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Figure 1: Comparison between CoDiffSplat and baselines. Previous methods are pixel-aligned
and depth-based, often failing to recover geometry in ambiguous or occluded regions (e.g., unseen
surfaces). In contrast, CoDiffSplat leverages semantic embeddings and conditional diffusion to
generate refined 3D Gaussians, enabling high-fidelity reconstruction of uncertain areas. Residual
maps between rendered results and ground truth are shown in the top-right corner.

ABSTRACT

Generalizable 3D Gaussian Splatting (G-3DGS) has emerged as a promising ap-
proach for novel view synthesis under sparse-view settings. However, existing
frameworks remain restricted by pixel-aligned Gaussian estimation, which strug-
gles in regions that are partially observed or occluded, often resulting in incom-
plete geometry and structural collapse. To overcome these challenges, we propose
CoDiffSplat, a new framework that couples semantic-conditioned latent diffusion
with 3D Gaussian splatting. Our design departs from conventional diffusion ap-
plied on image feature maps: instead, a lightweight single-step diffusion directly
refines Gaussian parameters, ensuring efficiency while preserving geometric con-
sistency. In addition, we introduce a Cross-View Entropy-Aware (CEA) module
that aggregates multi-view semantics and geometry into robust conditional em-
beddings, enabling diffusion to resolve ambiguities under occlusion and sparse
overlap. Comprehensive experiments on multiple benchmarks demonstrate that
CoDiffSplat consistently improves geometric quality and structural completeness,
especially under challenging extrapolation settings. Our study establishes con-
ditional diffusion as a scalable refinement mechanism for sparse-view 3D recon-
struction, advancing the reliability of generalizable Gaussian splatting.

1 INTRODUCTION

3D reconstruction is a cornerstone of computer vision, powering applications such as autonomous
driving, virtual reality, and augmented reality. Recently, 3D Gaussian Splatting (3DGS)
has emerged as a powerful paradigm for scene representation and novel view synthesis
(NVS) Buehler et al.| (2001). By modeling a scene as a mixture of 3D Gaussians and leveraging
differentiable rasterization, 3DGS enables high-fidelity and real-time rendering from dense multi-
view images. However, conventional 3DGS methods typically rely on per-scene optimization with
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dense input views, which limits scalability and requires costly data acquisition. To alleviate these
constraints, generalizable 3DGS (G-3DGS) has been developed to reconstruct scenes from only a
few input views. These approaches employ pre-trained feed-forward models (Chen et al.| (2025b);
Charatan et al.| (2024)); Zhang et al.| (2025)); Wewer et al.|(2025) that encode scene priors from large-
scale datasets, enabling rapid inference without scene-specific optimization.

Despite this progress, existing G-3DGS frameworks remain fundamentally restricted by their strong
reliance on pixel-aligned unprojection Charatan et al.|(2024); Chen et al.|(2025b)). Specifically, each
pixel is mapped to a fixed number of Gaussian primitives based on estimated depth, making recon-
struction highly sensitive to depth errors. However, under sparse-view conditions, depth estimation
often suffers from occlusions, weak textures, and limited viewpoint overlap. Moreover, rigid pixel-
level alignment hinders the recovery of unobserved or partially visible regions, frequently producing
‘black holes’ or collapsed structures in the final rendering (Fig. [I)).

To address these limitations, we propose to shift the reconstruction paradigm from pixel-space
alignment to refinement in the Gaussian domain. While previous works attempted to address
uncertainty through depth regularization or feature fusion, they remain inherently constrained by
pixel-level priors. Motivated by the remarkable success of diffusion models in 3D content generation
tasks (such as text-to-3D synthesis [Lin et al.[(2025); |[He et al.[(2025); |Cao et al.|(2024)), we investi-
gate whether diffusion can synthesize missing structures and compensate for uncertainty. Building
on this intuition, we introduce CoDiffSplat, a novel G-3DGS framework that integrates conditional
diffusion to refine initial pixel-aligned Gaussians into geometrically consistent and complete struc-
tures. Unlike conventional diffusion pipelines, which require costly iterative denoising, we show
that a single-step refinement suffices to correct geometric inconsistencies, turning diffusion into an
efficient correction module rather than a full generative process. Consequently, our pipeline both
retains the speed advantages of feed-forward G-3DGS approaches and alleviates the dependency on
perfect depth alignment. However, a key challenge in NVS is the absence of explicit text prompts.
While pseudo-captioning (e.g., BLIP |L1 et al.| (2023)) offers weak supervision, it often overlooks
fine-grained details [Patni et al.| (2024). To address this, we design a Cross-View Entropy-Aware
(CEA) module that fuses multi-view semantic cues with geometry-uncertainty signals, yielding
detail-preserving embeddings that guide the diffusion process toward challenging regions. Tech-
nically, to mitigate the training difficulty and high computational cost associated with diffusion,
CoDiffSplat performs denoising in latent Gaussian space using a lightweight DiT backbone.

The main contributions are summarized as follows:

* We formulate sparse-view G-3DGS as a latent Gaussian refinement problem and present
CoDiffSplat, which employs a lightweight DiT-based diffusion model with a single-step
denoiser to relax rigid pixel alignment and restore missing geometry.

* We propose the CEA module, which combines semantic cues with depth-distribution en-
tropy to emphasize uncertain regions and provide fine-grained conditional guidance for
diffusion.

* We validate CoDiffSplat on standard benchmarks across interpolation and extrapolation
settings, and CoDiffSplat consistently improves fidelity in both settings. In particular, rel-
ative to the SOTA HiSplat |Chen et al.| (2025b), it achieves a +2.32 dB PSNR gain on
RealEstate 10K [Zhou et al| (2018) in extrapolated views, while maintaining competitive
computational efficiency.

2 RELATED WORK

2.1 NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) aims to render photo-realistic images from novel viewpoints using only
a limited set of input images Buehler et al.|(2001). Neural Radiance Fields (NeRF)Mildenhall et al.
(2020); [Yu et al. (2021)); [Pumarola et al.| (2021); [Barron et al.| (2021; [2022)) models scenes as con-
tinuous volumetric radiance fields parameterized by neural networks. While NeRF-based methods
have yielded impressive results in dense multi-view settings, they typically suffer from slow train-
ing times, high memory usage, and suboptimal performance under sparse viewpoints due to their
heavy reliance on per-ray MLP evaluations. In contrast, 3D Gaussian Splatting (3DGS) Kerbl et al.
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(2023); [Yu et al| (2024); [Yang et al.| (2024) introduces an explicit scene representation by model-
ing surfaces with anisotropic 3D Gaussian primitives. Each Gaussian is described by its position,
covariance, color, and opacity, which can be differentiably rendered via a forward projection to the
image plane. This explicit design significantly accelerates the rendering process compared to vanilla
NeREF pipelines, yet many existing 3DGS approaches still assume relatively dense coverage of views
for accurate geometry and appearance reconstruction. Consequently, their performance deteriorates
for extremely sparse inputs, where geometric ambiguity and insufficient texture cues become major
challenges.

2.2  SPARSE-VIEW GENERALIZABLE 3DGS

Sparse-View generalizable 3DGS methods focus on learning a feed-forward model capable of han-
dling unseen scenes without per-scene re-optimization. PixelSplat/Charatan et al.| (2024)) predict 3D
Gaussian parameters from sparse multi-view inputs, leveraging an epipolar transformer for depth
estimation. MVSplat |Chen et al.[(2025b) relies on cost-volume construction via plane sweeping to
infer depth distributions. TranSplat|Zhang et al.|(2025) introduces a transformer-based architecture
with depth-aware deformable matching for coarse-to-fine refinement. HiSplat Tang et al.| (2025b)
integrates hierarchical Gaussian features, leveraging iterative Gaussian alignment. eFreeSplat Min
et al.| (2024)) eliminates epipolar priors by leveraging cross-view completion. DepthSplat |Xu et al.
(2025) bridges Gaussian splatting and depth estimation by leveraging pre-trained monocular depth
features to enhance multi-view depth prediction. Despite these diverse approaches, most still rely
heavily on estimated depth maps, which can become noisy or unreliable under sparse-view condi-
tions. They also often utilize pixel-aligned Gaussian estimation, causing difficulties in recovering
fine details or resolving ambiguities in unseen regions.

2.3 3D-AWARE DIFFUSION METHODS

Recent diffusion-based methods have expanded from 2D image generation to 3D-aware tasks such
as image-to-3D and text-to-3D generation |[Lin et al.|(2025); |Cao et al.| (2024); Nichol et al.[(2022);
Hong et al.|(2024); Li et al.| (2024); Tang et al.|(2025al); |Shi et al.| (2024)); |Yang et al.|(2025). Image-
to-3D approaches attempt to recover 3D content from a single image, but they often suffer from
ambiguity and incomplete geometry due to the lack of multi-view constraints. Text-to-3D pipelines
leverage diffusion priors for novel asset creation, and can be adapted to image inputs through cap-
tioning, thereby unifying the two paradigms. While diffusion provides strong generative flexibility,
existing 3D-aware frameworks typically lack explicit multi-view consistency and assume access to
dense supervision, which limits their applicability in sparse-view reconstruction. These limitations
motivate our work, where we integrate diffusion-based priors with Gaussian splatting to enhance
geometric completeness and robustness under sparse and extrapolated views.

3 METHODOLOGY

Following the G-3DGS framework |Charatan et al.| (2024); |Chen et al.| (2025b)); Zhang et al.| (2025));
Min et al.[(2024); Xu et al.| (2025); |Tang et al.| (2025b)), the input consists of V' sparse-view images
T ={L,Is,..., Iy}, where each image I; € R”*Wx3 js accompanied by its camera projection
matrix derived from intrinsic and extrinsic parameters. The goal is to reconstruct the underlying 3D
scene as a set of Gaussian primitives © = {G,} §V:1, where each primitive G; is parameterized by
its center p;, opacity «;, covariance 3;, and color ¢;. The number of Gaussians is typically set to
N = H x W x V, corresponding to the input resolution and number of views. These primitives are

subsequently rendered into novel views through differentiable Gaussian splatting |[Kerbl et al.| (2023).

As illustrated in Figure [2] CoDiffSplat adopt a latent conditional diffusion paradigm tailored for
sparse-view reconstruction. Specifically, our pipeline comprises two branches: one employ a multi-
view Gaussian encoder to generate a coarse initialization of latent Gaussian parameters, and another
for extracting a Cross-view Entropy-Aware (CEA) embedding as condition of subsequent diffusion
model. Instead of operating over image-space noise or raw latent feature maps, our diffusion back-
bone denoises in the latent space of Gaussian parameters, refining coarse geometry and appearance
under semantic guidance. The refined latent Gaussians are decoded via an upsampling decoder to
produce full-resolution Gaussians.
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Figure 2: QOverview of CoDiffSplat. Given sparse input views, our framework first constructs an
initial set of latent 3D Gaussians through the multi-view Gaussian encoder. In parallel, a frozen
single-view ViT extracts per-view class embeddings, which are fused by the proposed Cross-view
Entropy-Aware (CEA) module to produce a unified multi-view semantic embedding. This embed-
ding conditions the DiT backbone to refine the latent Gaussians, followed by an upsampling decoder
that restores them to the original spatial resolution. The refined 3D Gaussians are rendered to syn-
thesize novel views, and the entire model is optimized end-to-end using photometric loss.

3.1 GAUSSIAN INITIALIZATION

A reliable initialization is essential for stable diffusion-based refinement. We therefore introduce a
multi-view Gaussian encoder that constructs latent 3D Gaussians directly from sparse input views.
By aggregating multi-view features and inferring coarse scene geometry, this module produces a
structured and pixel-aligned Gaussian representation. These initialized Gaussians provide strong
geometric priors, serving as an effective starting point for the subsequent diffusion process.

3.1.1 LATENT FEATURE EXTRACTION

Diffusion models typically require many time steps to converge. Recently, Stable Diffusion |Rom-
bach et al| (2022) introduced an approach that shifts the denoising process into a learned latent
representation, significantly easing optimization. Inspired by this paradigm, we employ a CNN
and Transformer Vaswani et al.[|(2017) architecture to project multi-view images into latent space.
Specifically, each input image I" is first passed through a shallow ResNet to produce
sx downsampled feature maps. To efficienctly integrates cross-view information, we then leverage
a multi-view Swin Transformer |Liu et al/| which contains self- and cross-attention layers to
obtain multi-view-aware features F € R = *C where C is the feature dimension. This remains
computationally tractable while preserving cross-view interactions. We then utilize the multi-view
features to initialize latent Gaussian parameters.

3.1.2 COARSE MATCHING

To establish a reliable geometric prior for the subsequent diffusion process, we construct cost vol-
umes with plane sweeping Xu et al.|(2023));Yao et al|(2018) to model multi-view feature correspon-
dences, which facilitates the initialization of coarse Gaussian parameters. Specifically, for each view
i, we uniformly sample D depth candidates {d,, }2 _, in the inverse depth domain between near and
far planes. Features from other views (F, j # i) are warped to view i using camera parameters and

depth candidate d,,, producing D warped features {Fj_” D_ . The correlation Cflm between F*
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and Fg:i is computed with the dot-product operation:

Cdim:Tm’ m:172,...7D. (1)

We average Cém across all other views to form the cost volume C? € R X% XD, Subsequently,
we apply the softmax operation to compute per-view depth map:

Z" = softmax(C") - A, 2)

where A = [dy,ds,...,dp] are the depth candidates. The coarse depth map Z¢ € REXY s
then unprojected to form preliminary Gaussian centers g using the camera parameters, and other
Gaussian parameters are predicted by additional lightweight heads from feature maps. This ensures
that the initial positions are geometrically consistent with the input views. The constructed cost
volumes C’ are further retained as conditional inputs to the CEA module, providing pixel-wise
structural cues about the scene.

3.2 CONDITIONAL DIFFUSION

While recent works have applied diffusion to 3D reconstruction|Chen et al.| (2025a);'Wu et al.| (2025}
2024), sparse-view NVS suffers from a critical limitation: the generative prior lacks sufficient con-
straints, resulting in unstable refinements and hallucinated geometry. We address this challenge
with a conditional diffusion module tailored for Gaussian splatting. Guided by cross-view entropy-
aware (CEA) embeddings, the diffusion directly refines Gaussian parameters in latent space through
a single-step process, ensuring both efficiency and consistency.

3.2.1 CROSS-VIEW ENTROPY-AWARE EMBEDDING EXTRACTION

Existing conditional embeddings, such as BLIP text features |Li et al.| (2023)), mainly capture global
semantics and tend to overemphasize large salient objects, suppressing fine-grained details and of-
ten causes boundary artifacts [Patni et al.[(2024). Furthermore, since these embeddings are extracted
independently for each view, they contain redundant or overlapping content, which further amplifies
occlusion-induced information loss. To address these issues, we introduce a Cross-View Entropy-
Aware (CEA) embedding that highlights uncertain or weakly constrained regions while consolidat-
ing cross-view redundancy into a comprehensive representation.

We first propose an entropy-aware module that leverages the cost volume C? to compute the match-
ing entropy H', thereby identifying weakly constrained regions (e.g., unseen, occluded, or tex-
tureless areas). A single-view ViT encoder pretrained with DINOv3Siméont et al.[(2025) provides
per-view class embeddings E; ¢ as well as feature maps F*. At each pixel p in view i, the depth
posterior is estimated by applying a softmax along the depth axis of the cost volume:

Pi(d | p) = softmaxy(C'(p,d)). (3)
The matching entropy is then defined as:
H'(p)=—>_ P'(d|p)log P'(d|p), 4)
dea

and further normalized into per-pixel weights w(p). This entropy quantifies the degree of multi-
view uncertainty, where larger values of w’(p) indicate more ambiguous or under-constrained re-
gions. The feature map F” is reweighted accordingly to obtain an entropy-aware representation:

Fi(p) = w'(p) F'(p). 5)
Subsequently, the class embedding E%, ¢ is linearly projected into queries, while the weighted
feature map F* is projected into keys and values:

Q' =E.L; sWo, K =FWg, Vi =FWy. (6)
A cross-attention mechanism then refines the class embedding into an entropy-aware embedding:

El g = CrossAttn(Q’, K, V) + E, (7)
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which adaptively integrates fine-grained cues, especially from regions of high uncertainty.

To further eliminate inter-view redundancy and alleviate the masking effect of large salient ob-
jects, we employ a cross-view Perceiver-style attention mechanism with a set of learnable latent
queries. Denote these learnable queries as Q. By concatenating the refined per-view embeddings
E‘, we construct the keys and values K., and V., respectively, and compute the CEA embeddings
through a cross-attention:

Ecga = CrOSSAttH(Qg, Ky, va). (8)

The resulting representation Ecga aggregates cross-view semantics while suppressing redundant
biases, thereby providing a stable and informative conditioning signal for the subsequent diffusion.

3.2.2 GAUSSIAN-STRUCTURED REPRESENTATION

Although Gaussian primitives are inherently unordered point sets, our initialization procedure
imposes a pixel-to-Gaussian mapping, enabling the latent parameter tensor to be structured as
©; € RBxVxhxwxC where B denotes the batch size, V' the number of views, h X w = % X %
the latent spatial resolution, and C' the dimensionality of Gaussian parameters. This structured rep-
resentation aligns with the pixel domain and facilitates efficient parameter organization. However,
directly applying convolutional architectures such as UNet Ronneberger et al.| (2015) to this ten-
sor may introduce spurious grid-based inductive biases, which can potentially oversmooth Gaussian
distributions and compromise geometric fidelity. To better respect the unordered nature of Gaussian
primitives, we instead employ a transformer-based diffusion backbone. Specifically, we flatten the
structured tensor into a sequence of tokens:

©; = rearrange(0;, B Vh w C =B (Vhw) C), 9)

and process it using a Diffusion Transformer (DiT) backbone [Peebles & Xie| (2023)), which is well
suited for irregular and unordered data.

3.2.3 SINGLE-STEP REFINEMENT

Motivated by recent findings that single-step diffusion suffices for refinement tasks Wu et al.[(2025));
Lin et al.| (2024); Qu et al| (2025), we design the diffusion stage as a residual correction module
rather than a full generative process. Specifically, the initialized latent Gaussians as ©; can be
served as coarse but noisy approximations of the target distribution. The refinement is performed
through a single-step correction:

©1 = O, + f9(©1,Ecpa), (10)
where fy is a DiT-based predictor conditioned on CEA embeddings Ecga. This one-step formula-

tion mitigates structured noise while preserving geometric consistency, avoiding the overcorrection
and instability often observed in multi-step denoising |Lin et al.[(2024);|Qu et al.| (2025).

3.3 RENDERING AND TRAINING LOSS

Datasets for NVS do not provide explicit ground-truth 3DGS supervision, which prevents the use of
a conventional forward-reverse diffusion process. In particular, there is no well-defined target do-
main for injecting noise, and thus no tractable formulation for noise prediction. We therefore adopt
a straightforward latent estimation scheme that directly predicts the denoised Gaussian parameters.
Consequently, the training objective reduces to a photometric reconstruction loss. The generated
Gaussian parameters O are used to render novel views via 3DGS’s differentiable rasterization [Kerbl
et al.[ (2023). The model is trained end-to-end using a photometric loss between rendered images
R(#) and ground truth target views Zy, combining ¢, and LPIPS [Zhang et al.{(2018b)) terms:

Lohoto = ||R(O) — Ty |3 + 0.05 - LPIPS(R(O), Zy). (11)
4 EXPERIMENTS AND DISCUSSIONS

4.1 EXPERIMENTAL SETTINGS

We train and evaluate our approach on two large-scale datasets, RealEstate10K [Zhou et al.| (2018)
and ACID |Liu et al.| (2021a). RealEstatelOK contains home walkthrough videos from YouTube,
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Table 1: Comparison of interpolated NVS. We evaluate performance on the RealEstate10K and
ACID datasets by rendering three novel interpolation views from two reference viewpoints, aver-
aging across all scenes. The dataset’s training and testing split follows the identical protocol estab-
lished by pixelSplat. Note that 3DGS-based methods render extremely fast (~ 500FPS).

RealEstate10K ACID Inference Time

Method PSNRT SSIM{ LPIPS| PSNRT SSIM{ LPIPS| (s)

pixelSplat/Charatan et al.[(2024)  25.89 0.858 0.142 28.14 0.839 0.150 0.104
MV Splat|Chen et al.|(2025b) 26.39 0.869 0.128 28.25 0.843 0.144 0.044
eFreeSplat|Min et al.|(2024) 26.45 0.865 0.126 28.30 0.851 0.140 0.061
TranSplat|Zhang et al.|(2025) 26.69 0.875 0.125 28.35 0.845 0.143 0.087
HiSplat Tang et al.|(2025b) 27.21 0.881 0.117 28.75 0.853 0.133 0.510
CoDiffSplat (Ours) 27.56 0.888 0.114 28.77 0.855 0.133 0.089

Table 2: Comparison of extrapolated NVS on RealEstate10K. We evaluate model performance
on RealEstate 10K by rendering three novel extrapolated views from two reference views, averaging
across all scenes under identical training settings.

Method PSNR?T SSIM?T LPIPS|
pixelSplat/Charatan et al.[(2024) 21.76 0.779 0.217

MV Splat|Chen et al.[(2025b) 21.92 0.787 0.199
TranSplat|Zhang et al.|(2025) 21.89 0.791 0.201
HiSplat Tang et al.|[(2025b) 22.01 0.794 0.191
CoDiffSplat (Ours) 24.33 (+2.32)  0.846 (+0.052)  0.152 (—0.039)

comprising 67,477 training scenes and 7,289 testing scenes. ACID consists of aerial nature footage
captured by drones, split into 11,075 training scenes and 1,972 testing scenes. Both datasets are cal-
ibrated via Structure-from-Motion (SfM) |Schonberger & Frahm| (2016)), which provides per-frame
camera intrinsics and extrinsics. Following prior works |Charatan et al.| (2024); |Chen et al.| (2025b),
we use two context images as input and render three novel target views for each test scene. To assess
the model’s comprehensive understanding of 3D scenes, we evaluate not only conventional interpo-
lated N'VS but also extrapolated NVS, where target viewpoints lie beyond the reference range. We
adopt the training curriculum from pixelSplat/Charatan et al.|(2024), increasing the sampling interval
of target views up to 45 frames before and after the reference views to accommodate extrapolation.
To evaluate visual fidelity, we compare the images rendered by each method with the corresponding
ground truth frames by computing a peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM)|Wang et al.| (2004), and perceptual distance (LPIPS)|{Zhang et al.[(2018a)). Please refer to the
Appendix for implementation details. We also conduct zero-shot cross-dataset generalization
experiments following the MV Splat protocol, which are discussed in detail in Appendix [A.2.T]

4.2 MAIN RESULTS
4.2.1 INTERPOLATED NOVEL VIEW SYNTHESIS

Table [I] shows that CoDiffSplat achieves better performance on both RealEstate]10K and ACID.
While prior G-3DGS approaches differ in architectural details, they all rely on pixel-aligned Gaus-
sian parameter estimation in a purely feed-forward manner, which often leads to blurred details,
geometric distortions, or failure in occluded regions (Figure [3). In contrast, our conditional dif-
fusion leverages CEA embeddings that effectively fuse semantic and geometric cues across views,
enabling accurate reconstruction of fine structures and hidden surfaces. Importantly, the single-step
refinement introduces only marginal computational overhead (0.089s per frame), remaining compet-
itive with lightweight baselines while being substantially faster than HiSplat (0.510s). These results
demonstrate that CoDiffSplat achieves a favorable balance between efficiency and reconstruction
fidelity, with enhanced generalization in both indoor and outdoor sparse-view settings. Additional
qualitative comparisons on RealEstate 10K are provided in Appendix

4.2.2 EXTRAPOLATED NOVEL VIEW SYNTHESIS

To further assess the generalization ability of our model, we evaluate on extrapolated viewpoints that
fall outside the range of input views. This constitutes a more challenging setting for NVS, leading
to increased uncertainty and unobserved regions. As summarized in Table [2} CoDiffSplat achieves
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Ground Truth pixelSplat MVSplat HiSplat

Figure 3: Qualitative comparison of interpolated NVS. The first two columns show sparse input
views, while the third column presents the ground truth for the target interpolated view between
them. CoDiffSplat better reconstructs fine details and occluded regions (highlighted in red) in both
indoor (RealEstate10K, top two rows) and outdoor (ACID, bottom two rows) settings.

Inputs Ground Truth MV Splat HiSplat Ours

Figure 4: Qualitative results for extrapolated NVS on RealEstate10K. Baseline methods exhibit
voids and distorted geometry in unseen regions, while CoDiffSplat reduces missing-geometry arti-
facts and better preserves boundary structures.

consistent improvements (+2.32 dB PSNR and 20% LPIPS reduction over the best baseline). As
shown in Figure ] pixel-aligned estimators (MVSplat and HiSplat) often produce “black holes”
or geometric artifacts in unseen areas. In contrast, our method reduces missing-geometry artifacts
and preserves fine structures. We attribute these gains to CEA conditioning and the single-step
diffusion refinement, which regularizes Gaussian parameters with semantic cues beyond pixel-level
correspondences.

4.3 ABLATION STUDIES
4.3.1 ABLATIONS ON DIFFUSION STRATEGY

We ablate our diffusion strategy from three aspects: (i) removing diffusion (w/o Diffusion), where
the initial Gaussians are directly upsampled for rendering, (ii) replacing the DiT backbone with a
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Table 3: Ablations of CoDiffSplat. Models trained on RealEstate] 0K with two input views. w/o
Diffusion removes the diffusion process and renders directly from the initial Gaussians. w/ UNet
Backbone substitutes the DiT with a 2D UNet. Full (10 steps) introduces multi-step diffusion.

Setup PSNRT SSIMT LPIPS]
w/o Diffusion 2547 (-2.09) 0.849 (-0.039) 0.149 (+0.035)
w/ UNet Backbone ~ 26.71 (-0.85)  0.873 (-0.015)  0.123 (+0.009)
Full (10 steps) 27.05(-0.51) 0.876 (-0.012) 0.118 (+0.004)
Full (1 step) 27.56 0.888 0.114

Table 4: Ablations on conditional embeddings. Models trained on RealEstate10K with two input
views. CEA outperforms DINOv3, CLIP, and BLIP-2 under identical conditioning interfaces and
training settings. Green indicates drops relative to the best model (CEA).

Setup PSNRT SSIMT LPIPS]

Class Embedding  26.13 (-1.43)  0.859 (-0.029)  0.139 (+0.025)

CLIP Embedding 26.41 (-1.15) 0.867 (-0.021)  0.126 (+0.012)

BLIP Embedding 26.54 (-1.02) 0.870 (-0.018) 0.125 (+0.011)

CEA Embedding  27.56 0.888 0.114

2D UNet (w/ UNet Backbone), and (iii) varying the number of diffusion steps (Full (10 steps)).
As summarized in Table [3} excluding diffusion significantly degrades performance, indicating its
necessity for effective refinement. Replacing DiT with a UNet also lowers accuracy, which we
attribute to the inductive bias of convolutional backbones that enforce 2D grid structures, unsuitable
for unordered 3D Gaussian primitives. Moreover, while classical diffusion models typically rely on
multi-step denoising, we find that single-step diffusion yields better balance of fidelity and stability,
outperforming the 10-step variant by +0.5dB PSNR. We hypothesize that additional steps introduce
stochastic perturbations that accumulate into over-smoothing and hallucinated structures. Further
qualitative comparisons are provided in Appendix[A.2.2]

4.3.2 ABLATIONS ON CONDITIONAL EMBEDDINGS

To isolate the effect of conditioning, we compare the proposed Cross-view Entropy-Aware (CEA)
embedding with three common alternatives: (i) a class embedding from a DINOv3-pretrained ViT,
(ii) a CLIP image—text embedding, and (iii) a BLIP-2 pseudo-caption embedding. All embeddings
are used under identical training and injection settings. As shown in Table d] CEA achieves con-
sistent gains over the alternatives; for example, it improves PSNR by +1.02 dB over the next best
variant (BLIP) and reduces LPIPS by ~8.8%. We attribute this gap to CEA’s cross-view fusion and
entropy-aware weighting, which emphasize uncertain regions and thereby reduce missing-geometry
artifacts and boundary erosion. For more qualitative discussions, please refer to the Appendix

5 CONCLUSION

In this work, we propose CoDiffSplat, a novel G-3DGS framework for novel view synthesis from
sparse-view inputs. Unlike prior methods that rely on pixel-aligned Gaussian estimation, our ap-
proach leverages single-step conditional diffusion to refine the Gaussians, effectively compensat-
ing and refining geometry in partially observed or uncertain scenes. To enhance both global se-
mantic coherence and fine-grained detail awareness, we introduce a Cross-View Entropy-Aware
module that produces semantically rich embeddings for conditioning the diffusion. Extensive ex-
periments on multiple datasets demonstrate that CoDiffSplat significantly enhances reconstruction
fidelity, particularly in occluded and unseen regions. These results highlight the promising poten-
tial of diffusion-based paradigms in generalizable 3DGS. However, extreme extrapolation remains
challenging, where geometric collapse can still occur. Furthermore, our current training is limited
to RealEstate 10K and ACID. Scaling to broader datasets or jointly training across diverse domains
may unlock richer and more robust diffusion priors.
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