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Abstract

Modeling multivariate time series as temporal signals over a (possibly dynamic)
graph is an effective representational framework that allows for developing models
for time series analysis. Spatiotemporal graphs are often highly sparse, with
time series characterized by multiple, concurrent, and even long sequences of
missing data, e.g., due to the unreliable underlying sensor network. In this context,
autoregressive models can be brittle and exhibit unstable learning dynamics. The
objective of this paper is to tackle the problem of learning effective models to
reconstruct, i.e., impute, missing data points by conditioning the reconstruction
only on the available observations. In particular, we propose a novel class of
attention-based architectures that, given a set of highly sparse discrete observations,
learn a representation for points in time and space by exploiting a spatiotemporal
propagation architecture aligned with the imputation task. Representations are
learned end-to-end to reconstruct observations w.r.t. the corresponding sensor
and its neighboring nodes. Compared to the state of the art, our model handles
sparse data without propagating prediction errors or requiring a bidirectional
model to encode forward and backward time dependencies. Empirical results on
representative benchmarks show the effectiveness of the proposed method.

1 Introduction
Exploiting structure – both temporal and spatial – is arguably the key ingredient for the success of
modern deep-learning architectures and models. This is the case with spatiotemporal graph neural
networks (STGNNs) [1–3], which learn to process multivariate time series while taking into account
underlying space and time dependencies by encoding structural spatiotemporal inductive biases in
their architectures. However, even when spatiotemporal relationships are present, available data are
almost always incomplete and irregularly sampled, both spatially and temporally. This is definitely
true for data coming from real sensor networks (SNs), where missing time series observations are
usually imputed with simple interpolation strategies before proceeding with the downstream task.
More advanced methods deal with missing data by autoregressively replacing missing observations
with predicted ones, eventually using bidirectional architectures [4, 5] to exploit both forward and
backward temporal dependencies. To account also for spatial dependencies, Cini et al. [6] introduced
a method, named GRIN, combining a bidirectional autoregressive architecture with message passing
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neural networks [7–10]. Despite being the state of the art in spatiotemporal imputation, GRIN can
suffer from the error propagation typical of autoregressive models [11, 12]. In fact, we argue that the
propagation of imputed (biased) values through space and time combined with noisy observations
might exacerbate error accumulation in highly sparse data and drive the hidden state of GRIN-like
models to drift away.

In this paper, we aim at tackling this problem by designing an architecture based on a novel at-
tention mechanism that takes spatiotemporal sparsity into account while learning representations
and imputing missing values. Compared with the alternatives discussed so far, our method exploits
a novel spatiotemporal propagation process to learn a predictive representation for each missing
observation by relying only on observed values propagated through the spatiotemporal structure.
This approach achieves the twofold objective of avoiding propagating biased representation – typical
in the autoregressive framework – and reconstructing observations at arbitrary nodes in the sensor
network. In summary, our main contributions are:

1. the introduction of a sparse spatiotemporal attention mechanism to learn, from sparse data,
representations localized in time and space;

2. the design of a novel STGNN based on the aforementioned spatiotemporal attention mechanism
and equipped with inductive biases that make the model tailored for the multivariate time series
imputation task;

3. an empirical assessment of the proposed method showing how it overcomes the limits of existing
approaches, particularly in settings with highly sparse data.

2 Problem formulation and related works
We denote by Xt ∈ RN×d the matrix collecting the d-dimensional measurements of N sensors (or
measurement stations) in a SN at time step t, with Xt:t+T being the sequence of T measurements
collected in the time interval [t, t + T ). We model functional relationships among the sensors as
graph edges, represented by the weighted adjacency matrix A ∈ RN×N , in which each nonzero
entry ai,j indicates the weight of the edge going from the i-th node to the j-th. We assume to have
available sensor-level covariates Qt ∈ RN×dq that act as spatiotemporal coordinates to localize
a point in time and space (e.g., date/time features and geographic location). To account for data
availability, we use a binary mask mt ∈ {0, 1}N whose i-th element mi

t is 1 if the measurements
associated with the i-th sensor are valid at time step t. Conversely, if mi

t = 0, we consider the
measurements xi

t to be completely missing, with the exogenous variables qi
t being instead available.

Finally, we model the multivariate, structured time series as a discrete sequence of graphs, where
each graph is a tuple Gt = ⟨Xt,Qt,mt,A⟩. Denoting by X̃t:t+T the unknown corresponding
complete sequence, the goal of multivariate time series imputation (MTSI) is to find an estimate
X̂t:t+T minimizing the reconstruction error over the missing data points. Notice that, since X̃t:t+T

is not available, one should find a surrogate objective or simulate the presence of missing data, for
which the reconstruction error can be computed.

Related works. Multivariate time series imputation is a core task in time series analysis and deep
learning methods are commonly used in this regard. In particular, deep autoregressive models based
on recurrent neural networkss (RNNs) are currently among the most widely adopted methods [4, 5,
13, 14]. Several approaches in the literature, then, rely on generative adversarial neural networks [15]
to generate imputed subsequences by matching the underlying data distribution [14, 16, 17]. Recently,
several attention-based imputation techniques have also been proposed [18–20]. More related to
our work, GRIN [6] uses a bidirectional graph RNN with a message passing spatial decoder, to
impute time series based on spatiotemporal dependencies. The attention mechanism [21, 22] has
been exploited in several contexts within the graph deep learning literature [23–26]. In particular,
TraverseNet [27] is specially related to our work, since it relies on spatiotemporal autoregressive
attention to compute messages exchanged between nodes.

3 Methodology
The autoregressive approach to reconstruction consists in directly modeling distributions p

(
xi
t |X<t

)
,

with X<t being the sequence of observations prior to time step t, and using one-step-ahead forecasting
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as a surrogate objective to learn how to recover missing observations. To also consider X>t, i.e., data
subsequent to the target time step, it is common to use a bidirectional architecture which models also
p
(
xi
t |X>t

)
[5, 28]. Moreover, a third component p

(
xi
t | {x

j ̸=i
t }

)
must be introduced to account for

spatial information at each step. Architectures like GRIN, follow exactly this scheme with different
components dedicated to model each of these three aspects. While being effective in practice, these
approaches can have multiple drawbacks. Besides the computational overhead of having three separate
components and the compounding error in the autoregressive models [11, 12], they can fall short in
capturing global context, as the processing of the structural information is decomposed. Furthermore,
merging the information coming from the different modules is also problematic, yielding to further
compounding of errors. Finally, in the case of highly sparse observations, the spatial processing
should be dealt with special care as propagating information through partially observed spatiotemporal
graphs adds another layer of complexity.

Our approach, named Spatiotemporal Point Inference Network (SPIN), is a graph attention network
for MTSI, designed to learn representations of discrete points associated with nodes of a sequence of
spatiotemporal graphs. We denote as observed set Xt:t+T =

{〈
xi
τ , q

i
τ

〉
|mi

τ = 1 ∧ τ ∈ [t, t+ T )
}

the set of all observations, paired with their spatiotempotal coordinates. Conversely, we name target
set Yt:t+T =

{
qi
τ |mi

τ = 0 ∧ τ ∈ [t, t+ T )
}

the complement set collecting the coordinates of the
discrete spatiotemporal points for which we want to reconstruct an observation. Then, for all discrete
points qi

τ ∈ Yt:t+T , SPIN is trained to learn a model

fθ(q
i
τ | Xt:t+T ,A) ≈ E

[
p
(
xi
τ | qi

τ ,Xt:t+T ,A
)]

. (1)
To this end, SPIN learns a parameterized propagation process where each representation, correspond-
ing to a node and time step, is updated by aggregating information from all the available observations
acquired at neighboring nodes, weighted by input-dependent attention scores. The core component of
SPIN is a novel sparse spatiotemporal attention layer (Figure 1) used to propagate information at the
level of single observations. Indeed, leveraging on the attention mechanism, we learn representations
for each i-th node at each τ -th time step by simultaneously aggregating information from (1) the
observed set of i-th node X i

t:t+T ; (2) the observed set X j
t:t+T of each j ∈ N (i), i.e., the set of

neighbors of the i-th node.

Temporal Self-attention

  time  

Spatiotemporal Cross-attention

+ MLP

Valid / missing observation  Encoding (valid / missing observation)

Skip Connection

Spatiotemporal point (missing query / valid key / missing key)/ / //

Figure 1: Example of the sparse spatiotemporal attention layer acting for updating h
i,(l)
τ , by simulta-

neously performing inter-node spatiotemporal cross-attention and intra-node temporal self-attention.

Let hi,(l)
τ ∈ Rdh be the learned representation for the i-th node and time step τ at the l-th layer. The

encoding is initialized as MLP
(
xi
τ , q

i
τ

)
if observation xi

τ is valid, or MLP
(
qi
τ

)
otherwise, where

MLP is a multi-layer perceptron. The next steps involve computations of spatiotemporal messages,
i.e., representations computed to propagate information from one discrete space-time point to another.
We indicate the propagation along the temporal dimension from time step s to time step τ as subscripts
s → τ . Similarly, superscripts j → i indicate messages sent from the j-th node to the i-th. To avoid
overloading the notation, we omit the layer superscript in the following. The message rj→i

s→τ ∈ Rdh

from the j-th node at time step s to the i-th node at time step τ is computed with an MLP taking
as input both source and target representations (Eq. 2). To account for spatial information, this
mechanism is used to perform an inter-node temporal cross-attention, computing a message to hi

τ

using encodings in hj
t:t+T associated with a valid observation for every neighbor j ∈ N (i) (Eq. 3).

rj→i
s→τ = MLP

(
hj
s,h

i
τ

)
(2) Rj→i

τ = {rj→i
s→τ |

〈
xj
s, q

j
s

〉
∈ Xt:t+T } (3)

Messages in Rj→i
τ are then weighted by message scores αj→i

s→τ , computed by a linear projection of
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Table 1: Performance (MAE) with increasing data sparsity (average over 5 evaluation masks).

METR-LA PEMS-BAY AQI
5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

BRITS 5.87 ± 0.03 7.26 ± 0.06 8.29 ± 0.07 4.14 ± 0.05 5.41 ± 0.08 5.84 ± 0.04 24.09 ± 0.30 31.90 ± 0.26 37.62 ± 0.42
SAITS 4.73 ± 0.07 6.66 ± 0.05 7.27 ± 0.03 3.88 ± 0.09 7.62 ± 0.21 8.01 ± 0.11 20.78 ± 0.30 30.16 ± 0.39 36.34 ± 0.33
Transformer 6.03 ± 0.04 7.19 ± 0.05 8.06 ± 0.05 3.69 ± 0.06 5.09 ± 0.05 6.02 ± 0.04 29.21 ± 0.33 33.62 ± 0.16 37.31 ± 0.14
GRIN 3.05 ± 0.02 4.52 ± 0.05 5.82 ± 0.06 2.26 ± 0.03 3.45 ± 0.06 4.35 ± 0.04 15.62 ± 0.24 22.08 ± 0.39 29.03 ± 0.42

SPIN 2.71 ± 0.02 3.32 ± 0.02 3.87 ± 0.05 1.78 ± 0.03 2.15 ± 0.03 2.41 ± 0.02 14.29 ± 0.24 18.71 ± 0.34 24.34 ± 0.46
SPIN-H 2.64 ± 0.02 3.17 ± 0.02 3.61 ± 0.04 1.75 ± 0.04 2.16 ± 0.03 2.48 ± 0.02 14.55 ± 0.26 19.37 ± 0.36 25.38 ± 0.37

the messages in Rj→i
τ followed by a softmax layer, and aggregated to obtain an edge-level context

vector ej→i
τ , encoding the observed sequence at each j-th node w.r.t. the i-th node and time step τ .

Analogously, to account for the observed sequence of the i-th node itself, we exploit an intra-node
temporal self-attention mechanism to compute messages from the encodings hi

t:t+T corresponding to
valid observations, aggregated (weighted by message scores) to obtain a temporal context vector ciτ .
Then, target representation h

i,(l)
τ is updated with a final aggregation step (Eq. 4), and imputations for

all spatiotemporal points in Yt:t+T are obtained – after L layers – with a nonlinear readout (Eq. 5).

hi,(l+1)
τ = MLP

(
hi,(l)
τ , ci,(l)τ ,

∑
j∈N (i)

ej→i,(l)
τ

)
(4)

Ŷt:t+T = {x̂i
τ = MLP

(
hi,(L)
τ

)
| qi

τ ∈ Yt:t+T } (5)

Hierarchical attention. Roughly speaking, the proposed spatiotemporal attention mechanism can
be viewed as performing attention over the spatiotemporal graph S, obtained by considering the
product graph between space and time dimensions. Performing graph attention on the surrogate graph
S has time and memory complexities that scale with O((N + E)T 2), with N,E being the largest
number of nodes and edges, respectively, among graphs in Gt:t+T . To reduce this computational
burden – which undermines the application of the proposed method to large graphs and long time
horizons – we propose to rewire the attention mechanism to be hierarchical [29]. We do this by
adding K dummy nodes that act as hubs for propagating information. In this way, we can reduce the
spatiotemporal attention complexity to O((N + E)KT ), with K ≪ T , at the cost of introducing an
information bottleneck. We refer to Appendix B for a detailed explanation of this mechanism.

4 Empirical evaluation
In this section, we evaluate our method on three real-world datasets and compare the performance
against state-of-the-art methods and standard approaches for MTSI. In following experiment, we
consider both SPIN and the hierarchical version SPIN-H. The figure of merit used is the mean
absolute error (MAE), averaged across imputation windows. We consider only the out-of-sample
scenario similarly to previous works [6], in which every parametric model is trained and tested on
disjoint sets. We consider three openly available datasets coming from real-world SNs. The first
two, namely PEMS-BAY and METR-LA [2], record traffic measurements and are both widely used
benchmarks in spatiotemporal forecasting literature. We use the same setup of [6] to inject missing
data with Point missing policy, in which we randomly drop 25% of the available data. As a third
dataset, we consider AQI [30, 31], which collects hourly measurements of air pollutants from 437 air
quality monitoring stations in China. We consider also a smaller version of this dataset (AQI-36) with
only the 36 sensors in the city of Beijing. We use the same missing data distribution used in [6, 31].
In all settings, all the valid observations masked out are used as targets for evaluation. We obtain
an adjacency matrix from the pairwise distance of sensors following previous works [2, 3, 6]. We
compare our methods against (1) GRIN [6], a graph-based bidirectional RNN for MTSI with state-
of-the-art performance; (2) a spatiotemporal Transformer, where we alternate temporal and spatial
Transformer encoder layers from [21] and replace missing values with a [MASK] token (as in [32]); (3)
SAITS [18], a recent attention-based architecture; (4) BRITS [5], which leverages on a bidirectional
RNN. We assess how performance changes as the percentage of missing values increases. In practice,
we change the missing data distribution at test time, simulating the case in which, at each time step,
every sensor has a constant probability p̄ of going offline for a random number S ∼ U(12, 36) of
future (consecutive) time steps. Table 1 shows results for all datasets with p̄ = 5%, p̄ = 10%, and
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p̄ = 15%. Note that, depending on the dataset, the portion of valid observations in each of these
cases amounts to ≈ 25-30%, ≈ 8-10%, and ≈ 3-4%, respectively. SPIN models, differently from
the baselines, can handle all the considered scenarios. In particular, improvements in performance
w.r.t. the best performing baseline (GRIN) are more evident as the number of available observations
decreases. Indeed, the sparse spatiotemporal attention mechanism of SPIN is not autoregressive and
allows an unbounded memory capacity. Note also that SPIN-H performs on par (and in some cases
better) with SPIN, making it a valid lightweight alternative to SPIN. In Appendix A, we show that
SPIN-based models perform on par or better than state-of-the-art methods on standard benchmarks.
The code to reproduce the experiments of the paper is available online2.

5 Conclusions
We introduced a graph-based attention network, named SPIN, to reconstruct missing observations in
sparse spatiotemporal time series. We showed how the time and space complexities of the approach
can be drastically reduced by considering a novel hierarchical attention mechanism. Empirical
analysis shows that the proposed method widely outperforms state-of-the-art methods for imputation
in highly sparse settings. Future works could investigate the application of SPIN in other time series
analysis tasks (e.g., forecasting), as well as in settings with an underlying dynamic graph topology.
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Appendix

A Performance on standard benchmarks
Table 1, in the main paper, shows the reconstruction error of the different methods as the number
of valid observations in input sequences decreases. To assess the performance of our model in
standard settings (denser observations), we test all the methods on the original datasets introduced
in section 4. For the traffic datasets, we also consider a different evaluation mask, where data are
removed according to the Block missing policy [6], in which we randomly mask out 5% of the
available data and, in addition, we simulate failures of S ∼ U(12, 48) consecutive steps with 0.15%
probability. For this experiment, we consider also additional baselines: (1) node-level sequence mean
(MEAN); (2) neighbors mean (KNN); (3) Matrix Factorization (MF); (4) MICE [33]; (5) VAR, a vector
autoregressive one-step-ahead predictor; (6) rGAIN, an adversarial approach which shares similarities
with GAIN [16] and SSGAN [14]. Table 2 shows the results in terms of MAE. Whenever possible,
we use results from [6].

Table 2: Performance (in terms of MAE) averaged over multiple independent runs.

Block missing Point missing Simulated failures

PEMS-BAY METR-LA PEMS-BAY METR-LA AQI-36 AQI

Mean 5.46 ± 0.00 7.48 ± 0.00 5.42 ± 0.00 7.56 ± 0.00 53.48 ± 0.00 39.60 ± 0.00

KNN 4.30 ± 0.00 7.79 ± 0.00 4.30 ± 0.00 7.88 ± 0.00 30.21 ± 0.00 34.10 ± 0.00

MF 3.28 ± 0.01 5.46 ± 0.02 3.29 ± 0.01 5.56 ± 0.03 30.54 ± 0.26 26.74 ± 0.24

MICE 2.94 ± 0.02 4.22 ± 0.05 3.09 ± 0.02 4.42 ± 0.07 30.37 ± 0.09 26.98 ± 0.10

VAR 2.09 ± 0.10 3.11 ± 0.08 1.30 ± 0.00 2.69 ± 0.00 15.64 ± 0.08 22.95 ± 0.30

rGAIN 2.18 ± 0.01 2.90 ± 0.01 1.88 ± 0.02 2.83 ± 0.01 15.37 ± 0.26 21.78 ± 0.50

BRITS 1.70 ± 0.01 2.34 ± 0.01 1.47 ± 0.00 2.34 ± 0.00 14.50 ± 0.35 20.21 ± 0.22

SAITS 1.56 ± 0.01 2.30 ± 0.01 1.40 ± 0.03 2.26 ± 0.00 18.16 ± 0.42 21.33 ± 0.15

Transformer 1.70 ± 0.02 3.54 ± 0.00 0.74 ± 0.00 2.16 ± 0.00 11.98 ± 0.53 18.11 ± 0.25

GRIN 1.14 ± 0.01 2.03 ± 0.00 0.67 ± 0.00 1.91 ± 0.00 12.08 ± 0.47 14.73 ± 0.15

SPIN 1.06 ± 0.01 1.97 ± 0.01 0.71 ± 0.01 1.90 ± 0.01 11.77 ± 0.74 14.00 ± 0.13

SPIN-H 1.06 ± 0.01 2.05 ± 0.03 0.74 ± 0.02 1.96 ± 0.04 11.08 ± 0.06 14.39 ± 0.03

Both SPIN methods outperform the baselines in almost all scenarios. As expected, improvements
are more evident when entire blocks of data are missing, as in AQI datasets and block missing
settings. With respect to the spatiotemporal Transformer, SPIN performs better in all settings except
for AQI-36, which can be attributed to the ineffectiveness of spatial attention alone in determining
the dependencies among the different spatial locations.

B Hierarchical attention
In section 3 we introduced a hierarchical attention mechanism to reduce the computational complexity
of the spatiotemporal attention mechanism in SPIN. In particular, such a mechanism acts by adding
K hub nodes that selectively propagate information through the graph. Let Zi ∈ RK×dz be the hub
nodes’ representations for central node i, and then, for hub k proceed as follows.

1. Update zi
k by querying {hi

τ |
〈
xi
τ , q

i
τ

〉
∈ Xt:t+T }, i.e., node encodings associated with valid

observations, obtaining z̃i
k;

2. Update node encoding hi
τ by querying updated Z̃i and Z̃j of every j-th neighbor in N (i).

The spatiotemporal attention is effectively split into two phases. At first, we update each hub node
representation similarly as done for the edge-level and temporal context vectors:

riτ,k = MLP
(
hi
τ , z

i
k

)
(6)

Ri
k = {riτ,k |

〈
xi
τ , q

i
τ

〉
∈ Xt:t+T } (7)

cik =
∑

τ : ri
τ,k∈Ri

k

αi
τ,k · riτ,k (8)

z̃i
k = MLP

(
zi
k, c

i
k

)
(9)
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Figure 2: The architecture of SPIN. At first, we encode observations Xt:t+T and spatiotemporal
coordinates Qt:t+T , obtaining initial representations H(0)

t:t+T . The representations are updated by a
stack of L sparse spatiotemporal attention blocks. Final imputations are obtained from H

(L)
t:t+T with

a nonlinear readout.

Then, we obtain context vectors from the updated hub representations as:

rik,τ = MLP
(
z̃i
k,h

i
τ

)
(10)

ciτ =
∑
k

αi
k,τ · rik,τ (11)

rj→i
k,τ = MLP

(
z̃j
k,h

i
τ

)
(12)

ej→i
τ =

∑
k

αj→i
k,τ · rj→i

k,τ (13)

and update node representation hi
τ as in Eq. (4). We initialize the hub representations at layer l = 0

with random trainable parameters. While similar methods to amortize the cost of the attention layer
have been explored in different contexts [29, 34], to the best of our knowledge there are no analogous
methods tackling efficient computation of spatiotemporal attention coefficients in STGNNs.

C Detailed experimental setup
In this appendix, we discuss in detail the experimental settings. We use the same setup of Cini et al.
[6]3,4. We refer to [6] for details on these baselines.

For SPIN, we use the same hyperparameters in all datasets: L = 4 layers; hidden size dh = 32; 2
layers with hidden size 32 for every MLP; ReLU activation functions. Masking out tokens in the
target set allows SPIN to propagate only valid information. As a downside, this results in blocking
the flow of information on paths through points in the target set. This can be problematic when
the input observations are extremely sparse. Nonetheless, it is reasonable to assume that, after only
a few propagation steps, the available information has already been partially diffused to locations
with missing observations. At this point, blocked paths can be unlocked, allowing for reaching
higher-order neighborhoods. In practice, we introduce a hyperparameter η = 3 to control the number
of layers with masked connections and effectively split the propagation process into two phases. It is
important to notice that what is being propagated in the second phase are learned representations, not
observations (unavailable for masked tokens).

For SPIN-H, we use similar hyperparameters, but 5 layers (with η = 3); K = 4 hubs per node with
dz = 128 units each. These hyperparameters have been selected among a small subset of options on
the validation set; we expect far better performance to be achievable with further hyperparameter
tuning. Depending on the dataset, the number of parameters ranges from ≈ 55K to ≈ 95K for
SPIN and ≈ 540K to ≈ 800K for SPIN-H. We use Adam optimizer [35], learning rate lr = 0.0008
and a cosine scheduler with a warm-up of 12 steps and (partial) restarts every 100 epochs. We train
our models with 300 mini-batches of 8 random samples per epoch, fixing the maximum number of
epochs to 300 and using early stopping on the validation set with patience of 40 epochs. Due to
constraints on memory capacity on some of the GPUs (see the description of the hardware resources
below), for SPIN-H we set the batch size to 6 and 16 in AQI and AQI-36, respectively.

To train SPIN-based models, we minimize the following loss function:

L =

L∑
l=1

∑
qi
τ∈Yt:t+T

ℓ
(
x̂
i,(l)
τ ,xi

τ

)
|Yt:t+T |

, (14)

where ℓ ( · , · ) is the absolute error and x̂
i,(l)
τ is l-th layer imputation for the i-th node at time step τ .

Note that, to provide more supervision to the architecture, the loss is computed and backpropagated
3https://github.com/Graph-Machine-Learning-Group/grin
4https://github.com/TorchSpatiotemporal/tsl

9

https://github.com/Graph-Machine-Learning-Group/grin
https://github.com/TorchSpatiotemporal/tsl


Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations

w.r.t. representations learned at each layer, not only at the last one. The error is computed only on
data not seen by the model at each forward pass. For this reason, we randomly remove p ratio of the
input data for each minibatch sample, with p sampled uniformly from [0.2, 0.5, 0.8], and use them to
compute the loss. We never use data masked for evaluation to train any model.

For the spatiotemporal Transformer baseline, we use the same training strategy and a similar hyperpa-
rameters configuration of SPIN-H: L = 5 layers; 4 attention heads; hidden size and feed-forward
size of 64 and 128 units, respectively. For SAITS, we use the code provided by the authors5. Hy-
perparameters for SAITS have been selected on the validation set with a random search by using
hyperparameter ranges from the original paper.

We recall that the time and memory complexities of SPIN and SPIN-H scale with O((N + E)T 2)
and O((N + E)KT ), respectively. For the sake of comparison, here we also report the asymptotic
complexities of the spatiotemporal Transformer and GRIN. The Transformer alternates temporal
attention (i.e., O(NT 2)) and spatial attention (i.e., O(TN2)), with a resulting O((N + T )NT )
complexity. Let R be the spatial receptive field (i.e., number of graph convolution layers) of the
inner MPGRU cell, the time complexity required to process a single direction in GRIN scales
with O(TRE). Note also that while most of the operations in the attention-based models can be
executed in parallel, GRIN would need to process the entire sequence recurrently, with a consequent
performance slowdown at execution time.

All the models were developed in Python [36] using PyTorch [37], PyG [38] and Torch Spatiotem-
poral [39]. We use Neptune6 [40] for experiments tracking. All the experiments have been run in a
cluster using GPU-enabled nodes with different hardware setups. Running times of SPIN-H training
on a node equipped with a 12GB NVIDIA Titan V GPU range from 4 to 14 hours (depending on the
dataset). For SPIN we used a node with 40GB NVIDIA A100 GPU, with running times ranging from
4 to 26 hours.

D Datasets
In this appendix, we provide details on datasets and preprocessing used for the experiments. We
use temporal windows of T = 24 steps for all datasets except AQI-36, for which we set T = 36.
For traffic datasets, we split the data sequentially as 70% for training, 10% for validation, and 20%
for testing. For air quality datasets, following Yi et al. [31], we consider as the test set the months
of March, June, September, and December and we use valid observation xi

τ as ground-truth if the
value is missing at the same hour and day in the following month. For data preprocessing we use the
same approach of Cini et al. [6], by normalizing data across the feature dimension (graph-wise for
graph-based models) to zero mean and unit variance.

In line with [3, 6], we obtain the adjacency matrix from the node pairwise geographical distances
using a thresholded Gaussian kernel [41]

ai,j =

{
exp

(
−dist(i,j)2

γ

)
dist (i, j) ≤ δ

0 otherwise
, (15)

where dist ( · , · ) is the geographical distance operator, γ is a shape parameter and δ is the threshold.

Note that we considered settings where the topology is static. The extension to dynamic graphs,
where A = At and N = Nt, can be an interesting future work while being outside the scope of this
paper.

E Ablation study
Table 3 shows the results of an ablation study on METR-LA (Point missing) and AQI-36. Here, we
evaluate the performance in terms of mean absolute error (MAE) and mean relative error (MRE). We
consider two different versions of SPIN-H in which we remove the spatiotemporal cross-attention
and the temporal self-attention components, respectively. We also report the performance of SPIN,
SPIN-H and the Transformer for reference. Results clearly show that both components contribute

5https://github.com/WenjieDu/SAITS
6https://neptune.ai/
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Table 3: Ablation study to assess the contribution of the single components in the spatiotemporal
attention block. Performance averaged over multiple independent runs.

METR-LA (P) AQI-36

MAE MRE (%) MAE MRE (%)

SPIN 1.90 ± 0.01 3.29 ± 0.01 11.77 ± 0.74 16.56 ± 1.05

SPIN-H 1.96 ± 0.04 3.39 ± 0.06 11.08 ± 0.06 15.60 ± 0.09

Without cross-attention 2.18 ± 0.01 3.78 ± 0.01 15.36 ± 0.09 21.62 ± 0.13

Without self-attention 2.24 ± 0.09 3.88 ± 0.16 13.63 ± 0.23 19.19 ± 0.32

Transformer 2.16 ± 0.00 3.74 ± 0.01 11.98 ± 0.53 16.87 ± 0.75

positively to imputation accuracy. We also point out that in METR-LA (P) observations are masked
out uniformly at random while the mask in AQI-36 reflects the empirical distribution of missing data
in the dataset.
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