and address
domain-specific knowledge requirements before conducting
experiments. To address this, we introduce the LLM Instruc-
tor in DrugAgent, which follows a structured process:

1. Decomposing the Problem: Break the problem into
smaller, actionable substeps for systematic resolu-

tion (Wu et al. 2024; Huang et al. 2024a).

2. Identifying Knowledge Needs: Analyze substeps to de-
termine if domain-specific expertise or tools are required,
using expert-curated prompts.

3. Constructing Tools: Gather or create tools by identify-
ing relevant APIs and validating them with unit tests.

4. Reusing Tools: Add validated tools to a reusable toolbox
to improve efficiency and reduce errors in future tasks.

Each step is critical in enabling the LLM Instructor
to bridge the gap between general-purpose reasoning and
domain-specific requirements. The following sections pro-
vide more details on how domain-specific knowledge is
identified, tools are constructed, and failures are handled to
ensure the effective execution of ML tasks in drug discovery.

Domain-specific Knowledge. Domain-specific knowl-
edge refers to specialized information, concepts, and exper-
tise related to a particular field or subject area, such as drug
discovery in our context. In ML tasks for drug discovery, the
absence or incompleteness of domain-specific knowledge
often leads to coding errors. We observed that LLMs of-
ten fail to recognize the need for domain-specific knowledge
in certain tasks due to hallucination, resulting in the incor-
rect use of necessary tools. Therefore, an explicit reasoning
process is essential. Gathering all relevant domain-specific
knowledge and tools before starting the experiment is crucial
to minimize errors and ensure the experiment aligns with the
field’s complexities.

Instructor. The Instructor agent is responsible for identi-
fying substeps of the problem that require domain-specific
knowledge. The process begins by decomposing the over-
all plan into an actionable sequence of simpler steps, an ap-
proach that has proven effective in handling complex tasks,
such as ML programming (Wu et al. 2024; Huang et al.
2024a). Next, the Instructor analyzes which of these steps
require domain expertise. To improve the accuracy of this
identification, we utilize few-shot prompts curated by ex-
perts in drug discovery. While the approach does not guar-
antee the correct identification of all substeps, our analysis
shows that it performs successfully in the majority of cases.

Domain Tool Construction. For each identified domain-
specific need, we proceed to gather the appropriate tools. In
coding tasks, creating a fixed list of tools, as seen in previ-
ous biomedical agents (Roohani et al. 2024; M. Bran et al.
2024), is challenging due to the large number of APIs within
libraries. As a result, we search through documentation to
identify relevant APIs and create tools, which may involve
a single API or multiple APIs combined into a helper func-
tion. However, relying solely on documentation can intro-
duce errors, especially if the documentation is outdated or
lacks sufficient detail. Furthermore, machine learning prob-
lems frequently necessitate helper functions that combine
several APIs in intricate ways, increasing the chance of er-
rors. To address this, the Coder first designs unit tests to ver-
ify the correctness of the constructed tools, thus minimizing
the risk of error propagation across subsequent stages. The
Coder then accesses relevant library documentation to final-
ize the tool construction.

Tool Reusability and Failure Handling. For tools that
pass unit tests, we add them to a toolbox for future use. Pre-
vious studies have shown the benefits of building a growing
toolbox (Wang, Fried, and Neubig 2024). In our case, since
many tasks rely on shared domain knowledge, like data ac-
quisition, creating reusable functions can help lower costs
and reduce errors. In drug discovery tasks, agents often face
challenges when trying to build domain-specific tools, even
with documentation support. When repeated attempts at de-
bugging fail to resolve issues shown in unit tests, we record
this outcome and report it to the Planner Agent. This process
will be explained further in the next section.

3.3 LLM Planner: Idea Space Management
Motivation. Drug discovery tasks are inherently open-
ended, with no single deterministic solution. Approaches
often vary widely based on available data, domain require-
ments, and task constraints. While LLMs can generate mul-
tiple ideas, they often struggle to distinguish between feasi-
ble and infeasible solutions due to hallucinations or insuffi-
cient domain knowledge (Huang et al. 2024b). This ineffi-
ciency can lead to wasted computational resources and sub-
optimal performance. To address this, the LLM Planner in
DrugAgent is to systematically manage and refine the idea
space, ensuring actionable and high-performing solutions.

Idea Space. The “Idea Space” encompasses the broad
range of potential approaches or solutions for a given ML

task, recognizing that such tasks are inherently open-ended
and lack a single, deterministic solution. Let M denote the
set of all possible ideas for a task, and let N ⊆ M represent
the subset of ideas that are feasible to implement based on
the knowledge available to the LLM. The primary objective
is to identify an idea I ∈ N that maximizes the performance
metric effectively and efficiently.

Justification for the Planner. While LLMs can gener-
ate diverse ideas, they often struggle to align these sug-
gestions with the implementable subset N , especially in
domain-specific tasks like drug discovery. This misalign-
ment is largely due to the hallucination tendencies of LLMs,
where unrealistic or infeasible ideas are proposed without
regard for implementation constraints (Huang et al. 2024b).
To address this, we introduce a mechanism to iteratively re-
fine the idea space using feedback derived from program-
ming observations. By tracking successes and failures in
tasks such as tool-building or data preprocessing, the Plan-
ner can learn from past attempts to improve its search pro-
cess and focus on actionable solutions.

Planner. The Planner operates in two key phases: idea
generation and idea refinement. During the Idea Initializa-
tion phase, the Planner generates K candidate ideas based
on the problem statement. In the refinement phase, the Plan-
ner uses observations, such as tool failures or experimental
outcomes, to adjust the idea set. This process involves three
core operations: (1) deleting infeasible ideas, (2) modifying
existing ideas to address identified limitations, or (3) intro-
ducing new ideas based on accumulated knowledge.

As shown in Figure 1, when the Planner encounters a fail-
ure in building a tool for domain-specific knowledge, this
failure is logged and the associated idea is marked as infea-
sible. The Planner then halts further exploration of this idea
and removes other ideas that depend on the same missing
knowledge. This iterative process not only redirects efforts
toward viable solutions but also informs future idea genera-
tion, reducing the likelihood of repeating errors and enhanc-
ing the overall efficiency of the system.

4 Experiment
4.1 AI-driven Drug Discovery Tasks
We propose three representative AI-solvable drug discovery
tasks to validate the effectiveness of DrugAgent, as shown
in Table 1. These tasks are well-established benchmarks
that cover the three essential task categories in the Ther-
apeutics Data Commons (TDC) Benchmark (Huang et al.
2021): single-instance prediction, multi-instance prediction,
and generation tasks.

1. ADMET Prediction. ADMET (Absorption, Distribu-
tion, Metabolism, Excretion, and Toxicity) prediction ex-
emplifies a single-instance prediction task, where the
goal is to predict pharmacokinetic properties from a
drug’s structure. These properties are critical to a drug’s
efficacy, safety, and clinical success, making early AD-
MET assessment vital for minimizing late-stage failure
risks (Niu et al. 2024; Lu et al. 2022, 2024b; Chen et al.
2021; Chen, Hao, and Van Rechem 2024).

ADMET Prediction DTI Prediction Molecule Optimization
Type single-instance prediction multi-instance prediction generation

Input SMILES string SMILES string and protein
amino acid sequence

SMILES string

Impact Prevents clinical trial failures
through early and accurate AD-
MET profiling

Reduces high-throughput screen-
ing needs and narrow down the
search space

Enables efficient design of
molecules with desirable phar-
maceutical properties

Data Example Caco-2 (Wang et al. 2016) DAVIS (Davis et al. 2011) ZINC (Sterling and Irwin 2015)

Table 1: Task overview: ADMET, DTI, and molecule optimization. In this paper, we restrict our attention to small-molecule
drugs, which take up more than 90% of all the approved drugs. Small-molecule drugs can be represented as SMILES string.
SMILES string refers to a line notation that describes chemical compounds (e.g., drug molecules) with short ASCII strings.

Bug report to fix for
at most 3 times

Code generated by
coding agent

Test Code

False
(Show the error)

True

Finish all Tests

Pre-trained
Models

For Each
Idea

Test
Generation

Unit Test
pass?

Domain Tool Construction

Documentation

Code
Generation

Self Debugging

Construction
Complete

Input: Designing and Evaluating a Model for ADMET Prediction Using the PAMPA
Dataset(shortened prompt)

Plan 1: Fine-tune a pretrained language model.

Thought 1: Compute similarity scores based on the product description
Action 1: ComputeEmbeddingSimilarity(“swim fins”, GetEntityDocuments()]
Result 1: s1 similarity scores

Thought 2:
Action 2:
Result 2:

Thought 3:
Action 3:
Result 3:

Final result:

(a) ReAct

(b) DrugCoder

Input: Q
Output:

Plan1:
Code1:
Result1:

Plan2:
Code2:
Result2:

Plan3:
Code3:
Result3:

Final result:

Random
Forest

GCN

Final Code &
Self Debugging

Fingerprinting

Dataset Downloading

Molecule Graph
Construction

Random
Forest

Pre-trained
Models

Idea Expansion

Research Task
(eg: ADMET)

GCN

Coder

Unit test
preparation

Tool
Construction

Unit Test
Execution

Unit Testing

Research Task
(eg: ADMET)

Coder

Dataset Downloading

Fingerprinting

Acion(Idea
generation/
update/dele

te）

Idea Expansion

Planner Instructor

Construction Failed

......

Identified Domain Knowledge

Idea Space

Report Best
Idea

 Ignore the brand information “TUSA”

Coder

Input: Designing and Evaluating a Model for ADMET Prediction Using the
PAMPA Dataset (shortened prompt)

Thought 1: My plan is to fine-tune a pre-trained language model.
First, download the dataset.
Action 1: data = ADME(name='PAMPA')
...
Human Intervention: Failed to self-debug after several attempts.
Thought 5: I will fine-tune a ChemBERTa model.
Action 5: model_name = "seyonec/ChemBERTa-77M-MLM"
...
Human Intervention: Failed to self-debug after several attempts.
Thought 10: Task complete.
Action 10: Return the result.

 Wrong API Call!

(a) ReAct

(b) DrugAgent

Step 1: Generate multiple ideas: GNN, pre-trained model, random forest, etc.
Step 2: Start with GNN. Identify required domain knowledge: dataset
downloading, molecular graph construction.
Step 3: Dataset downloaded successfully! Added to toolbox.
Step 4: Molecular graph construction failed. Idea manager stops exploration
of the GNN idea.
Step 5-10: Attempt pre-trained model. Fetch documentation for ChemBERTa API

Step 10-15: Try random forest.Successfully fingerprinted molecule
Step 16: Maximum steps reached, return best result from random forest.

 Wrong API Call!

 Success

 Success!

 Success!

Figure 2: Comparison of ReAct (a) and DrugAgent (b) on an ADMET prediction task using the PAMPA dataset. ReAct, a
general-purpose framework, fails due to hallucinated API calls and an inability to self-debug, requiring human intervention to
proceed. It focuses solely on fine-tuning a pretrained language model, which is suboptimal for the small dataset size. In con-
trast, DrugAgent systematically explores multiple approaches, including random forests, graph neural networks, and pretrained
language models. DrugAgent identifies domain-specific requirements, constructs necessary tools, and prunes ineffective ideas,
such as molecular graph construction. This structured workflow allows DrugAgent to deliver successful results autonomously,
achieving strong performance. See more analysis in §4.3 and the Appendix for the sample code.

2. Drug-Target Interaction (DTI). DTI prediction is a
multi-instance prediction task aimed at forecasting the
binding affinity between a drug and a target protein
based on small-molecule compound structures and pro-
tein amino acid sequences. This task is essential for vir-
tual screening, drug repurposing, and side effect predic-
tion (Liu et al. 2024; Zhang et al. 2021).

3. Molecule Optimization. Molecule optimization focuses
on generating novel and diverse molecules with desir-
able pharmaceutical properties, making it a generation
task (Xia et al. 2024; Fu et al. 2022). By using tar-
geted design methods, this approach reduces the need
for exhaustive searches, improving efficiency and inno-
vation (Gao et al. 2022).

4.2 Baseline Methods
We compare DrugAgent with two established baseline meth-
ods to evaluate its performance across the proposed tasks:
1. ReAct. ReAct (Yao et al. 2023) enables LLMs to in-

tegrate reasoning and action through an interleaved, in-
context approach, allowing interactive analysis of ob-
served information and execution of actions.

2. MLAgentBench. The research agent (Huang et al.
2024a) supports tasks such as maintaining a research plan
and executing actions like understanding files, editing
scripts, and reflecting on task progress.

4.3 Case Study: Comparing DrugAgent with
ReAct on ADMET Prediction Tasks

To demonstrate the effectiveness of DrugAgent, we con-
ducted a case study on an ADMET prediction task and com-
pared its performance to ReAct, as illustrated in Fig. 2.
This comparison highlights the challenges LLMs face with
domain-specific tasks and the advantages of DrugAgent in
overcoming these limitations.

ReAct (Yao et al. 2023), a general-purpose framework,
struggles with domain-specific knowledge integration. For
instance, it begins by proposing to fine-tune a pretrained
language model but fails at critical steps, such as down-
loading the appropriate dataset or selecting the correct API,
requiring human intervention to proceed. Moreover, ReAct
focuses exclusively on refining a single approach, which is
suboptimal for this task given the small dataset size. These
limitations illustrate the gap between general-purpose LLM
reasoning and the specialized needs of drug discovery tasks.

In contrast, DrugAgent adopts a systematic and multi-
faceted approach. It explores diverse methods, including
random forests, graph neural networks (GNNs), and pre-
trained language models, while identifying steps that require
domain knowledge. For example, DrugAgent successfully
automates tasks such as dataset downloading, molecular fin-
gerprinting, and ChemBERTa (Chithrananda, Grand, and
Ramsundar 2020) tokenization/model execution. Addition-
ally, DrugAgent employs idea pruning to remove approaches
that fail validation, such as molecular graph construction for
GNN input, saving both time and computational resources.

From a performance perspective, DrugAgent delivers ro-
bust results across multiple models. The random forest ap-

proach achieves a 0.920 F1 score and 0.817 ROC-AUC,
while ChemBERTa attains a 0.916 F1 score and 0.776 ROC-
AUC. These results underscore DrugAgent’s ability to not
only automate domain-specific ML tasks but also select and
refine the most effective approaches for the problem at hand.

5 Conclusion

In this paper, we introduced DrugAgent, a multi-agent
framework that represents a significant step forward in lever-
aging large language models for automating critical as-
pects of drug discovery. DrugAgent addresses key chal-
lenges inherent in this domain, including the inability of
general-purpose LLMs to handle domain-specific require-
ments, inefficient exploration of idea spaces, and the ab-
sence of robust domain-specific tools. By systematically
generating and refining ideas, DrugAgent ensures that the
exploration process is both efficient and aligned with the
practical constraints of drug discovery tasks. Furthermore,
integrating specialized toolsets, such as dataset handling,
molecular fingerprinting, and tokenization workflows, en-
ables DrugAgent to bridge the gap between generalized AI
capabilities and the nuanced demands of pharmaceutical re-
search. Through proof-of-concept experiments, we demon-
strated that DrugAgent outperforms general-purpose frame-
works like ReAct by effectively automating complex tasks
and identifying optimal solutions.

It is important to note that this work represents an ongoing
effort to push the boundaries of AI-driven drug discovery. As
the field evolves, so too will the opportunities to refine and
expand DrugAgent, ensuring its continued relevance and im-
pact in addressing the challenges of this dynamic domain.

6 Future Work

As this is a preliminary version, several aspects of our
work remain to be explored in greater depth. First, we
plan to expand our experiments by incorporating additional
state-of-the-art baselines and performing large-scale quan-
titative comparisons to rigorously evaluate the performance
and scalability of DrugAgent across diverse drug discovery
tasks. This will include testing on more challenging datasets
and tasks to validate the generalizability of our framework.

Second, we aim to conduct comprehensive ablation stud-
ies to better understand the contributions of individual mod-
ules, such as the domain knowledge identification step, the
idea generation and pruning process, and the effectiveness
of the enhanced toolset. These studies will help isolate and
quantify the impact of each component, providing deeper in-
sights into DrugAgent ’s strengths and potential limitations.

Finally, we intend to explore the integration of DrugA-
gent with real-world drug discovery workflows, collaborat-
ing with domain experts to assess its practical utility and
identify areas for refinement. This will allow us to ensure
that DrugAgent is not only a theoretical advancement but
also a practical tool that can meaningfully accelerate the
drug discovery pipeline.

References
Boiko, D. A.; MacKnight, R.; Kline, B.; and Gomes, G.
2023. Autonomous Chemical Research with large language
models. Nature, 624(7992): 570–578.
Chen, J.; Hu, Y.; Wang, Y.; Cao, X.; Lin, M.; Xu, H.;
Wu, J.; Xiao, C.; Sun, J.; et al. 2024. TrialBench: Multi-
Modal Artificial Intelligence-Ready Clinical Trial Datasets.
arXiv:2407.00631.
Chen, L.; Lu, Y.; Wu, C.-T.; Clarke, R.; Yu, G.; Van Eyk,
J. E.; Herrington, D. M.; and Wang, Y. 2021. Data-driven
detection of subtype-specific differentially expressed genes.
Scientific reports, 11(1): 332.
Chen, T.; Hao, N.; and Van Rechem, C. 2024. Uncer-
tainty Quantification on Clinical Trial Outcome Prediction.
arXiv:2401.03482.
Chithrananda, S.; Grand, G.; and Ramsundar, B. 2020.
ChemBERTa: large-scale self-supervised pretraining for
molecular property prediction. In Machine Learning for
Molecules Workshop at NeurIPS 2020.
Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wod-
icka, L. M.; Pallares, G.; Hocker, M.; Treiber, D. K.; and
Zarrinkar, P. P. 2011. Comprehensive analysis of kinase
inhibitor selectivity. Nature biotechnology, 29(11): 1046–
1051.
Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, C. W.; and
Sun, J. 2022. Differentiable Scaffolding Tree for Molecular
Optimization. International Conference on Learning Repre-
sentations.
Gao, W.; Fu, T.; Sun, J.; and Coley, C. 2022. Sample ef-
ficiency matters: a benchmark for practical molecular opti-
mization. Advances in Neural Information Processing Sys-
tems, 35: 21342–21357.
Guo, T.; Chen, X.; Wang, Y.; Chang, R.; Pei, S.; Chawla,
N. V.; Wiest, O.; and Zhang, X. 2024. Large Language
Model based Multi-Agents: A Survey of Progress and Chal-
lenges. arXiv:2402.01680.
Huang, K.; Fu, T.; Gao, W.; Zhao, Y.; Roohani, Y.;
Leskovec, J.; Coley, C. W.; Xiao, C.; Sun, J.; and Zitnik,
M. 2021. Therapeutics Data Commons: Machine Learning
Datasets and Tasks for Drug Discovery and Development.
Advances in Neural Information Processing Systems.
Huang, K.; Fu, T.; Gao, W.; Zhao, Y.; Roohani, Y.;
Leskovec, J.; Coley, C. W.; Xiao, C.; Sun, J.; and Zitnik,
M. 2022. Artificial intelligence foundation for therapeutic
science. Nature Chemical Biology, 18: 1033.
Huang, K.; Fu, T.; Glass, L. M.; Zitnik, M.; Xiao, C.; and
Sun, J. 2020. DeepPurpose: a deep learning library for
drug–target interaction prediction. Bioinformatics, 36(22-
23): 5545–5547.
Huang, L.; Yu, W.; Ma, W.; Zhong, W.; Feng, Z.; Wang, H.;
Chen, Q.; Peng, W.; Feng, X.; Qin, B.; and Liu, T. 2023. A
Survey on Hallucination in Large Language Models: Prin-
ciples, Taxonomy, Challenges, and Open Questions. arXiv
preprint arXiv:2311.05232. Work in progress; 49 pages.
Huang, Q.; Vora, J.; Liang, P.; and Leskovec, J. 2024a.
MLAgentBench: Evaluating Language Agents on Machine

Learning Experimentation. In Thirty-eighth Conference on
Neural Information Processing Systems.
Huang, Y.; Sun, L.; Wang, H.; Wu, S.; Zhang, Q.; Li, Y.;
Gao, C.; Huang, Y.; Lyu, W.; Zhang, Y.; et al. 2024b. Po-
sition: Trustllm: Trustworthiness in large language models.
In International Conference on Machine Learning, 20166–
20270. PMLR.
Inaba, T.; Kiyomaru, H.; Cheng, F.; and Kurohashi, S. 2023.
MultiTool-CoT: GPT-3 Can Use Multiple External Tools
with Chain of Thought Prompting. In Proceedings of the
61st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), 1522–1532. Toronto,
Canada: Association for Computational Linguistics.
Jiang, J.; Wang, F.; Shen, J.; Kim, S.; and Kim, S. 2024.
A Survey on Large Language Models for Code Generation.
arXiv preprint arXiv:2406.00515.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classifi-
cation with graph convolutional networks. The International
Conference on Learning Representations (ICLR).
Li, B.; Yan, T.; Pan, Y.; Luo, J.; Ji, R.; Ding, J.; Xu, Z.; Liu,
S.; Dong, H.; Lin, Z.; and Wang, Y. 2024a. MMedAgent:
Learning to Use Medical Tools with Multi-modal Agent.
arXiv preprint arXiv:2407.02483. Accepted at EMNLP
2024.
Li, Z.; Zang, Q.; Ma, D.; Guo, J.; Zheng, T.; Liu, M.; Niu,
X.; Wang, Y.; Yang, J.; Liu, J.; Zhong, W.; Zhou, W.; Huang,
W.; and Zhang, G. 2024b. AutoKaggle: A Multi-Agent
Framework for Autonomous Data Science Competitions.
arXiv preprint arXiv:2410.20424.
Liu, S.; Xia, J.; Zhang, L.; Liu, Y.; Liu, Y.; Du, W.; Gao, Z.;
Hu, B.; Tan, C.; Xiang, H.; and Li, S. Z. 2024. FlexMol:
A Flexible Toolkit for Benchmarking Molecular Relational
Learning. In Proceedings of the 38th Conference on Neural
Information Processing Systems (NeurIPS).
Lu, C.; Lu, C.; Lange, R. T.; Foerster, J.; Clune, J.; and
Ha, D. 2024a. The AI Scientist: Towards Fully Auto-
mated Open-Ended Scientific Discovery. arXiv preprint
arXiv:2408.06292.
Lu, Y.; Chen, T.; Hao, N.; Van Rechem, C.; Chen, J.; and
Fu, T. 2024b. Uncertainty quantification and interpretability
for clinical trial approval prediction. Health Data Science,
4: 0126.
Lu, Y.; Wu, C.-T.; Parker, S. J.; Cheng, Z.; Saylor, G.;
Van Eyk, J. E.; Yu, G.; Clarke, R.; Herrington, D. M.; and
Wang, Y. 2022. COT: an efficient and accurate method for
detecting marker genes among many subtypes. Bioinformat-
ics Advances, 2(1): vbac037.
Lála, J.; O’Donoghue, O.; Shtedritski, A.; Cox, S.; Ro-
driques, S. G.; and White, A. D. 2023. PaperQA: Retrieval-
Augmented Generative Agent for Scientific Research. arXiv
preprint arXiv:2312.07559.
M. Bran, A.; Cox, S.; Schilter, O.; Baldassari, C.; White,
A. D.; and Schwaller, P. 2024. Augmenting large language
models with Chemistry Tools. Nature Machine Intelligence,
6(5): 525–535.

Niu, Z.; Xiao, X.; Wu, W.; Cai, Q.; Jiang, Y.; Jin, W.; Wang,
M.; Yang, G.; Kong, L.; Jin, X.; Yang, G.; and Chen, H.
2024. PharmaBench: Enhancing ADMET benchmarks with
large language models. Scientific Data, 11(985).
Pushpakom, S.; Iorio, F.; Eyers, P. A.; Escott, K. J.; Hop-
per, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; Mc-
Namee, C.; et al. 2019. Drug repurposing: progress, chal-
lenges and recommendations. Nature Reviews Drug Dis-
covery, 18(1): 41–58.
Qin, Y.; Hu, S.; Lin, Y.; Chen, W.; Ding, N.; Cui, G.; Zeng,
Z.; Huang, Y.; Xiao, C.; Han, C.; Fung, Y. R.; Su, Y.; Wang,
H.; Qian, C.; Tian, R.; Zhu, K.; Liang, S.; Shen, X.; Xu,
B.; Zhang, Z.; Ye, Y.; Li, B.; Tang, Z.; Yi, J.; Zhu, Y.; Dai,
Z.; Yan, L.; Cong, X.; Lu, Y.; Zhao, W.; Huang, Y.; Yan, J.;
Han, X.; Sun, X.; Li, D.; Phang, J.; Yang, C.; Wu, T.; Ji, H.;
Liu, Z.; and Sun, M. 2023. Tool Learning with Foundation
Models. arXiv:2304.08354.
Ravuru, C.; Sakhinana, S. S.; and Runkana, V. 2024. Agen-
tic Retrieval-Augmented Generation for Time Series Anal-
ysis. In Proceedings of the Undergraduate Consortium at
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD).
Roohani, Y.; Lee, A.; Huang, Q.; Vora, J.; Steinhart,
Z.; Huang, K.; Marson, A.; Liang, P.; and Leskovec, J.
2024. BioDiscoveryAgent: An AI Agent for Design-
ing Genetic Perturbation Experiments. arXiv preprint
arXiv:2405.17631.
Schick, T.; Dwivedi-Yu, J.; Dessı̀, R.; Raileanu, R.; Lomeli,
M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023.
Toolformer: Language Models Can Teach Themselves to
Use Tools. arXiv:2302.04761.
Si, C.; Yang, D.; and Hashimoto, T. 2024. Can LLMs Gener-
ate Novel Research Ideas? A Large-Scale Human Study with
100+ NLP Researchers. arXiv preprint arXiv:2409.04109.
Siramshetty, V. B.; Shah, P.; et al. 2021. Validating ADME
QSAR Models Using Marketed Drugs. SLAS Discovery,
26(10): 1326–1336.
Sterling, T.; and Irwin, J. J. 2015. ZINC 15–ligand discovery
for everyone. Journal of chemical information and model-
ing, 55(11): 2324–2337.
Wang, E.; Cassano, F.; Wu, C.; Bai, Y.; Song, W.; Nath, V.;
Han, Z.; Hendryx, S.; Yue, S.; and Zhang, H. 2024a. Plan-
ning In Natural Language Improves LLM Search For Code
Generation. arXiv preprint arXiv:2409.03733.
Wang, L.; Ma, C.; Feng, X.; Zhang, Z.; Yang, H.; Zhang, J.;
Chen, Z.; Tang, J.; Chen, X.; Lin, Y.; and et al. 2024b. A
survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6).
Wang, N.; Dong, J.; Deng, Y.; Zhu, M.; Wen, M.; Yao, Z.;
Lu, A.; Wang, J.; Luo, X.; and Cao, D. 2016. ADME Proper-
ties Evaluation in Drug Discovery: Prediction of Caco-2 Cell
Permeability Using a Combination of NSGA-II and Boost-
ing. Journal of Chemical Information and Modeling, 56(4):
763–773.
Wang, Y.; Fu, T.; Xu, Y.; Ma, Z.; Xu, H.; Du, B.; Gao, H.;
Wu, J.; and Chen, J. 2024c. TWIN-GPT: Digital Twins for

Clinical Trials via Large Language Model. ACM Transac-
tions on Multimedia Computing, Communications and Ap-
plications.
Wang, Z.; Fried, D.; and Neubig, G. 2024. TroVE: Induc-
ing Verifiable and Efficient Toolboxes for Solving Program-
matic Tasks. In Proceedings of the 41st International Con-
ference on Machine Learning (ICML).
WecoAI. 2024. AIDE: The Machine Learning Engineer
Agent.
Wu, S.; Zhao, S.; Huang, Q.; Huang, K.; Yasunaga, M.; Cao,
K.; Ioannidis, V. N.; Subbian, K.; Leskove, J.; and Zou, J.
2024. AvaTaR: Optimizing LLM Agents for Tool-Assisted
Knowledge Retrieval.
Xia, Y.; Wang, Y.; Wang, Z.; and Zhang, W. 2024. A com-
prehensive review of molecular optimization in Artificial
Intelligence-Based Drug Discovery. Quantitative Biology,
12(1): 15–29.
Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K.; and Cao, Y. 2023. ReAct: Synergizing Reasoning and
Acting in Language Models. In International Conference
on Learning Representations (ICLR).
Yoon, S.; Kim, T. E.; and Oh, Y. J. 2024. Designing
and Evaluating Multi-Chatbot Interface for Human-AI Com-
munication: Preliminary Findings from a Persuasion Task.
arXiv preprint arXiv:2406.19648.
Yue, L.; Xing, S.; Chen, J.; and Fu, T. 2024. ClinicalAgent:
Clinical Trial Multi-Agent with Large Language Model-
based Reasoning. arXiv preprint arXiv:2404.14777.
Zhang, B.; Fu, Y.; Lu, Y.; Zhang, Z.; Clarke, R.; Van Eyk,
J. E.; Herrington, D. M.; and Wang, Y. 2021. DDN2.0: R
and Python packages for differential dependency network
analysis of biological systems. bioRxiv, 2021–04.

A LLM-designed Code

1 from tdc.single_pred import ADME
2 from sklearn.ensemble import

RandomForestClassifier
3 from sklearn.metrics import roc_auc_score,

f1_score
4 from rdkit.Chem import AllChem
5 from rdkit import Chem
6 import numpy as np
7

8 def download_and_split_dataset():
9 """

10 Downloads the specified ADMET dataset
and returns the train and test splits.

11 """
12 data = ADME(name='PAMPA_NCATS')
13 split = data.get_split()
14 return split
15

16 def generate_fingerprints(smiles_list,
radius=2, n_bits=2048):

17 """
18 Converts a list of SMILES strings into

molecular fingerprints.
19 """
20 fingerprints = []
21 for smiles in smiles_list:
22 mol = Chem.MolFromSmiles(smiles)
23 if mol:
24 fingerprints.append(AllChem.Get ⌋

MorganFingerprintAsBitVect(mol,
radius, nBits=n_bits))

25 else:
26 fingerprints.append(np.zeros((n ⌋

_bits,)))
27 return np.array(fingerprints)
28

29 # Main Script
30 if __name__ == "__main__":
31 # Step 1: Download dataset and get

train-test split
32 split = download_and_split_dataset()
33

34 # Step 2: Generate feature matrices and
labels

35 X_train = generate_fingerprints(split[' ⌋
train']['Drug'])

36 y_train = split['train']['Y']
37

38 X_test = generate_fingerprints(split['t ⌋
est']['Drug'])

39 y_test = split['test']['Y']
40

41 # Step 3: Train Random Forest Classifier
42 rf_model =

RandomForestClassifier(n_estimators=100,
random_state=42)

43 rf_model.fit(X_train, y_train)
44

45 # Step 4: Make Predictions
46 y_pred = rf_model.predict(X_test)
47 y_pred_prob =

rf_model.predict_proba(X_test)[:, 1] #
Probability estimates for ROC-AUC

48

49 roc_auc = roc_auc_score(y_test,
y_pred_prob)

50 f1 = f1_score(y_test, y_pred)
51

52 print(f"ROC-AUC: {roc_auc:.4f}")
53 print(f"F1-Score: {f1:.4f}")
54

55

B Sample Prompts

Idea generation The planner is tasked with generating
diverse ideas for a machine learning experiment based on
computer science concepts. For each idea, it is further
prompted to refine the method by incorporating details and
integrating computational biology concepts. Below are ex-
ample outputs:

1 {
2 "ideas": [
3 {
4 "method": "Apply a graph neural

network (GNN) to learn from the
SMILES string structure.",

5 "refined_idea": "Represent the
SMILES string as a molecular graph,
where nodes are atoms and edges
represent bonds. Train a GNN model
to learn molecular representations
from this graph, which can then be
used to predict the ADMET property."

6 },
7 {
8 "method": "Use a transformer-based

model to encode the SMILES string.",
9 "refined_idea": "Train a transformer

model to learn embeddings for SMILES
strings, capturing the sequential
information and relationships
between atoms and functional groups.
These embeddings can be used as
input for a downstream prediction
model."

10 },
11 {
12 "method": "Train a random forest

model with SMILES string features
extracted by RDKit.",

13 "refined_idea": "Utilize RDKit to
extract molecular descriptors and
fingerprints from the SMILES
strings. These features can be used
as input for a random forest model
to predict the ADMET property."

14 },
15 {
16 "method": "Utilize a support vector

machine (SVM) with a radial basis
function (RBF) kernel.",

17 "refined_idea": "Extract molecular
descriptors from the SMILES strings
using RDKit and train a SVM model
with an RBF kernel to predict the
ADMET property."

18 },
19 {
20 "method": "Implement a multi-task

learning approach by predicting
multiple ADMET properties
simultaneously.",

21 "refined_idea": "This idea needs
further clarification. What specific
ADMET properties are being
considered? What is the relationship
between these properties and the
Caco-2 dataset?"

22 },
23 {
24 "method": "Fine-tune a pre-trained

model such as ChemBERTa for ADMET
property prediction.",

25 "refined_idea": "Use the ChemBERTa
pre-trained model to extract
molecular representations directly
from SMILES strings. Fine-tune the
model for specific ADMET properties,
leveraging the contextual
information captured during
pre-training."

26 }
27]
28 }
29

Domain knowledge Analysis The instructor is prompted
to break down the idea into substeps and evaluate whether
each substep requires domain knowledge. Below is an ex-
ample applied to the idea of using a random forest model.

1 Step 1: Load and split the PAMPA dataset.
2 - (require domain knowledge - reason:

understanding the specific structure and
format of the PAMPA dataset, including
downloading from domain-specific sources)

3

4 Step 2: Convert chemical compounds in the
dataset to Morgan fingerprints using a
chemical library (e.g., RDKit).

5 - (require domain knowledge - reason:
requires familiarity with RDKit or similar
libraries to generate Morgan fingerprints)

6

7 Step 3: Implement and configure the Random
Forest algorithm for
classification/regression.

8 - (don't require domain knowledge: Random
Forest is a general machine learning
algorithm)

9

10 Step 4: Train the Random Forest model on the
training data.

11 - (don't require domain knowledge: model
training is a general computer science task)

12

13 Step 5: Evaluate the model's performance
using standard metrics like MAE, MSE, or
accuracy.

14 - (don't require domain knowledge:
evaluation using standard metrics is a
general computer science task)

