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Abstract
Neural models for distantly supervised rela-001
tion extraction (DS-RE) encode each sentence002
in an entity-pair bag separately. These are then003
aggregated for bag-level relation prediction.004
Since, at encoding time, these approaches do005
not allow information to flow from other sen-006
tences in the bag, we believe that they do007
not utilize the available bag data to the fullest.008
In response, we explore a simple baseline ap-009
proach (PARE) in which all sentences of a bag010
are concatenated into a passage of sentences,011
and encoded jointly using BERT. The contex-012
tual embeddings of tokens are aggregated us-013
ing attention with the candidate relation as014
query – this summary of whole passage pre-015
dicts the candidate relation. We find that our016
simple baseline solution outperforms existing017
state-of-the-art DS-RE models in both mono-018
lingual and multilingual DS-RE datasets.019

1 Introduction020

Given some text (typically, a sentence) t mention-021

ing an entity pair (e1, e2), the goal of relation ex-022

traction (RE) is to predict the relationships between023

e1 and e2 that can be inferred from t. Let B(e1, e2)024

denote the set of all sentences (bag) in the cor-025

pus mentioning e1 and e2 and let R(e1, e2) denote026

all relations from e1 to e2 in a KB. Distant su-027

pervision (DS) trains RE models given B(e1, e2)028

and R(e1, e2), without sentence level annotation029

(Mintz et al., 2009). Most DS-RE models use030

the “at-least one” assumption: ∀r ∈ R(e1, e2),031

∃tr ∈ B(e1, e2) such that tr expresses (e1, r, e2).032

Recent neural approaches to DS-RE encode each033

sentence t ∈ B(e1, e2) and then aggregate sen-034

tence embeddings using an aggregation operator035

– the common operator being intra-bag attention036

(Lin et al., 2016). Various models differ in their037

approach to encoding (e.g., PCNNs, GCNs, BERT)038

and their loss functions (e.g., contrastive learn-039

ing, MLM), but agree on the design choice of en-040

coding each sentence independently of the others041

(Vashishth et al., 2018; Alt et al., 2019; Christou 042

and Tsoumakas, 2021; Chen et al., 2021). We posit 043

that this choice leads to a suboptimal usage of the 044

available data – information from other sentences 045

might help in better encoding a given sentence. 046

We explore this hypothesis by developing a sim- 047

ple baseline solution. We first construct a pas- 048

sage P (e1, e2) by concatenating all sentences in 049

B(e1, e2). We then encode the whole passage 050

through BERT (Devlin et al., 2019) (or mBERT 051

for multilingual setting). This produces a contex- 052

tualized embedding of every token in the bag. To 053

make these embeddings aware of the candidate re- 054

lation, we take a (trained) relation query vector, r, 055

to generate a relation-aware summary of the whole 056

passage using attention. This is then used to predict 057

whether (e1, r, e2) is a valid prediction. 058

Despite its simplicity, our baseline has some con- 059

ceptual advantages. First, each token is able to ex- 060

change information with other tokens from other 061

sentences in the bag – so the embeddings are likely 062

more informed. Second, in principle, the model 063

may be able to relax a part of the at-least-one as- 064

sumption. For example, if no sentence individually 065

expresses a relation, but if multiple facts in differ- 066

ent sentences collectively predict the relation, our 067

model may be able to learn to extract that. 068

We name our baseline model Passage-Attended 069

Relation Extraction, PARE (mPARE for multi- 070

lingual DS-RE). We experiment on four DS-RE 071

datasets – three in English, NYT-10d (Riedel et al., 072

2010), NYT-10m, and Wiki-20m (Gao et al., 2021), 073

and one multilingual, DiS-ReX (Bhartiya et al., 074

2021). We find that in all four datasets, our pro- 075

posed baseline significantly outperforms existing 076

state of the art, yielding up to 5 point AUC gain. 077

Further attention analysis and ablations provide 078

additional insight into model performance. We re- 079

lease our code for reproducibility. We believe that 080

our work represents a simple but strong baseline 081

that can form the basis for further DS-RE research. 082
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Figure 1: Model architecture for PARE. Entity markers not shown for brevity.

2 Related Work083

Monolingual DS-RE: Early works in DS-RE084

build probabilistic graphical models for the task085

(e.g., (Hoffmann et al., 2011; Ritter et al., 2013).086

Most later works follow the multi-instance multi-087

label learning framework (Surdeanu et al., 2012)088

in which there are multiple labels associated with089

a bag, and the model is trained with at-least-one090

assumption. Most neural models for the task en-091

code each sentence separately, e.g., using Piece-092

wise CNN (Zeng et al., 2015), Graph Convolu-093

tion Net (e.g., RESIDE (Vashishth et al., 2018)),094

GPT (DISTRE (Alt et al., 2019)) and BERT (RED-095

SandT (Christou and Tsoumakas, 2021), CIL (Chen096

et al., 2021)). They all aggregate embeddings us-097

ing intra-bag attention (Lin et al., 2016). Beyond098

Binary Cross Entropy, additional loss terms in-099

clude masked language model pre-training (DIS-100

TRE, CIL), RL loss (Qin et al., 2018), and auxiliary101

contrastive learning (CIL). We show that PARE102

is competitive with DISTRE, RESIDE, CIL, and103

other natural baselines, without using additional104

pre-training, side information or auxiliary losses105

during training, unlike some comparison models.106

To evaluate DS-RE, at test time, the model107

makes a prediction for an unseen bag. Unfortu-108

nately, most popular DS-RE dataset (NYT-10d)109

has a noisy test set, as it is automatically annotated110

(Riedel et al., 2010). Recently Gao et al. (2021)111

has released NYT-10m and Wiki-20m, which have112

manually annotated test sets. We use all three113

datasets in our work.114

Multilingual DS-RE: A bilingual DS-RE model115

named MNRE (tested on English and Mandarin)116

introduced cross-lingual attention in language-117

specific CNN encoders (Lin et al., 2017). Re-118

cently, Bhartiya et al. (2021) has released a dataset,119

DiS-ReX, for four languages – English, Spanish,120

German and French. We compare mPARE against121

the state of the art on DiS-ReX, which combines122

MNRE architecture with mBERT encoder. See123

Appendix E for details on all DS-RE models.124

3 Passage Attended Relation Extraction 125

PARE explores the value of cross-sentence atten- 126

tion during encoding time. It uses a sequence of 127

three key steps: passage construction, encoding 128

and summarization, followed by prediction. Figure 129

1 illustrates these for a three-sentence bag. 130

Passage Construction constructs a passage 131

P (e1, e2) from sentences t ∈ B(e1, e2). The con- 132

struction process uses a sequential sampling of sen- 133

tences in the bag without replacement. It terminates 134

if (a) adding any new sentence would exceed the 135

maximum number of tokens allowed by the en- 136

coder (512 tokens for BERT), or (b) all sentences 137

from the bag have been sampled. 138

Passage Encoding takes the constructed passage 139

and sends it to an encoder (BERT or mBERT) to 140

generate contextualized embeddings zj of every 141

token wj in the passage. For this, it first creates 142

an encoder input. The input starts with the [CLS] 143

token, followed by each passage sentence sepa- 144

rated by [SEP], and pads all remaining tokens with 145

[PAD]. Moreover, following best-practices in RE 146

(Han et al., 2019), each mention of e1 and e2 in the 147

passage are surrounded by special entity marker 148

tokens <e1>,</e1>, and <e2>,</e2>, respectively. 149

Passage Summarization maintains a (randomly- 150

initialized) query vector ri for every relation ri. It 151

then computes αi
j , the normalized attention of ri 152

on each token wj , using dot-product attention. Fi- 153

nally, it computes a relation-attended summary of 154

the whole passage z(e1,ri,e2) =
∑j=L

j=1 α
i
jzj , where 155

L is the input length. We note that this summa- 156

tion also aggregates embeddings of [CLS], [SEP], 157

[PAD], as well as entity marker tokens. 158

Tuple Classifier passes z(e1,ri,e2) through an MLP 159

followed by Sigmoid activation to return the prob- 160

ability pi of the triple (e1, ri, e2). This MLP is 161

shared across all relation classes. At inference, a 162

positive prediction is made if pi > threshold (0.5). 163

Loss Function is simply Binary Cross Entropy be- 164

tween gold and predicted label set for each bag. No 165

additional loss terms are used. 166
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Model AUC P@M

PCNN-Att 34.1 69.4
RESIDE 41.5 77.2
DISTRE 42.2 66.8
REDSandT 42.4 75.3
CIL 50.8 86.0
PARE 51.8 89.0

Model NYT-10m Wiki-20m
AUC M-F1 AUC M-F1

B+Att 51.2 25.8 70.9 64.3
B+Avg 56.7 35.7 89.9 82.0
B+One 58.1 33.9 88.9 81.1

CIL 59.4 36.3 89.7 82.6
PARE 61.2 37.3 90.9 83.4

Model AUC µF1 M-F1
PCNN+Att 67.8 63.4 43.7
mB+Att 80.6 74.1 69.9
mB+One 80.9 74.0 68.9
mB+Avg 82.4 75.3 71.0
mB+MNRE 82.1 76.1 72.7
mPARE 86.9 79.4 76.3

Table 1: Results on (a) NYT-10d, (b) NYT-10m & Wiki-20m, and (c) DiS-ReX. B=BERT and mB=mBERT. PARE
and mPARE outperforms all models by statistically significant margins (McNemar’s test): all p values < 10−5.

4 Experiments and Analysis167

We compare PARE and mPARE against the state168

of the art models on the respective datasets. We169

also perform ablations and analyses to understand170

model behavior and reasons for its performance.171

Datasets and Evaluation Metrics: We evaluate172

PARE on three English datasets: NYT-10d, NYT-173

10m, Wiki-20m. mPARE is compared using the174

DiS-ReX benchmark. Data statistics are in Table 2,175

with more details in Appendix C. We use the evalu-176

ation metrics prevalent in literature for each dataset.177

These include AUC: area under the precision-recall178

curve, M-F1: macro-F1, µ-F1: micro-F1, and179

P@M : average of P@100, P@200 and P@300,180

where P@k denotes precision calculated over a181

model’s k most confidently predicted triples.182

Comparison Models and Hyperparameters:183

Since there is substantial body of work on NYT-184

10d, we compare against several recent models:185

RESIDE, DISTRE, REDSandT and the latest state186

of the art, CIL. For NYT-10m and Wiki-20m, we187

report comparisons against models in the original188

paper (Gao et al., 2021), and also additionally run189

CIL for a stronger comparison. For DiS-ReX, we190

compare against mBERT based models. See Ap-191

pendix E for details. For PARE and mPARE, we use192

base-uncased checkpoints for BERT and mBERT,193

respectively. Hyperparameters are set based on a194

simple grid search over devsets. (see Appendix A).195

Figure 2: PR Curve for Models on NYT-10d

Dataset #Rels #Total #Test Test set
NYT-10d 58 694k 172k Distant Sup.
NYT-10m 25 474k 9.74k Manual
Wiki-20m 81 901k 140k Manual
DiS-ReX 37 1.84M 334k Distant Sup.

Table 2: Dataset statistics.

4.1 Comparisons against State of the Art 196

The results are presented in Table 1, in which, the 197

best numbers are highlighted and second best num- 198

bers are underlined. On NYT-10d (Table 1(a)), 199

PARE has 1 pt AUC improvement and 3 pts P@M 200

gains over CIL, the current state of the art. This is 201

also reflected in the P-R curve (Figure 2), where 202

PARE is the only model which is able to achieve 203

near 100% precision for very high threshold val- 204

ues. Our model beats REDSandT by 9 AUC pts, 205

even though both use BERT, and latter uses extra 206

side-information (e.g., entity-type, sub-tree parse). 207

On manually annotated testsets (Table 1(b)), 208

PARE achieves up to 1.8 pt AUC and 1 pt F1 gains 209

against CIL. We note that Gao et al. (2021) only 210

published numbers on simpler baselines (BERT fol- 211

lowed by attention, average and max aggregators), 212

which are substantially outperformed by PARE. 213

CIL’s better performance is likely attributed to its 214

contrastive learning objective – it will be interest- 215

ing to study this in the context of PARE. 216

For multilingual DS-RE (Table 1(c)), mPARE 217

Figure 3: PR Curve for Models on DiS-ReX
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obtains a 4.8 pt AUC gain against mBERT+MNRE.218

P-R curve in Figure 3 shows that it convincingly219

outperforms others across the entire domain of re-220

call values. We provide language-wise and relation-221

wise metrics in Appendix L – the gains are consis-222

tent on all languages and nearly all relations.223

4.2 Analysis and Ablations224

Generalizing to Unseen KB: Recently, Ribeiro225

et al. (2020) has proposed a robustness study in226

which entity names in a bag are replaced by other227

names (from the same type) to test whether the228

extractor is indeed reading the text, or is simply229

overfitting on the regularities of the given KB. We230

also implement a similar robustness study (details231

in Appendix K), where entity replacement results in232

an entity-pair bag that does not exist in the original233

KB. We find that on this modified NYT-10m, all234

models suffer a drop in performance, suggesting235

that models are not as robust as we intend them236

to be. We, however, note that CIL suffers a 28.1%237

drop in AUC performance, but PARE remains more238

robust with only a 16.8% drop. We hypothesize239

that this may be because of PARE’s design choice240

of attending on all words for a given relation, which241

could reduce its focus on entity names themselves.242

Scaling with Size of Entity-Pair Bags: Due to243

truncation when the number of tokens in a bag244

exceed 512 (limit for BERT), one would assume245

that the PARE may not be suited for cases where246

the number of tokens in a bag is large. To study this,247

we divide the test set of NYT-10m into 7 different248

groups based on the number of tokens present in249

the untruncated passage (Appendix J). We find that250

PARE shows consistent 2 to 5 pt AUC gains against251

CIL for all groups except the smallest group. This252

is not surprising, since for smallest group, there is253

likely only one sentence in a bag, and PARE would254

not gain from inter-sentence attention. For large255

bags, relevant information is likely already present256

in truncated passage, due to redundancy.257

Attention Patterns: In PARE, each relation class258

has a trainable query vector, which attends on ev-259

ery token. The attention scores could give us some260

insight about the words the model is focusing on.261

We observe that for a candidate relation that is not262

a gold label for a particular bag, surprisingly, the263

highest attention scores are obtained by [PAD] to-264

kens. In fact, for such bags, on an average, roughly265

90% of the attention weight goes to [PAD] tokens,266

whereas this number is only 0.1% when the rela-267

tion is in the gold set (see Appendices H and I). 268

We find this to be an example of model ingenu- 269

ity – PARE seems to have creatively learned that 270

whenever the most appropriate words for a relation 271

are not present, it could simply attend on [PAD] 272

embeddings, which may lead to similar attended 273

summaries, which may be easily decoded to a low 274

probability of tuple validity. In fact, as a further 275

test, we perform an ablation where we disallow rela- 276

tion query vectors to attend on [PAD] tokens – this 277

results in an over 3 pt drop in AUC on NYT-10d, in- 278

dicating the importance of padding for prediction. 279

Ablations: We perform further ablations of the 280

model by removing [SEP] tokens, entity markers 281

and removing the relation-attention step that com- 282

putes a summary (instead using [CLS] token for 283

predicting each relation). PARE loses significantly 284

in performance in each ablation obtaining 49.4, 285

14.9 and 46.1 AUC, respectively (as against 51.8 for 286

full model) on NYT-10d. The critical importance of 287

entity markers is not surprising, since without them 288

the model does not know what is the entity-pair it 289

is predicting for. We also notice a very significant 290

gain due to relation attention, suggesting that this 291

is an important step for the model – it allows focus 292

on specific words relevant for predicting a relation. 293

More details on this experiment in Appendix G. 294

Effect of Sentence Order: We build 20 random 295

passages per bag (by varying sentence order and 296

also which sentences get selected if passage needs 297

truncation). On all four datasets (Appendix M), we 298

find that the standard deviation to be negligible. 299

5 Conclusion 300

We introduce PARE, a simple baseline for the task 301

of distantly supervised relation extraction. It con- 302

verts a bag of sentences containing an entity-pair 303

into a passage. Contextual embeddings from en- 304

coding the passage can potentially benefit from 305

attention across words from different sentences. It 306

then creates an relation-attended summary of all 307

contextual embeddings, which is decoded for tu- 308

ple validity. Our experiments demonstrate that this 309

simple baseline produces very strong results for 310

the task, and outperforms existing top models by 311

varying margins across four datasets in monolin- 312

gual and multilingual settings. Several experiments 313

for studying model behavior show its consistent 314

performance across settings. We posit that our 315

framework would serve as a strong backbone for 316

further research in the field of DS-RE. 317
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A Experimental Settings 479

We train and test our model on two NVIDIA GeForce GTX 1080 Ti cards. We use a linear LR scheduler 480

having weight decay of 1e-5 with AdamW (Loshchilov and Hutter, 2017; Kingma and Ba, 2014) as the 481

optimizer. Our implementation uses PyTorch (Paszke et al., 2019), the Transformers library (Wolf et al., 482

2019) and OpenNRE 1 (Han et al., 2019). We use bert-base-uncased checkpoint for BERT initialization in 483

the mono-lingual setting. For multi-lingual setting, we use bert-base-multilingual-uncased. 484

For hyperparameter tuning, we perform grid search over {1e-5, 2e-5} for learning rate and {16, 32, 64} 485

for batch size and select the best performing configuration for each dataset. 486

PARE takes 2 epochs to converge on NYT-10d (152 mins/epoch), 3 epochs for NYT-10m (138 487

mins/epoch), 2 epochs for Wiki-20m (166 mins/epoch) and 4 epochs for DiS-ReX (220 mins/epoch). 488

The numbers we report for the baselines come from their respective papers. We obtained the code base 489

of CIL, BERT+Att, BERT+Avg, BERT+One from their respective authors, so that we could run them on 490

additional datasets. We were able to replicate same numbers as reported in their papers. We trained those 491

models on other datasets as well by carefully tuning the bag size hyperparameter. 492

B Sizes of different models 493

We calculate no. of trainable parameters for each model. For fair comparison, we exclude the parameters 494

of BERT encoder while reporting these numbers for every model. We stress that the number of parameters 495

in BERT is same for all models including us i.e. 109482240 because all use the same bert-base-uncased 496

checkpoint. 497

We note that the key reason why other models have significantly higher parameters is because they 498

use entity pooling for constructing instance representations. Here, the encoded representations of tokens 499

corresponding to the span of head and tail entity mentions are pooled together, followed by concatenation 500

and passing through a linear layer of size 2D× 2D (where D is the dimension of the encoded token). For 501

BERT, D = 768 due to which the size of the linear layer is = 1536*1536 = 2359296. This causes the huge 502

difference in number of parameters between our model and their models. However, it should be noted that 503

the entity pooling generally performs better than using [CLS] embedding for encoding instances as has 504

been shown in recent works (Ni et al., 2020).

Model #Parameters (excluding BERT)

Att 2400793
One 2399257
Avg 2399257
CIL 2453052
PARE 45313

Table 3: Comparison of trainable parameters between our model and other state-of-the-art models

505

C Dataset Details 506

We evaluate our proposed model on four different datasets: NYT-10d (Riedel et al., 2010), NYT-10m 507

(Gao et al., 2021), Wiki-20m (Gao et al., 2021) and DiS-ReX (Bhartiya et al., 2021). The statistics for 508

each of the datasets is present in table 2. 509

510

NYT-10d 511

NYT-10d is the most popular dataset for monolingual DS-RE, constructed by aligning Freebase entities to 512

the New York Times Corpus. The train and test splits are both distantly supervised. 513

514

NYT-10m 515

1https://github.com/thunlp/OpenNRE
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NYT-10m is a recently released dataset to train and evaluate models for monolingual DS-RE. The dataset516

is built from the same New York Times Corpus and the Freebase KB but with a new relation ontology and517

a manually annotated test set. It aims to tackle the existing problems with the NYT-10d dataset by 1)518

establishing a public validation set 2) establishing consistency among the relation classes present in the519

train and test set 3) providing a high quality, manually labeled test set.520

521

Wiki-20m522

Wiki-20m is also a recently released dataset for training DS-RE models and evaluating them on manually523

annotated a test set. The test set in this case corresponds to the Wiki80 dataset (Han et al., 2019). The524

relation ontology of Wiki80 is used to re-structure the Wiki20 DS-RE dataset (Han et al., 2020), from525

which the training and validation splits are created. It is made sure that their is no overlap between the526

instances present in the testing and the training and validation sets.527

528

DiS-ReX529

DiS-ReX is a recently released benchmarking dataset for training and evaluating DS-RE models on530

instances spanning multiple languages. The entities present in this dataset are linked across the different531

languages which means that a bag can contain sentences from more than one languages. The training,532

validation and testing sets present in the dataset are constructed in a way that there is no head and tail533

entity pair overlap between the bags present in any two different sets.534

We obtain the first three datasets from OpenNRE and DiS-ReX from their official repository.535

D Description of Intra-Bag attention536

Let t1, t2, ..., tn denote n instances sampled from B(e1, e2). In all models using intra-bag attention for537

instance-aggregation, each ti is independently encoded to form the instance representation, E(ti), follow-538

ing which the relation triple representation Br for the triple (e1, e2, r) is given by Br =
∑i=n

i=0 α
r
iE(ti).539

Here r is any one of the relation classes present in the dataset and αr
i is the normalized attention score540

allotted to instance representationE(ti) by relation query vector−→r for relation r. The model then predicts541

whether the relation triple is a valid one by sending each Br through a feed-forward neural network.542

In some variants, −→r is replaced with a shared query vector for all relation-classes, −→q , resulting in a543

bag-representation B corresponding to (e1, e2) as opposed to triple-representation.544

E Baselines545

The details for each baseline is provided below:546

547

PCNN-Att548

Lin et al. (2016) proposed the intra-bag attention aggregation scheme in 2016, obtaining the then549

state-of-the-art performance on NYT-10d using a piecewise convolutional neural network (PCNN (Zeng550

et al., 2015)).551

552

RESIDE553

Vashishth et al. (2018) proposed RESIDE which uses side-information (in the form of entity types and554

relational aliases) in addition to sentences present in the dataset. The model uses intra-bag attention555

with a shared query vector to combine the representations of each instance in the bag. The sentence556

representations are obtained using a Graph Convolutional Network (GCN) encoder.557

558

DISTRE559

Alt et al. (2019) propose the use of a pre-trained transformer based language model (OpenAI GPT Radford560

et al. (2018)) for the task of DS-RE. The model uses intra-bag attention for the instance aggregation step.561

562

REDSandT563

Christou and Tsoumakas (2021) propose the use of a BERT encoder for DS-RE by using sub-tree parse of564
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the input sentence along with special entity type markers for the entity mentions in the text. The model 565

uses intra-bag attention for the instance aggregation step. 566

567

CIL 568

Chen et al. (2021) propose the use of Masked Language Modeling (MLM) and Contrastive Learning (CL) 569

losses as auxilliary losses to train a BERT encoder + Intra-bag attention aggregator for the task. 570

571

BERT+Att/mBERT+Att 572

The model uses intra-bag attention aggregator on top of a BERT/mBERT encoder. 573

574

BERT+Avg/mBERT+Avg 575

The model uses “Average” aggregator which weighs each instance representation uniformly, hence 576

denoting bag-representation as the average of instance-representations. 577

578

BERT+One/mBERT+One 579

The model independently performs multi-label classification on each instance present in the bag and then 580

aggregates the classification results by performing class-wise max-pooling (over sentence scores). In 581

essence, the “One” aggregator ends up picking one instance for each class (the one which denotes the 582

highest confidence for that particular class), hence the name. 583

584

mBERT+MNRE 585

The MNRE aggregator was originally introduced by Lin et al. (2017) and used with a shared mBERT 586

encoder by Bhartiya et al. (2021) 2. The model assigns a query vector for each (relation, language) 587

tuple. A bag is divided into sub-bags where each sub-bag contains the instances of the same language. In 588

essence, a bag has L sub-bags and each relation class corresponds to L query vectors, where L denotes 589

the number of languages present in the dataset. These are then used to construct L2 triple representations 590

(using intra-bag attention aggregation on each (sub-bag,query vector) pair for a candidate relation) which 591

are then scored independently. The final confidence score for a triple is the average of L2 triple scores. 592

593

594

F Statistical Significance 595

We compare the predictions of our model on the non-NA triples present in the test set with the predictions 596

of the second-best model using the McNemar’s test of statistical significance (McNemar, 1947). In all 597

cases, we obtained the p-value to be many orders of magnitude smaller than 0.05, suggesting that the 598

improvement in results is statistically significant in all cases. 599

G Ablation on NYT-10d 600

Modification AUC
Ours 51.8
w/ max length = 256 48.1
w/ max length = 32 31.2
w/o passage summarization 46.1
w/o [PAD] attention 48.3
w/o [SEP] tokens 49.4
w/o entity markers 14.9

Table 4: Model ablation on NYT-10d

2Obtained from the original repository for DiS-ReX
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We perform ablation studies on the NYT-10d dataset to understand which components are most601

beneficial for our proposed model. We provide the results in table 4.602

We observe that the performance increases with increase in maximum allowed length of the passage.603

This result is expected since the model would be exposed to more information for a given entity pair,604

allowing it to make more confident predictions for the validity of a particular candidate relation.605

Upon replacing our passage summarization step with multi-label classification using [CLS] token606

(present at the start of the passage), we observe a significant decrease in AUC, indicating that contextual607

embedding of [CLS] token might not contain enough information for multi-label prediction of bag.608

It is interesting to note here that the AUC is still higher than that of REDSandT, a model which uses609

BERT+Att as the backbone. This means that one can simply obtain an improvement in performance by610

creating a passage from multiple instances in a bag.611

Removing entity markers resulted in the most significant drop in performance. However, this is also612

expected since without them, our model would have no way to understand which entities to consider while613

performing relation extraction.614

H Attention on [PAD] tokens615

In the passage summarization step (described in section 3), we allow the relation query vector −→r to616

also attend over the encodings of the [PAD] tokens present in the passage. We make this architectural617

choice in-order to provide some structure to the relation-specific summaries created by our model. If a618

particular relation class r is not a valid relation for entity pair (e1, e2), then ideally, we would want the619

attended-summary of the passage P (e1, e2) created by the relation vector −→r to represent some sort of a620

null state (since information specific to that relation class is not present in the passage). Allowing [PAD]621

tokens to be a part of the attention would provide enough flexibility to the model to represent such a state.622

We test our hypothesis by considering 1000 non-NA bags correctly labelled by our trained model in the623

test set of NYT-10d. Let R(e1, e2) denote the set of valid relation-classes for entity pair (e1, e2) and let R624

denote all of the relation-classes present in the dataset. We first calculate the percentage of attention given625

to [PAD] tokens for a given passage P (e1, e2) for all relation-classes in R. The results are condensed into626

two scores, sum of scores for R(e1, e2) and sum of scores for R \R(e1, e2). The results are aggregated627

for all 1000 bags, and then averaged out by dividing with the total number of positive triples and negative628

triples respectively. We obtain that on an average, only 0.07% of attention weight is given to [PAD]629

tokens by relation vectors corresponding to R(e1, e2), compared to 88.35% attention weight given by630

relation vectors corresponding to R \ R(e1, e2). We obtain similar statistics on other datasets as well.631

This suggests that for invalid triples, passage summaries generated by the model resemble the embeddings632

of the [PAD] token. Furthermore, since we don’t allow [PAD] tokens to be a part of self-attention update633

inside BERT, the [PAD] embeddings at the output of the BERT encoder are not dependent on the passage,634

allowing for uniformity across all bags.635

Finally, we train a model where we don’t allow the relation query vectors to attend on the [PAD] token636

embeddings and notice a 3.5pt drop in AUC on NYT-10d (table 4). We also note that the performance637

is still significantly higher than models such as REDSandT and DISTRE, suggesting that our instance638

aggregation scheme still performs better than the baselines, even when not optimized fully.639

I Examples of Attention Weighting during Passage Summarization640

To understand how the query vector of a relation attends over passage tokens to correctly predict that641

relation, we randomly selected from correctly predicted non-NA triples and selected the token obtaining642

the highest attention score (by the query vector for the correct relation). For the selection, we ignore the643

stop words, special tokens and the entity mentions. The results are presented in table 5.644

J Performance vs Length of test passages645

Our instance aggregation scheme truncates the passage if the number of tokens exceed the maximum646

number of tokens allowed by the encoder. In such cases, one would assume that the our model is not647

suited for cases where the number of instances present in a bag is very large. To test this hypothesis,648
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Input Passage (tokenized by BERT) correctly predicted label
[CLS] six months later , his widow met the multi ##mill ##ion
##aire [unused2] vincent astor [unused3] , a descendant of the
fur trader turned manhattan real - estate magnate [unused0] john
jacob astor [unused1] , and a man considered so unpleasant by
his peers l ##rb and even by his own mother rr ##b - that
he reportedly required a solitary seating for lunch at his club
because nobody would share a meal with him . [SEP]

/people/person/children

[CLS] the [unused2] robin hood foundation [unused3] , founded
by [unused0] paul tudor jones [unused1] ii and perhaps the best
- known hedge fund charity , raised $ 48 million at its annual
benefit dinner last year . [SEP]

/business/person/company

[CLS] she is now back in the fourth round , where she will
face 11th - seeded je ##lena jan ##kovic of serbia , a 6 - 3 , 6 -
4 winner over [unused0] victoria az ##are ##nka [unused1] of
[unused2] belarus [unused3] . [SEP]

/people/person/nationality

[CLS] [unused2] boston [unused3] what : a two - bedroom condo
how much : $ 59 ##9 , 000 per square foot : $ 83 ##6 located
in the [unused0] back bay [unused1] area of the city , this 71
##6 - square - foot condo has views from the apartment and its
private roof deck of the charles river , one block away . [SEP]
seven years ago , when nad ##er tehran ##i and monica ponce
de leon , partners at office da , an architecture firm in [unused2]
boston [unused3] , were asked to reno ##vate a five - story town
house in the [unused0] back bay [unused1] neighborhood , they
faced a singular design challenge . [SEP] far more inviting is
first church in [unused2] boston [unused3] , in [unused0] back
bay [unused1] , which replaced a gothic building that burned in
1968 . [SEP]

/location/neighborhood/neighborhood_of

[CLS] [unused2] steve new ##comb [unused3] , a [unused0]
powers ##et [unused1] founder and veteran of several successful
start - ups , said his company could become the next google .
[SEP]

/business/company/founders

[CLS] [unused0] michael sm ##uin [unused1] , a choreographer
who worked for major ballet companies and led his own , marshal
##ing eclectic dance forms , robust athletic ##ism and striking
theatrical ##ity to create works that appealed to broad audiences
, died yesterday in [unused2] san francisco [unused3] . [SEP]

/people/deceasedperson/place_of_death

Table 5: Attention analysis on a few random correctly predicted non-NA triples on NYT-10m test set. The highest
attention-scored token (excluding entity mentions and special markers and stop words) are present in bold. [un-
used0], [unused1] denote the start and end head entity markers. [unused2], [unused3] denote the start and end tail
entity markers.

we divide the non-NA bags, (e1, e2), present in the NYT-10m data into 7 bins based on the number of 649

tokens present in P (e1, e2) (after tokenized using BERT). We then compare the performance with CIL 650

on examples present in each bin. The results in figure 4 indicate that a) our model beats CIL in each 651

bin-size b) the variation among different bins is the same for both models. This trend is continued even for 652

passages where the number of tokens present exceed the maximum number of tokens allowed for BERT 653

(i.e. 512). This results indicate that 512 tokens provide sufficient information for correct classification 654

of a triple. Moreover, models using intra-bag attention aggregation scheme fix the number of instances 655

sampled from the bag in practice. For CIL, the best performing configuration uses a bag-size of 3. This 656

analysis therefore indicates that our model doesn’t particularly suffer a drop in performance on large bags 657

when compared with other state-of-the-art models. 658

K Entity Permutation Test 659

To understand how robust our trained model would be to changes in the KB, we design the entity 660

permutation test (inspired by Ribeiro et al. (2020)). An ideal DS-RE model should be able to correctly 661

predict the relationship between an entity pair by understanding the semantics of the text mentioning them. 662

Since DS-RE models under the MI-ML setting are evaluated on bag-level, it might be the case that such 663

models are simply memorizing the KB on which they are being trained on. 664
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Figure 4: AUC on test set with different bin sizes
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To test this hypothesis, we construct a new test set using NYT-10m by augmenting its KB. Let B(e1, e2)665

denote a non-NA bag already existing in the test set of the dataset. We augment this bag to correspond666

to a new entity-pair (which is not present in the combined KB of all three splits of this dataset). The667

augmentation can be of two different types: replacing e1 with e′1 or replacing e2 with e′2. We restrict such668

augmentations to the same type (i.e the type of ei and e′i is same for i = 1, 2). For each non-NA entity669

pair in the test set of the dataset, we select one such augmentation and appropriately modify each instance670

in B(e1, e2) to have the new entity mentions. We note that since each instance in NYT-10m is manually671

annotated and since our augmentation ensures that the type signature is preserved, the transformation672

is label preserving. For the NA bags, we use the ones already present in the original split. This entire673

transformation leaves us with an augmented test set, having same number of NA and non-NA bags as the674

original split. The non-NA entity pairs are not present in the KB on which the model is trained on.675

L More Analysis on DiS-ReX676

L.1 Relation-wise F1 scores677

To show how our model performs on each relation label compared to other competitive baselines, we678

present relation-wise F1 scores on DiS-ReX in table 6.679

L.2 Language-wise AUC scores680

We compare the performance of our model compared to other baselines on every language in DiS-ReX.681

For this, we partition the test data into language-wise test sets i.e. containing instances of only a particular682

language. The results are presented in table 7. We observe that the order of performance across languages683

is consistent for all models including ours i.e. German < English < Spanish < French. Further we observe684

that our model beats the second best model by an AUC ranging from 3 upto 4 points on all languages.685

L.3 Do multilingual bags improve performance?686

To understand whether the currently available aggregation schemes (including ours) are able to benefit687

from multilingual bags or not, we conduct an experiment where we only perform inference on test-set bags688

that contain instances from all four languages. In the multilingual case, the passage constructed during689

the Passage Summarization step will contain multiple sentences of different languages. To understand690

whether such an input allows improves (or hampers) the performance, we devise an experiment where691

we perform inference by removing sentences from any one, two or three languages from the set of bags692

containing instances of all four languages. There are roughly 1500 bags of such kind. Note that removing693

any k languages (k <= 3) would result in
(
4
k

)
different sets and we take average of AUC while reporting694

the numbers. The results are presented in figure 5.695

We observe that in all aggregation schemes, AUC increases with increase in number of languages696

of a multilingual bag. mPARE consistently beats the other models in each scenario, indicating that the697
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Relation mPARE mBERT-MNRE mBERT-Avg

http://dbpedia.org/ontology/birthPlace 78.6 75.3 74.9
http://dbpedia.org/ontology/associatedBand 77.7 70.9 74.7
http://dbpedia.org/ontology/director 87.5 83.2 85.5
http://dbpedia.org/ontology/country 87.8 86 85.2
http://dbpedia.org/ontology/deathPlace 71.3 67.3 65.5
http://dbpedia.org/ontology/nationality 71.4 67.7 68.7
http://dbpedia.org/ontology/location 74.5 70.5 67.5
http://dbpedia.org/ontology/related 79.4 75.5 73.2
http://dbpedia.org/ontology/isPartOf 74.9 68.6 64.7
http://dbpedia.org/ontology/influencedBy 57.0 58.4 57.4
http://dbpedia.org/ontology/starring 87.6 86.1 83.9
http://dbpedia.org/ontology/headquarter 72.9 70.7 66.7
http://dbpedia.org/ontology/successor 76.1 71.8 71.3
http://dbpedia.org/ontology/bandMember 76.1 74.6 74.3
http://dbpedia.org/ontology/producer 58.5 53.6 48.5
http://dbpedia.org/ontology/recordLabel 90.5 86.9 86.1
http://dbpedia.org/ontology/city 85.2 78.8 77.6
http://dbpedia.org/ontology/influenced 59.5 61.9 51.5
http://dbpedia.org/ontology/author 80.1 78.2 80.5
http://dbpedia.org/ontology/team 84.6 82.5 78.6
http://dbpedia.org/ontology/formerBandMember 57.2 57.4 56.5
http://dbpedia.org/ontology/state 87.2 83.9 82.4
http://dbpedia.org/ontology/region 84.1 80.4 78.8
http://dbpedia.org/ontology/subsequentWork 73.4 72.4 69.6
http://dbpedia.org/ontology/department 96.3 95.4 95.5
http://dbpedia.org/ontology/locatedInArea 77.4 72.5 72.3
http://dbpedia.org/ontology/artist 80.6 77.2 78.6
http://dbpedia.org/ontology/hometown 77.7 73.6 73.7
http://dbpedia.org/ontology/province 81.3 79.2 78.2
http://dbpedia.org/ontology/riverMouth 76.9 72.4 71.9
http://dbpedia.org/ontology/locationCountry 68.9 62.5 64.2
http://dbpedia.org/ontology/predecessor 68.7 68.1 62
http://dbpedia.org/ontology/previousWork 68.8 69.6 65.5
http://dbpedia.org/ontology/capital 71.7 55.1 58
http://dbpedia.org/ontology/leaderName 80.1 70.4 63.3
http://dbpedia.org/ontology/largestCity 68.7 59.1 48.6

Table 6: Relation-wise F1 scores on DiS-Rex. Bold and underline represent best and second best models respec-
tively on a class. Our model consistently beats the other 2 models in 31 out of 36 relation classes, thus showing
how strong our approach is for the multilingual setting.

Model English French German Spanish
mPARE 83.2 86.8 81.7 85.3
mBERT-Avg 79.9 83.1 77.7 82.1
mBERT-MNRE 79.6 82.2 75.5 81.6

Table 7: Language-wise AUC comparison of our model v/s baseline models.

encoding of a multilingual passage and attention-based summarization over multilingual tokens doesn’t 698

hamper the performance of a DS-RE model with increasing no. of languages. 699
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Figure 5: AUC vs number of languages in a bag in DiS-ReX test set
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M Negligible effect of random ordering700

Since we order the sentences randomly into a passage to be encoded by BERT, this may potentially cause701

some randomness in the results. However, we hypothesize that the BERT encoder must also be getting702

fine-tuned to treat the bag as a set (and not a sequence) of sentences when being trained with random703

ordering technique. And as a result, it’s performance must be agnostic to the order of sentences it sees704

in a passage during inference. To validate this, we perform 20 inference runs of our trained model with705

different seeds i.e. the ordering of sentences is entirely random in each run. We measure mean and706

standard deviation for each dataset as listed in table 8. We observe negligible standard deviation in all707

metrics. A minute variation in Macro-F1 or P@M metrics may be attributed to the fact that these are708

macro-aggregated metrics and a variation in performance over some data points may also affect these to709

some extent.710
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NYT-10m NYT-10d Wiki-20m DiS-ReX

AUC M-F1 AUC P@M AUC M-F1 AUC M-F1

61.18 37.47 51.98 89.33 90.86 83.33 86.91 76.32
61.23 37.58 52.01 89.67 90.86 83.34 86.94 76.49
61.29 37.47 51.81 88.67 90.86 83.31 86.88 76.35
61.25 37.11 51.78 89.0 90.87 83.34 86.86 76.24
61.19 37.36 51.89 88.67 90.88 83.5 86.91 76.34
61.21 37.75 51.83 88.67 90.87 83.28 86.92 76.38
61.29 37.23 51.9 89.33 90.87 83.27 86.89 76.31
61.26 37.49 51.79 88.67 90.86 83.37 86.87 76.29
61.18 37.27 51.87 88.67 90.87 83.29 86.94 76.51
61.3 37.41 51.68 88.33 90.86 83.27 86.9 76.37
61.28 37.09 51.92 89.0 90.86 83.31 86.91 76.3
61.26 37.29 51.78 88.67 90.86 83.31 86.94 76.45
61.19 37.37 52.05 90.0 90.87 83.33 86.9 76.27
61.25 37.25 51.78 89.0 90.88 83.37 86.89 76.28
61.21 37.61 51.68 89.33 90.86 83.34 86.92 76.41
61.22 37.55 51.96 89.33 90.86 83.37 86.91 76.35
61.21 37.48 51.77 89.33 90.88 83.42 86.9 76.36
61.23 37.22 51.76 88.67 90.86 83.27 86.92 76.44
61.24 37.36 51.95 89.33 90.86 83.31 86.91 76.27
61.19 37.24 51.87 88.67 90.87 83.33 86.89 76.32

Average 61.22 37.36 51.85 89.02 90.87 83.33 86.91 76.32
Std-Dev 0.05 0.16 0.08 0.42 0.01 0.06 0.01 0.07
Std-Dev(%) 0.08 0.4 0.15 0.48 0.01 0.07 0.01 0.1

Table 8: We perform 20 inference runs with random seeds of our trained model on each dataset and report the
mean and standard deviation. All numbers have been rounded upto second decimal place. We observe negligible
stdandard deviation in all metrics on all datasets thus validating our hypothesis that the model learns to treat a
bag of sentences as a set (and not a sequence) of sentences treating any random order almost alike. Note that the
results presented in main paper are for inference done with same seed value with which the model has been trained.
However, in current analysis we select random seed values at inference (irrespective of the one with which it was
trained).
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