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Abstract

Imitation learning seeks to estimate policies reflecting the values of demonstrated
behaviors. Prevalent approaches learn to match or exceed the demonstrator’s
performance in expectation without knowing the demonstrator’s reward function.
Unfortunately, this does not induce pluralistic imitators that learn to support distinct
demonstrations. We reformulate imitation learning using stochastic dominance
over the demonstrations’ reward distribution across a range of reward functions as
our foundational aim. Our approach matches imitator policy samples (or support)
with demonstrations using optimal transport theory to define an imitation learning
objective over trajectory pairs. We demonstrate the benefits of pluralistic stochastic
dominance (PSD) for imitation in both theory and practice.

1 Introduction

Figure 1: Dominance in ex-
pectation (green) guarantees
better performance than the
demonstration average for all
conical sum reward functions.
Pluralistic stochastic domi-
nance (red) makes the distribu-
tion of rewards preferable by
guaranteeing a higher proba-
bility of achieving any reward.

When learning from demonstrations, behaviors reflecting individ-
ual preferences and capabilities are often demonstrated. Existing
imitation learning methods struggle to preserve these distinct be-
haviors while trying to improve beyond them. For example, inverse
reinforcement learning (Abbeel & Ng, 2004; Ziebart, 2010) and
discriminative imitation (Ratliff et al., 2006; Ho & Ermon, 2016)
methods seek to match or outperform (Syed & Schapire, 2007) the
demonstrations under a range of reward functions in expectation. As
shown in Figure 1, this can be achieved by an imitator that never
produces behavior that a demonstrator prefers over any of his or her
more preferable demonstrations.

We seek a stronger distributional guarantee of pluralistic stochastic
dominance (PSD)1, which ensures the imitator a higher probability
of achieving any level of reward than the demonstration distribution
(i.e., stochastic dominance) for all reward functions (i.e., pluralism)
within some defined set. This requires the imitator to match or
improve upon the distinct properties of exceptional demonstrations
rather than focusing on the average of demonstrations—often by
randomizing between different modes (Figure 1). These guarantees
support more complex applications of imitator policies (e.g., sam-
pling many candidate trajectories and selecting the best) beyond the
assumption that a single imitator trajectory is sampled and executed.

1Code available at https://github.com/Ali199776/PSD.
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Our approach is based on the observation that if all demonstrations can be matched to supported
imitator behaviors that are better than the paired demonstration for all reward functions (Figure 1), then
PSD is achieved. We employ optimal transport theory (Rioux et al., 2024) to perform this matching
and a margin-based upper bound (Ziebart et al., 2022) to define a loss over the demonstration-imitation
behavior pair. We then optimize the imitator policy using the matched pairs in the fully realizable and
model-based imitator policy settings. We provide stochastic dominance generalization guarantees to
establish the theoretical benefits of pursuing pluralistic stochastic dominance, and experimentally
demonstrate better support for distinct behavior that improves beyond the paired demonstrations.

The main contributions of this paper are three-fold: First, PSD improves upon imitation learning
methods designed for specific risk-sensitivities (Majumdar et al., 2017; Singh et al., 2018; Santara
et al., 2018; Lacotte et al., 2019) to provide guarantees simultaneously across all reasonable risk-
sensitive performance measures (e.g., value-at-risk, conditional value-at-risk, and range value-at-risk,
detailed in Appendix A.1). These performance guarantees provide broader support for more complex
use cases of imitation learning, such as selecting the best trajectory from a set of samples. Second,
PSD-based imitation provides an alternative justification to maximum entropy inverse reinforcement
learning for stochastic imitation policies. Finally, we introduce novel evaluation metrics for imitation
learning based on stochastic and Pareto dominance that can be applied in settings with known reward
bases, but not singular motivating reward function.

2 Background and related work

2.1 Inverse reinforcement learning

In imitation learning settings, reward functions defining desirable behavior are unknown. Instead,
foundational formulations assume that reward features are available that define a linear (Ng & Russell,
2000; Abbeel & Ng, 2004) or conical sum (Syed & Schapire, 2007) reward function.

Definition 2.1. Given reward features f : Ξ→ RK , for behavior trajectories ξ ∈ Ξ, the family of
feature-based reward functions is defined as rθ(ξ) = θ · f(ξ) with parameters θ ∈ RK (linear) or
θ ∈ RK

≥0 (conical sum).

An imitation policy π that matches the feature moments of the demonstrator guarantees equal rewards
in expectation—including the demonstrator’s unknown (linear) reward function (Abbeel & Ng, 2004):

∀θ ∈ RK , Eξ∼Pπ

[
f(ξ)

]
= Eξ̃∼Pπ̃

[
f(ξ̃)

]
=⇒ Eξ∼Pπ

[
rθ(ξ)

]
= Eξ̃∼Pπ̃

[
rθ(ξ̃)

]
(1)

where Pπ denotes the distribution over trajectories ξ based on the interaction between the policy π
and the dynamics of the decision process, which we assume are deterministic.

Many imitation learning approaches can be viewed as matching various moments (rewards, on-
policy/off-policy state-action value functions) of the demonstrator (Swamy et al., 2021), including:
behavior cloning (Pomerleau, 1988); maximum margin planning (Ratliff et al., 2006); maximum
entropy inverse reinforcement learning (Ziebart, 2010); DAGGER (Ross et al., 2011) generative
adversarial imitation learning (Ho & Ermon, 2016); and Value Dice (Kostrikov et al., 2019).

Entropy regularization methods for reinforcement learning (Neu et al., 2017)—also known as softmax
decision policies (Sutton & Barto, 2018)—increase the diversity of the imitator’s trajectories within
these moment-matching techniques. However, these provide robust predictive guarantees for imitation
learning (Ziebart, 2010) rather than performance guarantees for diverse demonstrators. Extensions
of these methods attempt to model variations in preferences or quality of demonstrations with latent
variables. These are then used to condition policy models (e.g., as mixture models) or focus imitation
on more desirable demonstrations (Brown et al., 2020b; Chen et al., 2021; Wu et al., 2019; Zhang
et al., 2021). We aim to avoid the computational challenges (e.g., difficult nonconvex optimizations)
and/or strong assumptions underlying these approaches.

2.2 Outperformance and subdominance minimization

Our approach is closer in motivation to methods designed to outperform demonstrators. Early
methods focus on policies that outperform in terms of expected rewards (Definition 2.2).
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Definition 2.2. Policy π1 has expected dominance over π2 if the expected trajectory reward under
π1 is at least as much as the expected trajectory reward under π2: Eξ1∼π1 [rθ(ξ)] ≥ Eξ2∼π2 [rθ(ξ)]
for fixed θ.

MWAL (Syed & Schapire, 2007) and LPAL (Syed et al., 2008) guarantee outperforming the demon-
strator in expectation under the assumption that the signs of the reward function weights are known
(i.e., conical sum reward functions of Definition 2.1). In this setting, better expected reward features
guarantee better expected rewards:

∀θ ∈ RK
≥0, Eξ∼Pπ

[
f(ξ)

]
⪰ Eξ̃∼Pπ̃

[
f(ξ̃)

]
=⇒ Eξ∼Pπ

[
rθ(ξ)

]
≥ Eξ̃∼Pπ̃

[
rθ(ξ̃)

]
. (2)

Subdominance minimization (Ziebart et al., 2022) extends this idea of outperformance by seeking
uniform dominance (Definition 2.3) across conical sum reward functions by minimizing a convex
bound over the probability of violating uniform dominance.
Definition 2.3. Policy π1 has uniform dominance over π2 if all trajectory samples from π1 have at
least as much reward as all samples from π2: Pξ1∼π1;ξ2∼π2

(rθ(ξ1) ≥ rθ(ξ2)) = 1 for fixed θ.

Unfortunately, uniform dominance encourages deterministic policies that are similar to the expected
dominance policy in settings like Figure 1.

We pursue a less strict notion of dominance in this paper: stochastic dominance (Definition 2.4). It is
based on having a better distribution of rewards.
Definition 2.4. Policy π1 has stochastic dominance over π2 if π1 has at least as much probability of
exceeding any reward threshold: ∀c ∈ R,Pξ∼π1(rθ(ξ) ≥ c) ≥ Pξ∼π2(rθ(ξ) ≥ c) for fixed θ.

In terms of strictness, uniform dominance implies stochastic dominance, which implies expected
dominance. However, uniform dominance is often infeasible (e.g., Figure 2a), while stochastic
dominance is always feasible (e.g., π = π̃). In addition to expected reward bounds (2), stochastic
dominance guarantees broad risk measure improvements (Ogryczak & Ruszczyński, 1999). We
summarize some of these in Theorem 2.5.
Theorem 2.5. Stochastic dominance of rθ(π) ⪰ rθ(π̃) for some fixed θ guarantees improved
expected and risk-sensitive rewards for the imitator ξ ∼ Pπ with respect to the demonstrator ξ̃ ∼ Pπ̃:
∀ (c ∈ [0, 1], d ∈ (c, 1]), Eξ∼π[rθ(ξ)] ≥ Eξ̃∼π̃[rθ(ξ̃)], VaRc(rθ(ξ)) ≥ VaRc(rθ(ξ̃)), CVaRc(rθ(ξ)) ≥
CVaRc(rθ(ξ̃)), and RVaRc,d(rθ(ξ)) ≥ RVaRc,d(rθ(ξ̃)).

Prior imitation learning research employs risk sensitivity narrowly to address safety concerns by
targeting specific tail risks (and specific quantile levels). Extensions of generative-adversarial imita-
tion learning (GAIL) (Ho & Ermon, 2016) match specific demonstrator risk-sensitivities (Majumdar
et al., 2017; Santara et al., 2018; Lacotte et al., 2019). Bayesian estimation methods (Brown et al.,
2020a; Javed et al., 2021) incorporate risk sensitivity to more robustly address uncertainty during
reward function estimation, In contrast, we consider risk-sensitivity exhaustively—across a family of
reward functions and over all sensitivity thresholds, as guaranteed by stochastic dominance (Theorem
2.5)—to incentivize high-quality coverage of diverse demonstrations.

2.3 Optimal transport

Optimal transport theory considers the minimum cost of transforming from one distribution, PX , to
another PY under cost function c : X × Y → R≥0. The Kantorovich (1942) formulation defines this
transformation using a joint probability measure γ ∈ ∆X×Y with γ(x, y) representing the amount
of probability mapped from x to y and marginals that match the source and target distributions.
For discrete distributions (with PX and PY supporting m and n values, respectively) , this can be
expressed as a linear program:

OTc(PX ,PY ) = min
γ≥0

∑
i,j

γi,jc(xi, yj) s.t. ∀j,
∑
i

γi,j = PY (yj) ,∀i,
∑
j

γi,j = PX(xi) . (3)

The optimization is solved exactly by the Hungarian algorithm in O(|X |3) time or with ϵ error
tolerance using specialized algorithms (Dvurechensky et al., 2018) in Õ(max(|X |, |Y|)2/ϵ2) time.

The optimal transport objective (commonly referred to as the Wasserstein distance for metric costs)
has been popularized as an alternative to the Jensen-Shannon divergence in generative-adversarial
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learning (Arjovsky et al., 2017). Previous investigations for imitation learning tasks (Xiao et al., 2019;
Dadashi et al., 2021). include cross-domain imitation transfer (Nguyen et al., 2021; Fickinger et al.,
2022), combining trajectory matching with behavioral cloning (Haldar et al., 2023), and matching
reward-less trajectories with expert trajectories (Luo et al., 2023). Each of these are distinct from our
approach and motivation.

We build upon a key relationship between optimal transport and stochastic dominance in this work:
Remark 2.6. PY ⪰ PX (Definition 2.4) if and only if there is a mapping from PX to PY that is
non-decreasing in value: OTmax(x−y, 0)(PX ,PY ) = 0, where c(x, y) is positive only when x > y.

3 Approach

3.1 Pluralistic stochastic dominance

(a) (b) (c)

Figure 2: (a) Features (f1, f2) of four demonstrations (black
points) matched (yellow lines) with four imitator samples
(red points); the cumulative features for f1 (b) and f2 (c)
for the sample distribution (P(4)) and the full distribution
(P(∞)). We seek to optimize the imitator policy using avail-
able demonstrator/imitator samples to achieve a full distribu-
tion for the imitator that stochastically dominates the demon-
strator. This can be verified for each θ by sorting the samples,
e.g., for θ = [10] (b) and θ = [01] (c). However, this is in-
tractable for continuous sets of θ; our upper bound instead
employs a single matching (a).

We consider imitation learning with
multiple demonstrators. Each has
their own reward function, rθ, pre-
sumed to be from the family of conical
sum cost functions (Definition 2.1).
Feature moment methods (1, 2) can
guarantee that each demonstrator is at
least indifferent between the trajectory
distributions of the demonstrators and
the imitator in expectation (Swamy
et al., 2021). However, this does
not guarantee any chance of produc-
ing highly desirable behavior for any
demonstrators. As a consequence, if
preferences are based on higher quan-
tiles of reward distributions rather
than expectations, the demonstration
distribution can be highly preferable.
We introduce pluralistic stochastic
dominance (PSD) to ensure that the
imitator policy is no less preferable to
the demonstration distribution for all
conical sum reward functions and all
reward quantiles (Definition 3.1).
Definition 3.1. Distribution Pπ provides (first-order) pluralistic stochastic dominance over Pπ̃ (for
all conical sum reward functions), which we denote Pπ ⪰PSD Pπ̃ , iff:

∀(θ ∈ RK
≥0, C ∈ R),Pξ∼π(rθ(ξ) ≥ C) ≥ Pξ̃∼π̃(rθ(ξ̃) ≥ C). (4)

Though exact replication (π = π̃) trivially achieves this, imitation learning often aims to be performant
on withheld demonstrations, so exact replication of finite training demonstrations is not sufficient.
Instead, imitator policies π that achieve better reward distributions (and better generalization) are
desired. Figure 2(a) provides an example of strict stochastic dominance.

We extend stochastic dominance to the pluralistic setting by taking the maximum of optimal transport
problems (Remark 2.6) for each conical sum reward function (Definition 3.2).
Definition 3.2. The pluralistic stochastic subdominance between imitator and demonstrator trajec-
tory distributions is given by the worst-case reward function:

max
θ∈[0,1]K

OT[∆rθ ]+
(Pπ, Pπ̃)︷ ︸︸ ︷(

min
γ⪰0

∑
i,j

γi,j

[
rθ(ξ̃j)− rθ(ξi)

]
+

s.t.
∑
j

γi,j = Pπ(ξi) ∀i,
∑
i

γi,j = Pπ̃(ξ̃j) ∀j
)
. (5)

Minimizing this entire set of optimal transport problems to zero guarantees PSD (Theorem 3.3). The
proofs of this theorem and others are provided in Appendix B.
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Theorem 3.3. Zero maximum optimal transport in Def. 3.2 and pluralistic stochastic dominance are
equivalent: maxθ∈[0,1]K OT[∆rθ]+(Pπ,Pπ̃) = 0 ⇐⇒ Pπ ⪰PSD Pπ̃.

As a result, PSD extends the risk-sensitive properties of stochastic dominance (Theorem 2.5) to the
entire set of conical sum reward functions.
Corollary 3.4. PSD guarantees that π exhibits better risk-sensitive performance than π̃ under rθ for
the set of measures in Theorem 2.5 and all conical sum reward functions, i.e., θ ≥ 0.

While the inner minimization (over γ) in (5), OT[∆rθ]+(Pπ, Pπ̃), is a standard optimal transport
linear program, the outer maximization (over θ) is of a convex function (of θ). This family of convex
maximization programs is known to be NP-hard (Raghavachari, 1969), suggesting computational
challenges for our specific instances, unfortunately.

3.2 Matched subdominance minimization

Given the apparent computational challenges of exactly verifying pluralistic stochastic dominance
(not only for Figure 2(b,c), but all θ ≥ 0), we instead derive a computationally efficient upper bound.
We approach this by “pushing” the maximization of θ deeper into the original PSD expression:

max
θ∈[0,1]K

min
γ⪰0 s.t.∑

j γi,j=Pπ(ξi) ∀i∑
i γi,j=Pπ̃(ξ̃j) ∀j

∑
i,j

γi,j

[
rθ(ξ̃j)− rθ(ξi)

]
+︸ ︷︷ ︸

subdom1,0(ξi,ξ̃j)

, (6)

This replaces a set of optimal transport problems for each θ with one single optimal transport
problem (Figure 2a) and makes numerous independent θ maximization problems that are easy to
solve. Specifically, the resulting inner maximization of θ is equivalent to a specific instance of the
subdominance (Ziebart et al., 2022) introduced for imitation learning via uniform dominance:

subdomα,β(ξ, ξ̃) =
∑
k

[
αk

(
fk(ξ̃)− fk(ξ)

)
+ β

]
+
, (7)

which measures how far trajectory ξ is from Pareto-dominating ξ̃ (by a margin β with features
weighted by α). We define our relaxed optimization problem as a linear program using the more
general form of subdominance (Def. 3.5).
Definition 3.5. Matched Subdominance Minimization given α and β is obtained from:

OTsubdomα,β
(Pπ,Pπ̃) = min

γ⪰0 s.t.∑
j γi,j=Pπ(ξi) ∀i∑
i γi,j=Pπ̃(ξ̃j) ∀j

∑
i,j γi,jsubdomα,β(ξi, ξ̃j). (8)

This allows for a margin β > 0 requiring strict improvement and avoiding the trivial π = π̃ solution.
The sets of trajectories should be sufficiently large to cover the distinct demonstrated behaviors.
Given tens or hundreds of trajectories in each set, the optimal transport problem is not a critical
computational bottleneck in practice.

As a result of being an upper bound, stochastic dominance can be guaranteed (Theorem 3.6).
Theorem 3.6. For any α > 0 and β ≥ 0,

OTsubdomα,β
(Pπ,Pπ̃) = 0 =⇒ Pπ⪰PSD Pπ̃.

We note that this is a special case of a recently established family of losses for which an optimal
transport distance of zero implies multivariate stochastic dominance (Rioux et al., 2024).

3.3 Policy learning algorithms

We consider two imitation learning settings: fully realizable with any distribution over trajectories
possible to learn; and policy model with a parametric policy model, πθ, optimized.

In the fully realizable setting, we consider a set of candidate trajectories, ξi, (ideally from the Pareto
frontier) and learn the imitator’s distribution over those trajectories (Def. 3.7).
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Definition 3.7. For a given candidate set of trajectories, fixed α weights, and a distribution of
demonstrations, the matched minimal subdominance imitator policy is obtained from:

min
γ⪰0

∑
i,j

γi,jsubdomα,1(ξi, ξ̃j) + λReg(γ) such that:
∑
i

γi,j = Pπ̃(ξ̃j) ∀j, (9)

where regularizer Reg(γ) = ||γ|| or
∑

i ||γi,∗|| encourages more uniform assignments and imita-
tion trajectory distributions, respectively. The imitator trajectory distribution is then obtained by
marginalizing: Pπ(ξi) =

∑
j γi,j .

Algorithm 1 Policy model update

Input: M imitator samples {ξi}, N demonstrations
{ξ̃j}, policy/parameters πϕ, and learning rate η

Output: Updated policy/parameters πϕ

1: Set Pπ(ξi) =
1
M

2: Solve OTsubdom given Pπ(ξi) and Pπ̃(ξ̃j) (Def. 3.2)
3: Construct training signals {ai} from OT solution
4: Update model parameters ϕ using variables a from

(10) or (11): ϕ← ϕ+ η
∑M

i=1 ai∇ϕ logPπ(ξi)

Learned policy models enable generaliza-
tion to different tasks within the same envi-
ronment or to other environments. We lever-
age (deep) reinforcement learning methods
(e.g., policy gradient optimization) using
the subdominance-based optimal transport
solution to determine a training signal for
a policy model. This allows stochastically
dominant policy optimization without first
identifying a set of candidate trajectories
(Def. 3.7). The model update procedure is
described in Algorithm 1.

Step 4 of the Algorithm parallels policy gradient methods (Williams, 1992) with {ai} replacing
other improvement signals. These are obtained from the OT matching, γ, using demonstration
normalization (10) or weighted best match (11), which emphasizes the best trajectories more:

ai =
∑
j

γi,j

(
subdom(ξi, ξ̃j)−

∑
i′

γi′,j subdom(ξi′ , ξ̃j)

)
, (10)

ai =
∑
j

(
γi,j subdom(ξi, ξ̃j)− I

[
i = argmini′ subdom(ξi′ , ξ̃j)

]∑
i′

γi′,j subdom(ξi′ , ξ̃j)

)
. (11)

Additionally, the α values of the subdominances for optimal transport (8) can either remain fixed, as
implied by Algorithm 1, or be be simultaneously updated using stochastic gradient optimization.

3.4 Generalization analysis

We characterize stochastic dominance guarantees for the population of demonstrations based on a
finite, IID training sample using the Dvoretzky et al. (1956) inequality.
Theorem 3.8. Given the cumulative mass function (CMF) in the K-dimensional reward feature
space obtained by shifting the empirical demonstration CMF (with N IID sampled trajectories):
FN+
π̃ (f) =

[
FN
π̃ (f)− ϵ

]
+
+ ϵI[f =∞], and its corresponding probability mass function: PN+

π̃ (f),
then:

OTsubdom1,0(Pπ,PN+
π̃ ) = 0 =⇒ P(Pπ ⪰PSD Pπ̃) ≥ 1−NKe−2Nϵ2 .

This requires the convex hull of the Pareto frontier to be supported by a small number of points that
each: have at least ϵ imitator probability; and Pareto dominate at least ϵ of PN+

π̃ . Cases in which
PN+
π̃ (f) assigns probability to “unrealizable" features f are also addressed in Appendix B.

4 Experiments

4.1 Baseline imitators and evaluation metrics

As baseline methods for comparison, we evaluate: Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt IRL) (Ziebart, 2010); Linear Programming Apprenticeship Learning (LPAL) (Syed et al.,
2008); Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016); an oracle version
of InfoGAIL (Li et al., 2017) trained on pre-determined mode clusters (InfoGAIL∗); Risk-Averse
Imitation Learning (RAIL) (Santara et al., 2018); and regret-based Bayesian Robust Optimization
for Imitation Learning (BROIL) (Brown et al., 2020a; Javed et al., 2021). Additional experimental
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details are described in Appendix C. We use withheld testing demonstrations to evaluate the diversity
and quality of imitator policies in two ways:

Stochastic Dominance estimates whether the imitation reward distribution is better than the demon-
stration reward distribution. We randomly select a set of weight vectors to induce various reward
functions. For each weight vector, we evaluate whether the imitation policy stochastically dominates
the testing demonstrations (Def. 2.4) and report the rate of stochastic dominance for each approach.

Pareto Dominance estimates when imitation trajectories are unambiguously better than demon-
strations. We use the exact imitator policy or randomly sample a set of rollouts. We measure
P(f(ξimit) ⪰ f(ξ̃demo)) for each demonstration and report the minimum, average, and maximum.

4.2 Illustrative grid world experiments

Figure 3: Sample demonstration in
the Lava World grid environment
with white and red (lava) grid cells.

We first consider Lava World, a deterministic grid environ-
ment from the robust imitation literature (Brown et al., 2020a).
Each trajectory starts from the same initial state and seeks to
reach a fixed goal state in the bottom-right corner of the grid. At
each time step, the agent can move in any of the four cardinal
directions. Trajectories are characterized by two features: the
number of white and red cells traversed (Figure 3). The cost of
a trajectory is computed as a weighted sum of these features. A
trajectory terminates either when the agent arrives at the goal
state or when a fixed time horizon (e.g., 10) is reached.

While the cost feature weights for this environment are unknown, we are provided with a set of
demonstrated trajectories. To train and evaluate our approach, we first divide a set of trajectories (with
unique features) reaching the goal within 10 timesteps into imitator candidates (when on or near the
Pareto frontier) and demonstrations (when less optimal). We then further divide the demonstrations
into two random, equally-sized subsets for training and testing.

Figure 4: For training (left), demonstrations (blue) are paired with rollouts (red) via (9) to construct
the imitator distribution. For testing (right), withheld demonstrators are paired with that imitator
distribution via (8). Darker green pairings correspond to larger γ values.

We employ our fully-realizable training approach (Definition 3.7) for PSD. We first prune the
candidate trajectory set by removing trajectories that are Pareto-dominated by others in the set. This
ensures that only trajectories with potentially optimal rewards remain to define the imitator’s policy.
Subsequently, we match the training set demonstrations with the pruned candidate trajectories by
solving a quadratic program based on Eq. (9) with fixed subdominance variables α = 1 and β = 0.5,
and L2 regularization of the imitator trajectory distribution P(ξ) to promote greater uniformity over
the set of candidates, resulting in improved generalization to unseen demonstrations. Figure 4 (left)
shows this matching for a particular training sample.

To verify generalized stochastic dominance after training, withheld demonstrations are matched to
the imitator’s trajectory distribution using Equation (8). If the objective of the matching problem
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is zero (equivalently, the imitation trajectories all dominate their paired demonstration trajectories),
then stochastic dominance is guaranteed, as Figure 4 (right) shows.

−0.50,−0.50 reward −0.99,−0.01 reward −0.01,−0.99 reward

Figure 5: Cumulative rewards of the trajectory distributions of the demonstrations, PSD, MaxEnt
IRL, and Regret methods for three reward functions.

Figure 5 shows the excess reward distributions for three reward functions. Other imitation methods
produce curves that are worse for some portions of some reward functions, reflecting the trade-offs
they make for better performance in other portions of these curves. In contrast, PSD produces excess
reward curves that are strictly better than the demonstration curves for all three reward functions on
the train-test split of Figure 4, indicating better mode coverage.

Figure 6: Average dominance (with standard error) for different training data amounts.

Figure 6 shows the percentage of randomly produced reward functions for which each imitation
learning method stochastically dominates the withheld demonstration set, and how it changes with
the amount of training demonstrations. PSD provides a higher rate of stochastic dominance across
the entire range of training data sizes compared to other methods.

Table 1: Frequency of Pareto dominance
over demonstrations in Lava World.

Policy min avg max
Demonstrations 0.08 0.16 0.50

MaxEnt IRL 0.00 0.33 1.00
LPAL 0.00 0.46 1.00

BROIL 0.00 0.15 1.00
PSD 0.08 0.47 0.92

Table 1 provides summary statistics for how frequently
demonstrations are Pareto dominated by the imitator’s
trajectory distribution (or withheld demonstrations as an
additional baseline). PSD Pareto-dominates all demonstra-
tions with at least 8% probability. In contrast, all other
imitators fail to have any probability of Pareto dominating
at least one demonstration. Additionally, PSD provides
the highest average Pareto dominance, with nearly half of
the imitator trajectories dominating (i.e., being unambigu-
ously better) than the demonstrations.

8



4.3 Policy model optimization

Figure 7: Reacher
environment.

Our second set of experiments considers policy model optimization (Alg. 1) in
the Point Bot (Javed et al., 2021) and Reacher Todorov et al. (2012) envi-
ronments. Point Bot is a continuous robotic task for navigating a point mass
(subject to noisy, velocity-based air resistance) in a two-dimensional plane
from a starting position to a pre-defined and stationary goal, ostensibly without
passing through a gray region (obstacles). The robot moves by applying a force
in a cardinal direction. Reacher is a robotic arm with two rigid links and two
joints (Figure 7). The end of one link is fixed to the center of the environment.
In our multi-modal variant, the goal is to move the robot’s end effector to one
of two targets (red or yellow) by applying appropriate sequences of torques.

For the Point Bot environment, the imitators learn from the set of human-demonstrated trajectories
shown in Figure 8 (left). Some demonstrations completely avoid the obstacles (gray areas), others
partially avoid obstacles, while many appear entirely oblivious of obstacles. The trajectories are
characterized by the number of timesteps in gray areas, the number of timesteps in white areas, and
the sum of distances to the goal location over the trajectory. To facilitate multi-modal policy learning,
we increase the number of layers of the policy model from two to four (each with 64 fully connected
hidden nodes) compared to prior work (Javed et al., 2021). For PSD, we train this model using the
demonstration normalization variant of Algorithm 1.

(a) Demonstrations (b) Behavior Cloning (c) GAIL (d) InfoGAIL* (e) PSD

Figure 8: Point Bot training demonstrations starting from a lower left origin and moving to the
goal in the upper right (a); and sample trajectories from policies learned using each method (b)-(e).

Behavior cloning produces trajectories that are similar to the demonstrations, but often of lower
quality. Specifically, the sample trajectories in Figure 8b encounter more obstacles and sometimes
fail to efficiently reach the goal. We initialize the other imitation learning methods from this behavior
cloning policy as a starting point. GAIL (Figure 8c) suffers from mode collapse, ultimately producing
trajectories that all encounter obstacles. InfoGAIL* (Figure 8d) is given a binary mode membership
(obstacle-avoiding or obstacle-oblivious) of each trajectory and learns a separate model for each
mode. By matching each demonstrated mode’s means, the resulting trajectories tend to be suboptimal
compared with the best demonstrations of the corresponding mode. PSD imitation (Figure 8e)
produces trajectories that are of higher quality while still covering the spectrum of trade-offs between
grays cells and white cells/distance of the demonstrations. Significant support is provided to these
two modes: obstacle avoidance and obstacle obliviousness. However, some trajectories also cover
trade-offs between the two modes (e.g., avoiding the first obstacle, but not the second). This illustrates
the flexibility of PSD to operate in settings without clearly specified latent spaces of modes (e.g.,
binary-valued modes).

For the Reacher environment, demonstrations are synthetically produced using reinforcement
learning—more specifically, the soft actor-critic (SAC) algorithm (Haarnoja et al., 2018)—to learn
policies for two different targets, the yellow circle and the red circle. A SAC-learned policy (for the
yellow or the red goal) and a uniformly random policy are sampled with complementary probabilities
to produce the trajectories of the demonstration set with an equal number of red goal trajectories
and yellow goal trajectories. The features we incorporate are the sum of distances from each of the
targets over the entire trajectory. The policy model that the imitators train is a Gaussian multi-layer
perceptron with four layers of 64 neurons. For PSD, we train this policy model using the weighted
best match variant of Algorithm 1 and also report PSD with optimized α parameters (PSD-α∗), as
described in §3.3.
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Table 2: Frequency of imitator Pareto and stochastic dominance of demonstrations.

Point Bot Reacher

Pareto Stochastic Pareto Stochastic

Policy min avg max avg min avg max avg
Demonstrations 0.000 0.222 0.444 0.000 0.000 0.144 0.333 0.000

Behavior Cloning 0.001 0.180 0.353 0.000 0.001 0.154 0.290 0.000
GAIL 0.000 0.015 0.031 0.002 0.000 0.005 0.023 0.425
RAIL 0.000 0.004 0.031 0.000 0.000 0.000 0.000 0.000

InfoGAIL∗ 0.000 0.227 0.496 0.000 0.409 0.474 0.500 0.071
PSD 0.070 0.326 0.493 0.420 0.452 0.498 0.547 0.561

PSD-α∗ 0.080 0.387 0.642 0.657 0.466 0.500 0.534 0.662

Table 2 provides statistics for how well demonstrations are supported by the imitator policy (Pareto
dominance) using 1000 policy rollouts, and whether the reward distributions of the imitator are strictly
better than the demonstration reward distribution (stochastic dominance) averaged over 1000 random
reward functions for both Point Bot and Reacher. Similarly to the fully realizable experiments,
there are some demonstrations that are very difficult for the baseline methods to outperform (near zero
minimum Pareto dominance values). The Point Bot demonstrations pose a significant challenge
because some are distinct from the two main demonstrated modes, causing InfoGAIL* to also perform
poorly in terms of minimum Pareto dominance. In contrast, the PSD policy produces trajectories
that provide coverage of all demonstrations. More broadly, PSD excels across all metrics because
it tends to produce trajectories that are: in proportion with the demonstrated behavior modes and
often of higher quality than the demonstrations comprising that mode. PSD’s high frequency of
stochastic dominance illustrates the effectiveness of our policy gradient optimization in achieving
the PSD objective. The other imitation methods are unfortunately unable to maintain the modes of
the demonstrations and generally exhibit poor performance across all of these metrics, with a few
exceptions, as a result.

5 Discussion and conclusions

This paper introduces stochastic dominance as an important property of distributional alignment
(Sorensen et al., 2024) for imitation learning when demonstrations reflect the differing preferences of
distinct demonstrators. Stochastic dominance provides stronger guarantees for demonstrators than
expectation-matching imitation methods: reward distributions for each demonstrator that are at least
as good as the demonstrated distribution—despite not knowing each demonstrator’s exact reward
function—for all common risk-sensitive measures. This avoids policies that are compromises between
competing objectives by maintaining stochasticity. Though directly achieving stochastic dominance
appears computationally difficult, we establish a relaxation using optimal transport theory that leads
to exact algorithms in the fully-realizable setting and policy gradient algorithms when training a
policy model. Through qualitative and quantitative analyses we show that our imitation learning
approach provides support to all demonstrated behavior modes, while aiming to produce better quality
behavior within those modes, leveraging concepts of both Pareto and stochastic dominance.

There are multiple important directions for future research. We have focused on deterministic dynam-
ics in this paper. While our policy model optimizations naturally extend to stochastic environments,
additional analyses and experimental validation remain as future work. Next, though hand-engineered
reward features are reasonable for engineered systems (e.g., self-driving vehicles, robotics), many
imitation learning methods learn reward functions without such features being available. Integrat-
ing reward feature learning in a manner that leverages potential multi-modality of demonstrations
using our framework is an important future direction to avoid the limitation of known reward fea-
tures. Finally, one key challenge is that policy optimization based on distributional criteria appears
more challenging than maximizing expected rewards. Exploration of both on-policy and off-policy
reinforcement learning in this context is likely needed for scaling to larger environments.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are motivated in theory in § 3 with experimental results
provided in § 4. This paper’s contribution is compared to other popular methods with a
summary of results in Table 1 and Table 2 where we measure stochastic dominance and
Pareto dominance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: Though we do not create a separate section to enumerate limitations, all our
assumptions (e.g., about the conical sum cost functions of given cost features) are stated
when we discuss the motivation of our approach. Additionally, we discuss expanding beyond
these limitations as potential future work in our conclusions section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical claims have their proofs provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: We have outlined in the paper the information that we believe is necessary to
reproduce the results. Furthermore, we plan on releasing code which would enable exact
replication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code with instructions will be uploaded in supplementary material, and also
later publicly released with paper publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Although our contribution is mainly theoretical, a summary of these details is
available in Appendix C. However, we understand this might not be enough for complex
experiments. For this reason, we will publish the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Although error bars are reported for only the fully-realizable setting, the results
in Tables 1 and 2 are the average of multiple runs as described in § 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [No]
Justification: Detailed compute times and requirements are not provided. But experiments
are simple enough to run on typical modern laptops as stated in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work does not utilize human subjects and uses simulated environments.
Public code was used that is referenced. Public datasets were not used. Our code will be
released along with the demonstrations it was tested on.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No direct negative societal impact expected.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not utilize models or datasets with high risk of misuse. General safety
concerns that apply to any AI algorithm or model apply.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Although license terms are not explicitly mentioned, the original creators
of repositories upon which we build our work are credited along with links to original
repositories, where the detailed license terms are available. All repositories that our work
primarily builds upon are under MIT License.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The only new assets are some demonstrator trajectories that will be released
alongwith the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We only use human trajectories for some of our experiments. These were
generated by the authors themselves ‘playing’ the simulated RL environment.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Study does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs not involved as a core or important part of study.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Background Material

A.1 Risk-sensitivity

Limiting the probability and magnitude of undesirable outcomes is crucial in many applications.
Popular metrics for assessing these include value at risk (Def. A.1), conditional value at risk (Def.
A.2), and range value at risk (Def. A.3).

Definition A.1. The Value-at-Risk (VaR) for a random reward variable X and given quantile
c ∈ [0, 1], is the inverse of the cumulative density function F (X) (if it exists) (12) or the generalized
inverse (e.g., for discrete variables) (13):

VaRc(X) = νc(X) =

{
F−1
X (c) (12)

inf
x
{x | P(X ≤ x) ≥ c}. (13)

Definition A.2. The Conditional Value-at-Risk (CVaR), measures the expected value within the
tail of a reward distribution for a given quantile α: CVaRc(X) = EX [X|X ≤ νc(X)].

Definition A.3. The Range Value-at-Risk (RVaR) discards both tails (defined by c and d) of
the reward distribution and computes the expectation for the range in between: RVaRc,d =
EX [X | νc(X) ≤ X ≤ νd(X)].

A.2 Stochastic Dominance

We provide an alternative definition of stochastic dominance (Definition 2.4) that motivates its use in
imitation learning.

Definition A.4. Random variable X stochastically dominates random variable Y if and only if
E[u(X)] ≥ E[u(Y )] for any non-decreasing utility function u : R→ R.

From an imitation learning perspective, this guarantees that a demonstrator or user with an unknown
non-decreasing utility function will prefer the distribution of random rewards from variable X over
the distribution of random rewards from variable Y .

A.3 Optimal Transport

We provide a proof sketch for Remark 2.6, which establishes a direct correspondence between
stochastic dominance and optimal transport. For simplicity, we assume a one-to-one mapping
between distributions, but the argument easily extends when the mapping is not one-to-one.

Proof sketch for Remark 2.6. The (generalized) inverse νc of Definition A.1, provides notation for
defining a mapping between distributions for X and Y , namely using the pairing (νc(X), νc(Y )) ∀c ∈
[0, 1], which maps between values at the same quantile. If Y stochastically dominates X , then
νc(X) ≤ νc(Y ) ∀c ∈ [0, 1]. This corresponds to an optimal transport solution with value 0 for cost
functions that are 0 when x ≤ y.

In the other direction, if the optimal transport solution has a value of 0, then for some complete
set of pairings (c1, c2), νc1(X) ≤ νc2(Y ). If c1 ̸= c2 for some of these pairings, then given one
pairing (ca, cx) such that ca > cx, there must be another pairing (cb, cy) such that cb < cy and
cb < ca by the pigeonhole principle, resulting in νcb(X) ≤ νca(X) ≤ νcy (Y ) ≤ νcx(Y ). Re-
pairing these as (ca, cy) and (cb, cx) does not increase any cost as an optimal transport solution since
νca(X) ≤ νcy (Y ) and νcb(X) ≤ νcx(Y ), and brings the pairing closer to sorted matching. This
re-pairing procedure can be continued until the resulting pairing is exactly (νc(X), νc(Y )) ∀c ∈ [0, 1].
This pairing is exactly the definition of stochastic dominance (Definition 2.4).

B Proofs of Theorems and Lemmas

Proof of Theorem 3.3. We first prove that maxθ∈[0,1]K OT[∆rθ]+(Pπ, Pπ̃) = 0 =⇒
Pπ(rθ(ξ)) ⪰PSD Pπ̃(rθ(ξ̃)). First, consider the optimal assignment for a specific θ ∈ [0, 1]K
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in Definition 3.2: γ∗(θ). Since the corresponding objective value is assumed to be zero, this implies
that:

∀γi,j(θ)∗ > 0, rθ(ξi) ≥ rθ(ξ̃j) (14)

=⇒ γi,j(θ)
∗I

[
rθ(ξ̃j) ≥ C

]
= γi,j(θ)

∗I
[
rθ(ξ̃j) ≥ C

]
× I [rθ(ξi) ≥ C] ,∀C ∈ R, (15)

where I [x] is an indicator function that evaluates to 1 if expression x is true and 0 otherwise. We
leverage this equality (15) in (b) below to prove the implication:

∀(C, θ) ∈ R× [0, 1]K , Pπ(rθ(ξ) ≥ C) ≜
∑
i,j

γ∗
i,j(θ)I [rθ(ξi) ≥ C] (16)

(a)

≥
∑
i,j

γ∗
i,j(θ)I [rθ(ξi) ≥ C]× I

[
rθ(ξ̃j) ≥ C

]
(b)
=

∑
i,j

γ∗
i,j(θ)I

[
rθ(ξ̃j) ≥ C

]
≜ Pπ̃(rθ(ξ̃) ≥ C),

where inequality (a) results from adding an additional condition. This inequality is then generalized
to all positive values of θ:

∀(α, θ) ∈ R≥0 × [0, 1]K , Pπ(αrθ(ξ) ≥ αC) ≥ Pπ̃(αrθ(ξ̃) ≥ αC)

=⇒ ∀θ ∈ RK
≥0, Pπ(rθ(ξ) ≥ C) ≥ Pπ̃(rθ(ξ̃) ≥ C).

In the other direction (Pπ(rθ(ξ)) ⪰PSD Pπ̃(rθ(ξ̃)) =⇒ maxθ∈[0,1]K OT[∆rθ]+(Pπ, Pπ̃) = 0), our
proof is constructive. For any θ ∈ RK

≥0, sort the trajectories ξi and ξ̃j according to rθ(·). Then choose
γ∗
i,j(θ) that matches ξi and ξ̃j according to the sorted order with the weight based on the remaining

unmatched probabilities of Pπ(ξi) and Pξ̃(ξ̃j). Since Pπ(rθ(ξ) ≥ C) ≥ Pπ̃(rθ(ξ̃) ≥ C), then
γi,j > 0 =⇒ [rθ(ξ̃j)− rθ(ξi)]+ = 0, so OT[∆rθ]+(Pπ, Pπ̃) = 0. This holds for all θ ∈ [0, 1]K .

Proof of Theorem 2.5. Leveraging the results of Theorem 3.3, we consider the γi,j(θ) for which∑
i,j γi,j

[
rθ(ξ̃j)− rθ(ξi)

]
+
= 0. This implies that:

∀(i, j), γi,j(θ) r(ξi)) ≥ γi,j(θ) rθ(ξ̃j) (17)

=⇒
∑
i,j

γi,j(θ) r(ξi)) ≥
∑
i,j

γi,j(θ) rθ(ξ̃j) (18)

=⇒ Eξ∼Pπ
[r(ξ)] ≥ Eξ̃∼Pπ

[
rθ(ξ̃)

]
. (19)

Further, using the definition of pluralistic stochastic dominance (Definition 3.1), we have: Pπ ⪰PSD
Pπ̃ ⇐⇒ ∀θ ∈ RK

≥0, C ∈ R:

Pπ ⪰PSD Pπ̃ iff: ∀(θ ∈ RK
≥0, C ∈ R), (20)

Pπ(rθ(ξ) ≥ C) ≥ Pπ̃(rθ(ξ̃) ≥ C) (21)

Pπ(rθ(ξ) ≤ C) ≤ Pπ̃(rθ(ξ̃) ≤ C). (22)

For convenience, we define these probabilities as p and q:

p = Pπ(rθ(ξ) ≤ C) ≤ Pπ̃(rθ(ξ̃) ≤ C) = q (23)

νp(rθ(ξ)) = C and νq(rθ(ξ̃)) = C (24)

but p ≤ q and as VaR monotonically increases with increasing confidence level (if α′ ≥ α then
να′(X) ≥ να(X)):

νq(rθ(ξ)) = C ′ ≥ C (25)

23



As pluralistic stochastic dominance holds for all C, VaR guarantee holds for all α

∴, VaRα(rθ(ξ)) ≥ VaRα(rθ(ξ̃)) ∀α ∈ [0, 1]. (26)

The proof for CVaR trivially follows from (26). If a function is always smaller than the other, its
definite integral and average (with restricted domain) will also be smaller:

ρα(rθ(ξ)) =
1

α

∫ α

0

νγ(rθ(ξ)) dγ ≥
1

α

∫ α

0

νγ(rθ(ξ̃)) dγ = ρα(rθ(ξ̃)) (27)

CVaRα(rθ(ξ)) ≥ CVaRα(rθ(ξ̃)) ∀α ∈ [0, 1]. (28)

And for the same reason, if we have different limits of the definite integral, the inequality still holds:

ηα,β(rθ(ξ)) =
1

β − α

∫ β

α

νγ(rθ(ξ)) dγ ≥
1

β − α

∫ β

α

νγ(rθ(ξ̃)) dγ = ηα,β(rθ(ξ̃)) (29)

RVaRα,β(rθ(ξ)) ≥ RVaRα,β(rθ(ξ̃)) 0 ≤ α ≤ β ≤ 1. (30)

Lemma B.1. The matched subdominance minimization value (Def. 3.5) upper bounds the worst-case
reward difference optimal transport value: OTsubdom1,0(Pπ,Pπ̃) ≥ maxθ∈[0,1] OT[∆rθ]+(Pπ,Pπ̃).

Proof. Starting from Definition 3.2:

max
θ∈[0,1]

min
γ⪰0

∑
i,j

γi,j

[
θ · f(ξ̃j)− θ · f(ξi)

]
+

(a)

≤ min
γ⪰0

max
θ∈[0,1]

∑
i,j

γi,j

[
θ · f(ξ̃j)− θ · f(ξi)

]
+

(31)

(b)

≤ min
γ⪰0

∑
i,j

γi,j max
θ∈[0,1]

[
θ · f(ξ̃j)− θ · f(ξi)

]
+

(32)

(c)
= min

γ⪰0

∑
i,j

γi,jsubdom1,0(ξi, ξ̃j) (33)

(d)

≤ min
γ⪰0

∑
i,j

γi,jsubdom1,β(ξi, ξ̃j),

where: (a) follows from the maxmin-minmax inequality; (b) makes the maximizing choice of θ
independently for each pair (i, j) with γi,j > 0; (c) results from the subdominance being the worst-
case difference in rewards for the imitator; and (d) is nondecreasing as the subdominance margin
increases.

Proof of Theorem 3.6. Since the optimal matched subdominance (Definition 3.5) upper bounds the
optimal pluralistic risk-sensitive matching (Definition 3.2) via Lemma B.1, an objective value of zero
for the former implies an objective value of zero for the latter. Theorem 3.3 then implies pluralistic
stochastic dominance.

Figure 9 shows when minimizing the matched subdominance is unnecessary for pluralistic stochastic
dominance (i.e., Pπ⪰PSD Pπ̃ ≠⇒ OTsubdom1,0(Pπ,Pπ̃) = 0).

Proof of Theorem 3.8. The right-sided multivariate Dvoretzky-Kiefer-Wolfowitz inequality (Dvoret-
zky et al., 1956; Naaman, 2021) provides probabilistic bounds on the deviation between the empirical
multivariate cumulative mass function (CMF) with N samples (FN

π̃ ) and the true population CMF
(F ) from the right as (See proof of Lemma 4.1 in (Naaman, 2021)):

P
(
D+

n > ϵ
)
= P

(
sup
f∈RK

(FN
π̃ (f)− F (f)) > ϵ

)
≤ NKe−2Nϵ2 , (34)
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Figure 9: (left) Imitation not being a pluralistic stochastic dominator of demonstrations (and the θ
maximizing the improvement violation); (center) imitation being a pluralistic stochastic dominator,
but paired subdominance is nonzero; (right) imitation being a pluralistic stochastic dominator and
paired subdominance is zero.
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Figure 10: (Left) A sample population of demonstration feature vectors (in blue) in two dimensions
overlaying the heatmap of its empirical CMF, and (Right) the heatmap of the empirical CMF shifted
to the right by ϵ = 0.05, along with feature vector samples from its corresponding PMF obtained via
finite differences (in green).

which is the same as saying

P
(

sup
f∈RK

(
FN
π̃ (f)− F (f)

)
≤ ϵ

)
≥ 1−NKe−2Nϵ2 (35)

since supf∈RK

(
FN
π̃ (f)− F (f)

)
≤ ϵ ⇐⇒ ∀f ∈ RK ,

(
FN
π̃ (f)− F (f)

)
≤ ϵ, we have:

P
((
FN
π̃ (f)− ϵ

)
≤ F (f)

)
≥ 1−NKe−2Nϵ2 ∀f ∈ RK (36)

Our approach considers the worst-case distribution within these bounds and characterizes when
stochastic dominance of the worst-case can be guaranteed. This perspective is inspired by entropic
analysis under these bounds (Learned-Miller & DeStefano, 2008).

Consider the worst-case CMF based on this bound:

FN+
π̃ (f) =

[
FN
π̃ (f)− ϵ

]
+
+ ϵI[f =∞], (37)

where ϵ is reduced from every f ∈ RK and added to the largest possible value of f . The corresponding
probability mass function, PN+

π̃ (f) may be obtained from the CMF via finite differences.
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If PN+
π̃ (f) > 0, but if f is not Pareto-dominated by any realizable demonstrator trajectory, we call

f unrealizable. Let u ≜ P+
π̃ (f unrealizable) denote the probability under PN+

π̃ of cost features that
are not possible to Pareto-dominate (or equal) by any realizable demonstrator trajectory. The sum
of these unrealizable probabilities is an integer multiple of ϵ, to which we add one more ϵ (the one
subtracted from the CMF at every input value). We assume that these unrealizable probabilities u
get assigned, or “matched", to the worst-case realizable demonstrator trajectory ξwc during optimal
transport. See Figure 10 for an example of the discussed quantities in two dimensions with N = 50
and ϵ = 0.05 for the case when u = 0.

From (36), we see that the random variable with CMF FN+
π̃ (f) stochastically dominates the random

variable with CMF F by a margin of ϵ with probability at least (1−NKe−2Nϵ2).

Now if maxξwc OT(Pπ − uδξwc ,P
N+
π̃ − uδξwc) = 0 for the remaining distributions after making the

worst-case assignment of unrealizable probability to ξwc, in other words, if our approach achieves
pluralistic stochastic dominance over the trajectory distribution of the worst-case CMF, i.e., Pπ ⪰PSD

PN+
π̃ (by Theorem 3.6), then by (36) we have pluralistic stochastic dominance over the demonstrator

population trajectory distribution Pπ̃ with probability at least (1 − NKe−2Nϵ2), i.e., P(Pπ ⪰PSD

Pπ̃) ≥ (1−NKe−2Nϵ2).

C Additional Experimental Details

We provide additional experimental details in this section, including expanded interpretations of
our evaluation measures (Section C.1), implementation details (Section C.2), and supplementary
experimental evaluations (Section C.3).

C.1 Evaluation Measure Interpretations

Since assessing stochastic dominance across the entire set of conical sum reward functions directly is
computationally challenging (Section 3.1), we instead assess the dominance of the imitator over the
demonstrator from two different perspectives.

Our stochastic dominance measure considers the frequency of stochastic dominance over randomly
sampled cost functions rather than the guarantee for the entire set of reward functions. For each
sample reward function, stochastic dominance guarantees:

• That for all non-decreasing utility functions applied to the sampled reward function, the
imitator is preferable to the demonstrations (Def A.4); and

• For any reward threshold, the imitator has an equal or higher probability of exceeding that
threshold compared to the demonstration distribution (Def 2.4).

Our Pareto dominance evaluation measure considers uniform dominance (Definition 2.3) between
sampled imitator trajectories and the demonstration set of trajectories, indicating how frequently the
imitator trajectory is preferred for all conical sum reward functions. Large values across the entire set
of samples indicate good alignment with the demonstrations. Low values do not prevent stochastic
dominance (as shown in Figure 9, center), but they tend to indicate some degree of misalignment.
We report the minimum, average, and maximum of these samples to assess how well the imitator
trajectory samples align with demonstrations.

C.2 Implementation Details

Our implementation builds upon OpenAI Spinning Up2, PG-BROIL (Javed et al., 2021)3, and BROIL
(Brown et al., 2020a)4 repositories.

For Lava world experiments, for reporting the results comparing different approaches with different
amounts of training data and frequency of imitator Pareto dominance, we have randomly split the

2https://github.com/openai/spinningup
3https://github.com/zaynahjaved/pg-broil
4https://github.com/dsbrown1331/broil
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whole set containing 24 demonstrations into two equal splits of training and testing 100 times, and the
represented results are averaged. We have used the time horizon of 10 for trajectories. For solving the
Quadratic Program (QP), we have used MOSEK optimizer, and have set the regularization parameter
λ to 0.001. For subdominance calculation during training, we have set the β parameter to 0.5. The
threshold for achieving the goal in Point Bot was originally in the default setting of 1, however, we
have increased it to 10. The initial features for this environment are the number of gray and white
cells, however, we added another feature that takes into account the distance from the target.

We use REINFORCE algorithm for policy optimization. For our policy network, we have used a
Gaussian Multi-Layer Perceptron (MLP) with 4 hidden layers each having 64 neurons with the Tanh
activation function. The network receives the agent’s observations and produces a mean and standard
deviation for each action dimension, and the agent takes actions by sampling from this Gaussian
distribution. For optimization, we used the Adam optimizer with a learning rate of 3e− 5, and for
the subdominance calculation, we set the β parameter to 0.001. We solve the QP using MOSEK
optimizer. Training goes on for 2000 iterations, and the best model is saved according to the lowest
QP objective value. We use 10 demonstrations for training, they come from two main modes, with
each mode having 5 demonstrations. During each iteration, we rollout 30 trajectories. For PSD-α∗,
we have used Adam optimizer with a learning rate of 5e− 4 for learning alpha values. Alpha values
are initialized uniformly, sum to 1, and are always at least equal to 0.1. Training goes on for 4000
iterations and similarly the best model is saved.

The reacher environment we use has two targets with fixed positions, one labeled with a yellow
circle and the other red. We use two sets of demonstrations, each containing 15 trajectories, for two
different modes of behavior. The modes include moving the robot’s end effector to the yellow or red
circle. For Reacher, we have used the same policy optimization algorithm we used for Point bot,
REINFORCE. The policy network architecture and QP optimizer are also the same. We have used
Adam optimizer with a learning rate of 3e-3, a β parameter value of 0.001, and with the MOSEK
regularization parameter λ set to 1000. During each iteration, we rollout 60 trajectories. Training
goes on for 400 iterations and the best model is saved based on the lowest QP objective value. For
PSD-α∗, we have used Adam optimizer with a learning rate of 1e − 2 for learning alpha values.
Similar to Point Bot, alpha values are also initialized uniformly, sum to 1, and are at least 0.1.
Training goes on for 1000 iterations and similarly the best model is saved.

For Point Bot, baseline experiments (GAIL, RAIL, InfoGAIL, BC) were run on several different
personal computers and the slowest one took less than 5 hours to converge (e.g. on a laptop with
2.6GHz 10-core CPU, 32GB RAM). For Reacher, GAIL seemed to converge much earlier than
Pointbot, taking close to an hour to converge (showing minimal improvements with longer training).
RAIL was trained for 2-3 hours on Reacher but failed to display any improvement in our metrics.
Experiments for PSD were run on an in-house server with GPU acceleration (equipped with two
Nvidia GTX 1080 Ti GPUs), taking close to 1 hour and 1.5 hours each for convergence with
Pointbot and Reacher, respectively.

C.3 Supplemental evaluations

We provide additional experimental results in this section.
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Figure 11: Trajectory samples from a policy learned using subdominance minimization (Ziebart et al.,
2022).

Figure 11 shows the resulting trajectory samples from a policy learned using uniform subdominance
minimization (Ziebart et al., 2022) in the Point Bot experiment of Section 4.3. Like GAIL (Ho &
Ermon, 2016) (Figure 8(c)), it converges to a single mode of behavior. In this case, the mode is a
“compromise” between the values reflected by the demonstrations. Unfortunately, since other modes
are ignored, the resulting imitation policy does not provide good performance guarantees relative to
the entire demonstration distribution.

Figure 12: Noisy demonstration trajectories (left), trajectory samples from a behavioral-cloned policy
(center) and trajectory samples from policy learned using PSD (right).

We next investigate imitation learning using a “noisier” set of demonstrations (Figure 12, left).
Learning from these noisier demonstrations exacerbates the suboptimalities of behavior cloning
(Figure 12, center), with far greater amounts of trajectory in the gray portions of the environment for
many of the trajectories compared to the demonstrations (Figure 12, left) and to behavior cloning from
less noisy demonstrations (Figure 8b). The PSD policy (Figure 12, right) produces better trade-offs
of distance and obstacle with its trajectories, though with noticeable suboptimality compared to the
PSD policy learned from less noisy data (Figure 8e). This suggests that incorporating a larger margin
may be needed when learning from noisier demonstrations.
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