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Abstract

Language identification is used as the first step001
in many data collection and crawling efforts002
because it allows us to sort online text into003
language-specific buckets. However, many004
modern languages, such as Konkani, Kash-005
miri, Punjabi etc., are synchronically written006
in several scripts. Moreover, languages with007
different writing systems do not share signif-008
icant lexical, semantic, and syntactic proper-009
ties in the neural representation spaces, which010
is a disadvantage for closely related languages011
and low-resource languages, especially those012
from the Indian Subcontinent. To counter013
this, we propose learning script-agnostic em-014
beddings using several different experimen-015
tal strategies (upscaling, flattening, and script016
mixing) focusing on four major Dravidian lan-017
guages (Tamil, Telugu, Kannada, and Malay-018
alam). We find that word-level script ran-019
domization and exposure to a language writ-020
ten in multiple scripts is extremely valuable for021
script-agnostic language identification, while022
also maintaining competitive performance on023
naturally occurring text.1024

1 Introduction025

In many natural language processing (NLP) tasks026

or data creation efforts, we often need to first iden-027

tify the source language of a particular text. For028

instance, automated translation, part-of-speech029

(POS) tagging, and web scraping for data collec-030

tion must typically identify the text’s language be-031

fore performing the given task. The languages in-032

volved might occur in non-standard scripts, but as033

we show in this paper, modern systems are heavily034

script-dependent in language identification. The035

result is that most current methods are unable to ac-036

count for languages written in non-standard scripts.037

Moreover, script diversity is especially common038

1Anonymized code available here :
https://anonymous.4open.science/r/
Script-Agnostic-Lang-ID/

in low-resource languages. Many bilingual com- 039

munities choose to write their minority language 040

in the region’s dominant system (such as those in 041

Pakistan, Iran, China), instead of their language’s 042

traditional writing system (Ahmadi et al., 2023). It 043

is also common for larger standardized languages 044

to be romanized on the internet and in social me- 045

dia. Finally, some languages simply do not pos- 046

sess one standard script, and are written in multiple 047

writing systems. For instance, the Western-Indian 048

Konkani language is actively written in up to 5 049

scripts: Devanagari, Romi, Kannada, Malayalam, 050

and Perso-Arabic (Lehal and Saini, 2014; Rajan, 051

2014). However, most Konkani systems only sup- 052

port Devanagari and Romi scripts, and would not 053

recognize the language if written in the other three. 054

This illustrates the need to have script-agnostic 055

or script-diverse language identification systems 056

so we can collect data for low-resource languages 057

more successfully and support their script-diverse 058

nature in NLP applications. 059

In this paper, we conduct a case study on script- 060

agnosticism for language identification by focus- 061

ing on the four major Dravidian languages: Tamil, 062

Telugu, Kannada, and Malayalam. We explore 063

three different methods of training script-agnostic 064

embeddings, evaluate across domains, and offer in- 065

sights for future work. Broadly, we attempt to an- 066

swer the following research questions: 067

1. Are embeddings learned from a script- 068

agnostic setup competitive with other 069

modern embeddings? 070

2. What impact does training on transliterated 071

corpora have on downstream language iden- 072

tification performance? 073

3. How does projecting all scripts to one script 074

impact performance, vs. projecting each 075

script to a large n scripts. 076

4. What impact does script mixing have on lan- 077

guage identification and on sentence represen- 078

tations? 079
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Figure 1: In upscaling, we transliterate each sentence into other scripts to expose the model to data in that language
in all 4 writing systems. For flattening, we aim to reduce this potential vocabulary overload and project all scripts
into 1 script per experiment. The goal of this experiment is to identify if any of the 4 scripts is a suitable target
script for transliteration of all languages. As shown in 1, each writing system has a unique number of total letters
(even though there is large overlap), and we think that thismay result in one or the other script to be a suitable script
for projection. For the final mixing setup, we transliterate at the word-level instead (at different noise levels) and
allow multiple scripts per sentence.

A schematic of our experimental approaches080

is shown in Figure 1. Overall, our methods are081

shown to perform well on language identification082

tasks with both standard and permuted scripts, and083

appear to improve on current approaches.084

2 Methods085

Script Flattening Under this setup, we want to086

explore whether the embedding space will benefit087

from seeing all the languages in only one common088

script. The idea behind flattening the script space089

from four to one is that with only one script, the090

embedding space (and consequently the classifica-091

tion system) can focus on finding discriminative092

features between the languages. It is worth noting093

that training word representations in a single script094

may perform poorly in real-world settings andmay095

not be a practical choice since text will naturally ap-096

pear in scripts other than the one trained on. How-097

ever, this experiment is useful to quantify the role098

that script plays in language identification, com-099

pared to the non-visual distinguishing features of100

the languages.101

Script Upscaling This method takes a given102

training example written in one script and “up-103

scales” it into all 4 scripts. Our intuition is that104

seeing every example in each script will prevent a105

model from giving weight to any one writing sys-106

tem in its decision-making, forcing it to rely on in- 107

herent features of the language. In other words, we 108

teach the model that a sentence of a given language 109

could be written in any script, so that it learns not 110

to discriminate on the basis of writing system. For 111

our script-upscaled model, we first created four 112

training files for each language, where a file would 113

include all of the language’s training examples four 114

times–one for each script. Then we concatenated 115

all of these files into one training set. In essence, 116

we allowed our model to assume that a sentence 117

may appear in any of the four writing systems with 118

the same likelihood. 119

Noisy Multi-Script Setup Under this setup, we 120

want to explore how well an embedding space 121

can accommodate script changeswithin a sentence. 122

Therefore, we create synthetic sentences following 123

Algorithm 1 (Appendix C) for both FLORES200 124

data splits. Under this approach, for each noise 125

level n, language lang, and sentence sent, we 126

choose a base script and then randomly pick n% 127

words to transform to new non-base scripts. We 128

train separate text classification fastTextmodels 129

on each of these noisy datasets and evaluate them 130

on test sets with clean, noisy, and merged datasets. 131

This is to evaluate out-of-distribution generaliza- 132

tion and robustness, and the potential usefulness 133

of including noise during the training process. We 134
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Language 693-3 Family Script Script Code Vowels Consonants

Tamil tam Southern தம ழ் Taml 12 18
Kannada kan Southern ಕನ್ನಡ Knda 16 35
Telugu tel South-Central తెలుగు Telu 16 36

Malayalam mal Southern മലയാളം Mlym 15 42

Table 1: A summary of the characteristics of the four Dravidian languages we study in our experiments. All four
languages use abugidas for writing and are written from left to right with diacritics.

perform this experiment with permutations of 25%,135

50%, 75%, and 100% script-noise levels in the136

training data. Finally, we train an “All-Noise”137

model on merged data from all these script-noise138

levels.139

3 Experiments140

We use fastText (Bojanowski et al., 2017) to141

learn word embeddings, because it provides an ef-142

ficient way to glean subword information. With-143

out this, we would likely end up with completely144

separate vectors for each word in a language and145

would need to implement other strategies to han-146

dle out-of-vocabulary (OOV) words. Moreoever,147

fastText, like all other language identification148

systems, does not incorporate transliteration and149

script-agnosticism into their training. Since our150

goal is script-agnosticism, wewant any givenword151

to be represented with nearly the same vector as152

its transliterated counterpart. This should allow a153

model to recognize the language of a given text,154

even when written in a non-standard script.155

Given below are our three primary experimental156

setups, where we create a training set according to157

each of these methods, and use it to train word em-158

beddings. We obtain our results based on the origi-159

nal versions and transliterations of the test sets pro-160

vided by FLORES200, using fastText skipgram161

models on a downstream language identification162

task (extrinsic evaluation).163

1. Script Upscaling: Convert a language’s sen-164

tences into several pre-chosen scripts.165

2. Script Flattening: Convert all language’s sen-166

tences to a single pre-chosen script S. Here,167

S will by a hyperparameter that can be tuned168

to find the best script for flattening.169

3. Script Mixing: Based on a pre-set noise level170

N , we convertN%words in the sentence into171

a randomly sampled script, to simulate script172

noise.173

Dataset and Languages We use the FLO- 174

RES200 dataset (NLLB Team, 2022; Goyal et al., 175

2021; Guzmán et al., 2019) for training and in- 176

domain testing in all our experiments. In order to 177

ensure that our models would work well on test 178

data that was not simply from FLORES200, we 179

also tested on three out-of-domain sets: GlotStory- 180

Books (Kargaran et al., 2023), UDHR (Kargaran 181

et al., 2023), and MCS-350 (Agarwal et al., 2023). 182

We do not transliterate these datasets since the 183

goal is to measure the performance of our script- 184

agnostic models on naturally occurring text (and to 185

identify if this leads to any performance losses over 186

traditional models). We also use a subset of mono- 187

lingual data from IndicCorp (Kakwani et al., 2020) 188

for an experiment involving non-parallel training 189

in Section 4.2. For this paper, we explore script- 190

agnosticism for 4 major languages (Table 1) that 191

fall within the same language family and use four 192

distinct writing systems. Details about each of the 193

datasets are available in Appendix A and language 194

profiles in Appendix B. 195

Transliteration We use the Aksharamukha2 196

python package to transliterate between our four 197

Dravidian writing systems. Since the library is pri- 198

marily meant for Indic writing systems, it provides 199

an extremely low-loss transliteration, which is suit- 200

able for our purposes. Note that since Tamil has 201

a smaller phonetic inventory than other languages, 202

there may be subscripts introduced during translit- 203

eration (see Table 3). We preprocess the Tamil files 204

to remove any such subscripts. 205

Evaluation We will use top-1 accuracy for our 206

evaluation. While F1 scores are popular in lan- 207

guage identification studies, they are hard to in- 208

terpret and only have significant advantages when 209

there is a class imbalance in the data distribution. 210

We have selected a training and test set that is 211

evenly distributed and is not imbalanced. There- 212

2https://pypi.org/project/aksharamukha/
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Script: Tamil Kannada Malayalam Telugu
Baseline Flatten Baseline Flatten Baseline Flatten Baseline Flatten

TAMIL 94.37 80.43 - 80.63 - 80.93 - 80.73
KANNADA - 91.60 92.59 92.19 - 91.60 - 91.70

MALAYALAM 69.27 99.31 88.93 98.32 100.00 98.42 88.93 98.91
TELUGU - 93.68 - 93.77 - 93.08 94.07 93.77

AVERAGE 40.91 91.25 45.28 91.23 25.00 91.01 45.75 91.28

Table 2: This table shows the performance of the Baseline model (trained on original script data only on FLO-
RES200) and four Flatten models –one per script (shown in the columns) for each LANGUAGE test set. We find
that no particular script is best suited to the flattening task and each script can allow for identification of the four
Dravidian languages relatively faithfully. Although marginally, the Telugu script Flatten model performs best and
so we include it in cross-domain experiments in 4.4.

IPA ISO TEL KAN MAL TAM

/ka/ ka క ಕ ക க
/kha/ kha ఖ ಖ ഖ க₂
/ga/ ga గ ಗ ഗ க₃
/gha/ gha ఘ ಘ ഘ க₄

Table 3: Tamil has only one letter to represent the above-
mentioned 4 sounds common in the other 3 Dravidian
languages. So, the transliterator introduces subscripts
to differentiate the four sounds in the source script.
There are 5 such character series but we only show the
velar phonemes’ series.

fore, we opt for reporting top-1 accuracy since it213

is appropriate and easier to interpret for our data214

settings.215

Baseline Models Our first baseline model (re-216

ferred to as FLORES200) was trained on the raw lan-217

guage .dev files from FLORES200. We chose this218

as a baseline, given that it represents an easy and219

intuitive approach to training a language classifica-220

tion model: simply training based on the language221

data available, without any augmentation or mod-222

ifications. We also benchmark with a language223

identification model pre-trained onWikipedia, SE-224

Times, and Tatoeba, boasting support for 176 lan-225

guages (Joulin et al., 2016). Since this model is226

state-of-the-art and trained on a large amount of227

data outside of FLORES200, we use this as a sec-228

ond baseline and will refer to it as WIKI.229

4 Results230

We present our results for the Baseline, Flatten-231

ing, Upscaling, and Noisy models here. In general,232

our script-agnostic models demonstrate good per-233

formance above the baselines on the transliterated 234

test sets, and our methods often rival traditional ap- 235

proaches on clean data. 236

4.1 Script Flattening 237

Under the Flattening experimental setup, even 238

though certain languages have higher accuracies 239

than others, each language appears to have com- 240

parable performance across scripts ( Table 2). For 241

instance, Tamil sees 80% accuracy on all flattened 242

tests; in fact, each language’s scores vary less than 243

one percent when flattening to any given script. 244

The uniformity suggests that script does not play 245

a major role in the models’ decision-making, and 246

that they are classifying with regard to linguis- 247

tic information rather than writing system. This 248

matches and confirms our initial hypotheses, since 249

there is no alternative script for the model to con- 250

sider when evaluating language identity. 251

Upon comparison with the baseline, our flat- 252

tened models are far superior both in unconven- 253

tional script scenarios, and when averaged across 254

the four languages. In some cases, the baseline 255

only classifies correctly 25% of the time, while our 256

models consistently perform with over 90% aver- 257

age accuracy on the transliterated FLORES200 test 258

set. With respect to individual language scores, 259

the baseline classifies with slightly more accuracy 260

when language and writing system match, but this 261

is merely due to its heavy reliance on script, and 262

does not speak to its overall performance. When 263

script and language are not the same, the baseline is 264

easily fooled; for example, in many cases it cannot 265

classify even a single example correctly for certain 266

languages. 267

Interestingly, there is a difference in perfor- 268

mance across the individual language scores for 269
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WIKI FLORES200 train - 25% train - 50% train - 75% train - 100%
Size 3,988 3,984 7,968 11,952 15,952

ORI TRA ORI TRA ORI TRA ORI TRA ORI TRA ORI TRA

TAM 100 25 94.37 23.59 48.02 48.84 77.96 78.04 91.8 92.02 95.26 95.16
KAN 100 25 92.59 23.15 74.41 74.18 89.62 90.02 92.69 92.76 95.06 95.06
MAL 100 25 86.78 95.85 95.41 99.11 97.83 99.7 99.68 99.7 99.65 99.65
TEL 100 25 94.07 23.52 47.23 46.89 92.49 92.86 94.37 94.47 95.36 95.41

AVG 100 25 95.26 39.26 66.38 66.33 89.80 89.69 94.64 94.73 96.35 96.32

Table 4: This table compares the performance of the Baseline models to the Script-Upscaled model, trained on
25%, 50%, 75%, and 100% of the original training examples, transliterated to all scripts. In other words, each %
entry represents a Script-Upscaled model, trained on the specified percentage of examples in the original training
set, plus the same examples transliterated. The row underneath displays the amount of training data (including
transliterations). Each model was tested on the original test set, without any transliterations, and a test set with all
examples transliterated to all scripts.

FLORES FLORES GLOT UDHR MCS350
Model (transliterated) (clean) average

BASELINE (FLORES200) 39.26 95.26 82.41 79.00 45.34 68.25
4-WAY PARALLEL 96.32 96.35 81.67 77.54 44.79 79.33

NON-PARALLEL 94.39 94.37 84.61 83.86 51.76 81.80

Table 5: This table compares two script-upscaled models, each trained on 997 examples per language, which are
then transliterated to all scripts. One is trained on 4-way parallel data, and the other on examples that are not parallel.
The slight discrepancy of performance is likely a result of different data sources.

both models, where they correctly identify certain270

languages more often than others. For example,271

Malayalam receives accuracies near 100%, while272

Tamil is only correctly classified 80% of the time.273

This appears to be a result of the fasttext model274

defaulting to a Malayalam prediction, paired with275

the close similarity between the Tamil and Malay-276

alam languages. For a more thorough interpretabil-277

ity analysis, see Appendix D.278

4.2 Upscale279

Our upscaled model performs quite well on the test280

sets, with over 96% accuracy (Table 4). Moreover,281

while it drastically outperformed the baseline on282

transliterated data, it scored higher on the noise-283

less test as well. These results demonstrate that284

the model was able to correctly disentangle script285

and language, and was not tricked by noisy data.286

Comparison with Flattening When comparing287

the Flattening results to our Script-Upscaled ver-288

sion, it is important to recognize that the latter289

model was trained on four times the amount of290

data, since we transliterated to all four scripts as291

opposed to flattening to a single script.292

In order to analyze the effect of the number 293

of examples on our Script-Upscaled version, we 294

also trained it using three variations of our train- 295

ing data: 25% of the original examples, as well 296

as 50%, and 75%. As expected, the 25% model 297

performed much worse than the 100% model, and 298

we saw improvements as we included more of the 299

data. Interestingly, the results were only compara- 300

ble to the Flattening model once we trained with 301

at least 75% of the original examples. We suspect 302

this is due to the difference between the number of 303

cross-language examples and the number of cross- 304

script examples. For instance, even though the 305

25% Upscaled model has nearly the same number 306

of training examples as any of the Flattening mod- 307

els, many of these sentences are merely transliter- 308

ated versions of each other, rather than full trans- 309

lations or original examples. This distribution ap- 310

pears to allow themodel to become script-agnostic, 311

but sacrifices the ability to identify languages in 312

the process. This suggests that although Upscaling 313

may perform better than Flattening overall, Flatten- 314

ing can learn more about both script-agnosticism 315

and language identification from fewer examples. 316
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Learning without n-way parallel data Based317

on our primary script-upscaled results, it seems318

that these models correctly ignore script in their319

decision-making process. However, it is important320

to distinguish between models that give correct321

output versus models that are truly script-agnostic.322

Thus far, our models have been trained on n-way323

parallel data; however, this could be a potential324

confounder in our experiments. Therefore, we325

compare the performance of two script-upscaled326

models –one trained on 4-way parallel data, the327

other on non-parallel data– keeping the number of328

training examples per language constant for fair-329

ness. For non-parallel data, we use subsets of the330

monolingual corpora from IndicCorp for Telugu,331

Tamil, and Malayalam. We reuse the FLORES200332

examples for Kannada, since these should not be333

parallel to the data for the other three languages.334

Our evaluation on the FLORES transliterated335

and clean test sets as well as all out-of-domain336

sets is in Table 5. The two models have largely337

similar results. The original 4-way parallel model338

does somewhat better on the FLORES test sets,339

and the non-parallel model has the better accuracy340

on average; however, these discrepancies can be341

expected due to the domain differences in data342

sources. Overall, it appears that both models can343

be claimed to be “script-agnostic,” and therefore344

using parallel data likely has a negligible effect in345

this regard.346

4.3 Noisy Multi-Script347

In the script-noise setup, performance varies to a348

large degree between the models, but accuracies349

per language stay relatively constant across the350

different test sets (Table 6). Our Script-Upscaled351

model is the best on average with over 99% ac-352

curacy, and the All-Noise model follows closely353

behind with a 98.82% score. Beyond these two,354

scores drop significantly to the 50-65% range,355

which is undesirable for a 4-class classification356

problem.357

This is likely explained by the size of the train-358

ing sets. The Baseline, as well models with noise359

settings from 25 to 100, used data from four sets360

(one for each language) with varying script per-361

mutations. However, our All-Noise model was362

trained on a merged dataset consisting of sentences363

at all noise levels (i.e. four times the data). This364

is similar to the Script-Upscaled model that had365

access to each language’s sentences transliterated366

to the four different scripts, and is likely what al-367

lowed the two models to perform so well. We be- 368

lieve that the Script-Upscaledmodel performed the 369

best because it was consistently shown the same 370

sentence in all four scripts, forcing it to become 371

truly script-agnostic. The All-Noise model was 372

able to do this to a large degree, but due to potential 373

randomness and slight inconsistencies in permuta- 374

tions, it likely was not able to completely disregard 375

script in its decision-making process. Therefore, 376

script-mixing within sentences seems to be an ex- 377

tremely challenging setup for models and requires 378

explicit data augmentation for reasonable perfor- 379

mance. 380

4.4 Cross-Domain Performance 381

A comparison of our models on the clean FLO- 382

RES200 test set, as well as out-of-domain sets 383

is in Table 7. The FLORES200 BASELINE per- 384

forms well in-distribution and on similar long- 385

length GLOT and UDHR datasets, but poorly on 386

MCS350 (children’s stories domain and shorter 387

sentences). The WIKI baseline is better than the 388

FLORES200 baseline across all datasets, showing 389

that is has built a better representation space for 390

the languages. The UPSCALE (16K) and NOISE (ALL) 391

models have comparable performance to BASELINE 392

(FLORES200), demonstrating that the multi-script 393

training does not lead to a significant degrada- 394

tion in performance on the languages’ conven- 395

tional/native scripts. The FLATTEN algorithm nat- 396

urally performs poorly compared to the other mod- 397

els in this setting since it is only exposed to one 398

script. Therefore, it may not be a practical choice 399

for real-world language identification. 400

5 Discussion 401

The results demonstrate that all of our script- 402

agnostic language identification models (Flatten- 403

ing, Noise, and Scipt-Upscaled) perform well 404

above the baselines on examples that utilize a non- 405

standard script. In certain cases where data is nor- 406

mal, our baseline models can surpass some script- 407

agnostic ones; this is likely because the baselines 408

use script as a basis for determining language ID. 409

Our best model overall appears to be the com- 410

plete Script-Upscaled version. We suspect that see- 411

ing each example transliterated to every script al- 412

lows it to become truly script-agnostic. While the 413

Flattening models also appear to nearly reach this 414

point, they are not trained on the same quantity 415

of data, and so it is understandable that their test 416
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Data Language Baseline N@25 N@50 N@75 N@100 N@all Upscale

CLEAN

Tamil 23.59 40.19 14.95 42.81 26.75 93.08 95.26
Kannada 23.15 76.38 58.75 77.32 67.27 93.33 95.16
Malayalam 86.78 94.54 99.93 95.11 99.51 99.63 99.70
Telugu 23.52 51.63 40.07 44.64 51.14 94.89 95.45

all

Tamil 40.77 36.86 14.82 39.66 25.55 99.77 100.00
Kannada 39.72 77.02 56.24 78.59 65.25 99.02 99.14
Malayalam 86.94 96.34 99.97 96.24 99.57 99.90 99.95
Telugu 42.40 52.70 38.71 43.32 52.47 99.47 99.77

AVG * 50.27 65.72 52.60 64.52 60.79 98.82 99.16

Table 6: Even after introducing noise at all levels, the N@all and Upscale models are competitive implying that
we can both use the word-level script-mixing without sacrificing performance on clean or noisy data. Table has
been abridged due to space constraints, but an extended table with results for 25, 50, 75, and 100% noise-level
test sets for all languages in included in Appendix Table 8. N@25,50,75,100 and the baseline models were trained
with 3988 sentences per class. The Upscale and N@all models were trained with 15952 sentences per class and
are therefore more comparable with each other. The baseline was trained on FLORES200 data.

FLORES200 GLOT UDHR MCS350 AVERAGE

Test Set Size 4048 3934 285 15000 5817

BASELINE (FLORES200) 95.26 82.41 79.00 45.34 75.50
fasttext (WIKI) 100.00 99.96 100.00 71.75 92.93
UPSCALE (16K) 96.35 81.67 77.54 44.79 75.09
FLATTEN (TELU) 91.28 43.18 44.56 33.95 53.24

NOISE (ALL) 95.41 80.19 76.14 43.41 73.79

Table 7: We share two baseline models (trained on FLORES200 and Wikipedia) along with the best model from
each of our 3 experimental setups (upscale, flatten, noise) and test them on out of domain data to test domain transfer
of the learned embeddings. Overall, the UPSCALE (16K) and NOISE (ALL) models have comparable performance to
BASELINE (FLORES200) demonstrating that the multi-script training doesn’t lead to a significant degradation in
performance on the languages’ naturally occurring native scripts.

scores would not be as high. Additionally, the All-417

noise model showed very good performance, and418

we suspect it remains second to the Upscaled set-419

ting primarily due to the variability of the training420

data. Unlike the Upscaled model, it may not see421

every example transliterated to all scripts, and thus422

may not become completely agnostic of script.423

In the practical setting, our models –especially424

Script-Upscaled– appear to be a reasonable alter-425

native to current language identification systems,426

when noisy script-mixing is a possibility. It seems427

that when trained on the same set of sentences, a428

Script-Upscaled model will outperform a standard429

one. The WIKI baseline performed the best on the430

non-transliterated test sets, but this is likely due to431

its huge amount of training data. It is highly possi-432

ble that had we trained a Script-Upscaled model433

on Wikipedia, we would have seen results that434

matched the WIKI baseline on noiseless data. The 435

large amount of storage and computational power 436

for this endeavor, in addition to potential chal- 437

lenges in transliterating to so many scripts, would 438

have been beyond the scope of our current work. 439

However, now that we have established proof-of- 440

concept, future work will attempt to create fully 441

transliterated WIKI language identification mod- 442

els. 443

Our Upscaling approach is relatively straight- 444

forward, and requires no more examples than for 445

a standard language identification system. Since 446

transliteration can be done automatically, we es- 447

sentially propose a data-augmentation process (for 448

complete sentences and within sentences) that re- 449

sults in an ability to classify languages regardless 450

of script. Future work should explore the impact of 451

these script-agnostic embeddings on other down- 452
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stream tasks, as well as conducting intrinsic eval-453

uation (word analogy and semantic similarity) ex-454

periments.455

6 Related Work456

Previous work has demonstrated that script bar-457

riers discourage transfer learning from high-458

resource languages into low-resource languages’459

representation spaces, especially for Neural Ma-460

chine Translation (Muller et al., 2021; Anasta-461

sopoulos and Neubig, 2019). Moreover, script di-462

versity negatively impacts low-resource languages463

disproportionately because their training data is of-464

ten of poor quality and small in size (Pfeiffer et al.,465

2021). Consequently, researchers have focused on466

transliteration, romanization, phonetic representa-467

tion etc. to reduce vocabulary sizes and allow lexi-468

cal sharing between languages with different writ-469

ing systems (Amrhein and Sennrich, 2020).470

Another common approach relies on existing471

pre-trained models, fine-tuning them with differ-472

ent transliterated versions of the originally sup-473

ported languages (Muller et al., 2021; Dhamecha474

et al., 2021). This is an instance of the com-475

mon hierarchical pipeline (Goutte et al., 2014; Lui476

et al., 2014; Bestgen, 2017) or fine-tuning-based477

approach for language identification (Jauhiainen478

et al., 2018; Agarwal et al., 2023; Ahmadi et al.,479

2023). Most recently, Moosa et al. (2023) con-480

ducted a study on effects of transliteration onmulti-481

lingual language modeling, which focused on two482

kinds of models: a multi-script model with native483

scripts of each language (matching our BASELINE484

setup) and a uni-script model with only one script485

for all languages (similar to our FLATTEN setup).486

As a natural extension of their work, we also487

consider UPSCALE and NOISE setups for Dravidian488

languages, as described in Section 3. Unlike their489

work, we do not fine-tune on downstream tasks,490

but instead focus on including the transliteration491

in the original training data to give the model the492

ability to handle non-native scripts without los-493

ing performance on the original script. Moreover,494

our work is not only motivated from a lexical-495

sharing and transfer-learning perspective, but is496

grounded with the aim of supporting synchronic497

and diachronic digraphia adequately in language498

models.499

7 Conclusion 500

In conclusion, we introduce and evaluate three 501

new kinds of language identification models that 502

are script-agnostic. All of our systems have been 503

shown to outperform the baseline on examples that 504

are not written in the standard script. Two of 505

our models (Script-Upscaled and All-Noise) per- 506

form especially well on both clean and transliter- 507

ated (noisy) data. Our methods may provide a rea- 508

sonable alternative to training language identifiers 509

that can correctly classify text based on the lan- 510

guage used, rather than the script in which it is writ- 511

ten. Future work would expand to include more 512

languages and scripts, as well as performing tests 513

on the learned embeddings to determine if these 514

would be effective on other downstream tasks. 515

Limitations 516

Extending to a larger set of languages We 517

note that our models were only trained and eval- 518

uated using the four major Dravidian languages 519

- Tamil, Telugu, Malayalam, and Kannada. Ex- 520

tending the successful experiments (upscale and 521

all-noise) to a larger number of writing systems 522

may prove challenging in terms of computational 523

resources and dataset sizes. Data loss associated 524

with script conversion and non-phonetic scripts is 525

a likely challenge (and potential limitation) when 526

we scale our approach to more scripts. However, 527

script-agnostic embeddings will be most useful for 528

closely related languages that currently do not use 529

the same script - a scenario most commonly occur- 530

ring in the Indian Subcontinent. 531

Data loss due to script-conversion Most Indic 532

languages have a one-to-one mapping between 533

sounds and characters in their scripts since they de- 534

scend from common ancestors, but there may still 535

be letters that are not mapped accurately (unique 536

sounds in certain languages). In our sutdy, three 537

of the four scripts have direct phonetic mappings, 538

while only one (Tamil) includes aspirated sounds 539

that are not translatable to the other writing sys- 540

tems. Tamil also doesn’t distinguish between the 541

common /b/ and /p/, /g/ and /k/ consonants. This 542

means that two different scripts representing the 543

same word will likely have two different charac- 544

ter distributions. When expanding to other lan- 545

guages and scripts, the concern regarding inherent 546

loss from transliterationmay become a larger issue, 547

and it is possible that our setup may be limited to 548

8



phonetic scripts and would exclude non-phonetic549

scripts such as Mandarin Chinese.550

Ethics Statement551

Languages may be written in non-native scripts to552

obfuscate their presence on the internet, and the553

use script-agnostic embeddings would be able to554

discover and accurately identify such text during555

web crawls. This may have some downstream556

privacy and surveillance related concerns that are557

out of scope for this work. Currently, our pilot558

study uses the FLORES200 dataset to train em-559

beddings, but in the future, a larger corpora such560

as Wikipedia, CommonCrawl, or other publicly561

crawled data can be used, which may bring with it562

several concerns around data ownership and copy-563

right.564
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A Out-of-Domain Datasets720

1. FLORES200: n-way parallel dataset con-721

sisting of sentences from 842 web arti-722

cles, translated into a large number of lan-723

guages (NLLB Team, 2022; Goyal et al.,724

2021; Guzmán et al., 2019). Each language’s725

example are in the same order, and are sepa-726

rated into .dev and .devtest files, contain-727

ing 997 and 1012 sentences, respectively.728

2. GlotStoryBooks3: Open-licensed curated729

library of books (Kargaran et al., 2023)730

from a variety of sources in 176 languages731

(Yankovskaya et al., 2023; Ogundepo et al.,732

2023). Each sample contains a sentence along733

with its language identifier and script.734

3. UDHR (Universal Declaration of Human735

Rights): We use Kargaran et al. (2023)’s736

public domain preprocessed version of the737

UDHR dataset, where each sample is a para-738

graph along with a language identifier. The739

authors removed errors and formatting issues740

in the original UDHR data and made this741

clean version available4.742

4. MCS-350: Multilingual Children’s Stories743

dataset, released by Agarwal et al. (2023),744

contains over 50K children’s stories cu-745

rated primarily from two sources - African746

Storybooks Initiative and Pratham Story-747

weaver, both open-source story repositories748

for African and Indian languages respectively.749

For our experiments, we use the monolingual750

data files available on the authors’ GitHub751

repository5 for Tamil, Malayalam, Kannada,752

and Telugu. Compared to UDHR, the sen-753

tences are relatively smaller in length since754

they are not from the legal domain, and unlike755

GlotStoryBooks, the authors don’t apply any756

length-based filtering to the curated stories.757

5. IndicCorp6: Monolingual, sentence-level758

corpora for English and 11 Indian languages759

from the Dravidian and Indo-Aryan fami-760

lies (Kakwani et al., 2020). It consists of 8.8761

3https://huggingface.co/datasets/cis-lmu/
GlotStoryBook

4https://huggingface.co/datasets/cis-lmu/
udhr-lid

5https://github.com/magarw/limit
6https://paperswithcode.com/dataset/

indiccorp

billion tokens and is sourced mostly from In- 762

dian news crawls (articles, blog posts, maga- 763

zines), though it also takes data from the OS- 764

CAR corpus. 765

B Brief Language Profiles 766

1. Tamil (tam), a Southern-Dravidian language, 767

is spoken by over 80 million people and is 768

an official language in Sri Lanka, the Indian 769

states of Tamil Nadu and Puducherry, and of 770

the Indian Constitution’s Eighth Schedule. It 771

is curently most widely written in the Tamil 772

abugida - தம ழ் எழுத்து (tamizh ezhuttu). 773

2. Telugu (tel), a South-Central Dravidian lan- 774

guage, is spoken by about 100 million peo- 775

ple and is the most spoken Dravidian lan- 776

guage. It is also an Eighth Schedule language 777

of the Indian Constitution and is official in the 778

Indian states of Andhra Pradesh, Telangana, 779

and Puducherry (Yanam). It is written in Tel- 780

ugu abugida - తెలుగు లిపి (telugu lipi) 781

3. Malayalam, (mal), another Southern- 782

Dravidan language is the smallest language 783

from our selection, spoken by about 40 784

million people in Southern India. It is an 785

Eighth Schedule language and is official 786

in the southernmost Indian state of Kerala. 787

It is written in the Malayalam abugida - 788

മലയാളം അക്ഷരങ്ങൾ (malayalam 789

aksharangal). 790

4. Kannada (kan), also a member of the 791

Southern-Dravidian language subfamily, is 792

spoken by about 60 million people, mostly 793

within India. It is an official language of the 794

Indian Constitution’s eighth schedule and is 795

the sole official language of Karnataka state. 796

It is widely written in Kannada script, which 797

is closely related to the Telugu script and is 798

also an abugida, but diverged around 1300CE 799

- ಕನ್ನಡ ಅಕ್ಷರ ಾಲೆ (kannada aksharamale). 800

C Noise-Experiments Extended Results 801

D Interpreting Flattening Results 802

The default baseline (in-distribution) is a 803

fastText model trained on FLORES200 data, 804

keeping the languages in their original scripts 805

without any transliterations. For the flattening 806

experiments, we project all data to one script at 807

a time. Since the test data is flattened to a single 808
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Data Language Baseline N@25 N@50 N@75 N@100 N@all Upscale

CLEAN

Tamil 23.59 40.19 14.95 42.81 26.75 93.08 95.26
Kannada 23.15 76.38 58.75 77.32 67.27 93.33 95.16
Malayalam 86.78 94.54 99.93 95.11 99.51 99.63 99.70
Telugu 23.52 51.63 40.07 44.64 51.14 94.89 95.45

25

Tamil 35.05 36.25 14.20 39.98 25.08 99.90 100.00
Kannada 31.38 77.21 56.93 78.82 64.76 99.40 99.60
Malayalam 85.74 95.58 99.90 96.18 99.80 99.90 100.00
Telugu 36.18 52.66 38.29 43.82 51.96 99.10 99.90

50

Tamil 38.87 36.86 14.30 39.68 26.38 99.70 100.00
Kannada 41.84 77.30 55.83 79.23 66.67 99.29 99.59
Malayalam 86.00 96.48 100.00 96.17 96.17 99.90 99.90
Telugu 43.50 52.47 38.67 42.50 52.77 99.40 99.70

75

Tamil 45.01 37.34 14.83 39.35 25.93 99.80 100.00
Kannada 44.08 76.34 56.22 78.77 64.91 98.79 98.89
Malayalam 88.56 96.86 100.00 95.85 99.39 100.00 100.00
Telugu 47.61 52.59 39.19 43.65 52.79 99.59 99.70

100

Tamil 44.21 36.99 15.96 39.63 24.80 99.70 100.00
Kannada 41.19 77.23 55.97 77.53 64.68 98.58 98.48
Malayalam 87.46 96.43 100.00 96.74 99.39 99.80 99.90
Telugu 42.35 53.09 38.70 42.96 52.38 99.80 99.80

all

Tamil 40.77 36.86 14.82 39.66 25.55 99.77 100.00
Kannada 39.72 77.02 56.24 78.59 65.25 99.02 99.14
Malayalam 86.94 96.34 99.97 96.24 99.57 99.90 99.95
Telugu 42.40 52.70 38.71 43.32 52.47 99.47 99.77

AVG * 50.27 65.72 52.60 64.52 60.79 98.82 99.16

Table 8: Even after introducing noise at all levels, the N@all and Upscale models are competitive implying that
we can both use the word-level script-mixing without sacrificing performance on clean or noisy data. Among the
noise@25,50,75 settings, we observe that 50% and 100% noise have drastic impact on classification accuracy for
≥ 2 languages. N@25,50,75,100 and the baseline models were trained with 3988 sentences per class. The Upscale
and N@all models were trained with 15952 sentences per class and are therefore more comparable with each other.
The baselinen was trained on FLORES200 data.

Algorithm 1 Synthetic Noise Within Sentences
1: for noise = 25, 50, 75, 100 do
2: for lang = tam, kan,mal, tel do
3: for sent = 0, 1, . . . ..N do
4: Choose 1 base script
5: Choose noise%words to transform
6: for index in chosen indices do
7: nonbase = Chose new script
8: Transform word into nonbase
9: Save transformed data at noise-level
10: Merge-save sentences at all noise levels into a

new file for the all-noise setting

script, we would expect the model to only predict 809

the language that is representative of the writing 810

system. For instance, the baseline model would 811

predict Tamil when it’s shown data from any 812

language in the Tamil script. But, we find that 813

the models (trained on data in 4 different scripts 814

and languages) tend to default to a Malayalam 815

prediction for sentences that it knows are not 816

Tamil (Table 2). This can be seen by the presence 817

of a Malayalam signal across experiments for all 818

4 projection scripts. It also seems that several 819

Malayalam sentences are being misclassified as 820

Tamil (as evident by the less-than-100% accu- 821

racy for the Malayalam row for non-Malayalam 822

12



Figure 2: Example: Sentence 0’s SHAP visualization for gold TAM sentence and weights when predicted class is
MAL. Red indicates positive signal for MAL (unwanted) and blue indicates negative signal for MAL (wanted).

scripts).823

For the Upscale experiments (Table 4), we find824

that theWikipedia pre-trainedmodel does not have825

the same bias towards Malayalam as our model,826

and instead is perfectly fit to each language’s writ-827

ing system (100% and 25% accuracy on Origi-828

nal and Transliterated data). The custom-trained829

FLORES200 baseline, on the other hand, has sim-830

ilar performance (between 86-94% for Original831

and 23% for Transliterated). We observe the832

Malayalam-defaulting phenomenon here as well,833

and it is likely that the model is over-predicting834

Malayalam, treating it as an “other” prediction835

bucket.836

For Noise experiments (Table 6), we observe837

similar performance by the FLORES200 baseline838

as on the Upscaling experiments. However, the ac-839

curacy for non-Malayalam languages seems to in-840

crease as we increase the amount of noise.841

To interpret differences in accuracy scores842

across languages, we utilize a game-theoretic843

metric, Shapley Additive Explanations, or844

SHAP (Lundberg and Lee, 2017), to compute845

global-level explanations across the training846

dataset for all 4 languages. As discovered in 4.1,847

we find that Tamil receives a significantly lower848

accuracy (around 80%) compared to the other 3849

languages, especially compared to Malayalam850

(95%+). Therefore, we focus on finding explana-851

tions for false positive features in Tamil sentences852

that have been predicted as Malayalam. Readers853

should note that Tamil and Malayalam are closely854

related since they were the most recent to diverge855

from each other among the four major Dravidian856

languages (around the 9th century CE). Therefore,857

there are substantial vocabulary and grammatical858

similarities between them.859

Table 9 displays all the relevant words and char-860

acters in mispredicted Tamil sentences. We ob-861

tained translations for TAM using Agarathi7 and862

Google Translate, and forMAL using Google Trans-863

7https://agarathi.com. அகராதி/agarathi means
dictionary in Tamil

late and Olam8. While not all positively weighted 864

words may have exact parallels in Malayalam, we 865

think the score may come from positively corre- 866

lated morphological features within the word itself, 867

since Tamil and Malayalam share many word suf- 868

fixes, prefixes, pluralization rules, prepositions etc. 869

It is worth noting that our interpretability study re- 870

vealed that for the flattened script condition, the 871

fastText trained models always predict MAL as 872

default. This is not inherently bad because we 873

still receive over 90% accuracy for MAL, KAN and 874

TEL, indicating that the models find sufficient non- 875

MAL signal in the sentence when it’s present. How- 876

ever, for TAM, we saw that there was a 10% gap in 877

performance (i.e TAM prediction accuracy stayed 878

around 80%). Our interpretability investigation re- 879

vealed that this is due to presence of some positive 880

MAL signal in TAM sentences, due to the lexical, 881

semantic, and phylogenetic similarity of the two 882

languages. This overlap causes a small number of 883

sentences to be assigned a high probability of both 884

TAM andMAL, withMAL having themaximum since 885

it is the default prediction being downscored. 886

Results and all graphs from the Interpretability 887

Jupyter notebook have been attached below. It 888

shows the sentence-level explanations for each of 889

the Tamil sentences that were misclassified in the 890

training set with a small margin. 891

8Malayalam Dictionary - https://olam.in/
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Sent TAM in TELU script Weight Transliteration MAL TAM

WORDS
0 ఇ యిల్ 0.039 itaiyil during in between
0 ఒరు 0.025 oru a, an a, an
0 వటివ కక్పప్టుట్ ళళ్న 0.021 vativamaikkuppattullana shaped are designed
1 వఴంకపప్టట్తు 0.041 vazhaankappattathu indulgence provided
2 ఇలె 0.021 illai no, not no, not, ain’t
3 చిఱియ ! 0.031 chizhiyavai small ones small ones
4 నిఱువపప్టట్తు 0.039 nizhuuvappattathu established
5 వరు కుక్ 0.059 varukkaikku to visit
5 ఒరు 0.058 oru a, an a, an
5 వఴంకాతు. 0.029 vazhankaathu don’t give in doesn’t provide
6 పతివాకిన. 0.033 pativaakina regularly were recorded.
7 ఒరు 0.035 oru a, an a, an
7 చ కక్పప్టుకిఱతు. 0.024 chamaikkappatukizhathu is being cooked
8 ఆతరవళికక్విలె. 0.043 aatharavalikkavillai not supported

CHARACTERS
0 వటివ కక్పప్టుట్ ళళ్న 0.052 vativamaikkappattullana
0 ఒరు_ 0.037 oru_ a, an one
0 కుటియేఱఱ్ంక 0.037 kutiyezzhankalai above
0 ఇ యిల్ 0.035 itaiyil in
1 వఴంకపప్టట్త 0.102 vazhankappattatha suffix suffix
1 కుటినీర్ 0.033 kutiniir above
1 అవరక్ళ కుక్ 0.024 avarkulukku to them they
2 కుటియిరుపిప్నుళ్ 0.152 kutiyiruppinul above
3 చిఱియవ 0.125 chizhiyava small ones small ones
4 ఉరువాకుక్ం 0.033 uruvaakkum emerge create
5 నిఱువపప్టట్త 0.112 nizhuvappattatha
6 కుక్_ 0.079 kku_
6 వఴంకాత 0.045 vazhankaatha
6 _ఒరు 0.037 _oru a, an one
7 పతివాకిన 0.119 pativaakina
7 మ యిన్ 0.022 malaiyin
8 చ కక్పప్టుకిఱత 0.048 chamaikkappatukizhatha
8 కుఴి 0.035 kuzhi pit pit
9 చేరప్ (ర్ ) 0.035 cheerppathai (r)

Table 9: Words and characters that have a positive Malayalam explanation weight of> 0.02 for ground-truth Tamil
sentences. All sentences under consideration had a difference of> 0.15 between the Tamil and Malayalam classes.
We pick this threshold since it gives us Tamil sentences that have a high-enough Malayalam signal (or low Tamil
signal) causing the classifier to mispredict.
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outputs

__label__tam __label__kan __label__mal __label__tel

0.50.30.1 0.7 0.90.0381440.0381440.038144
base value

0.3562970.3562970.356297
f
__label__tam

(inputs)

క���ళ�వ�వ��య�ఇ�ఒ�తట�వ�ఏ�������ట���������� యమ�

inputs

ఒ�� ఏ��ం ����ట� ఇ�ం�ళ��, అత�� ర�� వ��క ���య� కట���ం� వ�వ�
ఇన��ం ��� యమ

outputs

__label__tam __label__kan __label__mal __label__tel

0.50.30.1 0.7 0.90.0381440.0381440.038144
base value

0.362340.362340.36234
f
__label__tam

(inputs)

యత�,��ళ�������ప�����ఇ����క�రం����య������ం� ర�

inputs

ఇం��ం�� �ర�� ఉ��య�ళ� �ప�� ��, ��� ����, ����� ��య చ�రంక�� కం�ర

Character Level Explanations > 0.15

ix_array

array([ 906, 1113, 1395, 1687, 2080, 2108, 2224, 2270, 2801])

for i in ix_array:
    shap.plots.text(shap_values[i])

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.50.4 0.9 1 1.10.9173830.9173830.917383
base value

0.5853720.5853720.585372
f
__label__mal

(inputs)

ళనఒ���వ�క������ ఇ� త� ట � ఇం క�, � ��ంవ��ఱం�క�వఴ���ఇ���త������

inputs

ఇంత� ��క�, ఇ� ��క���ం ఇ��� ఒ� ఒ�ంక�క�ప�ట� ���ఱ� ంక� వఴం�వత��
వ�వ�క�ప��� ళ�న

In [ ]:

Out[ ]:

In [ ]:
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.40.3 0.8 0.9 10.9173830.9173830.917383
base value

0.4518810.4518810.451881
f
__label__mal

(inputs)

టత�ప�క��� F) - పయ� � అవ� � � � క� � � � � ��90��ఴక��ప����

inputs

పయ�క� 90(F) - ��� �ప��� � ��� �ంత�� అవర���� ���� వఴంకప�ట� త

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.50.4 0.9 1 1.10.9173830.9173830.917383
base value

0.6493570.6493570.649357
f
__label__mal

(inputs)

�ల � ఎవ�ం � ఇ� �����

inputs

�������� ఎవ�ం ఇల�

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 1 1.10.9173830.9173830.917383
base value

0.5209840.5209840.520984
f
__label__mal

(inputs)

యవ��� క� అ� క� ట�ం ఉ� �ం ��క��క������

inputs

అ�క�� ఉ����ం�కళ�� �ట�ం ��� న�� ��యవ

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.5 0.9 10.9173830.9173830.917383
base value

0.6107870.6107870.610787
f
__label__mal

(inputs)

టత� � ఆ� క � � � ��వత��ర�

inputs

ఆ�� �య�త��క ��ర� ��వప�ట� త

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 10.9173830.9173830.917383
base value

0.5785740.5785740.578574
f
__label__mal

(inputs)

�తఒ�త����ఴ� � � ( � � � త మ��NA��ంఅ��� �వ���చ���ఎ����

inputs

� ��� చ��� (MINAE), ఎ���ర� � వ���� ఒ� �త�� ������ం� అ�మ�క� వఴం�త
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 10.9173830.9173830.917383
base value

0.4871360.4871360.487136
f
__label__mal

(inputs)

న�����మ ఎ� క� � ట� మ� � తయ�� �అ��ప��కంక��ర���ట

inputs

ఎ�మ�� �యల��ట� �ట���� త క��కంక� మ��� అ��ర�� � ప���న

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.5 0.9 10.9173830.9173830.917383
base value

0.600850.600850.60085
f
__label__mal

(inputs)

ఱత�ఒ���� న ఉణ� � � � అ�ఒ��ంత��ం��

inputs

ఒ� �ం� ఉణ� త��� ఒ� ��న �� �ం� అ�� చ�క�ప���ఱత

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5793890.5793890.579389
f
__label__mal

(inputs)

ల�క� వ�ం న � అ� � అ�ప�����క��

inputs

అ�వ�ం �ణ����న అ�క�� �ర��� ఆతరవ�క��ల�

for i in ix_array:
    shap.plots.bar(shap_values[i][:,2], max_display=20)

In [ ]:
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Explanations > 0.15

for i in ix_array:
    shap.plots.text(shap_values[i])

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5686650.5686650.568665
f
__label__mal

(inputs)

ఇ���ఒ��క�ప� ఇంత� ���ఱ� ంక� ఇ� ��క�,�ంక�క�ప���క���ఴం�వత�

inputs

ఇంత� ��క�, ఇ� ��క���ం ఇ��� ఒ� ఒ�ంక�క�ప�ట�  ���ఱ� ంక� వఴం�వత��
వ�వ�క�ప��� ళ�న.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.90.9173830.9173830.917383
base value

0.4324960.4324960.432496
f
__label__mal

(inputs)

ఴంకప�ట� పయ�క� ���� అవర������� �ంత��90(F) - ��� �ప��� �

inputs

పయ�క� 90(F) - ��� �ప��� � ��� �ంత�� అవర���� ���� వఴంకప�ట� �.

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.6 0.90.9173830.9173830.917383
base value

0.6203030.6203030.620303
f
__label__mal

(inputs)

ఇ�� ౖ.

-0.19

�������� ఎవ�ం

inputs

�������� ఎవ�ం ఇ�� ౖ.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.479760.479760.47976
f
__label__mal

(inputs)

�య� అ�క�� �ట�ం ఉ����ం �కళ�� ��� న��

inputs

అ�క�� ఉ����ం �కళ�� �ట�ం ��� న�� ��య�!

In [ ]:
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.539690.539690.53969
f
__label__mal

(inputs)

�వప�ట� � ఆ�� �య�త��క ��ర�

inputs

ఆ�� �య�త��క ��ర� ��వప�ట� �.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5627540.5627540.562754
f
__label__mal

(inputs)

వ����ఒ�ఴం�� � �ం� అ�మ�క���� ��� చ����త�� �MINAEఎ���ర�

inputs

� ��� చ��� (MINAE), ఎ���ర� � వ���� ఒ� �త�� �� ��� �ం� అ�మ�క� వఴం��.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.4553510.4553510.455351
f
__label__mal

(inputs)

���న ఎ�మ�� క��కంక� అ��ర�� � �యల��ట� �ట���� త మ���

inputs

ఎ�మ�� �యల��ట� �ట���� త క��కంక� మ��� అ��ర�� � ప���న.

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.6 0.90.9173830.9173830.917383
base value

0.5887540.5887540.588754
f
__label__mal

(inputs)

ఒ�ప��� ఉణ� ��న �� �ం� �ం� అ�� ఒ�

inputs

ఒ� �ం� ఉణ� త��� ఒ� ��న �� �ం� అ�� చ�క�ప���ఱ�.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.5247870.5247870.524787
f
__label__mal

(inputs)

తరవ�క�� అ�వ�ం �ర��� అ�క�� �ణ����న

inputs

అ�వ�ం �ణ����న అ�క�� �ర��� ఆతరవ�క���� ౖ.
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