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Abstract

Neural models for distantly supervised rela-
tion extraction (DS-RE) encode each sentence
in an entity-pair bag separately. These are then
aggregated for bag-level relation prediction.
Since, at encoding time, these approaches do
not allow information to flow from other sen-
tences in the bag, we believe that they do
not utilize the available bag data to the fullest.
In response, we explore a simple baseline ap-
proach (PARE) in which all sentences of a bag
are concatenated into a passage of sentences,
and encoded jointly using BERT. The contex-
tual embeddings of tokens are aggregated us-
ing attention with the candidate relation as
query — this summary of whole passage pre-
dicts the candidate relation. We find that our
simple baseline solution outperforms existing
state-of-the-art DS-RE models in both mono-
lingual and multilingual DS-RE datasets.

1 Introduction

Given some text (typically, a sentence) ¢ mention-
ing an entity pair (ej, e2), the goal of relation ex-
traction (RE) is to predict the relationships between
e1 and ey that can be inferred from ¢. Let B(ey, e2)
denote the set of all sentences (bag) in the cor-
pus mentioning e; and ey and let R(eq, e2) denote
all relations from e; to es in a KB. Distant su-
pervision (DS) trains RE models given B(ej, e2)
and R(eq,es2), without sentence level annotation
(Mintz et al., 2009). Most DS-RE models use
the “at-least one” assumption: Vr € R(ep,e2),
Jt" € B(e1, e2) such that t" expresses (eq, 7, €2).
Recent neural approaches to DS-RE encode each
sentence ¢t € B(ej,es) and then aggregate sen-
tence embeddings using an aggregation operator
— the common operator being intra-bag attention
(Lin et al., 2016). Various models differ in their
approach to encoding (e.g., PCNNs, GCNs, BERT)
and their loss functions (e.g., contrastive learn-
ing, MLM), but agree on the design choice of en-
coding each sentence independently of the others

(Vashishth et al., 2018; Alt et al., 2019; Christou
and Tsoumakas, 2021; Chen et al., 2021). We posit
that this choice leads to a suboptimal usage of the
available data — information from other sentences
might help in better encoding a given sentence.

We explore this hypothesis by developing a sim-
ple baseline solution. We first construct a pas-
sage P(ey,ez) by concatenating all sentences in
B(ej,e2). We then encode the whole passage
through BERT (Devlin et al., 2019) (or mBERT
for multilingual setting). This produces a contex-
tualized embedding of every token in the bag. To
make these embeddings aware of the candidate re-
lation, we take a (trained) relation query vector, r,
to generate a relation-aware summary of the whole
passage using attention. This is then used to predict
whether (e1, 7, e2) is a valid prediction.

Despite its simplicity, our baseline has some con-
ceptual advantages. First, each token is able to ex-
change information with other tokens from other
sentences in the bag — so the embeddings are likely
more informed. Second, in principle, the model
may be able to relax a part of the at-least-one as-
sumption. For example, if no sentence individually
expresses a relation, but if multiple facts in differ-
ent sentences collectively predict the relation, our
model may be able to learn to extract that.

We name our baseline model Passage-Attended
Relation Extraction, PARE (mPARE for multi-
lingual DS-RE). We experiment on four DS-RE
datasets — three in English, NYT-10d (Riedel et al.,
2010), NYT-10m, and Wiki-20m (Gao et al., 2021),
and one multilingual, DiS-ReX (Bhartiya et al.,
2021). We find that in all four datasets, our pro-
posed baseline significantly outperforms existing
state of the art, yielding up to 5 point AUC gain.
Further attention analysis and ablations provide
additional insight into model performance. We re-
lease our code for reproducibility. We believe that
our work represents a simple but strong baseline
that can form the basis for further DS-RE research.
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Figure 1: Model architecture for PARE. Entity markers not shown for brevity.

2 Related Work

Monolingual DS-RE: Early works in DS-RE
build probabilistic graphical models for the task
(e.g., (Hoffmann et al., 2011; Ritter et al., 2013).
Most later works follow the multi-instance multi-
label learning framework (Surdeanu et al., 2012)
in which there are multiple labels associated with
a bag, and the model is trained with at-least-one
assumption. Most neural models for the task en-
code each sentence separately, e.g., using Piece-
wise CNN (Zeng et al., 2015), Graph Convolu-
tion Net (e.g., RESIDE (Vashishth et al., 2018)),
GPT (DISTRE (Alt et al., 2019)) and BERT (RED-
SandT (Christou and Tsoumakas, 2021), CIL (Chen
et al., 2021)). They all aggregate embeddings us-
ing intra-bag attention (Lin et al., 2016). Beyond
Binary Cross Entropy, additional loss terms in-
clude masked language model pre-training (DIS-
TRE, CIL), RL loss (Qin et al., 2018), and auxiliary
contrastive learning (CIL). We show that PARE
is competitive with DISTRE, RESIDE, CIL, and
other natural baselines, without using additional
pre-training, side information or auxiliary losses
during training, unlike some comparison models.

To evaluate DS-RE, at test time, the model
makes a prediction for an unseen bag. Unfortu-
nately, most popular DS-RE dataset (NYT-10d)
has a noisy test set, as it is automatically annotated
(Riedel et al., 2010). Recently Gao et al. (2021)
has released NYT-10m and Wiki-20m, which have
manually annotated test sets. We use all three
datasets in our work.

Multilingual DS-RE: A bilingual DS-RE model
named MNRE (tested on English and Mandarin)
introduced cross-lingual attention in language-
specific CNN encoders (Lin et al., 2017). Re-
cently, Bhartiya et al. (2021) has released a dataset,
DiS-ReX, for four languages — English, Spanish,
German and French. We compare mPARE against
the state of the art on DiS-ReX, which combines
MNRE architecture with mBERT encoder. See
Appendix E for details on all DS-RE models.

3 Passage Attended Relation Extraction

PARE explores the value of cross-sentence atten-
tion during encoding time. It uses a sequence of
three key steps: passage construction, encoding
and summarization, followed by prediction. Figure
1 illustrates these for a three-sentence bag.

Passage Construction constructs a passage
P(eyq, ez) from sentences ¢t € B(eq, e2). The con-
struction process uses a sequential sampling of sen-
tences in the bag without replacement. It terminates
if (a) adding any new sentence would exceed the
maximum number of tokens allowed by the en-
coder (512 tokens for BERT), or (b) all sentences
from the bag have been sampled.

Passage Encoding takes the constructed passage
and sends it to an encoder (BERT or mBERT) to
generate contextualized embeddings z; of every
token w; in the passage. For this, it first creates
an encoder input. The input starts with the [CLS]
token, followed by each passage sentence sepa-
rated by [SEP], and pads all remaining tokens with
[PAD]. Moreover, following best-practices in RE
(Han et al., 2019), each mention of e; and e in the
passage are surrounded by special entity marker
tokens <el>,</el>, and <e2>,</e2>, respectively.

Passage Summarization maintains a (randomly-
initialized) query vector r; for every relation r;. It
then computes ozé-, the normalized attention of r;
on each token w;, using dot-product attention. Fi-
nally, it computes a relation-attended summary of
the whole passage z(c, r, ¢,) = ;;L a?zj, where
L is the input length. We note that this summa-
tion also aggregates embeddings of [CLS], [SEP],

[PAD], as well as entity marker tokens.

Tuple Classifier passes z(c, ,, ¢,) through an MLP
followed by Sigmoid activation to return the prob-
ability p; of the triple (e, 7;,ez). This MLP is
shared across all relation classes. At inference, a
positive prediction is made if p; > threshold (0.5).
Loss Function is simply Binary Cross Entropy be-

tween gold and predicted label set for each bag. No
additional loss terms are used.



Model AUC PaM

Model NYT-10m Wiki-20m Model AUC uF1 M-F1
PCNN-A(tt 34.1 69.4 AUC M-F1 AUC M-F1 PCNN+Att 67.8 634 437
RESIDE 415 77.2 B+Att 51.2 25.8 70.9 64.3 mB+Att 80.6 74.1  69.9
DISTRE 420 66.8 B+Avg 56.7 35.7 89.9 82.0 mB+One 80.9 74.0 68.9
REDSandT 42.4 753 B+One  58.1 33.9 88.9 81.1 mB+Avg 824 753 71.0
CIL 50.8 86.0 CIL 594 36.3 89.7 82.6 mB+MNRE 82.1 76.1 727
PARE 51.8 89.0 PARE 61.2 37.3 90.9 83.4 mPARE 86.9 79.4 76.3

Table 1: Results on (a) NYT-10d, (b) NYT-10m & Wiki-20m, and (c) DiS-ReX. B=BERT and mB=mBERT. PARE
and mPARE outperforms all models by statistically significant margins (McNemar’s test): all p values < 107°.

4 Experiments and Analysis

We compare PARE and mPARE against the state
of the art models on the respective datasets. We
also perform ablations and analyses to understand
model behavior and reasons for its performance.

Datasets and Evaluation Metrics: We evaluate
PARE on three English datasets: NYT-10d, NY'T-
10m, Wiki-20m. mPARE is compared using the
DiS-ReX benchmark. Data statistics are in Table 2,
with more details in Appendix C. We use the evalu-
ation metrics prevalent in literature for each dataset.
These include AUC: area under the precision-recall
curve, M-F1: macro-F1, p-F1: micro-F1, and
P@QM: average of P@100, P@200 and P@300,
where P@k denotes precision calculated over a
model’s £ most confidently predicted triples.

Comparison Models and Hyperparameters:
Since there is substantial body of work on NYT-
10d, we compare against several recent models:
RESIDE, DISTRE, REDSandT and the latest state
of the art, CIL. For NYT-10m and Wiki-20m, we
report comparisons against models in the original
paper (Gao et al., 2021), and also additionally run
CIL for a stronger comparison. For DiS-ReX, we
compare against mBERT based models. See Ap-
pendix E for details. For PARE and mPARE, we use
base-uncased checkpoints for BERT and mBERT,
respectively. Hyperparameters are set based on a
simple grid search over devsets. (see Appendix A).

Figure 2: PR Curve for Models on NYT-10d
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Dataset #Rels #Total #Test Test set
NYT-10d 58 694k 172k  Distant Sup.
NYT-10m 25 474k 9.74k  Manual
Wiki-20m 81 901k 140k  Manual
DiS-ReX 37 1.84M 334k Distant Sup.

Table 2: Dataset statistics.

4.1 Comparisons against State of the Art

The results are presented in Table 1, in which, the
best numbers are highlighted and second best num-
bers are underlined. On NYT-10d (Table 1(a)),
PARE has 1 pt AUC improvement and 3 pts P@M
gains over CIL, the current state of the art. This is
also reflected in the P-R curve (Figure 2), where
PARE is the only model which is able to achieve
near 100% precision for very high threshold val-
ues. Our model beats REDSandT by 9 AUC pts,
even though both use BERT, and latter uses extra
side-information (e.g., entity-type, sub-tree parse).

On manually annotated testsets (Table 1(b)),
PARE achieves up to 1.8 pt AUC and 1 pt F1 gains
against CIL. We note that Gao et al. (2021) only
published numbers on simpler baselines (BERT fol-
lowed by attention, average and max aggregators),
which are substantially outperformed by PARE.
CIL’s better performance is likely attributed to its
contrastive learning objective — it will be interest-
ing to study this in the context of PARE.

For multilingual DS-RE (Table 1(c)), mPARE

Figure 3: PR Curve for Models on DiS-ReX
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obtains a 4.8 pt AUC gain against mBERT+MNRE.
P-R curve in Figure 3 shows that it convincingly
outperforms others across the entire domain of re-
call values. We provide language-wise and relation-
wise metrics in Appendix L — the gains are consis-
tent on all languages and nearly all relations.

4.2 Analysis and Ablations

Generalizing to Unseen KB: Recently, Ribeiro
et al. (2020) has proposed a robustness study in
which entity names in a bag are replaced by other
names (from the same type) to test whether the
extractor is indeed reading the text, or is simply
overfitting on the regularities of the given KB. We
also implement a similar robustness study (details
in Appendix K), where entity replacement results in
an entity-pair bag that does not exist in the original
KB. We find that on this modified NYT-10m, all
models suffer a drop in performance, suggesting
that models are not as robust as we intend them
to be. We, however, note that CIL suffers a 28.1%
drop in AUC performance, but PARE remains more
robust with only a 16.8% drop. We hypothesize
that this may be because of PARE’s design choice
of attending on all words for a given relation, which
could reduce its focus on entity names themselves.

Scaling with Size of Entity-Pair Bags: Due to
truncation when the number of tokens in a bag
exceed 512 (limit for BERT), one would assume
that the PARE may not be suited for cases where
the number of tokens in a bag is large. To study this,
we divide the test set of NYT-10m into 7 different
groups based on the number of tokens present in
the untruncated passage (Appendix J). We find that
PARE shows consistent 2 to 5 pt AUC gains against
CIL for all groups except the smallest group. This
is not surprising, since for smallest group, there is
likely only one sentence in a bag, and PARE would
not gain from inter-sentence attention. For large
bags, relevant information is likely already present
in truncated passage, due to redundancy.

Attention Patterns: In PARE, each relation class
has a trainable query vector, which attends on ev-
ery token. The attention scores could give us some
insight about the words the model is focusing on.
We observe that for a candidate relation that is not
a gold label for a particular bag, surprisingly, the
highest attention scores are obtained by [PAD] to-
kens. In fact, for such bags, on an average, roughly
90% of the attention weight goes to [PAD] tokens,
whereas this number is only 0.1% when the rela-

tion is in the gold set (see Appendices H and I).
We find this to be an example of model ingenu-
ity — PARE seems to have creatively learned that
whenever the most appropriate words for a relation
are not present, it could simply attend on [PAD]
embeddings, which may lead to similar attended
summaries, which may be easily decoded to a low
probability of tuple validity. In fact, as a further
test, we perform an ablation where we disallow rela-
tion query vectors to attend on [PAD] tokens — this
results in an over 3 pt drop in AUC on NYT-10d, in-
dicating the importance of padding for prediction.

Ablations: We perform further ablations of the
model by removing [SEP] tokens, entity markers
and removing the relation-attention step that com-
putes a summary (instead using [CLS] token for
predicting each relation). PARE loses significantly
in performance in each ablation obtaining 49.4,
14.9 and 46.1 AUC, respectively (as against 51.8 for
full model) on NYT-10d. The critical importance of
entity markers is not surprising, since without them
the model does not know what is the entity-pair it
is predicting for. We also notice a very significant
gain due to relation attention, suggesting that this
is an important step for the model — it allows focus
on specific words relevant for predicting a relation.
More details on this experiment in Appendix G.

Effect of Sentence Order: We build 20 random
passages per bag (by varying sentence order and
also which sentences get selected if passage needs
truncation). On all four datasets (Appendix M), we
find that the standard deviation to be negligible.

5 Conclusion

We introduce PARE, a simple baseline for the task
of distantly supervised relation extraction. It con-
verts a bag of sentences containing an entity-pair
into a passage. Contextual embeddings from en-
coding the passage can potentially benefit from
attention across words from different sentences. It
then creates an relation-attended summary of all
contextual embeddings, which is decoded for tu-
ple validity. Our experiments demonstrate that this
simple baseline produces very strong results for
the task, and outperforms existing top models by
varying margins across four datasets in monolin-
gual and multilingual settings. Several experiments
for studying model behavior show its consistent
performance across settings. We posit that our
framework would serve as a strong backbone for
further research in the field of DS-RE.
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A Experimental Settings

We train and test our model on two NVIDIA GeForce GTX 1080 Ti cards. We use a linear LR scheduler
having weight decay of le-5 with AdamW (Loshchilov and Hutter, 2017; Kingma and Ba, 2014) as the
optimizer. Our implementation uses PyTorch (Paszke et al., 2019), the Transformers library (Wolf et al.,
2019) and OpenNRE ! (Han et al., 2019). We use bert-base-uncased checkpoint for BERT initialization in
the mono-lingual setting. For multi-lingual setting, we use bert-base-multilingual-uncased.

For hyperparameter tuning, we perform grid search over {1e-5, 2e-5} for learning rate and {16, 32, 64}
for batch size and select the best performing configuration for each dataset.

PARE takes 2 epochs to converge on NYT-10d (152 mins/epoch), 3 epochs for NYT-10m (138
mins/epoch), 2 epochs for Wiki-20m (166 mins/epoch) and 4 epochs for DiS-ReX (220 mins/epoch).

The numbers we report for the baselines come from their respective papers. We obtained the code base
of CIL, BERT+Att, BERT+Avg, BERT+One from their respective authors, so that we could run them on
additional datasets. We were able to replicate same numbers as reported in their papers. We trained those
models on other datasets as well by carefully tuning the bag size hyperparameter.

B Sizes of different models

We calculate no. of trainable parameters for each model. For fair comparison, we exclude the parameters
of BERT encoder while reporting these numbers for every model. We stress that the number of parameters
in BERT is same for all models including us i.e. 109482240 because all use the same bert-base-uncased
checkpoint.

We note that the key reason why other models have significantly higher parameters is because they
use entity pooling for constructing instance representations. Here, the encoded representations of tokens
corresponding to the span of head and tail entity mentions are pooled together, followed by concatenation
and passing through a linear layer of size 2D x 2D (where D is the dimension of the encoded token). For
BERT, D = 768 due to which the size of the linear layer is = 1536%1536 = 2359296. This causes the huge
difference in number of parameters between our model and their models. However, it should be noted that
the entity pooling generally performs better than using [CLS] embedding for encoding instances as has
been shown in recent works (Ni et al., 2020).

Model #Parameters (excluding BERT)

Att 2400793
One 2399257
Avg 2399257
CIL 2453052
PARE 45313

Table 3: Comparison of trainable parameters between our model and other state-of-the-art models

C Dataset Details

We evaluate our proposed model on four different datasets: NYT-10d (Riedel et al., 2010), NYT-10m
(Gao et al., 2021), Wiki-20m (Gao et al., 2021) and DiS-ReX (Bhartiya et al., 2021). The statistics for
each of the datasets is present in table 2.

NYT-10d
NYT-10d is the most popular dataset for monolingual DS-RE, constructed by aligning Freebase entities to
the New York Times Corpus. The train and test splits are both distantly supervised.

NYT-10m
"https://github.com/thunlp/OpenNRE


https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/bert-base-uncased
https://github.com/thunlp/OpenNRE

NYT-10m is a recently released dataset to train and evaluate models for monolingual DS-RE. The dataset
is built from the same New York Times Corpus and the Freebase KB but with a new relation ontology and
a manually annotated test set. It aims to tackle the existing problems with the NYT-10d dataset by 1)
establishing a public validation set 2) establishing consistency among the relation classes present in the
train and test set 3) providing a high quality, manually labeled test set.

Wiki-20m

Wiki-20m is also a recently released dataset for training DS-RE models and evaluating them on manually
annotated a test set. The test set in this case corresponds to the Wiki80 dataset (Han et al., 2019). The
relation ontology of Wiki80 is used to re-structure the Wiki20 DS-RE dataset (Han et al., 2020), from
which the training and validation splits are created. It is made sure that their is no overlap between the
instances present in the testing and the training and validation sets.

DiS-ReX
DiS-ReX is a recently released benchmarking dataset for training and evaluating DS-RE models on
instances spanning multiple languages. The entities present in this dataset are linked across the different
languages which means that a bag can contain sentences from more than one languages. The training,
validation and testing sets present in the dataset are constructed in a way that there is no head and tail
entity pair overlap between the bags present in any two different sets.

We obtain the first three datasets from OpenNRE and DiS-ReX from their official repository.

D Description of Intra-Bag attention

Let t1, ta, ..., t,, denote n instances sampled from B(eq, e2). In all models using intra-bag attention for
instance-aggregation, each ¢; is independently encoded to form the instance representation, E(¢;), follow-
ing which the relation triple representation B, for the triple (e, 2, 7) is given by B, = Zig al E(t;).
Here 7 is any one of the relation classes present in the dataset and ¢ is the normalized attention score
allotted to instance representation E(;) by relation query vector 7 for relation 7. The model then predicts
whether the relation triple is a valid one by sending each B, through a feed-forward neural network.
In some variants, 7 is replaced with a shared query vector for all relation-classes, 7, resulting in a
bag-representation B corresponding to (e, e3) as opposed to triple-representation.

E Baselines

The details for each baseline is provided below:

PCNN-Att

Lin et al. (2016) proposed the intra-bag attention aggregation scheme in 2016, obtaining the then
state-of-the-art performance on NYT-10d using a piecewise convolutional neural network (PCNN (Zeng
et al., 2015)).

RESIDE

Vashishth et al. (2018) proposed RESIDE which uses side-information (in the form of entity types and
relational aliases) in addition to sentences present in the dataset. The model uses intra-bag attention
with a shared query vector to combine the representations of each instance in the bag. The sentence
representations are obtained using a Graph Convolutional Network (GCN) encoder.

DISTRE
Alt et al. (2019) propose the use of a pre-trained transformer based language model (OpenAI GPT Radford
et al. (2018)) for the task of DS-RE. The model uses intra-bag attention for the instance aggregation step.

REDSandT
Christou and Tsoumakas (2021) propose the use of a BERT encoder for DS-RE by using sub-tree parse of


https://github.com/thunlp/OpenNRE#datasets
https://github.com/dair-iitd/DiS-ReX

the input sentence along with special entity type markers for the entity mentions in the text. The model
uses intra-bag attention for the instance aggregation step.

CIL
Chen et al. (2021) propose the use of Masked Language Modeling (MLM) and Contrastive Learning (CL)
losses as auxilliary losses to train a BERT encoder + Intra-bag attention aggregator for the task.

BERT+Att/mBERT+Att
The model uses intra-bag attention aggregator on top of a BERT/mBERT encoder.

BERT+Avg/mBERT+Avg
The model uses “Average” aggregator which weighs each instance representation uniformly, hence
denoting bag-representation as the average of instance-representations.

BERT+One/mBERT+One

The model independently performs multi-label classification on each instance present in the bag and then
aggregates the classification results by performing class-wise max-pooling (over sentence scores). In
essence, the “One” aggregator ends up picking one instance for each class (the one which denotes the
highest confidence for that particular class), hence the name.

mBERT+MNRE

The MNRE aggregator was originally introduced by Lin et al. (2017) and used with a shared mBERT
encoder by Bhartiya et al. (2021) 2. The model assigns a query vector for each (relation, language)
tuple. A bag is divided into sub-bags where each sub-bag contains the instances of the same language. In
essence, a bag has L sub-bags and each relation class corresponds to L query vectors, where L denotes
the number of languages present in the dataset. These are then used to construct L? triple representations
(using intra-bag attention aggregation on each (sub-bag,query vector) pair for a candidate relation) which
are then scored independently. The final confidence score for a triple is the average of L? triple scores.

F Statistical Significance

We compare the predictions of our model on the non-NA triples present in the test set with the predictions
of the second-best model using the McNemar’s test of statistical significance (McNemar, 1947). In all
cases, we obtained the p-value to be many orders of magnitude smaller than 0.05, suggesting that the
improvement in results is statistically significant in all cases.

G Ablation on NYT-10d

Modification AUC
Ours 51.8
w/ max length = 256 48.1
w/ max length = 32 31.2
w/o passage summarization  46.1
w/o [PAD] attention 48.3
w/o [SEP] tokens 49.4
w/o entity markers 14.9

Table 4: Model ablation on NYT-10d

2Obtained from the original repository for DiS-ReX


https://github.com/dair-iitd/DiS-ReX

We perform ablation studies on the NYT-10d dataset to understand which components are most
beneficial for our proposed model. We provide the results in table 4.

We observe that the performance increases with increase in maximum allowed length of the passage.
This result is expected since the model would be exposed to more information for a given entity pair,
allowing it to make more confident predictions for the validity of a particular candidate relation.

Upon replacing our passage summarization step with multi-label classification using [CLS] token
(present at the start of the passage), we observe a significant decrease in AUC, indicating that contextual
embedding of [CLS] token might not contain enough information for multi-label prediction of bag.

It is interesting to note here that the AUC is still higher than that of REDSandT, a model which uses
BERT+Att as the backbone. This means that one can simply obtain an improvement in performance by
creating a passage from multiple instances in a bag.

Removing entity markers resulted in the most significant drop in performance. However, this is also
expected since without them, our model would have no way to understand which entities to consider while
performing relation extraction.

H Attention on [PAD] tokens

In the passage summarization step (described in section 3), we allow the relation query vector 7 to
also attend over the encodings of the [PAD] tokens present in the passage. We make this architectural
choice in-order to provide some structure to the relation-specific summaries created by our model. If a
particular relation class r is not a valid relation for entity pair (ej, e2), then ideally, we would want the
attended-summary of the passage P(e1, es) created by the relation vector 7 to represent some sort of a
null state (since information specific to that relation class is not present in the passage). Allowing [PAD]
tokens to be a part of the attention would provide enough flexibility to the model to represent such a state.
We test our hypothesis by considering 1000 non-NA bags correctly labelled by our trained model in the
test set of NYT-10d. Let R(eq, e2) denote the set of valid relation-classes for entity pair (e1, e2) and let R
denote all of the relation-classes present in the dataset. We first calculate the percentage of attention given
to [PAD] tokens for a given passage P(e1, e2) for all relation-classes in R. The results are condensed into
two scores, sum of scores for R(e1, e2) and sum of scores for R \ R(ey, e2). The results are aggregated
for all 1000 bags, and then averaged out by dividing with the total number of positive triples and negative
triples respectively. We obtain that on an average, only 0.07% of attention weight is given to [PAD]
tokens by relation vectors corresponding to R(e1, e2), compared to 88.35% attention weight given by
relation vectors corresponding to R \ R(ey, e2). We obtain similar statistics on other datasets as well.
This suggests that for invalid triples, passage summaries generated by the model resemble the embeddings
of the [PAD] token. Furthermore, since we don’t allow [PAD] tokens to be a part of self-attention update
inside BERT, the [PAD] embeddings at the output of the BERT encoder are not dependent on the passage,
allowing for uniformity across all bags.

Finally, we train a model where we don’t allow the relation query vectors to attend on the [PAD] token
embeddings and notice a 3.5pt drop in AUC on NYT-10d (table 4). We also note that the performance
is still significantly higher than models such as REDSandT and DISTRE, suggesting that our instance
aggregation scheme still performs better than the baselines, even when not optimized fully.

I Examples of Attention Weighting during Passage Summarization

To understand how the query vector of a relation attends over passage tokens to correctly predict that
relation, we randomly selected from correctly predicted non-NA triples and selected the token obtaining
the highest attention score (by the query vector for the correct relation). For the selection, we ignore the
stop words, special tokens and the entity mentions. The results are presented in table 5.

J Performance vs Length of test passages

Our instance aggregation scheme truncates the passage if the number of tokens exceed the maximum
number of tokens allowed by the encoder. In such cases, one would assume that the our model is not
suited for cases where the number of instances present in a bag is very large. To test this hypothesis,
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Input Passage (tokenized by BERT) correctly predicted label
[CLS] six months later , his widow met the multi ##mill ##ion | /people/person/children
##aire [unused2] vincent astor [unused3] , a descendant of the
fur trader turned manhattan real - estate magnate [unusedO] john
jacob astor [unusedl] , and a man considered so unpleasant by
his peers | ##rb and even by his own mother rr ##b - that
he reportedly required a solitary seating for lunch at his club
because nobody would share a meal with him . [SEP]

[CLS] the [unused2] robin hood foundation [unused3] , founded | /business/person/company
by [unusedO] paul tudor jones [unusedl] ii and perhaps the best
- known hedge fund charity , raised $ 48 million at its annual
benefit dinner last year . [SEP]

[CLS] she is now back in the fourth round , where she will | /people/person/nationality
face 11th - seeded je ##lena jan ##kovic of serbia,a6-3,6 -
4 winner over [unusedQ] victoria az ##are ##nka [unusedl] of
[unused?2] belarus [unused3] . [SEP]

[CLS] [unused2] boston [unused3] what : a two - bedroom condo | /location/neighborhood/neighborhood_of
how much : $ 59 ##9 , 000 per square foot : $ 83 ##6 located
in the [unusedO] back bay [unused1] area of the city , this 71
##6 - square - foot condo has views from the apartment and its
private roof deck of the charles river , one block away . [SEP]
seven years ago , when nad ##er tehran ##i and monica ponce
de leon , partners at office da , an architecture firm in [unused2]
boston [unused3] , were asked to reno ##vate a five - story town
house in the [unusedO] back bay [unused1] neighborhood , they
faced a singular design challenge . [SEP] far more inviting is
first church in [unused2] boston [unused3] , in [unusedO] back
bay [unused1] , which replaced a gothic building that burned in
1968 . [SEP]

[CLS] [unused2] steve new ##comb [unused3] , a [unusedO] | /business/company/founders
powers ##et [unused1] founder and veteran of several successful
start - ups , said his company could become the next google .
[SEP]

[CLS] [unusedO] michael sm ##uin [unused1] , a choreographer | /people/deceasedperson/place_of_death
who worked for major ballet companies and led his own , marshal
##ing eclectic dance forms , robust athletic ##ism and striking
theatrical ##ity to create works that appealed to broad audiences
, died yesterday in [unused2] san francisco [unused3] . [SEP]

Table 5: Attention analysis on a few random correctly predicted non-NA triples on NYT-10m test set. The highest
attention-scored token (excluding entity mentions and special markers and stop words) are present in bold. [un-
usedO], [unused1] denote the start and end head entity markers. [unused2], [unused3] denote the start and end tail
entity markers.

we divide the non-NA bags, (e1, e2), present in the NYT-10m data into 7 bins based on the number of
tokens present in P(eq, e2) (after tokenized using BERT). We then compare the performance with CIL
on examples present in each bin. The results in figure 4 indicate that a) our model beats CIL in each
bin-size b) the variation among different bins is the same for both models. This trend is continued even for
passages where the number of tokens present exceed the maximum number of tokens allowed for BERT
(i.e. 512). This results indicate that 512 tokens provide sufficient information for correct classification
of a triple. Moreover, models using intra-bag attention aggregation scheme fix the number of instances
sampled from the bag in practice. For CIL, the best performing configuration uses a bag-size of 3. This
analysis therefore indicates that our model doesn’t particularly suffer a drop in performance on large bags
when compared with other state-of-the-art models.

K Entity Permutation Test

To understand how robust our trained model would be to changes in the KB, we design the entity
permutation test (inspired by Ribeiro et al. (2020)). An ideal DS-RE model should be able to correctly
predict the relationship between an entity pair by understanding the semantics of the text mentioning them.
Since DS-RE models under the MI-ML setting are evaluated on bag-level, it might be the case that such
models are simply memorizing the KB on which they are being trained on.

11



Figure 4: AUC on test set with different bin sizes
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To test this hypothesis, we construct a new test set using NYT-10m by augmenting its KB. Let B(e1, e2)
denote a non-NA bag already existing in the test set of the dataset. We augment this bag to correspond
to a new entity-pair (which is not present in the combined KB of all three splits of this dataset). The
augmentation can be of two different types: replacing e; with €/ or replacing es with e},. We restrict such
augmentations to the same type (i.e the type of e; and €/ is same for ¢ = 1, 2). For each non-NA entity
pair in the test set of the dataset, we select one such augmentation and appropriately modify each instance
in B(e1, e2) to have the new entity mentions. We note that since each instance in NYT-10m is manually
annotated and since our augmentation ensures that the type signature is preserved, the transformation
is label preserving. For the NA bags, we use the ones already present in the original split. This entire
transformation leaves us with an augmented test set, having same number of NA and non-NA bags as the
original split. The non-NA entity pairs are not present in the KB on which the model is trained on.

L. More Analysis on DiS-ReX

L.1 Relation-wise F1 scores

To show how our model performs on each relation label compared to other competitive baselines, we
present relation-wise F1 scores on DiS-ReX in table 6.

L.2 Language-wise AUC scores

We compare the performance of our model compared to other baselines on every language in DiS-ReX.
For this, we partition the test data into language-wise test sets i.e. containing instances of only a particular
language. The results are presented in table 7. We observe that the order of performance across languages
is consistent for all models including ours i.e. German < English < Spanish < French. Further we observe
that our model beats the second best model by an AUC ranging from 3 upto 4 points on all languages.

L.3 Do multilingual bags improve performance?

To understand whether the currently available aggregation schemes (including ours) are able to benefit
from multilingual bags or not, we conduct an experiment where we only perform inference on test-set bags
that contain instances from all four languages. In the multilingual case, the passage constructed during
the Passage Summarization step will contain multiple sentences of different languages. To understand
whether such an input allows improves (or hampers) the performance, we devise an experiment where
we perform inference by removing sentences from any one, two or three languages from the set of bags
containing instances of all four languages. There are roughly 1500 bags of such kind. Note that removing
any k languages (k <= 3) would result in (ﬁ) different sets and we take average of AUC while reporting
the numbers. The results are presented in figure 5.

We observe that in all aggregation schemes, AUC increases with increase in number of languages
of a multilingual bag. mPARE consistently beats the other models in each scenario, indicating that the
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Relation mPARE mBERT-MNRE mBERT-Avg

http://dbpedia.org/ontology/birthPlace 78.6 753 749
http://dbpedia.org/ontology/associatedBand 77.7 709 747
http://dbpedia.org/ontology/director 87.5 83.2 85.5
http://dbpedia.org/ontology/country 87.8 86 85.2
http://dbpedia.org/ontology/deathPlace 71.3 67.3 655
http://dbpedia.org/ontology/nationality 714 67.7 68.7
http://dbpedia.org/ontology/location 74.5 70.5 67.5
http://dbpedia.org/ontology/related 79.4 755 732
http://dbpedia.org/ontology/isPartOf 74.9 68.6 64.7
http://dbpedia.org/ontology/influencedBy 57.0 584 574
http://dbpedia.org/ontology/starring 87.6 86.1 83.9
http://dbpedia.org/ontology/headquarter 72.9 70.7 66.7
http://dbpedia.org/ontology/successor 76.1 71.8 71.3
http://dbpedia.org/ontology/bandMember 76.1 74.6 743
http://dbpedia.org/ontology/producer 58.5 53.6 485
http://dbpedia.org/ontology/recordLabel 90.5 86.9 86.1
http://dbpedia.org/ontology/city 85.2 78.8 717.6
http://dbpedia.org/ontology/influenced 59.5 619 51.5
http://dbpedia.org/ontology/author 80.1 78.2  80.5
http://dbpedia.org/ontology/team 84.6 82.5 78.6
http://dbpedia.org/ontology/formerBandMember 57.2 574 56.5
http://dbpedia.org/ontology/state 87.2 839 824
http://dbpedia.org/ontology/region 84.1 80.4 78.8
http://dbpedia.org/ontology/subsequentWork 73.4 724 69.6
http://dbpedia.org/ontology/department 96.3 954 95.5
http://dbpedia.org/ontology/locatedInArea 77.4 725 723
http://dbpedia.org/ontology/artist 80.6 772 78.6
http://dbpedia.org/ontology/hometown 77.7 73.6 73.7
http://dbpedia.org/ontology/province 81.3 79.2 782
http://dbpedia.org/ontology/riverMouth 76.9 724 719
http://dbpedia.org/ontology/locationCountry 68.9 62.5 64.2
http://dbpedia.org/ontology/predecessor 68.7 68.1 62

http://dbpedia.org/ontology/previous Work 68.8 69.6 65.5
http://dbpedia.org/ontology/capital 71.7 55.1 58

http://dbpedia.org/ontology/leaderName 80.1 704 633
http://dbpedia.org/ontology/largestCity 68.7 59.1 48.6

Table 6: Relation-wise F1 scores on DiS-Rex. Bold and underline represent best and second best models respec-
tively on a class. Our model consistently beats the other 2 models in 31 out of 36 relation classes, thus showing
how strong our approach is for the multilingual setting.

Model English French German Spanish
mPARE 83.2 86.8 81.7 853
mBERT-Avg 799 83.1 777 82.1
mBERT-MNRE 79.6 82.2 75.5 81.6

Table 7: Language-wise AUC comparison of our model v/s baseline models.

encoding of a multilingual passage and attention-based summarization over multilingual tokens doesn’t
hamper the performance of a DS-RE model with increasing no. of languages.
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Figure 5: AUC vs number of languages in a bag in DiS-ReX test set
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Since we order the sentences randomly into a passage to be encoded by BERT, this may potentially cause
some randomness in the results. However, we hypothesize that the BERT encoder must also be getting
fine-tuned to treat the bag as a set (and not a sequence) of sentences when being trained with random
ordering technique. And as a result, it’s performance must be agnostic to the order of sentences it sees
in a passage during inference. To validate this, we perform 20 inference runs of our trained model with
different seeds i.e. the ordering of sentences is entirely random in each run. We measure mean and
standard deviation for each dataset as listed in table 8. We observe negligible standard deviation in all
metrics. A minute variation in Macro-F1 or P@M metrics may be attributed to the fact that these are
macro-aggregated metrics and a variation in performance over some data points may also affect these to
some extent.

90

80
: I il
8| |
1 2

Number of Languages

AUC

3

M Negligible effect of random ordering

14



NYT-10m NYT-10d Wiki-20m DiS-ReX
AUC M-F1 AUC PGM AUC M-F1 AUC M-F1
61.18 3747 5198 89.33 90.86 8333 8691 76.32
6123 3758 5201 89.67 90.86 8334 8694 76.49
6129 3747 51.81 88.67 90.86 8331 86.88 76.35
6125 3711 5178 89.0  90.87 8334 86.86 76.24
61.19 3736 51.89 88.67 90.88 835 8691 76.34
6121 3775 51.83 88.67 90.87 8328 8692 7638
6129 3723 519  89.33 90.87 8327 86.89 7631
6126 3749 5179 88.67 90.86 8337 86.87 76.29
61.18 3727 51.87 88.67 90.87 8329 8694 76.51
613 3741 51.68 8833 9086 8327 869 7637
6128 37.09 5192 89.0 9086 8331 8691 763
6126 3729 5178 88.67 90.86 8331 8694 7645
61.19 3737 5205 900 9087 8333 869 7627
6125 3725 5178 89.0 9088 8337 86.89 76.28
6121 3761 5168 89.33 9086 8334 8692 7641
6122 3755 5196 89.33 90.86 8337 8691 7635
6121 3748 5177 89.33 90.88 8342 869  76.36
6123 3722 5176 88.67 90.86 8327 8692 76.44
6124 3736 5195 89.33 9086 8331 8691 7627
61.19 3724 51.87 88.67 90.87 8333 86.89 76.32
Average 6122 3736 5185 80.02 00.87 8333 8601 76.32
Std-Dev 005 016 008 042 001 006 001 007
Std-Dev(%) 008 04 015 048 001 007 001 0.1

Table 8: We perform 20 inference runs with random seeds of our trained model on each dataset and report the
mean and standard deviation. All numbers have been rounded upto second decimal place. We observe negligible
stdandard deviation in all metrics on all datasets thus validating our hypothesis that the model learns to treat a
bag of sentences as a set (and not a sequence) of sentences treating any random order almost alike. Note that the
results presented in main paper are for inference done with same seed value with which the model has been trained.
However, in current analysis we select random seed values at inference (irrespective of the one with which it was

trained).
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