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Abstract

Single-step adversarial training (AT) has received wide
attention as it proved to be both efficient and robust. How-
ever, a serious problem of catastrophic overfitting exists,
i.e., the robust accuracy against projected gradient descent
(PGD) attack suddenly drops to 0% during the training. In
this paper, we approach this problem from a novel perspec-
tive of optimization and firstly reveal the close link between
the fast-growing gradient of each sample and overfitting,
which can also be applied to understand robust overfitting
in multi-step AT. To control the growth of the gradient, we
propose a new AT method, Subspace Adversarial Training
(Sub-AT), which constrains AT in a carefully extracted sub-
space. It successfully resolves both kinds of overfitting
and significantly boosts the robustness. In subspace, we
also allow single-step AT with larger steps and larger ra-
dius, further improving the robustness performance. As
a result, we achieve state-of-the-art single-step AT perfor-
mance. Without any regularization term, our single-step AT
can reach over 51% robust accuracy against strong PGD-
50 attack of radius 8/255 on CIFAR-10, reaching a compet-
itive performance against standard multi-step PGD-10 AT
with huge computational advantages. The code is released
at https://github.com/nblt/Sub-AT.

1. Introduction

Adversarial training (AT) [23], which aims to minimize
the model’s risk under the worst-case perturbations, is cur-
rently the most effective approach for improving the robust-
ness of deep neural networks. For a given neural network
f(x,w) with parameters w, the optimization objective of
AT can be formulated as follows:

min
w

E(x,y)∼D

[
max

δ∈B(x,ϵ)
L (f(x+ δ,w), y)

]
,

where B(x, ϵ) is the norm ball with radius ϵ and L is the
loss function. The key issue of AT lies in solving the in-
ner worst-case problem by generating adversarial examples.
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Figure 1. Catastrophic overfitting in single-step AT. The ex-
periments are conducted on CIFAR-10 with PreAct ResNet18
model for adversarial robustness against ℓ∞ perturbations of ra-
dius 8/255. The robust accuracy of single-step Fast AT on the
validation set against PGD-20 attack abruptly drops to 0 in one
single epoch, characterized by a rapid explosion of the average
gradient norm of each sample.

Presently the most efficient way to generate adversarial ex-
amples is the fast gradient sign method (FGSM) [9], i.e.,

xadv = x+ ϵ · sgn (∇xL(f(x,w), y)) .

Since the adversarial examples above are generated by one-
step gradient propagation, the corresponding AT is called
single-step AT. In Fig. 1, we demonstrate a standard single-
step AT process where the training robust accuracy against
FGSM attack keeps increasing. However, the generaliza-
tion capability, i.e., the robust accuracy on the validation
set under projected gradient descent (PGD) attack [23], can
suddenly drop to zero, which is a typical overfitting phe-
nomenon referred as catastrophic overfitting [40].

Many works [1, 16, 17, 32, 37, 40] are devoted to resolv-
ing such an intriguing overfitting problem. One approach to
tackle the overfitting is to use a judiciously designed learn-
ing rate schedule as well as appropriate regularizations. For
example, Wong et al. [40] proposed to add a random step
to FGSM and introduce cyclic learning rates [30] to over-
come the overfitting. Andriushchenko et al. [1] proposed a
novel regularization term called GradAlign to further im-
prove the quality of single-step AT solutions. However,
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these methods highly rely on specifically designed learning
rate schedules, which need to be tuned carefully for differ-
ent tasks. Another approach is to generate more precise ad-
versarial examples. For example, Kim et al. [17] suggested
verifying the inner interval along the adversarial direction
and searching for appropriate step size. PGD AT, a typical
multi-step AT which generates adversarial examples using
multiple iterations, can also help avoid catastrophic over-
fitting. However, these methods require multiple forward
propagations. More seriously, overfitting can still promi-
nently occur in multi-step AT (known as robust overfitting)
as demonstrated by Rice et al. [28].

In order to understand this interesting phenomenon, let
us investigate what happens at the 64-th epoch in Fig. 1
when catastrophic overfitting occurs. Before the overfit-
ting, the training robust accuracy has already stepped into
a stable stage, indicating the small norm of batch gradi-
ent

∥∥ 1
n

∑n
i=1∇wL(f(xadv

i ,w), y)
∥∥
2

(n denotes the batch
size). There are two possibilities for the small batch gradi-
ent: i) the gradient of each sample is small; ii) the gradients
of samples does not converge, but they cancel each other,
resulting in an overall balanced state. We then plot the av-
erage norm of each sample’s gradient on one fixed training
batch (i.e., 1

n

∑n
i=1

∥∥∇wL(f(xadv
i ,w), y)

∥∥
2
) in red. An

interesting thing is that before the overfitting, the average
norm stays almost constant. However, it abruptly increases
in the moment when the overfitting occurs. Intuitively, at
that time, the balance of gradient is broken — the network
tries to capture each sample’s label with huge fluctuations,
namely large gradients, a significant signal of overfitting.
This phenomenon also coincides with the recent discussion
on the connection between the gradient variance and gener-
alization capability [12, 15, 25].

Inspired by the link between large gradients and overfit-
ting, we propose to resolve the overfitting by controlling the
magnitude of the gradient. A possible way is to restrict the
gradient descent in a subspace instead of the whole parame-
ter space, to prevent the excessive growth of the gradient.
The key challenge lies in keeping the network’s capabil-
ity in such a subspace, which has been recently discussed
in [20] showing that, optimizing parameters in a tiny sub-
space extracted from training dynamics could keep the per-
formance. Based on this discovery, we propose a new AT
method called Subspace Adversarial Training (Sub-AT),
which identifies such an effective subspace and conducts
AT in it. From the training statistics of Sub-AT in Fig. 2a,
we observe that it successfully controls the average gradient
norm under a low level (the yellow dotted curve), thus re-
solving the catastrophic overfitting. Meanwhile, the robust
accuracy is significantly improved from 0.4 to nearly 0.5
(the yellow solid curve). The sensitivity to learning rates
is also fundamentally overcome as we only use a constant
learning rate, and the results remain similar across a wide

range of choices. As a direct extension, Sub-AT can be ap-
plied to mitigate the robust overfitting (Fig. 2b) in multi-step
AT, implying the similar essence behind these two phenom-
ena. Thus for the first time, the two overfittings, which were
previously treated separately [1], are now connected and re-
solved in a unified approach.

Since training in subspace controls the gradient mag-
nitude and hence fundamentally resolves the catastrophic
overfitting, we now can allow larger steps and radius, which
previously requires the assistance of delicate regulariza-
tions, e.g. GradAlign [1]. It brings further improvement
on robustness, from which it follows that pure single-step-
based AT (without regularization terms) achieves competi-
tive robustness with standard multi-step PGD AT with great
computational benefits, answering a long-existing question:
Can single-step AT achieve comparable robustness against
iterative attacks than multi-step AT?
Our Sub-AT uncovers the long-neglected potential of
single-step AT and can enlighten more efficient and pow-
erful AT algorithms.

Our main contributions can be summarized as follows:

• We approach the catastrophic overfitting in single-step
AT from a novel view of optimization and firstly re-
veal the close link between the fast-growing gradient
of each sample and overfitting, which can also be ap-
plied to explain the robust overfitting in multi-step AT.

• We propose an efficient AT method, Sub-AT, which
constrains AT in a carefully extracted subspace, to
control the growth of gradient. It uniformly resolves
both kinds of overfitting, significantly improves the ro-
bustness, and successfully overcomes the sensitivity to
learning rates. It is also very easy to combine with
other AT methods to bring consistent improvements.

• Our Sub-AT achieves state-of-the-art adversarial ro-
bustness on single-step AT and can successfully train
with larger steps and larger radius, which brings fur-
ther improvements. Notably, our pure single-step AT
achieves over 51% robust accuracy against PGD-50 at-
tack of ϵ = 8/255 on CIFAR-10, competitive to the
multi-step PGD-10 AT with great time benefits.

2. Related Work
Adversarial Training. Since deep neural networks are
easily fooled by adversarial examples, many defense meth-
ods [4, 5, 8, 21–24, 27, 31, 33, 38, 39, 41, 43–45] have been
proposed. Among them, AT [23], which augments the
training data with adversarial perturbations, is currently the
most effective way to improve the robustness of the model.
According to the number of times the gradient propaga-
tion involved in generating adversarial perturbations, AT
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(a) Single-step AT.
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(b) Multi-step AT.

Figure 2. Resolving catastrophic overfitting in single-step AT and
robust overfitting in multi-step AT. The experiments are conducted
on CIFAR-10 with PreAct ResNet18 model for robustness against
ℓ∞ perturbations of radius 8/255. In both overfittings, robust
accuracy on the validation set degenerates along with an abrupt
increase of the average grad norm of the sample. Our Sub-AT
successfully controls the rapid increase of the average grad norm,
thereby resolving both two overfittings uniformly and significantly
improving the robustness.

can be mainly divided into two classes: single-step AT
[1, 17, 29, 32, 40] and multi-step AT [23, 38, 44]. Single-
step AT has proven to be both efficient and robust [29, 40]
and thus receives much attention. For example, Free AT
[29] achieves remarkable robustness performance using a
single-step gradient with redundant batches and accumula-
tive perturbations. Multi-step AT, such as PGD AT [23] and
TRADES [44], generally provides better robustness guar-
antees than single-step AT as it generates strong adversarial
perturbations. However, its computational cost is relatively
high as multiple forward and back propagations are required
during batch training.

Overfitting in Adversarial Training. Both single-step
AT and multi-step AT suffer from overfitting problems
(known as catastrophic overfitting [40] and robust overfit-
ting [28], respectively) where the robust test accuracy sud-
denly begins to decrease as the training proceeds. The prob-
lem can be more severe in single-step AT as the robust test
accuracy against PGD attack can abruptly drop to 0% only
in one epoch. Many works are devoted to resolving such

an intriguing overfitting problem. Among them, Wong et
al. [40] first suggested adding a random step to FGSM and
adopting cyclic learning rates, which provides competitive
robustness against PGD AT with significant time advan-
tages. Andriushchenko et al. [1] designed a novel regular-
ization term called GradAlign to improve the gradient align-
ment inside the perturbation set and provide better robust-
ness. Sriramanan et al. [32] introduced a relaxation term to
find more suitable gradient-directions for attack. However,
these methods rely on a judiciously selected learning rate
schedule, or a proper regularization coefficient [17]. To-
wards understanding the overfitting, Vivek et al. [36] dis-
covered that models trained via single-step AT learn to pre-
vent the model from generating effective adversarial exam-
ples and introduced dropout scheduling to mitigate it. Kim
et al. [17] observed the distortion of the sample-wise de-
cision boundary during the overfitting and suggested veri-
fying the adversarial examples along the adversarial direc-
tion. However, their explanations are limited to single-step
AT, and the robustness performance is still inferior. In this
work, we understand overfitting from a general perspective
of optimization and explain both kinds of overfitting in AT
uniformly, bringing a huge improvement in robustness.

Training in Subspace. Many works focus on the low-
dimensionality essence of neural network training [11, 34,
35]. The pioneering work [19] first proposed to train neu-
ral networks in a reduced subspace via random projection
and discovered that, the required dimension to obtain 90%
performance of regular training is far less than the original
parameters’ dimension. The following work [10] improved
the random bases training by considering different layers
and re-drawing the random bases at each step. Different
from random projection, Li et al. [20] proposed to train neu-
ral networks in low-dimensional subspaces extracted from
training dynamics, and obtained comparable performance
as regular training. We also take advantage of the subspace
extracted from the training dynamics of AT and constrain
the training in it, thereby successfully controlling the mag-
nitude of the gradient and keeping the training performance.

3. Methodology
3.1. Investigating Catastrophic Overfitting

First, we focus on an interesting phenomenon in Fig. 3a:
when catastrophic overfitting occurs, the natural accuracy
on training data goes through a collapse. Recall that at the
same time, the robust training accuracy goes through a sud-
den increase, as illustrated in Fig. 1. These two phenomena
suggest that before the overfitting, the network learns robust
features that benefit both robust and natural accuracy. How-
ever, when overfitting occurs, the network turns to capture
the adversarial information in training data (with adversar-
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ial perturbations), which harms natural accuracy, i.e., gen-
eralization capability to natural examples. Further, it loses
generalization capability to new adversarial examples gen-
erated by PGD attacks, as they may lie very close to natural
examples. The adversarial information is so “hard” to learn
that, the network has to go through a huge fluctuation —
and eventually overfit it — resulting in nearly zero robust
accuracy on test data.

Since adversarial examples are relatively “hard” to learn,
we pay attention to the evolution of each sample’s gradient
and consider the average norm of the gradient to analyze
the training status. Specifically, we record the robust accu-
racy of Fast AT [40] against PGD-20 attack and the aver-
age norm of the gradient in one fixed training batch with
size n = 256 during the training (the estimations for batch
normalization [14] are frozen for sample-wise gradient es-
timation). Fig. 1 illustrates the statistics when the catas-
trophic overfitting occurs, where we observe that the abrupt
decrease of the robust accuracy highly coincides with the
sudden increase of the average gradient norm. This phe-
nomenon implies that during the catastrophic overfitting,
the gradient of each sample suddenly increases, resulting
in a huge fluctuation in training and, eventually, significant
degeneration on robust generalization.

To further investigate the link between increasing gra-
dients and overfitting, we examine the detailed statistics in
the 64th epoch, when catastrophic overfitting happens. We
record the statistics after each iteration. For comparison, we
also consider decaying the learning rate from 0.1 to 0.01
before the 64th epoch training, as increasing gradient indi-
cates an excessive learning rate. The results are illustrated
in Fig. 3b, where we observe that although for both learning
rates catastrophic overfitting eventually occurs, a smaller
learning rate could help. It achieves better robustness accu-
racy and remarkably postpones the overfitting with a better-
controlled average gradient norm (the yellow dotted curve).
We conclude the findings as follows: i) the overfitting is
closely related to the fast-growing of the average gradient
norm, and a delicately chosen learning rate could help sup-
press the growth of the gradient, which results in recent
advances on adopting heuristic learning rates [40]; ii) to
control the catastrophic overfitting, we have to control the
growth of the average gradient norm.

3.2. Controlling the Gradient Magnitude

Let us focus on how to control the gradient magnitude of
each sample during the training. Our main idea is to con-
strain the gradient descent of AT in a low-dimensional sub-
space instead of the whole parameter space, thus implicitly
suppressing the fast growth of the gradient. First, we con-
sider how to obtain such a subspace that is effective for AT.
Recently, Li et al. [20] proposed an algorithm called DLDR,
which effectively extracts a low-dimensional subspace for
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Figure 3. (a) natural accuracy on training data also collapses at
the overfitting; (b) the variation of the statistics in the 64th epoch:
switching to a smaller learning rate could alleviate the catastrophic
overfitting with a better-controlled gradient norm.

optimization from the training trajectory. It generally con-
tains two steps:

• Step 1: sample model checkpoints {w1,w2, . . . ,wt}
during the regular training where we align the model
parameters as a vector wi with length of the parame-
ters’ number N ;

• Step 2: perform singular vector decomposition (SVD)
on the aligned parameter matrix [w1,w2, . . . ,wt] and
obtain mutually orthogonal bases of the subspace
[u1,u2, . . . ,ud] with dimensionality d.

In this work, we apply DLDR algorithm [20] to extract the
effective subspace for AT. Note that we sample the model
parameters before the overfitting occurs since in this pe-
riod the network learns robust features beneficial for both
robust and natural accuracy, as demonstrated in Sec. 3.1.
We expect that optimizing the network in such an extracted
subspace could overcome the overfitting and obtain good
robustness. After extracting the subspace, we rewind the
model parameters to initialization and constrain AT opti-
mization in subspace by projecting the gradient onto it. The
detailed algorithm is summarized in Algorithm 1.

Sampling Strategy. We adopt a simple sampling strategy
for DLDR: sampling twice uniformly in each epoch train-
ing. A more delicate strategy is promising to improve the
performance. For sampling epochs, we expect that the best
performance will be obtained with sampling right before
the overfitting. Sampling in the start of the training is not
good, as the subspace cannot be well estimated. We con-
duct DLDR with a bit more epochs in a safe region when the
overfitting certainly has not happened. The dimensionality
of the subspace d is set to 80 on CIFAR-10 for single-step
AT by default. We provide a detailed sampling strategy in
Appendix A.

Training Performance. In Fig. 2, we demonstrate that
Sub-AT successfully controls the average gradient norm un-
der a constant low level, thereby resolving both catastrophic

13412



Algorithm 1 Subspace Adversarial Training (Sub-AT)

Require: The dimensionality of the subspace d, the num-
ber of sampling times t for DLDR, learning rate α,
batch size n and training data {(xi, yi)};

1: Phase 1: obtaining the orthonormal bases of subspace
[u1,u2, . . . ,ud];

2: Sample a parameter trajectory {ws
1,w

s
2, . . . ,w

s
t} along

AT training with a certain strategy;
3: w = 1

t

∑t
i=1 w

s
i ;

4: W = [ws
1 −w,ws

2 −w, . . . ,ws
t −w];

5: Perform spectral decomposition on W⊤W and obtain
the largest d eigenvalues [σ2

1 , σ
2
2 , . . . , σ

2
d] with corre-

sponding eigenvectors [v1,v2, . . . ,vd];
6: ui =

1
σi
Wvi;

7: Phase 2: conducting AT in extracted subspaces;
8: k ← 0;
9: P = [u1,u2, . . . ,ud];

10: w0 = ws
1;

11: while not converging do
12: Sample mini-batch data {(xi, y)}ni=1;
13: Generate adversarial examples

{
xadv
i

}n

i=1
;

14: gadv
k ← 1

n

∑n
i=1∇wL(f(xadv

i ,wk), y);
15: wk+1 ← wk − αP

(
P⊤gadv

k

)
;

16: k ← k + 1;
17: end while
18: Return wk;
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Figure 4. (a) Sub-AT is extremely robust to learning rate; (b) de-
tailed time consumption analysis on CIFAR-10.

and robust overfitting meanwhile significantly improving
the robustness performance. Then in Fig. 4a, we demon-
strate that Sub-AT is highly robust to a wide range of learn-
ing rates and can converge only with a constant learning
rate. Notably, with a large learning rate, Sub-AT can con-
verge quickly in a few epochs and keep the performance
without overfitting. Thus Sub-AT fundamentally overcomes
the sensitivity to learning rates and obtains true robustness
to overfitting. In this work, we set the constant learning rate
as 1 by default for both stable and efficient training.

Computational Analysis. The computational overhead
of Sub-AT consists of two parts: DLDR and subspace train-
ing. The DLDR part contains two steps: sampling and de-
composition. The time consumption on the decomposition
is negligible compared to the sampling as it only involves
a spectral decomposition of a t × t matrix and two matrix
productions. The training of Sub-AT has almost the same
computational complexity as the standard AT with little ad-
ditional cost on the gradient projection. Detailed computa-
tional analysis on CIFAR-10 is illustrated in Fig. 4b. We
observe that Sub-AT reduces total training time overhead
compared to standard AT training as it only samples a piece
of the trajectory with efficient training in the subspace.

4. Experiments
In this section, we conduct comprehensive experiments

to verify the effectiveness of Sub-AT in resolving the
overfitting of both single-step and multi-step AT. We first
demonstrate that Sub-AT successfully resolves catastrophic
overfitting and achieves state-of-the-art robustness perfor-
mance in single-step AT. Then we show that after obtaining
the subspace, Sub-AT allows larger steps and larger radius,
which further improves the robustness. Finally, we apply
Sub-AT to mitigate robust overfitting in multi-step AT and
show that leveraging the subspace, weak single-step AT is
able to achieve even better robustness than multi-step AT,
revealing the great potential of single-step AT.

4.1. Experiment Setup

Datasets. Three datasets are considered in our experiments:
CIFAR-10/100 [18] and Tiny-ImageNet [7]. We randomly
split the original training set as training and validation set
according to a ratio of 9:1 [3]. Due to the limited space, we
place the Tiny-ImageNet results in Appendix C.
Attack. We consider two typical types of adversarial per-
turbations: ℓ∞ norm with radius ϵ = 8/255 and ℓ2 norm
with radius ϵ = 128/255. For single-step AT, we focus
on ℓ∞ norm attack and use the recommended step size of
α = 1.25ϵ described by Wong et al. [40]. For multi-step
AT, we generate adversarial perturbations with 10 steps at-
tacks of step size α = 2/255 for ℓ∞ norm and α = 15/255
for ℓ2 norm, the standard PGD AT following the setting of
Rice et al. [28]. We consider PGD-20 [28], PGD-50 (with
50 iterations and 10 restarts) [40] and also Auto-Attack, a
strong and reliable attack recently proposed by [6], for a
rigorous evaluation on robustness.
Training. For all experiments, we use PreAct ResNet-18
[13] model as a default choice. Experiments with Wide-
ResNet [42] can be found in Appendix D. Three learning
rate schedules are considered: i) cyclic schedule [1, 40]
which can help overcome the overfitting; ii) piecewise
schedule, i.e., training the model for 200 epochs with an
initial learning rate 0.1 and decaying by ten at 100 and 150
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Table 1. Performance comparisons of single-step AT on CIFAR-10/100. The robustness is evaluated under PGD-50 attack.

Schedule Method Subspace
CIFAR-10 CIFAR-100

Robust Accuracy Natural Accuracy Robust Accuracy Natural Accuracy
Best Final Best Final Best Final Best Final

cyclic Fast AT – 45.82 45.69 82.36 83.26 16.72 0.00 34.51 47.23
cyclic GradAlign – 47.02 46.73 80.43 81.34 24.57 24.22 50.82 51.92

piecewise Fast AT – 39.95 0.00 73.13 89.93 17.84 0.00 41.54 46.46
piecewise Single AT – 35.48 32.43 83.68 86.86 16.18 0.91 55.88 59.15
piecewise Free AT – 47.30 47.00 79.37 79.98 23.50 22.93 50.91 51.64
piecewise GradAlign – 42.16 0.02 71.64 88.77 23.80 15.60 49.30 53.40
piecewise GAT – 50.03 41.37 82.38 84.45 23.12 20.40 58.33 57.09

constant Fast Sub-AT Fast AT 48.22 47.88 82.36 82.74 24.97 24.55 52.74 53.09
constant GradAlign Sub-AT GradAlign 48.88 48.40 79.82 80.84 25.69 25.46 52.65 52.92
constant GAT Sub-AT GAT 51.15 50.80 81.76 81.61 23.40 22.96 57.71 58.45

Table 2. Results of single-step Sub-AT with a larger training ϵ against ℓ∞ perturbations of radius 8/255 on CIFAR-10 (α = 1.25ϵ).

Method Subspace Best Final TimeNatural PGD-50 AA Natural PGD-50 AA

Fast AT – 73.13 39.95 37.55 89.93 0.00 0.00 1.6h
Fast Sub-AT (ϵ = 8/255) Fast AT 82.36 48.22 44.20 82.74 47.88 43.89 1.0h
Fast Sub-AT (ϵ = 12/255) Fast AT 80.74 50.38 45.84 80.91 49.64 45.40 1.0h
Fast Sub-AT (ϵ = 16/255) Fast AT 78.64 51.46 46.11 79.13 51.22 46.03 1.0h
Fast Sub-AT (ϵ = 12/255) GAT 80.77 52.41 46.80 80.72 52.30 46.80 2.1h
Fast Sub-AT (ϵ = 14/255) GAT 79.96 53.35 47.25 80.14 53.02 46.92 2.1h

PGD-10 AT – 80.50 50.79 47.29 82.92 42.51 41.08 7.0h

epochs (as our default setting for base AT), which is com-
monly used and produces best robustness performance as
suggested by Rice et al. [28]; iii) constant schedule, which
is adopted for our Sub-AT to show its insensitivity to learn-
ing rates. We set the learning rate as 1 without a schedule
and train the model for 40 epochs in subspace with a suffi-
cient convergence. We use a batch size of 128 and SGD op-
timizer with momentum 0.9 and weight decay 10−4. Data
augmentations, such as 4-pixel padding, random cropping,
and horizontal flipping, are applied.
Evaluation. We consider both the best and final robustness
performance during the training and use the difference be-
tween them to evaluate the degree of overfitting. The model
checkpoint that achieves the best robust accuracy on the val-
idation set is selected as the best model, while the final is
an average of the last five epochs [28] (except that cyclic
learning rates use the last epoch). The time consumption is
measured on an Nvidia Geforce GTX 2080 TI. For Sub-AT,
we repeat over five independent runs. The standard devia-
tions in tables are omitted as they are very small (≤ 0.45%),
which hardly affects the results.

4.2. Resolving Catastrophic Overfitting

First, we consider resolving the catastrophic overfitting
in single-step AT. We set the Fast AT [40], i.e., FGSM AT

with a random initialization, as the baseline, and also con-
sider other recently proposed methods for preventing the
overfitting, including GradAlign (with a recommended co-
efficient λ = 0.2) [1], Stable Single-AT (with c = 3 check
points) [17], Free AT (m = 8) [29] and GAT [32] (with a
default coefficient λ = 10). We evaluate robustness using
PGD-50 attack [1,40] and set the training epochs to 200 [17]
to closely examine whether the overfitting will occur.

The results of different methods on both CIFAR-10 and
CIFAR-100 datasets are presented in Tab. 1, where we apply
Sub-AT to different base methods with the subspaces ex-
tracted from the corresponding training trajectory. The base
methods use a piecewise schedule, where the overfitting
mostly occurs. We observe that under piecewise learning
rates of 200 epochs, Fast AT and FGSM AT with GradAlign
still meet serious catastrophic overfitting. A carefully de-
signed cyclic learning rate schedule [1, 40] helps overcome
the overfitting, but it leads to an inferior robust performance
(e.g., −1.86% on CIFAR-10) compared with GradAlign
Sub-AT. Without any other regularization technique, our
naive Fast Sub-AT is already able to obtain better robust-
ness than FGSM AT with GradAlign regularization [1].
GAT [32] indeed overcomes the catastrophic overfitting and
achieves impressive robustness among base methods, but it
still potentially suffers from overfitting problems, as the dif-
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ference between the best and final is large. Combined with
Sub-AT, we are able to mitigate the overfitting and consis-
tently improve the robustness.

To ensure the robustness improvements, we conduct
additional evaluations via Auto-Attack. On CIFAR-
10, our GAT Sub-AT achieves 46.33± 0.37% robust ac-
curacy (best) while base GAT achieves 45.29± 0.53%
(best), and on CIFAR-100, our GradAlign Sub-AT achieves
21.64± 0.22% (best) while cyclic GradAlign achieves
20.30± 0.11% (best). Thus via Sub-AT, we obtain state-
of-the-art robustness performance on single-step AT, fur-
ther reducing the robustness gap to multi-step AT. Note that
our good performance does not rely on the results obtained
during the DLDR sampling, as both vanilla Fast AT and
GradAlign meet serious overfitting during the training and
only obtain a poor result far from satisfactory.

4.3. Towards Larger Steps and Larger Radius

After resolving the catastrophic overfitting, we demon-
strate that Sub-AT overcomes the overfittings in training
with a large step and radius, further improving the robust-
ness performance.

Single-step AT with a larger step. Although Wong et
al. [40] discovered that adding a random initialization to
FGSM AT could help avoid catastrophic overfitting, it only
holds when the step size α is not too large. In fact, applying
α larger than 12/255 could still meet serious catastrophic
overfitting (as illustrated in Fig. 3 of [40] for ϵ = 8/255).
Since Sub-AT resolves the overfitting, we expect that it can
allow training with a large α. To this end, we consider
CIFAR-10 and repeat Fast Sub-AT experiments in Sec. 4.2
with α ranging from 1/255 to 16/255 and record the final
robustness performance (note that we are in the same sub-
space). From the results in Fig. 5, we observe that Sub-AT
successfully resolves the overfitting for large step sizes and
further improves the robustness, showing that using a large
step indeed benefits robustness.
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Figure 5. Final robust test accuracy of different single-step meth-
ods under PGD-20 attack over different step sizes for ϵ = 8/255.

Single-step AT with a larger radius. AT with a larger
radius generally could provide better robustness guarantees
against potential adversarial attacks. However, it is hard to
train a model that is robust to a large ϵ, especially for single-
step AT [1]. By constraining the training in subspace, we
can conduct single-step AT for a large ϵ with ease. Similar
to last section, we repeat the Fast Sub-AT experiments in
Sec. 4.2 with training radius ϵ ∈ [8/255, 20/255] (by de-
fault α = 1.25ϵ). We select the best checkpoints (against
PGD-20 attack of radius 8/255) of different settings and
plot their robust accuracy curves with respect to different
strengths of attack. In Fig. 6, we observe that within a
certain range, training with a larger radius consistently im-
proves robustness against attacks of different radii (espe-
cially for the large one), showing that the model’s robust-
ness is genuinely improved. However, there also exist limi-
tations as expected, as excessive perturbations will harm the
valuable information of training data, resulting in a degener-
ated performance. For example, the best robustness against
8/255 attack is achieved with training radius 16/255.
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Figure 6. Test robust accuracy under PGD-20 attack with respect
to different perturbation radius. We evaluate the checkpoint with
the best performance on the validation set.

We summarize the results of training with larger steps
and larger radius in Tab. 2, where we also report total time
consumption (including DLDR phase for Sub-AT) as well
as evaluations on PGD-50 and Auto-Attack. Main find-
ings include: i) simply by increasing the training step size
and radius, Sub-AT significantly improves model robust-
ness against both strong attacks, without suffering catas-
trophic overfitting nor additional time cost; ii) notably, pure
single-step-based Sub-AT achieves a very competitive ro-
bust accuracy under Auto-Attack than multi-step PGD-10
AT and even better robust accuracy under PGD-50 attack.
We also get rid of the serious problem of robust overfitting,
which PGD-10 AT suffers. iii) more promisingly, Sub-AT
only takes a seventh of total training time compared with
PGD-10 AT, which is a considerable superiority.
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Table 3. Results of multi-step AT and Sub-AT on CIFAR-10/100 against PGD-20 attack with ℓ2 and ℓ∞ norm perturbations.

Dataset Norm Radius Settings Robust Accuracy Natural Accuracy
Best Final Diff. Best Final Diff.

CIFAR-10
ℓ∞ ϵ = 8

255

AT 51.09 42.92 8.17 80.50 82.92 -2.42
Sub-AT 52.79 52.31 0.48 80.46 80.47 -0.01

ℓ2 ϵ = 128
255

AT 67.73 65.21 2.52 88.17 88.82 -2.42
Sub-AT 69.14 69.01 0.13 88.87 88.84 -0.01

CIFAR-100
ℓ∞ ϵ = 8

255

AT 26.80 19.38 7.42 52.29 53.27 -0.98
Sub-AT 27.50 27.02 0.48 52.41 52.18 0.23

ℓ2 ϵ = 128
255

AT 40.21 34.98 5.23 61.98 60.28 1.70
Sub-AT 41.48 41.00 0.48 62.62 63.13 -0.51

Table 4. Results of applying Fast AT with a larger training radius ϵ to multi-step AT (ℓ∞ attack of radius 8/255, CIFAR-10).

Method Subspace Best Final TimeNatural PGD-50 AA Natural PGD-50 AA

PGD-10 AT – 80.50 50.79 47.29 82.92 42.51 41.08 7.0h
PGD-10 Sub-AT PGD-10 AT 80.46 52.48 48.37 80.47 52.01 47.88 4.9h
Fast Sub-AT (ϵ = 12/255) PGD-10 AT 81.02 53.32 48.58 81.25 52.85 48.21 3.9h
Fast Sub-AT (ϵ = 16/255) PGD-10 AT 79.63 54.17 49.14 79.94 54.11 48.86 3.9h

4.4. Extensions to Multi-step AT

We then apply Sub-AT to mitigate robust overfitting in
multi-step AT, where we set standard PGD-10 AT [23] as
the baseline. To numerically show the degree of overfitting,
we report the difference between the best and final robust
accuracy. The difference is crucial as, generally, we can
only attain the final performance without using validation
set. From the results in Tab. 3, we observe that robust over-
fitting occurs in every setting of AT as expected, and the gap
between best and final can be as large as 8.17% (on CIFAR-
10 with ℓ∞ norm). By restricting AT in subspace, we reduce
the gap to less than 0.5% meanwhile significantly improv-
ing the robust accuracy (e.g., +1.7% on CIFAR-10). In the
good subspace extracted from DLDR [20], generalization
on clean data is also kept compared with standard AT. More
examinations via Auto-Attack are presented in Appendix B,
where we observe that Sub-AT can indeed mitigate robust
overfitting and consistently improve the robustness, rather
than as a result of gradient masking [2,26]. We note that the
improvements in robustness naturally come from the low-
dimensional optimization, and the results are promising to
be further improved by combining other enhancement tech-
niques, such as modifications on loss function [3].

Finally, we apply Fast Sub-AT to the subspace extracted
from multi-step PGD-10 AT. From the results in Tab. 4, we
observe that, surprisingly, Fast Sub-AT with a larger train-
ing radius remarkably outperforms the PGD-10 Sub-AT. It
implies that we can achieve strong robustness only with
the guidance of weak adversarial examples in the subspace,
which also brings computational benefits. This encourag-
ing finding reveals the previously underestimated potential
of single-step AT and can provide a new scheme for design-

ing more robust and efficient AT methods.

5. Conclusion

In this paper, we focus on the serious catastrophic over-
fitting in single-step AT. From a novel perspective of opti-
mization, we reveal the close link between the fast-growing
gradient of each sample and overfitting, which can also ex-
plain the robust overfitting in multi-step AT. To control the
growth of gradient, Sub-AT is proposed to constrain AT in
a carefully extracted subspace. It successfully resolves both
kinds of overfitting and hence significantly improves the ro-
bustness. Leveraging the subspace, we allow single-step AT
with larger steps and radius, further improving the robust-
ness. Weak adversarial examples generated from single-
step AT can be trained to obtain even better robustness than
those from multi-step PGD AT in subspace, revealing the
great potential of single-step AT. As a result, pure single-
step-based AT achieves comparable robustness to standard
PGD-10 AT with only one-seventh of the training time,
which is a solid step towards more efficient AT methods.
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