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Abstract

Top-2 methods have become popular in solving the best arm identification (BAI)
problem. The best arm, or the arm with the largest mean amongst finitely many,
is identified through an algorithm that at any sequential step independently pulls
the empirical best arm, with a fixed probability β, and pulls the best challenger
arm otherwise. The probability of incorrect selection is guaranteed to lie below
a specified δ > 0. Information theoretic lower bounds on sample complexity
are well known for BAI problem and are matched asymptotically as δ → 0 by
computationally demanding plug-in methods. The above top 2 algorithm for any
β ∈ (0, 1) has sample complexity within a constant of the lower bound. However,
determining the optimal β that matches the lower bound has proven difficult. In this
paper, we address this and propose an optimal top-2 type algorithm. We consider
a function of allocations anchored at a threshold. If it exceeds the threshold then
the algorithm samples the empirical best arm. Otherwise, it samples the challenger
arm. We show that the proposed algorithm is optimal as δ → 0. Our analysis
relies on identifying a limiting fluid dynamics of allocations that satisfy a series
of ordinary differential equations pasted together and that describe the asymptotic
path followed by our algorithm. We rely on the implicit function theorem to
show existence and uniqueness of these fluid ode’s and to show that the proposed
algorithm remains close to the ode solution.

1 Introduction
Stochastic best arm identification (BAI) problem has attracted a great deal of attention in the multi
armed bandit community (see [21], [10], [3] for some early references in BAI). The basic problem
involves a finite number of unknown probability distributions or arms that can be sampled from
independently and the aim is to identify the arm with the largest mean. We consider a popular fixed
confidence version of the problem where the sampling is sequential and the aim is to minimise
sample complexity while guaranteeing that the probability of selecting the wrong arm is restricted to
a pre-specified δ > 0. Applications are many including in healthcare and recommendation systems.

[11] developed asymptotically (as δ → 0) tight lower bound on sample complexity of δ−correct
algorithms for these BAI problems under the assumption that arms belong to a single parameter
exponential family (SPEF). This assumption reduces a probability distribution to a single parameter
and allows the analysis to better focus on certain aspects of the problem structure. We retain it for
similar reasons. The sample complexity lower bounds involve solving an optimization problem that
also identifies optimal proportion of allocations across arms. They also propose a track-and-stop
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algorithm that plugs in the empirical estimates of the distribution parameters in the lower bound and
tracks the resulting approximations to optimal proportions of arms to sample. Although, this plug-in
algorithm was shown to asymptotically match the lower bound, it involves repeatedly solving an
optimization problem and is computationally demanding. [14] consider linear Gaussian bandits, [1]
consider bandits with general distributions. Both the references propose track and stop algorithms
where computation is sped up through batch processing.

Substantial literature has come up on ‘top-2’ based, alternative faster and intuitively appealing algo-
rithms to identify the best arm (see [25], [26] for Bayesian approaches; [24], [22], [16] for frequentist
approaches). The algorithms essentially proceed by identifying at each stage an empirical winner
arm, that is, an arm with the largest mean, and its closest challenger. The empirical arm is pulled with
probability β, and the challenger arm with the complimentary probability. In the frequentist setting,
in [16], the challenger arm is the one with the smallest ‘index function’. Heuristically, this index
function measures the likelihood of the challenger arm actually being the best one. The smaller the
index function, more the likelihood. Further, with high probability, the index function increases with
increased allocations to the corresponding arm. As is standard (see, e.g., [11], [19]), the algorithm is
terminated when the generalized log-likelihood ratio (GLLR, given in Section 3) statistic exceeds
a specified threshold. These algorithms are shown to be β optimal in the sense that they match the
lower bound on sample complexity satisfied by algorithms that pull the best arm β fraction of times
(see [15] for non-asymptotic analysis when β = 1/2). However, determining optimal β has been an
open problem that has generated considerable activity and that we address in this paper.

Contributions - Algorithm: The key insight from index based top-2 algorithm is that once a sample
is given to a challenger arm with the smallest index, its index function increases. The net effect is
that as the algorithm progresses, the challenger arm indexes tend to come close to each other and
move together. We build upon the above insight. Through the first order conditions associated with
the lower bound problem, we identify a function g that equals zero under optimal allocation when the
underlying arm distributions are known. We propose an anchored top-2 type algorithm where when
g > 0, the empirical winner arm is pulled and that tends to decrease g. When g < 0, our algorithm
pulls a challenger arm (arm with the smallest index function), and that typically increases g. We
observe that the indexes of challenger arms that have been pulled, tend to rise up together until they
catch up with arms with higher indexes. Once challenger arms associated with all the indexes have
been pulled, call this the time to stability, then, since g is close to zero and indexes of all challenger
arms are close together, it can be seen that the proportionate samples to the empirical winner and the
remaining arms are close to the optimal proportions as per the lower bound. This continues until the
GLLR statistic exceeds a threshold, roughly of order log(1/δ). The time to stability can be bounded
from above by a random time with finite expectation independent of δ, while the time from stability
till the GLLR statistic hits a threshold scales with log(1/δ) with a constant that matches the lower
bound.

Fluid model: Our other key contribution is to capture the above intuitive description through
constructing an idealized fluid dynamics where g stays equal to zero once it touches zero and where
the indexes that have been pulled, remain equal and rise together as the algorithm progresses. We
further show that the resulting equations have an invertible Jacobian. Implicit function theorem (IFT)
(see [20, Appendix A.6] for an introduction to IFT) then becomes an important tool in analyzing this
idealized fluid system as it allows the arm allocations (Na : a ∈ K) to be unique functions of the
overall allocation N . IFT further allows us to identify the ordinary differential equations satisfied by
the derivatives N ′

a = dNa

dN as the allocations N increase. The overall path till stability is constructed
by pasting together the ode paths followed by arm allocations as the set of indexes that have already
been pulled and are increasing together with N , meet another higher index. Once all the indexes have
been pulled, our ode stabilizes so that the proportions Na/N thereafter remain constant and equal
the optimal proportions as N increases. IFT further helps show that the proposed algorithm remains
close to the fluid dynamics, and matches the lower bound for small δ. For completeness, in Appendix
E.2, we also identify the ode paths under fluid dynamics for β top-2 algorithms. A great deal of
technical analysis goes into showing that the algorithm, observed after sufficiently large amount of
samples so that the sample means are close to the true means, is close to the fluid process and they
both converge to the same limit.

Other related literature: [22] also develop a top-2 type algorithm for a single parameter family of
distributions. There algorithm decides between the empirical best and the challenger arm based on
directional change in a certain index (related to the LB) when the underlying allocation proportions
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are perturbed. It is less directly connected to the first order conditions in the LB problem compared to
our algorithm. Empirically, we observe that the our proposed algorithm has lower sample complexity,
and is computationally substantially faster (Their algorithm can be sub-optimal. We discuss this
in Appendix D.2). [7] consider an algorithm structurally similar to ours. They focus on the BAI
fixed budget (FB) setting where the total number of samples are fixed and the aim is to allocate
samples to minimise the probability of incorrect selection. Unlike the fixed confidence (FC) setting
(the one that we consider), the FB setting requires optimizing the first argument of relative entropy
functions that appear in the lower bound. In FC setting, the second argument is optimized ([7] vary
the first argument). Fundamentally, this is because FB is concerned with sample allocations that
control the probability of the data conducting a large deviations to arrive at an incorrect conclusion,
while FC is concerned with controlling sample allocations on high probability paths and gathering
enough evidence to rule out the likelihood that the observed data is a result of large deviations.
Furthermore, [7] prove weaker a.s. convergence results for associated indexes although not for
allocations, and since they focus on FB settings, they do not provide sample complexity bounds or
probabilistic false selection guarantees. Our analysis is more nuanced and structurally detailed, and
we prove that the sample complexity of the proposed algorithm is asymptotically optimal. [28] study
the best-k-arm identification problem in the BAI setting with fixed confidence and bring out the
structural complexities that arise in lower bound analysis when k > 1. For k = 1, they develop an
asymptotically optimal top-2 algorithm when arm distributions are restricted to be Gaussian. [27]
consider related pure exploration problems using Frank-Wolfe algorithm. Their implementation
involves solving a linear program at each iteration. [17], [13], [6] provide algorithms that provide
finite δ sample complexity guarantees, however they are order optimal and do not match the constant
in the lower bound.

Finally, while fluid analysis is common in many settings including mean field analysis and games
(e.g., [4]), stochastic approximation (e.g., [5]) and queuing theory (e.g., [8]), to the best of our
knowledge little or no work exists that arrives at it through IFT.

Roadmap: In Section 2, we describe the problem and develop lower bound related analysis. The
proposed algorithm and our main result, Theorem 3.1, demonstrating algorithm’s efficacy are stated in
Section 3 where we also develop the relevant IFT framework. Section 4 spells out the fluid dynamics
associated with the algorithm. Key steps involved in proving Theorem 3.1 are outlined in Section 5.
We describe the numerical experiments in Section 6. Detailed proof of all results are in the appendix.

Key limitations: The proposed algorithm extends from SPEF to bounded random variables in a
straightforward manner. While we do not provide supporting analysis (this limitation is due to space
constraints), our numerical results in Appendix J suggest that our algorithm improves upon existing
ones even in this setting. As is standard in the bandit literature, we also assume that samples from
arm distributions are independent. Further, another limitation is the assumption of stationarity of the
underlying distributions. This may be true when relatively short sampling horizons are involved.

2 Problem description and lower bound
Distributional assumption: As mentioned earlier, we focus on arm distributions that belong to a
known SPEF. Let S ⊂ R denote the open set of possible means of the SPEF under consideration.
The details related to SPEF are reviewed in Appendix B.

Fixed confidence BAI set-up: Consider an instance with K unknown probability distributions or
arms, denoted by the mean vector µ = (µ1, . . . , µK), where each µi ∈ S (we refer to each µi

interchangeably as a distribution as well as its mean in the SPEF context). As is standard in the
BAI framework, we assume that there is a unique arm with the largest mean. Thus, without loss
of generality µ1 > maxi≥2 µi. One way to handle the case where 2 or more arms are tied for the
largest mean is to look for an ϵ-best arm (an arm whose mean is within ϵ of the best arm). However,
that is technically a significantly more demanding problem (see [12]). Assuming uniqueness of the
best arm and focusing on the best arm identification allows us to highlight the simple fluid dynamics
underlying the proposed algorithm.

Algorithm: Given an unknown bandit instance µ, we consider algorithms that sequentially generate
samples - if AN denotes the arm pulled at sample N , and XN denotes the associated reward generated
independently from distribution µAN

, then AN is chosen sequentially and adaptively as a function
of generated (An, Xn : n = 1, 2, . . . , N − 1). Further, an algorithm stops at some finite random
stopping time τ and announces the best arm. δ−correct algorithm is an algorithm that, given a δ > 0,
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stops at time τδ > 0 and outputs a best arm estimate kτδ such that P(τδ <∞, kτδ ̸= 1) ≤ δ. That is,
it identifies the arm with highest mean with probability at least 1− δ. Our interest is in identifying a
δ-correct algorithm that minimizes E[τδ]. To this end lower bounds on sample complexity of δ-correct
algorithms are established using, e.g., the data processing inequality (see, e.g., [18]). We see that

infx {E[N1]d(µ1, x) + E[Na]d(µa, x)} ≥ log(1/(2.4δ))

with d(ν, x) denoting the Kullback-Leibler divergence between two distributions in S with means ν
and x, and the expectation is under measure Pµ associated with µ. The infimum above is solved at
x⋆ = µ1E[N1]+µaE[Na]

E[N1]+E[Na]
. With this, we obtain the lower bound E[τδ] ≥ T ⋆(µ) log 1

2.4δ , where T ⋆(µ)

is the reciprocal of the optimal value of a max-min problem,

(T ⋆(µ))−1 = max
ω=(ωa:a∈[K])∈ΣK

min
a̸=1

(ω1d(µ1, x1,a) + ωad(µa, x1,a)) , (1)

where x1,a = (ω1µ1 + ωaµa)/(ω1 + ωa) and ΣK denotes a simplex in K dimension.

The popular plug-in track and stop algorithm involves solving the max-min problem (1) repeatedly
for optimal weights with empirical distribution plugged in for µ above. The algorithm at each stage
t, generates the next sample from an arm so that the proportion of arms sampled closely match the
resulting optimal weights while ensuring an adequate, sub-linear exploration (e.g., each arm gets at
least

√
t samples at each stage t).

Propositions 2.1 and 2.2 below are crucial for our analysis. Proposition 2.1 helps in constructing
the fluid dynamics in Section 4. Proposition 2.2 provides a characterization of the unique optimal
allocation ω⋆ = (ω⋆

a : a ∈ [K]) which motivates our algorithm’s sampling strategy. Before stating
the two propositions, we need some notation. Let B ⊆ [K]/{1}, and B = B ∪ {1}. Whenever
B

c ̸= ∅, let NB
c = (Na ≥ 0 : a ∈ B

c
) denote an allocation of samples to the arms in B

c
and we

treat this as a constant in the following discussion and also in the statement of the two propositions.
We define the quantity N1,1 depending on NB

c in the following way: 1) If B
c
= ∅ or

∑
a∈B

c Na = 0,
N1,1 is zero. 2) Otherwise, N1,1 is the value of N1 at which

∑
a∈B

c
d(µ1,x1,a)
d(µa,x1,a)

= 1 for the given

allocation NB
c . To see existence of such N1,1, observe that whenever B

c ̸= ∅ and
∑

a∈B
c Na > 0,

the function N1 →
∑

a∈B
c

d(µ1,x1,a)
d(µa,x1,a)

is continuous and it monotonically decreases from∞ to 0 as
N1 increases from 0 to∞. Hence, a unique N1 exists where this function equals 1. We define the
quantity Nmin = N1,1 +

∑
a∈B

c Na.

Proposition 2.1. For every positive N satisfying N ≥ Nmin, there is a unique set of variables
NB(N) = (Na(N) : a ∈ B) and IB(N) satisfying the following conditions∑

a ̸=1
d(µ1,x1,a)
d(µa,x1,a)

= 1, where x1,a = N1(N)·µ1+Na(N)·µa

N1(N)+Na(N) ,
∑

a∈[K] Na(N) = N,

and, for every a ∈ B, N1(N) · d(µ1, x1,a) +Na(N) · d(µa, x1,a) = IB(N).

}
(2)

Furthermore, NB(·) and IB(·) are continuously differentiable w.r.t. N for N > Nmin.

Proposition 2.2. Upon taking B = [K]/{1} and N = 1, NB(1), as defined in Proposition 2.1 is
same as the unique allocation ω⋆ solving the max-min problem in (1). Further, IB(1) = T ⋆(µ)−1.
Moreover, for every N > 0, if B = [K]/{1}, the unique solution NB(N) = (Na(N) : a ∈ [K])
satisfies Na(N) = Nω⋆

a.

Proposition 2.1 is proved by applying the Implicit function theorem (IFT). Proposition 2.2 is subsumed
by [11, Theorem 5], but we prove it using a different set of tools by applying the IFT. See Appendix
D for the detailed arguments.

For two vectors ν = (νa ∈ S : a ∈ [K]) and N = (Na ∈ R≥0 : a ∈ [K]) define the anchor
function, g(ν,N) =

∑
a∈[K]/{ĵ}

d(νmax,za)
d(νa,za)

− 1, where ĵ = argmaxa νa, νmax = maxa νa, and

za = (Nĵνmax +Naνa)/(Nĵ +Na) for all a ̸= ĵ.

Remark 2.1. It follows from Proposition 2.2 that the anchor function g(µ,ω) = 0 and all the
indexes ω1d(µ1, x1,a) + ωad(µa, x1,a) equal to each other, uniquely identify the optimal proportion
ω⋆ solving the max-min problem (1) (see Appendix D.1 for an easier and more insightful derivation
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of these conditions). The algorithm proposed in Section 3 ensures that the empirical version of the
anchor function g(·) quickly becomes close to zero and thereafter remains close to zero. Further, the
indexes sequentially come close to each other and once they are close, they stay close through the
remaining steps of the algorithm.

3 Anchored Top-2 (AT2) Algorithm

Notation: Some notation is needed to help state the proposed algorithm. For every arm a ∈ [K]

and iteration N , Ña(N) denotes the number of times arm a has been drawn till iteration N , and
Ñ(N) = (Ña(N) : a ∈ [K]). Thus, N =

∑
a Ña(N). Let µ̃(N) = (µ̃a(N) : a ∈ [K]) where

µ̃a(N) denotes the sample mean of arm a at time N , i.e., µ̃a(N) =
∑N

t=1 I(At = a) ·Xt/Ña(N),
and îN = argmaxa∈[K] µ̃a(N), with an arbitrary tie breaking rule.

For every pair of arms a, b, define

xa,b(N)=
Ña(N) · µa + Ñb(N) · µb

Ña(N) + Ñb(N)
, and x̃a,b(N)=

Ña(N) · µ̃a(N) + Ñb(N) · µ̃b(N)

Ña(N) + Ñb(N)
.

Let, Ia,b(N) = Ña(N) · d(µa, xa,b(N)) + Ñb(N) · d(µb, xa,b(N)), and Ia,b(N) = Ña(N) ·
d (µ̃a(N), x̃a,b(N)) + Ñb(N) · d (µ̃b(N), x̃a,b(N)). For a ̸= îN , we call IîN ,a(N), and IîN ,a(N),
respectively, actual index (or, simply index) and empirical index of arm a at iteration N , and denote
them using Ia(N), and Ia(N). For notational simplicity, we hide the dependency on N whenever it
doesn’t cause confusion. Note that Ia(N) is a function of ÑîN

(N), Ña(N), µ̃îN
(N) and µ̃a(N).

Stopping Rule: As is typical in this literature, in our algorithm below, we follow a general-
ized log likelihood ratio (GLLR) to decide when to stop the algorithm. It is easy to check that
mina∈[K]/{î} Ia(N) denotes the GLLR, that is log of likelihood function (LF) evaluated at max-
imum likelihood estimator (MLE) divided by the LF evaluated at MLE of parameters restricted
to alternate set with a different best arm compared to MLE (see [11, Section 3.2] for a de-
tailed derivation). Define stopping time τδ = inf{N | for all a ∈ [K]/{̂i}, Ia(N) > β(N, δ)},
for an appropriate choice of threshold β(N, δ). After stopping at τδ, the algorithm outputs îτδ
as the best arm. [19, Eq. 25, Section 5.1] argued that for instances in SPEF, upon choosing
β(N, δ) ≈ log((K−1)/δ)+6 log (log(N/2) + 1)+8 log(1+2 log((K−1)/δ)), the GLLR based
stopping rule is δ-correct for any sampling strategy including the one we propose. In our numerical
experiments, we follow [11] and choose a smaller threshold, β(N, δ) = log((1 + logN)/δ).

Description of the AT2 and Improved AT2 (IAT2) Algorithm: The AT2 algorithm takes in
confidence parameter δ > 0 and exploration parameter α ∈ (0, 1) as inputs, and executes the
following steps at iteration N :

1. Let VN
def.
= {a ∈ [K] | Ña(N − 1) < Nα} be the set of under-explored arms.

2. If VN ̸= ∅, choose AN = argmina∈[K] Ña(N − 1), and go to step 5.

3. Else, if g(µ̃(N − 1), Ñ(N − 1)) > 0, choose the empirically best arm i.e. AN = îN−1, and go
to step 5.

4. Else, if g(µ̃(N − 1), Ñ(N − 1)) ≤ 0, choose the challenger arm i.e. AN =
argmina∈[K]/{îN−1} Ia(N − 1) using some arbitrary tie breaking rule, and go to step 5.

5. Sample XN from AN and update µ̃(N) and Ñ(N) using XN , AN .

6. If mina∈[K]/{îN} Ia(N) > β(N, δ), terminate and return îN .

Inspired from the Improved Transportation Cost Balancing (ITCB) policy for selecting the challenger
arm in [16], Improved AT2 (IAT2) algorithm has the same input and follows the same strategy
for exploration (step 1 and 2) and choosing the best arm (step 3) as AT2. IAT2 differs from AT2
only by its choice of the challenger arm in step 4, where IAT2 samples from the arm AN =

argmina∈[K]/{îN−1} (Ia(N − 1) + log Ña(N − 1)).
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Empirically, we see that typically IAT2 performs better than AT2 with respect to sample complexity.
In the appendix, we provide pseudo-codes of AT2 and IAT2 in Algorithms 1 and 2, respectively.

3.1 Theoretical guarantees

Proposition 3.1 below shows that the allocations made by AT2 and IAT2 algorithms converge to the
optimal allocations ω⋆ w.p. 1 in Pµ. For every a ∈ [K] we define ω̃a(N) = Ña(N)/N , and use
ω̃(N) = (ω̃a(N) : a ∈ [K]) to denote the algorithm’s proportion at iteration N .

Proposition 3.1 (Convergence to optimal proportions). There exists a random time Tstable and a
constant C1 > 0 depending on µ, α, and K, and independent of δ, such that, Eµ[Tstable] <∞, and
for every N ≥ Tstable and arm a ∈ [K],

|ω̃a(N)− ω⋆
a| ≤ C1N

−3α
8 , and |µ̃a(N)− µa| ≤ ϵ(µ)N

−3α
8 ,

where ϵ(µ) is a positive constant depending only on µ and defined in Appendix B.

Theorem 3.1 (Asymptotic optimality of AT2 and IAT2). Both AT2 and IAT2 are δ-correct over
instances in S, and are asymptotically optimal, i.e., for both the algorithms, the corresponding
stopping times satisfy, lim supδ→0

Eµ[τδ]
log(1/δ) ≤ T ⋆(µ), and lim supδ→0

τδ
log(1/δ) ≤ T ⋆(µ) a.s. in Pµ.

Moreover, we can find a constant C > 0 depending on the instance µ and α, such that,

τδ ≤ max{ Tstable, T
⋆(µ) · log(1/δ) + C (log(1/δ))

1−3α/8 } a.s. in Pµ.

Proof idea of Theorem 3.1: We assume Proposition 3.1 and sketch the argument by which asymptotic
optimality follows from it. For N ≥ Tstable, and a ∈ [K], from Proposition 3.1, Ña(N) ≈ ω⋆

aN and
µ̃a(N) ≈ µa. As a result, from Proposition 2.2, after Tstable, Ia(N) ≈ NI[K]/{1}(1) = NT ⋆(µ)−1

for every a ̸= 1. Therefore, if mina ̸=1 Ia(N) crosses β(N, δ) at N = τδ , since β(N, δ) = log(1/δ)+
O(log log(1/δ)+log log(N)), we have τδT ⋆(µ)−1 ≈δ→0 log(1/δ)+O(log log(1/δ)+log log(τδ)),
which gives lim supδ→0

τδ
log(1/δ) ≤ T ⋆(µ) a.s. in Pµ. Detailed proof is in Appendix H.

We outline the key steps of the proof of Proposition 3.1 for AT2 in Section 5, and the detailed proof is
in Appendix G.2. Similar arguments hold for IAT2. Considerable technical effort goes in proving this
proposition due to the noise in the empirical estimate µ̃(N), resulting in noise in the anchor function
and the empirical indexes. However, before presenting the proof sketch, in the next section, we first
observe the algorithm’s dynamics in the limiting fluid regime where this noise is zero. Several of the
important proof steps for the algorithmic allocations rely on insights from the simpler fluid model.

4 Fluid dynamics
Motivation: The fluid dynamics idealizes our algorithm’s evolution through making assumptions at
each iteration N that hold for the algorithm in the limit as the number of samples increase to infinity.
Unlike the real setting with discrete samples, here we treat samples as a continuous object getting
distributed between different arms as the sampling budget (also referred to as ‘time’) evolves. We
denote the no. of samples allocated to an arm a ∈ [K] at some time N > 0 using Na(N), and define
the tuple N(N) = (Na(N) : a ∈ [K]). Note that

∑
a∈[K] Na(N) = N . The rate N ′

a(N) at which
samples get allocated to arm a at time N depends on a continuous version of the AT2 algorithm,
which we refer to as the algorithm’s fluid dynamics. We define the index of arm a ̸= 1 at time N as,
Ia(N) = N1(N) ·d(µ1, x1,a(N))+Na(N) ·d(µa, x1,a(N)), where x1,a(N) = N1(N)µ1+Na(N)µa

N1(N)+Na(N) .
Notice that Ia(N) defined in Section 3 is the index of arm a with respect to the algorithm’s allocation
Ñ(N), whereas in our current context, Ia(N) represents the index with respect to the fluid allocations
N(N).

Description of the fluid dynamics: First we explain the fluid dynamics in words. We formally
characterize the fluid allocation N(N) via a system of ODEs in Theorem 4.1. Later in this section,
we exploit the obtained ODEs to argue that, after starting the fluid dynamics from some time
N0 > 0, the allocations N(N) reach the optimal proportions ω⋆ = (ω⋆

a : a ∈ [K]) by a time
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atmost
(
mina∈[K] ω

⋆
a

)−1 ·N0. In other words, for N ≥
(
mina∈[K] ω

⋆
a

)−1 ·N0, we have Na(N) =

ω⋆
a ·N for every arm a ∈ [K] irrespective of the initial allocation we had at time N0.

For notational simplicity, we hide the dependency on N , whenever it doesn’t cause any confusion.
Recall the anchor function g(·) introduced in Section 2. We use g to denote g(µ,N(N)). For every
subset A ⊆ [K]/{1}, we use A to denote A ∪ {1}.
We start the fluid dynamics at time N0 > 0 with some initial allocation N0 = (N0

a ≥ 0 : a ∈ [K]).
We assume that the vector of true means µ is known. The fluid dynamics evolves according to the
following steps at a given total allocation N ≥ N0: 1) If g > 0, then N1 increases with N while
other Na’s for a ̸= 1 are held constant till g = 0 (g can be seen to be a monotonically decreasing
function of N1). 2) If g = 0, let B denote the set of minimum indexes. Thus, Ia(N) are equal
for all a ∈ B (the equal value is denoted by IB(N)) and Ia(N) > IB(N) for all a ∈ B

c
. Then,

as N increases, allocations N1 and (Na : a ∈ B) increase such that g remains equal to zero, while
the indexes in B remain equal. In Proposition 2.1, we characterize and prove existence of such
allocations, which the fluid dynamics will track. Later we observe that, IB increases atleast at a
linear rate and indexes of arms in B

c
stay bounded from above by a constant. 3) If g < 0, let B be

the set of minimum index arms and IB be the index of arms in B. In this situation, (Na : a ∈ B)

increase with N keeping index of the arms in B equal, while N1 and (Na : a ∈ B
c
) are unchanged.

With this g also increases, since g is a strictly increasing function of Na for every a ∈ B. The
dynamics in this case are simple and described in Proposition E.1 of Appendix E. 4) Once, g = 0,
and B = {2, . . . ,K}, we show that each allocation increases linearly with N such that N ′

a = ω⋆
a.

The fluid ODEs: In Appendix E, we argue that if the fluid dynamics has g ̸= 0 at time N0, then
g becomes zero within a finite time by following step 1 or step 3 of the description. This is easy
to observe when g > 0 at N0, because g is strictly decreasing in N1, and g → −1 as N1 → ∞.
Therefore, following step 1, g becomes 0 at some finite N . We now consider the situation where
g = 0 at some N > N0. Setting B to the set of minimum index arms, the algorithm evolves by
tracking the allocation NB(N) = (Na(N) : a ∈ B) defined through the system (2) in Proposition
2.1. By Proposition 2.1, NB(N) is continuously differentiable w.r.t. N . Applying IFT to (2), we
obtain the ODEs via which the allocations and the indexes evolve and present them in Theorem 4.1.

Some definitions: Let f(µ, a,N) = − ∂
∂x

(
d(µ1,x)
d(µa,x)

) ∣∣∣
x=x1,a

. f(µ, a,N) is strictly positive because

d(µ1,x)
d(µa,x)

is strictly decreasing with x for x ∈ (µa, µ1).

Let ∆a = µ1 − µa, and ha(µ, N1, Na) = f(µ, a,N)
N2

1∆a

(N1+Na)2
. For notational simplicity, we

denote h(µ, N1, Na) by ha. Further, for each a, we denote d(µ1, x1,a) by d1,a and d(µa, x1,a) by
da,a. Recall that for given allocations (Na : a ∈ [K]), B denotes a set such that N1d1,a +Nada,a =

IB(N) for all a ∈ B, and N1d1,a +Nada,a > IB(N) for all a ∈ B
c
. Let h(B) =

∑
a∈B had

−1
a,a,

h(N) =
∑

a∈B
c haNa, and dB =

(∑
a∈B d−1

a,a

)−1
.

Theorem 4.1 (Fluid ODEs). If at total allocation N ≥ N0, we have g = 0, and B is the set of
minimum index arms, i.e., B = argmina∈[K]/{1} Ia(N), then the following holds true:

1. As N increases, and till IB(N) increases to hit an index in B
c
,

N ′
1=

N1h(B)

(N1 +
∑

a∈B Na)h(B) + d−1
B h(N)

, and N ′
b=

Nbh(B) + d−1
b,bh(N)

(N1 +
∑

a∈B Na)h(B) + d−1
B h(N)

,

(3)
for all b ∈ B. It follows that, I ′B(N) = IB(N)h(B)+h(N)

(N1+
∑

a∈B Na)h(B)+d−1
B h(N)

.

2. Furthermore, for a ∈ B
c
, I ′a(N) = N ′

1d1a = N1h(B)d1a

(N1+
∑

a∈B Na)h(B)+d−1
B h(N)

.

3. There exists a β > 0, independent of N such that I ′B(N) > β. In addition, for a ∈ B
c
, N ′

a = 0,
Ia(N) ≤ N0

ad(µa, µ1), thus the index is bounded from above. Thus, if B
c ̸= ∅, IB(N) eventually

catches up with another index in B
c
. In this way, the set B grows into {2, . . . ,K}.
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Indexes once they meet must stay together: In Appendix F.1 we argue via contradiction that in
our fluid dynamics, once a set of smallest indexes that are equal, increase and catch up with another
index, their union then remains equal and increases together with N . This argument is important as it
motivates the proof in our algorithm that after sufficient amount of samples, once a sub-optimal arm
is pulled, its index stays close to indexes of the other arms that have been pulled.

Bounding the time to reach optimal proportion: We define N⋆ to be smallest time after N0 at
which the fluid dynamics has both B = {2, . . . ,K} and g = 0. Let (N⋆

a : a ∈ [K]) be the allocation
at N⋆. We first argue that: there exists i ∈ [K] such that N⋆

i = N0
i . We have argued before that if

g ̸= 0 at N0, then g becomes zero by some finite time, which we call M . By definition M ≤ N⋆.
Now if B ̸= {2, . . . ,K} at M or M = N0, then after time M the fluid dynamics evolve by the ODEs
in (3) and N⋆ is the time at which B becomes {2, . . . ,K}, which is finite by statement 3 of Theorem
4.1. In this case i is the last element to be added to B. Otherwise if B = {2, . . . ,K} at M and
M > N0, the only way this can happen is g < 0 in [N0,M). In this case, i = 1 and M = N⋆. Since
g = 0 and B = {2, . . . ,K} at time N⋆, Proposition 2.2 implies N⋆

a = ω⋆
aN

⋆ for all a. Combining
our observations, we have ω⋆

i N
⋆ = N⋆

i = N0
i ≤ N0. Hence N⋆ ≤ N0

ω⋆
i
≤ (mina∈[K] ω

⋆
a)

−1N0.
Thus N⋆ is within a constant times of N0. We bound Tstable of Proposition 5.1 using a similar
argument.

Remark 4.1 (Incorporating the stopping rule into the fluid dynamics). At stopping time the
idealized GLLR (which is the GLLR defined in Section 3 by replacing the estimated means with
the true means) just exceeds log(1/δ). Since the idealized GLLR grows linearly with the allocated
samples, the stopping time increases linearly with log(1/δ). Since the time for fluid dynamics to
reach stability is independent of δ, for small δ, stability will be reached before the algorithm stops.

Remark 4.2 (β-fluid dynamics). In Appendix E.2, we construct the fluid dynamics for the β-EB-
TCB algorithm [16] using IFT. We prove that, for every β ∈ (0, 1), the β-fluid dynamics started at
some time N0 > 0 reach the β-optimal proportion (which is the solution to the max-min problem 1
with the added constraint ω1 = β) by a time which is a constant times N0.

5 Convergence of algorithmic allocations to the optimal proportions

We now outline the proof steps for Proposition 3.1. To simplify our analysis, we analyze the AT2
algorithm after the random time T0 defined as,

T0 = inf
{
N ′ ≥ 1

∣∣∣ ∀a ∈ [K] and N ≥ N ′, |µ̃a(N)− µa| ≤ ϵ(µ) ·N−3α/8
}
,

after which the estimates µ̃(N) are converging to µ. Recall that α ∈ (0, 1) is the exploration
parameter, and ϵ(µ) > 0 is a constant depending only on µ. By the definition of ϵ(µ) in Appendix
B, we have µ̃a(N) < µ̃1(N) for all a ̸= 1 and N ≥ T0. As a result, arm 1 becomes the empirically
best arm after T0. In Appendix G.3, we use Chernoff’s bound to prove that Pµ(T0 = n + 1) =

exp(−Ω(nα/4)), which implies Eµ[T0] <∞. In the following discussion, all the results mentioned
are true for both AT2 and IAT2 algorithms.

Proposition 5.1 shows that the allocations made by the proposed algorithm converges to the first order
condition satisfied by the optimal proportion ω⋆ = (ω⋆

a : a ∈ [K]) at a rate O(N−3α/8), where α is
the exploration parameter.

Proposition 5.1. There exists a random time Tstable ≥ T0 satisfying Eµ[Tstable] <∞ and a constant
C2 > 0 depending on µ, α and K, and independent of the sample paths, such that, for N ≥ Tstable

|g(µ, ω̃(N))| =
∣∣∣ ∑

a ̸=1

d(µ1, x1,a(N))

d(µa, x1,a(N))
− 1

∣∣∣ ≤ C2N
−3α/8, (4)

and max
a,b∈[K]/{1}

|Ia(N)− Ib(N)| ≤ C2N
1−3α/8. (5)

Before outlining the proof of Proposition 5.1, we explain how Proposition 3.1 follows from Proposi-
tion 5.1 just using the IFT.
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Proof idea of Proposition 3.1: If our algorithm follows optimal proportions at time N , i.e., Ña(N) =
ω⋆
aN for all a ∈ [K], RHS of (4) and (5) becomes zero by Proposition 2.2. Moreover, by Proposition

2.2 ω⋆ uniquely satisfies the conditions: anchor function is zero and all alternative arms have equal
index. (4) and (5) imply that, ω̃(N) satisfies these conditions upto a perturbation of C2N

−3α/8 after
Tstable. Using the IFT, we prove that the algorithm’s allocation is a Lipschitz continuous function
of the perturbation when it is sufficiently small. Hence, by choosing Tstable large enough and using
Lipschitzness, we get maxa∈[K] |ω̃a(N)− ω⋆

a| = O(N−3α/8). Closeness of µ̃(·) to µ follows from
the fact that Tstable ≥ T0.

Proof idea of Proposition 5.1: We separately outline the proofs of (4) and (5) in Proposition 5.1. In
the following discussion, constants hidden in O(·), Ω(·) and Θ(·) notations are independent of the
sample path after time Tstable. To simplify our analysis, we choose Tstable such that exploration stops
after Tstable, i.e., VN = ∅ for N ≥ Tstable (see the discussion before Definition G.1 in Appendix
G.1.1 for justification).

Key ideas in the proof of (4): We prove (4) via induction. We prove the existence of a constant
D > 0 such that at every N ≥ Tstable, whenever the actual anchor value g(µ, Ñ(N)) (we denote
using g(N)) satisfies |g(N)| > DN−3α/8, our algorithm pushes g(·) towards zero by Θ(1/N) in
the next iteration through steps 3 and 4. Whereas the interval [−C2N

−3α/8, C2N
−3α/8] shrinks

by O(N−(1+3α/8)) from both ends. Since N−(1+3α/8) << N−1, we choose the constant C2 large
enough such that g(·) stays in the said interval in iteration N + 1.

Key ideas in the proof of (5): The following lemma forms a crucial part of the argument for proving
closeness of the indexes in the non-fluid setting.

Lemma 5.1. There exists a random time Tgood ∈ [T0, Tstable] such that the algorithm picks all the
alternative arms in [K]/{1} atleast once between the iterations Tgood and Tstable. Moreover, for
N ≥ Tgood, if the algorithm picks some arm a ∈ [K]/{1} at iteration N , then it picks arm a again
within a next O(N1−3α/8) iterations.

Proof of Lemma 5.1 (in Appendix G.1.2) is technically involved and requires proving several
supplementary lemmas. Several of the key steps of this proof borrow insights from the fluid dynamics,
and we outline them in Appendix F. Here we assume Lemma 5.1 and sketch the argument by
which (5) follows from it for the AT2 algorithm. For any a, b ̸= 1 and after any N ≥ Tstable,
Ia(·) and Ib(·) crosses each other before the algorithm picks both a, b atleast once. We can show
that, for j = a, b and N ≥ Tstable, Ij(N) and Ij(N) differ by O(N1−3α/8). As a result, when
Ia(·) crosses Ib(·) at N + R, we have |Ia(N + R) − Ib(N + R)| = O((N + R)1−3α/8) =

O(N1−3α/8) since R = O(N1−3α/8). For j = a, b, the partial derivatives of Ij(·) w.r.t. Ñ1

and Ñj are non-negative and bounded from above by max{d(µ1, µj), d(µj , µ1)} = O(1). As a
result, |Ij(N + R) − Ij(N)| = O(R) = O(N1−3α/8) for j = a, b. Hence, |Ia(N) − Ib(N)| ≤
|Ia(N +R)− Ib(N +R)|+

∑
j=a,b |Ij(N +R)− Ij(N)| = O(N1−3α/8).

Bounding Tstable: In Appendix G.2, we choose Tgood and Tstable such that Tstable is the time
after Tgood by which the algorithm picks all the sub-optimal arms atleast once. By Proposition 3.1,
the algorithm approximately matches ω⋆ after Tstable. Using an argument similar to the one for
bounding time to reach the optimal proportion in the fluid dynamics of Section 4, we can prove that
Tstable ⪅ (ω⋆

min)
−1Tgood a.s. in Pµ, where ω⋆

min = mina∈[K] ω
⋆
a (Lemma G.4, Appendix G.2.1).

Role of forced exploration in analysis: As we observe in the numerical results in Appendix J.4,
forced exploration (step 1 of our algorithm) does not increase the observed sample complexity.
We emphasize that without the forced exploration, Propositions 5.1 and 3.1 continue to hold if
we can show that the proposed algorithm perform sufficient exploration over the instance. That
is, after a random time T depending on the instance and satisfying E[T ] < ∞, every arm has
Ña(N) = Ω(

√
N). As a result, upon proving sufficient exploration, asymptotic optimality will

follow without the forced exploration step.

In Appendix J.4, we see in the numerical experiments, when there is no forced exploration, AT2’s
sample complexity blows up over instances where multiple sub-optimal arms have equal mean. On
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the other hand, IAT2 performs optimally over the same instances and its sample complexity remains
unaffected even when there is no forced exploration. To understand AT2’s sample complexity blow
up when multiple sub-optimal arms have the same mean, consider the sample paths where the best
arm observes unusually small values in the first few samples. As a result, with positive probability,
AT2 confuses one of the multiple sub-optimal arms with equal mean as the best arm and stay stuck
sampling between those sub-optimal arms forever. However, IAT2 avoids such situation because of
the exploration of every sub-optimal arm induced by the extra logarithmic term in the index. Based on
these observations, we make the following conjectures: 1) AT2 performs sufficient exploration over
instances where the means of all the sub-optimal arms are distinct, and 2) IAT2 performs sufficient
exploration over all instances including when some of the sub-optimal arms may have equal means.

6 Numerical results
In this section, we numerically demonstrate the dynamics followed by the algorithm AT2, and also
compare its performance against the β-EB-TCB algorithm of [16] for different values of β, and
TCB algorithm of [22]. We consider 4 armed Gaussian bandit with unit variance and mean vector
µ = [10, 8, 7, 6.5]. We simulate one sample path of the AT2 without stopping rule, and plot the value
of normalized indexes of the sub-optimal arms. Figure 1 demonstrates that the normalised indexes
once close remain close, and hence, AT2 closely mimics the fluid path. In Figure 2, we plot the
sample complexities of the (I)AT2, (I)TCB, and β-EB-(I)TCB, for different choices of β, and observe
that (I)AT2 outperforms all the other algorithms. Note that we use the same forced exploration rule
and stopping rule for all algorithms. In Appendix J, we demonstrate by several examples that both

Figure 1: Normalised index on 1 sample path. Figure 2: Sample complexity comparison.

the AT2 and IAT2 algorithms significantly outperform the β-EB-TCB and β-EB-ITCB of [16] when
β is chosen different from the optimal β. We also illustrate that the AT2 and IAT2 algorithms have
average sample complexity significantly lesser than the TCB and ITCB policies of [22]. In fact, we
observe numerically, that (I)TCB doesn’t quite satisfy the asymptotic optimality conditions (Figure 4,
Appendix J). Next, in Appendix J.4, we study the effect of choice of the forced exploration parameter
α on the sample complexities of AT2 and IAT2. Additionally, we conduct simulations for natural
extensions of these algorithms to bandits with distributions supported in [0, 1] (Appendix J.5).

7 Conclusion

We considered the best-arm identification problem under the popular top-2 framework. In the litera-
ture, top-2 framework involves sequentially identifying the empirical best arm and the most-likely
challenger arm, and sampling the empirical best with probability β and the other with the complimen-
tary probability. However, optimal β was not known. [22] recently proposed a deterministic rule for
deciding between the empirical best and the challenger arm. In this paper, we have provided a most
natural first order optimality condition based rule to help decide between the two. We showed that
our associated algorithm is asymptotically optimal, and empirically performs better than [22] both in
sample and computational complexity. Our another key contribution was to identify the underlying
limiting ordinary differential equation based fluid dynamics that our algorithm tracks. This structure
also provides important insights which help prove convergence of the proposed algorithm.
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Appendix

A Outline

Below we provide a brief outline of the topics presented in the appendices.

1. Algorithm (1) and (2) are, respectively, the pseudocodes of the AT2 and IAT2 algorithms introduced
in Section 3.

2. Appendix B: We define the single parameter exponential family (SPEF) of distributions, and
prove several inequalities bounding the index function, anchor function, and the derivatives of the
anchor function, which are crucial for our analysis.

3. Appendix C: We introduce a framework using which we apply the implicit function theorem for
proving several properties related to the fluid dynamics and the algorithm’s allocations.

4. Appendix D: We prove Propositions 2.1 and 2.2 from Section 2.
5. Appendix E: We provide the proofs of the results mentioned in Section 4, and also construct the

fluid dynamics for the β-EB-TCB algorithm ([16]) in Appendix E.2.
6. Appendix F: We provide a heuristic argument to show that if the minimum index meets with the

index of some sub-optimal arm a ̸= 1 following the ODEs in Theorem 4.1, then arm a must be
incorporated into the set of minimum index arms. We argue via contradiction to show that, if this
is not the case then index of arm a becomes strictly less than the minimum index of the arms,
which implies a contradiction. Several of the key steps in the proof of Lemma 5.1 are extensions
of the said argument to the non-fluid setting of the algorithm with additional terms because of the
noise in the estimates.

7. Appendix G: We prove Proposition 3.1, 5.1, and provide detailed proofs of all the results
mentioned in Section 5.

8. Appendix H: We provide the detailed proof of Theorem 3.1.
9. Appendix I: We describe a natural extension of the proposed AT2 and IAT2 algorithms to the class

of distributions with support contained in [0, 1]. We do not theoretically analyze this algorithm
owing to space constraints. However we compare the proposed algorithm with existing algorithms
experimentally in Appendix J.5.

10. Appendix J: We compare the performance of the proposed algorithms against existing algorithms
through numerical experiments. We also illustrate how our algorithm follows the fluid dynamics
as the no. of samples increase.

B Single parameter exponential family of distributions

We consider single parameter exponential family (SPEF) of distributions of the form

dνθ(x) = exp(θx− b(θ))dρ(x)

where ρ is a dominating measure which we assume to be degenerate, θ lies in the interior of set Θ
defined below (denoted by Θo):

Θ =

{
θ
∣∣∣ ∫

R
exp(θx)dρ(x) <∞

}
,

and

b(θ) = log

(∫
R
exp(θx)dρ(x)

)
is the log-moment generating function of the measure ρ(·).

For θ, θ̃ ∈ Θo, the KL-divergence between the measures νθ and νθ̃ is,

KL(νθ, νθ̃) = (θ − θ̃)b′(θ)− b(θ) + b(θ̃).

The mean under νθ is given by b′(θ). Let S be the image of the set Θo under the mapping b′(·). Note
that S is an open interval. Also, since b′′(·) > 0 in Θo, b′(·) is strictly increasing in Θo, and is a
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Algorithm 1: Anchored Top-Two (AT2) Algorithm
Input :Confidence parameter δ > 0, exploration parameter α ∈ (0, 1)

1 for N ≥ 1 do
2 VN ←

{
a ∈ [K] | Ña(N − 1) < Nα

}
3 if VN ̸= ∅ then
4 AN ← argmina∈[K] Ña(N − 1) // Forced exploration
5

6 else if g(µ̃(N − 1), Ñ(N − 1)) > 0 then
7 AN ← îN−1 // Choosing leader
8

9 else
10 AN ← argmina∈[K]/{îN−1} Ia(N − 1) // Choosing challenger

11

12 Sample XN from AN and compute µ̃(N) and Ñ(N)

/* Generalized Log-Likelihood Ratio (GLLR) Test */
13 if mina∈[K]/{îN} Ia(N) > β(N, δ) then
14 return îN

Algorithm 2: Improved Anchored Top-Two (IAT2) Algorithm
Input :Confidence parameter δ > 0, exploration parameter α ∈ (0, 1)

1 for N ≥ 1 do
2 VN ←

{
a ∈ [K] | Ña(N − 1) < Nα

}
3 if VN ̸= ∅ then
4 AN ← argmina∈[K] Ña(N − 1) // Forced exploration
5

6 else if g(µ̃(N − 1), Ñ(N − 1)) > 0 then
7 AN ← îN−1 // Choosing leader
8

9 else
10 AN ← argmina∈[K]/{îN−1} Ia(N − 1) + log Ña(N − 1) // Choosing challenger

11

12 Sample XN from AN and compute µ̃(N) and Ñ(N)

/* Generalized Log-Likelihood Ratio (GLLR) Test */
13 if mina∈[K]/{îN} Ia(N) > β(N, δ) then
14 return îN

bijection between Θo and S. This implies we can parameterize the distributions in the SPEF using
their means as well.

Let θµ be the unique θ satisfying b′(θ) = µ for some µ ∈ S. Clearly, θµ is a strictly increasing
function of µ. This follows since b′(·) is strictly increasing in Θo. Additionally, all the higher
derivatives of b(·) exist in the set Θo (see Exercise 2.2.24 in [9]).

For µ, µ̃ ∈ S we define d(µ, µ̃) as,

d(µ, µ̃) = KL(νθµ , νθµ̃) = (θµ − θµ̃)µ− b(θµ) + b(θµ̃).
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We define µinf ∈ R ∪ {−∞} and µsup ∈ R ∪ {+∞}, respectively, to be the infimum and supremum
of the interval S. Then, S = (µinf , µsup).

Definition B.1. For µ = (µ1, µ2, . . . , µK) ∈ SK , define rmin(µ) = mini∈[K]{min{µi −
µinf , µsup − µi}}.

Since S is an open interval, rmin(µ) is positive for every µ ∈ SK , and can be∞ if both µinf and
µsup are∞.

Partial derivatives of d(µ, µ̃): For every pair µ, µ̃ ∈ S , the partial derivatives of d(µ, µ̃) with respect
to the first argument is

d1(µ, µ̃)
def.
=

∂

∂µ
d(µ, µ̃) = θµ − θµ̃,

and that with respect to the second argument is,

d2(µ, µ̃)
def.
=

∂

∂µ̃
d(µ, µ̃) =

µ̃− µ

b′′(θµ̃)
.

Enveloping the KL-divergence: In the following discussion, we try to bound the KL-divergence
d(µ, µ̃) from both sides using the squared distance |µ− µ̃|2 after imposing some restrictions on the
choice of µ, µ̃ ∈ S. For an instance µ ∈ SK , we define the constants ∆min(µ) and ϵ(µ) as

∆min(µ) = min
i∈[K]/{1}

(µ1 − µi) and ϵ(µ) = min

{
∆min(µ)

4
,
rmin(µ)

2

}
.

We further define

H(µ) =
⋃

i∈[K]/{1}

[µi − ϵ(µ), µ1 + ϵ(µ)],

σmax(µ) = max
µ∈H(µ)

b′′(θµ) and σmin(µ) = min
µ∈H(µ)

b′′(θµ).

Since H(µ) ⊂ S, all distributions with mean in H(µ) have positive variance. Note that b′′(θµ)
represents the variance of the distribution with mean µ. As a result, since H(µ) is a compact set,
both σmax(µ) and σmin(µ) are positive constants.

Hence, b(·) is σmin(µ)-strongly convex and b′(·) is σmax(µ)-Lipschitz on the set (b′)−1(H(µ)).
Thus, using [23, Theorems 2.1.5 and 2.1.10], for every θ1, θ2 ∈ (b′)−1(H(µ)), we have

|b′(θ1)− b′(θ2)|2

2σmax(µ)
≤ b(θ2)− b(θ1)− b′(θ1) · (θ2 − θ1) = d(νθ1 , νθ2) ≤

|b′(θ1)− b′(θ2)|2

2σmin(µ)
,

and hence, for µ, µ̃ ∈ H(µ),

|µ− µ̃|2

2σmax(µ)
≤ d(µ, µ̃) ≤ |µ− µ̃|2

2σmin(µ)
. (6)

Bounding the partial derivatives: We now introduce bounds on the partial derivatives d1 and d2
introduced earlier. Consider µ, x, µ̃ ∈ H(µ) such that µ > µ̃, and x ∈ [µ̃, µ]. Recall

d1(µ, x) = θµ − θx and d1(µ̃, x) = −(θx − θµ̃).

Since θ(·) = (b′)−1(·), we have,

µ− x

σmax(µ)
≤ d1(µ, x) ≤

µ− x

σmin(µ)
, and − x− µ̃

σmax(µ)
≥ d1(µ̃, x) ≥ −

x− µ̃

σmin(µ)
. (7)

Similarly, since,

d2(µ, x) = −
µ− x

b′′(θx)
and d2(µ̃, x) =

x− µ̃

b′′(θx)
,

we have,

− µ− x

σmax(µ)
≥ d2(µ, x) ≥ −

µ− x

σmin(µ)
, and

x− µ̃

σmin(µ)
≤ d2(µ̃, x) ≤

x− µ̃

σmin(µ)
. (8)
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B.1 Enveloping the anchor and index functions under noisy estimates of the rewards

For every arm a ∈ [K], let µ̃a be an estimate of µa satisfying |µ̃a − µa| ≤ ϵ(µ) and µ̃ = (µ̃a)a∈[K].
Since ϵ(µ) ≤ ∆min(µ)

4 , the empirically best arm with respect to the estimates µ̃ is the first arm. Also
let Na be the no. of times arm a has been pulled and N = (Na)a∈[K].

Enveloping the anchor function: As we introduced in Section 2, the anchor function is,

g(µ̃,N) =
∑
a ̸=1

d(µ̃1, x̃1,a)

d(µ̃a, x̃1,a)
− 1,

where x̃1,a = N1µ̃1+Naµ̃a

N1+Na
. Note that µ̃a, x̃1,a ∈ H(µ) for every a ∈ [K]/{1}. Therefore, using (6),

we have,

σmin(µ)

σmax(µ)

∑
a̸=1

(µ̃1 − x̃1,a)
2

(x̃1,a − µ̃a)2
− 1 ≤ g(µ̃,N) ≤ σmax(µ)

σmin(µ)

∑
a ̸=1

(µ̃1 − x̃1,a)
2

(x̃1,a − µ̃a)2
− 1,

Putting x̃1,a = N1µ̃1+Naµ̃a

N1+Na
, we obtain,

σmin(µ)

σmax(µ)

∑
a ̸=1

N2
a

N2
1

− 1 ≤ g(µ̃,N) ≤ σmax(µ)

σmin(µ)

∑
a ̸=1

N2
a

N2
1

− 1, (9)

Now µ̃1 − x̃1,a = Na

N1+Na
(µ̃1 − µ̃a) and x̃1,a − µ̃a = N1

N1+Na
(µ̃1 − µ̃a). Using these, we can say,

g(µ̃,N) = Θ

∑
a̸=1

N2
a

N2
1

− 1, (10)

whenever |µ̃a − µa| ≤ ϵ(µ) for all a ∈ [K]. The constants hidden in the Θ(·) depends only on µ
and obviously the choice of the SPEF family.

Enveloping the index: Following the definition of empirical index Ia(·) in Section 3, we define the
index of any alternative arm a ∈ [K]/{1} with respect to the estimates µ̃ = (µ̃a : a ∈ [K]) and
allocation N = (Na : a ∈ [K]) is,

Wa(µ̃,N) = N1d(µ̃1, x̃1,a) +Nad(µ̃a, x̃1,a).

Observe that, the empirical index Ia(N) and index Ia(N) introduced in Section 3 are, respectively,
equivalent to the quantitiesWa(µ̃(N), Ñ(N)), andWa(µ, Ñ(N)), where µ̃(N) is the empirical
estimate and Ñ(N) is the algorithm’s allocation at iteration N .

Using (6) we have,
1

2σmin(µ)
(N1(µ̃1 − x̃1,a)

2 +Na(x̃1,a − µ̃a)
2) ≤ Wa(µ̃,N) ≤ 1

2σmin(µ)
(N1(µ̃1 − x̃1,a)

2

+Na(x̃1,a − µ̃a)
2).

Putting x̃1,a = N1µ̃1+Naµ̃a

N1+Na
, we get,

(µ̃1 − µ̃a)
2

2σmax(µ)

N1Na

N1 +Na
≤ Wa(µ̃,N) ≤ (µ̃1 − µ̃a)

2

2σmin(µ)

N1Na

N1 +Na
, which implies,

(µ1 − µa − 2ϵ(µ))2

2σmax(µ)

N1Na

N1 +Na
≤ Wa(µ̃,N) ≤ (µ1 − µa + 2ϵ(µ))2

2σmin(µ)

N1Na

N1 +Na
.

We define ∆max(µ) = maxa∈[K]/{1} ∆a. Since ϵ(µ) ≤ 1
4∆min(µ), we have,

∆min(µ)
2

8σmax(µ)

N1Na

N1 +Na
≤ Wa(µ̃,N) ≤ (∆max(µ) + 2ϵ(µ))2

2σmin(µ)

N1Na

N1 +Na
. (11)
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Using the same notation, as we used in (10), we have,

Wa(µ̃,N) = Θ

(
N1Na

N1 +Na

)
(12)

for every arm a ∈ [K]/{1}.
Enveloping the partial derivatives of anchor function with respect to N : While analyzing the
AT2 and IAT2 algorithms, we need to show that the anchor function converges to zero at a uniform
rate as no. of iteration goes to infinity. During this step, we need to bound the partial derivatives of
the anchor function g(µ,N) with respect to N . Below we evaluate the partial derivatives of g(µ,N)
with respect to Na for different arms a ∈ [K].

∂g

∂N1
(µ,N) = −

∑
a̸=1

f(µ, a,N)
Na∆a

(N1 +Na)2
, and

∀a ̸= 1,
∂g

∂Na
(µ,N) = f(µ, a,N)

N1∆a

(N1 +Na)2
, (13)

where ∆a = µ1 − µa and

f(µ, a,N) = − ∂

∂x

(
d(µ1, x)

d(µa, x)

) ∣∣∣
x=x1,a

= −d2(µ1, x1,a)

d(µa, x1,a)
+

d(µ1, x1,a)d2(µa, x1,a)

(d(µa, x1,a))2
.

Using (8), and (6), we have,

−d2(µ1, x1,a) = Θ(µ1 − x1,a), d2(µa, x1,a) = Θ(x1,a − µa),

d(µ1, x1,a) = Θ((µ1 − x1,a)
2), and d(µa, x1,a) = Θ((x1,a − µa)

2),

where the constants hidden in Θ(·) depend only on µ and are independent of the sample path.
Therefore,

f(µ, a,N) = Θ

(
µ1 − x1,a

(x1,a − µa)2
+

(µ1 − x1,a)
2

(x1,a − µa)3

)
= Θ

(
Na

N1

(
1 +

Na

N1

)2
)
. (14)

As a consequence, we have,

∂g

∂N1
(µ,N) = −Θ

 ∑
a∈[K]/{1}

N2
a

N3
1

 , and

∀a ̸= 1,
∂g

∂Na
(µ,N) = Θ

(
Na

N2
1

)
. (15)

C Framework for applying the Implicit function theorem (IFT)

In this appendix we explain a general framework using which we later apply the Implicit function
theorem for the following purposes:

1. Constructing the fluid dynamics for the AT2 and β-EB-TCB algorithms in Appendix E.

2. Proving convergence of the algorithm’s allocations to the optimal proportions in Appendix
G.2.2.

We introduce the variables: N = (Na ∈ R≥0 : a ∈ [K]), I ∈ R, η = (ηa ∈ R : a ∈
[K]), and N ≥ 0. After fixing some instance µ ∈ SK (S is defined in Appendix B), we define the
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following functions:

Φ1(N ,η) =
∑

a∈[K]/{1}

d(µ1, x1,a(N1, Na))

d(µa, x1,a(N1, Na))
− 1− η1,

for a ∈ [K]/{1}, Φa(N , I,η) = N1d(µ1, x1,a(N1, Na)) +Nad(µa, x1,a(N1, Na))− I − ηa,

and ΦK+1(N , N) =
∑

a∈[K]

Na −N,

where
x1,a(N1, Na) =

N1µ1 +Naµa

N1 +Na
.

For every non-empty subset B ⊆ [K]/{1}, we define the vector valued functions,

ΦB(N , I,η, N) = [ Φ1(N ,η), (Φa(N , I,η))a∈B , ΦK+1(N , N) ] , and

Φ̃B(N , I,η) = [ Φ1(N ,η), (Φa(N , I,η))a∈B ] .

We denote Φ[K]/{1}(·) just using Φ(·).

In the definitions of ΦB(·) and Φ̃B(·), without loss of generality, we assume that, the functions
Φa(·) in the tuple (Φa(·))a∈B are enumerated in the increasing order of a ∈ B, i.e., if we have
B = {a1, a2, . . . , a|B|} with 1 < a1 < a2 < . . . < a|B|, then,

ΦB =
[
Φ1, Φa1

, , Φa2
, Φa3

, . . . Φa|B| , ΦK+1

]
, and

Φ̃B =
[
Φ1, Φa1

, , Φa2
, Φa3

, . . . Φa|B|

]
.

Before stating the main result of this section in Lemma C.1, we define some notation that are essential
for the lemma statement. For any A ⊆ [K], we use the notation NA to denote the tuple of variables
(Na : a ∈ A). For some vector valued function G depending on N , denote the Jacobian of G(·) with
respect to the tuple of variables NA using ∂G

∂NA
.

For any non-empty B ⊆ [K]/{1}, we define B = B ∪ {1}. For every k ≥ 1, 0k and 1k,
respectively, refers to a k-dimensional vector with entries 0 and 1. We define ZB to be the set of
tuples (N , I,0K , N) with N ∈ RK

≥0, I ∈ R, and N ∈ R>0, which satisfy

ΦB(N , I,0K , N) = 0|B|+2.

Lemma C.1 (Invertibility of the Jacobian). For all non-empty subset B ⊆ [K]/{1}, the following
statements hold true at every tuple (N , I,0K , N) in the set ZB ,

1. The Jacobian ∂Φ̃B

∂NB
is invertible at (N , I,0K).

2. We have

1T
|B|+1

(
∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I
≤ −

∑
a∈B

1

d(µa, µ1)
,

at (N , I,0K).

3. The Jacobian ∂ΦB

∂(NB ,I) defined as,

∂ΦB

∂(NB , I)
=


∂Φ̃B

∂NB

∂Φ̃B

∂I

∂ΦK+1

∂NB

∂ΦK+1

∂I


is invertible at (N , I,0K , N).
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Proof. Statement 1: The Jacobian ∂Φ̃B

∂NB
is equivalent to,

∂Φ̃B

∂NB

=



∂Φ1

∂N1

∂Φ1

∂Na1

∂Φ1

∂Na2
. . . ∂Φ1

∂Na|B|
∂Φa1

∂N1

∂Φa1

∂Na1

∂Φa1

∂Na2
. . .

∂Φa1

∂Na|B|
...

...
... . . .

...
∂Φa|B|
∂N1

∂Φa|B|
∂Na1

∂Φa|B|
∂Na2

. . .
∂Φa|B|
∂Na|B|

 . (16)

Now we observe the following properties about the sign of the entries of the above Jacobian matrix,

• We have N > 0 and Φ1(N ,0K) = 0. This implies N1 > 0 and maxa∈[K]/{1} Na > 0. As a
result, using (15), we have ∂Φ1

∂N1
< 0 and ∂Φ1

∂Nai
≥ 0 for every i ∈ {1, 2, . . . , |B|}.

• For i ∈ {2, . . . , |B| + 1}, in the i-th row, the only non-zero entries can be the first and the
i-th entry. The first entry is ∂Φai

∂N1
= d(µ1, x1,ai(N1, Nai)) ≥ 0. The i-th entry is ∂Φai

∂Nai
=

d(µai , x1,ai(N1, Nai)). Since we have N1 > 0, using (6), we have d(µai , x1,ai(N1, Nai)) > 0,
making the i-th entry positive.

Therefore, considering only the sign of the elements, the matrix in (16) is of the form,

−− + + + . . . +
+ ++ 0 0 . . . 0
+ 0 ++ 0 . . . 0
+ 0 0 ++ . . . 0
...

...
...

... . . .
...

+ 0 0 0 . . . ++

 , (17)

where the symbols ++, −− and + implies that the corresponding entries are positive, negative and
non-negative.

We now argue that a matrix of the above structure has a rank |B| + 1. To see that, by subtracting
some appropriate constant times the i-th column from the first column, we can make the entries in
position i ∈ {2, 3, . . . , |B|+ 1} in the first column zero. As a result of these transformations, since
we are subtracting non-negative quantities from the first entry of the first column, that entry remains
negative. The matrix we obtain after this sequence of transformations has a structure,

−− + + + . . . +
0 ++ 0 0 . . . 0
0 0 ++ 0 . . . 0
0 0 0 ++ . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . ++

 . (18)

Clearly a matrix of the above structure has a rank |B|+ 1 and therefore invertible.

Statement 2: Using statement 1 of Lemma C.1, if we take v =
(

∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I , then we have,

∂Φ̃B

∂NB

v =
∂Φ̃B

∂I
.

Note that, the RHS of the above linear system i.e. ∂Φ̃B

∂I is a |B|+ 1 dimensional vector with zero in
its first entry and −1 in every other entry. Using (17), v = [v1, v2, v3, . . . , v|B|+1]

T satisfies a linear
system with coefficients having the following signs,

(−−)v1 + (+)v2 + (+)v3 + (+)v4 + . . .+ (+)v|B|+1 = 0, and
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for i ∈ {2, . . . , |B|+ 1}, (+)v1 + (++)vi = (−−),

where ++, −− and + represents quantities which are positive, negative and non-negative.

For every i ∈ {2, . . . , |B| + 1}, we can eliminate vi from the first equation by subtracting some
positive constant times the i-th equation from it. After eliminating v2, v3, . . . , v|B|+1 from the
first equation following the mentioned procedure, we will be left with an equation of the form
(−−)v1 = (+), implying v1 ≤ 0.

Now the i-th equation of the system, for i ∈ {2, . . . , |B|+ 1} is,

∂Φai−1

∂N1
v1 +

∂Φai−1

∂Nai−1

vi = − 1. (19)

We know that,
∂Φai−1

∂N1
= d(µ1, x1,ai−1

) and
∂Φai−1

∂Nai−1
= d(µai−1

, x1,ai−1
), where x1,a = N1µ1+Naµa

N1+Na

for every a ∈ [K]/{1}.
Now putting the derivatives in (19), we have

d(µ1, x1,ai−1)v1 + d(µai−1 , x1,ai−1)vi = − 1,

which implies,

vi = − 1

d(µai−1
, x1,ai−1

)
−

d(µ1, x1,ai−1
)

d(µai−1
, x1,ai−1

)
v1,

for every i ∈ {2, . . . , |B|+ 1}.
Now adding both sides for i ∈ {2, 3, . . . , |B|+ 1}, we get,

|B|+1∑
i=2

vi = −
|B|+1∑
i=2

1

d(µai−1
, x1,ai−1

)
− v1

|B|+1∑
i=2

d(µ1, x1,ai−1
)

d(µai−1
, x1,ai−1

)

= −
∑
a∈B

1

d(µa, x1,a)
− v1

∑
a∈B

d(µ1, x1,a)

d(µa, x1,a)

≤ −
∑
a∈B

1

d(µa, x1,a)
− v1

∑
a∈[K]/{1}

d(µ1, x1,a)

d(µa, x1,a)
(since v1 ≤ 0)

= −
∑
a∈B

1

d(µa, x1,a)
− v1,

where the last step follows from the fact that
∑

a∈[K]/{1}
d(µ1,x1,a)
d(µa,x1,a)

= Φ1(N ,0K) + 1 = 1. Taking
v1 on the LHS, we have,

|B|+1∑
i=1

vi ≤ −
∑
a∈B

1

d(µa, x1,a)
.

Note that the LHS of the above inequality is same as 1Tv = 1T
(

∂Φ̃B

∂NB

)−1
∂ΦK+1

∂I . In the RHS,
since d(µa, x1,a) ≤ d(µa, µ1), we conclude the desired result.

Statement 3: We have,

∂ΦB

∂(NB , I)
=


∂Φ̃B

∂NB

∂Φ̃B

∂I

∂ΦK+1

∂NB

∂ΦK+1

∂I

 =


∂Φ̃B

∂NB

∂Φ̃B

∂I

1T
|B|+1 0
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We do the following determinant preserving column operation on ∂ΦB

∂(NB ,I) ,[
∂ΦB

∂(NB , I)

]
:,|B|+2

⇐=
[

∂ΦB

∂(NB , I)

]
:,|B|+2

−
[

∂ΦB

∂(NB , I)

]
:,1:|B|+1

(
∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I
,

where
[

∂ΦB

∂(NB ,I)

]
:,|B|+2

and
[

∂ΦB

∂(NB ,I)

]
:,1:|B|+1

, respectively, denotes the |B|+ 2-th column and left

(|B|+ 2)× (|B|+ 1) submatrix of ∂ΦB

∂(NB ,I) .

The above column operation gives us the matrix,


∂Φ̃B

∂NB
0|B|+1

1T
|B|+1 −1T

|B|+1

(
∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I


,

which has the same determinant as ∂ΦB

∂(NB ,I) . Therefore,

det

(
∂ΦB

∂(NB , I)

)
=

−1T
|B|+1

(
∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I

× det

(
∂Φ̃B

∂NB

)
.

Using statement 1 and 2 of Lemma C.1, both the quantities in the above product are non-zero, making
the Jacobian ∂ΦB

∂(NB ,I) invertible for every tuple in ZB .

D Proofs from Section 2

Theorem D.1 is essential for proving Propositions 2.1 and 2.2 in Section 2. Before stating Theorem
D.1 we state an alternative formulation of the max-min problem 1 which we call O.

O : min
∑K

a=1
Na

s.t. ∀a ̸= 1, Wa(N1, Na) := N1d(µ1, x1,a) +Nad(µa, x1,a) ≥ log
1

2.4δ
, (20)

where Na ≥ 0 for all a, and each x1,a = µ1N1+µaNa

N1+Na
.

The optimal value of the problem O is of the form T ⋆(µ) log(1/(2.4δ)), where T ⋆(µ) is the re-
ciprocal of the optimal value of (1). If N⋆ = (N⋆

a : a ∈ [K]) is an optimal allocation solving O,
then ω⋆

a =
N⋆

a∑
b∈[K] N

⋆
b

is an optimal proportion solving (1). Similarly if ω⋆ is an optimal proportion

solving (1) then N⋆ = (N⋆
a : a ∈ [K]) with N⋆

a = ω⋆
aT

⋆(µ) is an optimal allocation solving O.
Theorem D.1 implies uniqueness to the solution of O which also implies uniqueness of the solution
of (1).

Some notations are needed before stating Theorem D.1. Let B ⊂ [K]/1 and B = B ∪ {1}. Let
ν = (νa : a ∈ [K]) ∈ SK be some instance with ν1 > maxa̸=1 νa. Let (Ia : a ∈ B) each be strictly
positive. If B

c ̸= ∅ then let (Na ∈ R≥0 : a ∈ B
c
) be the no. of samples allocated to arms in B

c
.

We define N1,1 as zero when
∑

a∈B
c Na = 0 or B

c
= ∅. Otherwise, we take N1,1 to be the unique

N1 > 0 that solves, ∑
a∈B

c

d(ν1, x1,a)

d(νa, x1,a)
= 1, (21)

where x1,a = ν1N1+νaNa

N1+Na
. Note that if B

c ̸= ∅ and
∑

a∈B
c Na > 0, there exists an a ∈ B

c
with

Na > 0. As a result, the LHS of (21) decreases from∞ to 0 as N1 increases from 0 to∞. This
implies the existence of a unique N1 > 0 solving (21).
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Set N1,2 := maxa∈B Iad(ν1, νa)
−1.

Theorem D.1. There exists a unique solution N⋆
1 ≥ 0 and (N⋆

a ≥ 0 : a ∈ B) satisfying∑
a ̸=1

d(ν1, x
⋆
1,a)

d(νa, x⋆
1,a)
− 1 = 0 where x⋆

1,a =
ν1N

⋆
1 + νaN

⋆
a

N⋆
1 +N⋆

a

, (22)

and N⋆
1 d(ν1, x

⋆
1,a) +N⋆

ad(νa, x
⋆
1,a) = Ia ∀a ∈ B. (23)

Further, N⋆
1 ≥ max(N1,1, N1,2) and each N⋆

a ≥ Ia
d(νa,ν1)

.

Furthermore, The optimal solution to O is uniquely characterized by the solution above with B =
{2, . . . ,K} and each Ia = log(1/(2.4δ)) and constraints (20) tight, that is, indexes of all the
sub-optimal arms being equal to log(1/(2.4δ)). Further, N⋆

1 ≥ maxa∈[K]\1
log(1/(2.4δ)
d(ν1,νa)

and each

N⋆
a ≥

log(1/(2.4δ)
d(νa,ν1)

.

Proof: First observe that every solution N⋆
1 and (N⋆

a : a ∈ B) to the system (22) and (23) must
satisfy N1 ≥ max{N1,1, N1,2} and N⋆

a ≥ Ia
d(νa,ν1)

, for every a ∈ B.

If B
c ̸= ∅, (22) implies, ∑

a∈B
c

d(ν1, x1,a)

d(νa, x1,a)
≤

∑
a∈[K]/{1}

d(ν1, x1,a)

d(νa, x1,a)
= 1.

If
∑

a∈B
c Na = 0, then N1 ≥ 0 = N1,1. Otherwise, we can find an a ∈ B

c
with Na > 0,

making
∑

a∈B
c

d(ν1,x1,a)
d(νa,x1,a)

strictly decreasing in N1. As a result, by the definition of N1,1 we have
N⋆

1 ≥ N1,1.

Now, for every a ∈ B, we have

Ia = N⋆
1 d(ν1, x1,a) +N⋆

ad(νa, x1,a) = min
x∈[νa,ν1]

{N⋆
1 d(ν1, x) +N⋆

ad(νa, x)}.

Note that RHS of the above inequality is upper bounded by min{N⋆
1 d(ν1, νa), N

⋆
ad(νa, ν1)}. As

a result, for every a ∈ B, N⋆
a ≥ Ia

d(νa,ν1)
, and N⋆

1 ≥ Ia
d(µ1,µa)

. This further implies, N⋆
1 ≥

maxa∈B
Ia

d(ν1,νa)
= N1,2.

Now we prove existence of a unique N⋆
1 and (N⋆

a : a ∈ B). For every N1 ≥ N1,2 and a ∈ B,
as Na increases from 0 to ∞, N1d(ν1, x1,a) + Nad(νa, x1,a) increases monotonically from 0 to
N1d(ν1, νa). Note that N1d(ν1, νa) ≥ N1,2d(ν1, νa) ≥ Ia (by the definition of N1,2). As a result,
we can find a unique Na for which N1d(ν1, x1,a) + Nad(νa, x1,a) = Ia. For every a ∈ B, we
call that unique Na as Na(N1). Observe that, since Ia > 0, Na(N1) is strictly decreasing in N1,
and if Ia = 0, then Na(N1) = 0. Also, if a = argmaxb∈B

Ib
d(ν1,νb)

, then Na(N1,2) = ∞ and

limN1→∞ Na(N1) =
Ia

d(νa,ν1)
.

We now consider the allocation where every arm a ∈ B has Na(N1) samples, and consider the
function,

h(N1) =
∑

a∈[K]/{1}

d(ν1, x1,a)

d(νa, x1,a)
.

Observe that, for all a ∈ B, d(ν1,x1,a)
d(νa,x1,a)

is strictly decreasing for N1 ≥ N1,2. Also if B
c

is non-empty,

then every term d(ν1,x1,a)
d(νa,x1,a)

with Na > 0 is strictly decreasing in N1. As a result, the overall function
N1 → h(N1) is strictly decreasing.

Moreover, as N1 increases to ∞, Na(N1) converges to Ia
d(νa,ν1)

for every a ∈ B. Hence, h(N1)

decreases to 0 as N1 →∞. Therefore, if we can show that h(max{N1,1, N2,1}) ≥ 1, then we can
find a unique N⋆

1 ≥ max{N1,1, N1,2} at which h(N⋆
1 ) = 1, and can take N⋆

a = Na(N
⋆
1 ) for every

a ∈ B. Following this, to prove uniqueness, it is sufficient to show h(max{N1,1, N1,2}) ≥ 1.
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If N1,2 ≥ N1,1, then some a ∈ B has Na(N1,2) = ∞. As a result, we have h(N1,2) = ∞ ≥ 1.
Otherwise, if N1,1 ≥ N1,2 > 0, then by definition of N1,1, we have

h(N1,1) ≥
∑
a∈B

c

d(ν1, x1,a)

d(νa, x1,a)
= 1.

Hence we finish proving the first part of Theorem D.1.

To see the necessity of the stated optimality conditions for O observe that we cannot have N⋆
1 = 0 or

N⋆
a = 0 as that implies that the index Wa(N

⋆
1 , N

⋆
a ) is zero. Further, if Wa(N

⋆
1 , N

⋆
a ) > log(1/(2.4δ)),

the objective improves by reducing N⋆
a . Thus the constraints (20) must be tight. To see the tightness

of (20) again note that the derivative of Wa(N1, Na) with respect to N1 and Na, respectively, equals
d(µ1, x1,a) and d(µa, x1,a).

Now, perturbing N1 by a tiny ϵ and adjusting each Na by d(µ1,x1,a)
d(µa,x1,a)

ϵ maintains the value of
Wa(N

⋆
1 , N

⋆
a ). Thus, at optimal N⋆, necessity of tightness of inequalities in (20) follows. This

condition can also be seen through the Lagrangian (see [2]).

The fact that these three criteria uniquely specify the optimal solution follows from our analysis
above. Since the convex problem O has a solution, the uniqueness of the solution above satisfying
the necessary conditions implies that this uniquely solves O.

To prove Propositions 2.1 and 2.2, we need to use the Implicit function theorem. For that, we define
the following functions,

J1(N) = g(µ,N) =
∑
a ̸=1

d(µ1, x1,a(N1, Na))

d(µa, x1,a(N1, Na))
− 1,

∀ a ∈ [K]/{1} Ja(N , I) = N1d(µ1, x1,a(N1, Na)) +Nad(µa, x1,a(N1, Na))− I,

JK+1(N , N) =
∑

a∈[K]

Na −N,

where N = (Na ∈ R≥0 : a ∈ [K]), I ∈ R, N ∈ R+, and, for every a ∈ [K]/{1}, x1,a(N1, Na) =
N1µ1+Naµa

N1+Na
.

Using these functions, for every non-empty B ⊆ [K]/{1}, we define the vector valued function

JB(N , I,N) = [J1(N), (Ja(N , I))a∈B , JK+1(N , N)] .

We call J[K]/{1}(·) as J(·). Recall that B denotes B ∪ {1}.
For every m ≥ 1, we use the notation 0m to denote a m-dimensional vector with all entries set to
zero. Observe that, for every B ⊆ [K]/{1}, JB(N , I,N) = ΦB(N , I,0K , N), where the function
ΦB(·) is defined in Appendix C.

Lemma D.1 is essential for proving Proposition 2.1.

Lemma D.1. For every N > 0 and non-empty B ⊆ [K]/{1}, if N̂ = (N̂a ∈ R≥0 : a ∈ [K])

satisfies
∑

a∈B
c N̂a < N , and JB(N̂ , Î, N) = 0|B|+1, then, the Jacobian of JB(·) with respect to

the arguments (NB , I) is invertible at (N̂ , Î, N).

Proof. We have JB(N , I,N) = ΦB(N , I,0K , N), for every tuple N , I,N , and non-empty B ⊆
[K]/{1}. As a result, Lemma D.1 follows from statement 3 of Lemma C.1.

For every non-empty subset B ⊆ [K]/{1}, we define the function J̃B(·) to be the first |B| + 1
components of the vector valued function JB(·), or in other words,

J̃B(·) = [ J1(·) , (Ja(·))a∈B ] .

Observe that J̃B(·) depends only on the tuple N and I , and doesn’t depend on N . Also for every
tuple (N , I) ∈ RK

≥0, J̃B(N , I) = Φ̃B(N , I,0K), where Φ̃B is defined in Appendix C.
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We now proceed on proving Propositions 2.1 and 2.2.

Proof of Proposition 2.1: Observe that, for every non-empty B ⊆ [K]/{1}, solving the system (2)
is equivalent to solving for the pair NB , IB in JB((NB ,NB

c), IB , N) = 0.

For every I ≥ 0, by Theorem D.1, there is a unique NB = (Na ∈ R≥0 : a ∈ B) for which,
J̃B((NB ,NB

c), I) = 0|B|+1. We denote that solution using NB(I) (we supress the dependence
on NB

c for cleaner presentation, and also because we will be treating NB
c like a constant in the

rest of the proof). Since, J̃B(N , I) = Φ̃B(N , I,0K), by the Implicit function theorem and using
statement 1 of Lemma C.1, the function I →NB(I) is continuously differentiable. Also, we have

N ′
B
(I) = −

(
∂J̃B

∂NB

)−1
∂J̃B

∂I
= −

(
∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I
,

where the right most quantity is evaluated at the tuple ((NB(I),NB
c), I,0K). Moreover, using

statement 2 of Lemma C.1, we have,

∑
a∈B

N ′
a(I) = 1T

|B|+1N
′
B
(I) = −1T

|B|+1

(
∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I
≥
∑
a∈B

1

d(µa, µ1)
> 0

As a result, the function
∑

a∈B Na(I) is strictly increasing in I with a derivative atleast∑
a∈B

1
d(µa,µ1)

. Also, for I = 0, the unique solution is N1(0) = N1,1 and Na(0) = 0 for
every a ∈ B. As a result, as I increases from 0 to ∞,

∑
a∈B Na(I) increases from N11 to ∞

monotonically. Hence, for every N ≥ N11 +
∑

a∈Bc Na, we can find a unique IB for which∑
a∈B Na(IB) +

∑
a∈B

c Na = N . Therefore NB(IB), IB becomes the unique tuple to satisfy,
JB((NB ,NB

c), IB , N) = 0|B|+2.

Proof of Proposition 2.2: Recall that solving O in (20) is equivalent to solving (1). With this
observation Proposition 2.2 follows directly from the definition of N[K]/{1}(1), I[K]/{1}(1) and the
second statement of Theorem D.1.

D.1 Single variable formulation of the lower bound problem and intuition behind the anchor
function

Now we show that the K-variable convex optimization problem O defined in (20) can be reduced
to a single variable convex optimization problem involving only N1. To see this, observe that O is
equivalent to the problem

O1 min
∑

a∈[K]

Na

s.t. ∀a ̸= 1, Wa(N1, Na) = N1d(µ1, x1,a) +Nad(µa, x1,a) = log(1/(2.4δ))

where x1,a =
N1µ1 +Naµa

N1 +Na
, and ∀a ∈ [K], Na ≥ 0.

This follows from the proof of Theorem D.1.

We first make some observations about O1.

1. Upon fixing some N1 > 0, Na → Wa(N1, Na) is strictly increasing for every a ̸= 1.
Moreover, we have

Wa(N1, 0) = 0 and lim
Na→∞

Wa(N1, Na) = N1d(µ1, µa).

As a result, every feasible solution of O1 must satisfy N1d(µ1, µa) > log(1/(2.4δ)) for
every a ̸= 1, which implies N1 > log(1/(2.4δ))

mina̸=1 d(µ1,µa)
.
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2. Using the preceding observation, for every a ̸= 1 and N1 > log(1/(2.4δ))
mina̸=1 d(µ1,µa)

, we can find a
unique Na such that Wa(N1, Na) = log(1/(2.4δ)). We use N̄a(N1) to denote that unique
Na as a function of N1. Using the Implicit function theorem, it is easy to prove that the
function N1 → N̄a(N1) is differentiable for every N1 > log(1/(2.4δ))

mina̸=1 d(µ1,µa)
with the derivative

being

N̄ ′
a(N1) = − d(µ1, za(N1))

d(µa, za(N1))
where za(N1) =

N1µ1 + N̄a(N1)µa

N1 + N̄a(N1)
.

It follows that O1 is equivalent to the single variable optimization problem:

O2 min f(N1)
def.
= N1 +

∑
a̸=1

N̄a(N1)

s.t. N1 >
log(1/(2.4δ))

mina̸=1 d(µ1, µa)
.

No. of samples to first arm: N1

O
2's

 o
bj
ec

tiv
e:
 f(
N

1)

Plot of f(N1)
Lower bound

Figure 3: Illustrative plot of O2’s objective f(N1)

Further,

f ′(N1) = 1 +
∑
a̸=1

N̄ ′
a(N1)

= 1−
∑
a̸=1

d(µ1, za(N1))

d(µa, za(N1))
,

which is exactly negative of the an-
chor function defined in Section 2
w.r.t. the allocation where arm 1 gets
N1samples and every sub-optimal
arm a ̸= 1 gets N̄a(N1) samples. Fur-
thermore, f ′(N1) is strictly increasing
in N1 and increases from −∞ to 1 as
N1 increases from log(1/(2.4δ))

mina ̸=1 d(µ1,µa)
to

∞. As a result, O2 is a convex prob-
lem w.r.t. N1 and the optimal N1 solv-
ing O2 is uniquely identified by the
condition:∑

a ̸=1

d(µ1, za(N1))

d(µa, za(N1))
− 1 = 0,

which is equivalent to saying that the
anchor function g must be zero when
evaluated at the allocation where the first arm gets N1 samples and every arm a ̸= 1 gets N̄a(N1)
samples. Figure 3 shows an illustrative plot of O2’s objective f(N1).

This observation also implies that the unique β which makes the β-EB-TCB(I) policy in [16]
asymptotically optimal is uniquely identified by the first order conditions: 1) the anchor function g
must be zero and 2) indexes of the sub-optimal arms must be equal. Hence allocations made by every
asymptotically optimal sampling policy must converge to these first order conditions. Both the fluid
dynamics in Section 4 and Proposition 5.1 in Section 5, respectively, show that the sampling policies
of (I)AT2 algorithm converges to these first order conditions in a fluid model and in the proposed
algorithms.

D.2 Sub-optimality of TCB(I)

[22] implicitly assumes that the optimal proportion is uniquely identified by the condition that indexes
of every sub-optimal arm under the proportion are equal. Note that the optimal proportion is a K
dimensional vector and the conditions mentioned in [22, Lemma 2, statement 2] has K − 1 equations
(K − 2 equations to maintain equality of K − 1 indexes and one more equation to make sure that
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all the entries in the K-dimensional vector add up to 1). Moreover, in Appendix D.1, changing the
variables of the problem O2 to capture proportion of samples allocated to every arm, it is not hard to
prove that for every value of w1 ∈ (0, 1), we can get a unique proportion (w1, w2, . . . , wK) such that∑

a∈[K] wa = 1 and index of all sub-optimal arms under the proportion are equal. By the argument
in Appendix D.1, the unique optimal proportion out of these infinite no. of proportions satisfying
equality of the indexes, is uniquely identified by the necessary and sufficient condition that the anchor
function g(·) evaluated at that proportion must be zero. Without this condition, the allocation cannot
be optimal. In the numerical experiments of Appendix J.2, we see that the anchor function doesn’t
always converge to zero for the TCB(I) algorithm. As a result, allocations made by TCB(I) can be
sub-optimal.

E Proofs from Section 4

Proof of Theorem 4.1: We first prove all the steps of Theorem 4.1 except for showing the existence
of β > 0 and independent of N such that I ′b(N) > β. That requires intermediate lemmas and is done
separately.

First suppose that B contains a singleton index b. Define N1(N) and Nb(N) using IFT through the
equations ∑

a̸=1

d(µ1, x1,a)

d(µa, x1,a)
− 1 = 0 (24)

and
∑

a Na = N. For each a, letting x′
1,a denote the derivative of x1,a with respect to N1, x̃′

1,b

denote the derivative of x1,b with respect to Nb. It is easy to check that

x̃′
1,b = −

N1

Na
x′
1,b, (25)

and each x′
1,a = Na∆a

(N1+Na)2
. Differentiating (24) with respect to N , observing that N ′

b = 1−N ′
1, we

get

N ′
1

∑
a̸=1

haNa = N1hb(1−N ′
1).

It follows that
N ′

1 =
N1hb∑

a ̸=1 haNa +N1hb

as stipulated. Also N ′
b =

∑
a ̸=1 haNa∑

a ̸=1 haNa+N1hb
.

Now consider the case where g = 0, and we have set B ⊂ [K]/1 of indices where the indexes are
equal, they are higher for the remaining set. Cardinality of B is at least 2. We want to argue that as
N increases, and the equality of indexes in B is maintained along with g = 0, then the tied indexes
will increase with N .

We have for b, a ∈ B

N1d(µ1, x1,b) +Nbd(µb, x1,b) = N1d(µ1, x1,a) +Nad(µa, x1,a). (26)

Furthermore, g = 0, i.e., ∑
a ̸=1

d(µ1, x1,a)

d(µa, x1,a)
= 1. (27)

Keeping a particular b ∈ B fixed, differentiating with respect to N , (since for each a, by definition of
x1,a, N1d

′(µ1, x1,a) +Nad
′(µa, x1,a) = 0) we see from (26) that

N ′
1d(µ1, x1,b) +Nb

′d(µb, x1,b) = N ′
1d(µ1, x1,a) +Na

′d(µa, x1,a).

Using (26) again in the above equality,

N ′
a =

1

N1d(µa, x1,a)
(Nad(µa, x1,a)−Nbd(µb, x1,b))N

′
1 +

d(µb, x1,b)

d(µa, x1,a)
N ′

b. (28)
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Then from (27), we have that

N ′
1

∑
a ̸=1

f(µ, a,N)x′
1,a +

∑
a∈B

f(µ, a,N)x̃′
1,aN

′
a = 0. (29)

(Recall that for each a, x′
1,a denotes the derivative of x1,a with respect to N1 and x̃′

1,a denotes the
derivative of x1,a with respect to Na.)

Plugging (28) and (25) in (29), multiplying each term by N2
1 , we see that N ′

1 is a ratio of

N1N
′
bdb,bhB

with
h(N) +Nbdb,bhB .

Then,

N ′
b = N ′

1

h(N)d−1
b,b +NbhB

N1hB
.

In particular, since,
∑

a N
′
a = 1, (3) follow. Statement 3 of Theorem 4.1 follows from (3)

and expression for Ia(N). Since I ′a(N) > 0 index is non-decreasing in N . Furthermore,
lim

N→∞
Ia(N) = Nad(µa, µ1).

To prove the existence of β > 0 and independent of N such that I ′b(N) > β, we need Lemmas (E.1),
(E.2) and (E.3). In Lemma E.3, we argue that the indexes in set B grow linearly with the number of
samples. Since index for arm a ∈ B

c
are bounded, eventually indexes in set B catch-up with other

indexes.

Some notation first. Observe that d(µ1, x)− d(µa, x) is a continuous and strictly decreasing function
of x ∈ [µa, µ1]. It equals d(µ1, µa) for x = µa and −d(µa, µ1) for x = µ1. Let xa ∈ (µa, µ1) be
such that

d(µ1, xa) = d(µa, xa).

Furthermore, let

ã = argmax
a

d(µ1, x1,a)

d(µa, x1,a)
.

Let x(ã) be such that
d(µ1, x(ã)) = (K − 1)−1d(µa, x(ã)).

It is guaranteed to exist since the ratio d(µa, x)/d(µ1, x) ∈ (0,∞) is monotonic in x.

Next, let

da =
µ1 − xa

xa − µa
and d(ã) =

µ1 − x(ã)

x(ã)− µa
.

Since K ≥ 2, we have x(ã) ≥ xã, and d(ã) ≤ dã.
Lemma E.1. Suppose that g = 0. Then,1 +

∑
a̸=1

da

−1

N ≤ N1 ≤ (1 + d(ã))
−1

N. (30)

Lemma E.2. Suppose that g = 0. Then,

1. there exist constants H and D such that ha ≤ H for all a, and d−1
a,a ≤ D for all a.

2. Further, there exists an ã such that Nã > αN for some α > 0 and the corresponding hã is
bounded from below by a positive constant.

Lemma E.3. Suppose that g = 0, and for B ⊂ [K]/1 the indexes are all equal and are strictly
higher for the remaining set. Then there exists a constant β > 0 such that

N ′
1d(µ1, x1,a) +N ′

ad(µa, x1,a) = I ′B(N) > β.
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Proof of Lemma (E.1): Since g = 0, it follows that for each a ∈ [K] \ 1,

d1,a
da,a

≤ 1.

Thus, x1,a ≥ xa. This in turn implies that for each a,

N1 ≥ Nad
−1
a .

The above follows from substituting for x1,a in the inequality x1,a ≥ xa, and from the definition of
da. Moreover, since g = 0, it also follows that for each a ̸= 1, x((ã) ≥ x1,a, implying

N1d((ã)) ≤ Na.

Then,

N1

1 +
∑
a̸=1

da

 ≥ N

and
N1(1 + d(ã)) ≤ N,

and the result follows.

Proof of Lemma (E.2): Recall the definitions of ha and f(µ, a,N) from Section 4.

Since, g = 0 implies that x1,a ≥ xa for all a, it follows that da,a = d(µa, x1,a) ≥ d(µa, xa). In
particular, for all a

d−1
a,a ≤ D

for D = maxa d(µa, xa)
−1.

Further, d′(µa, x1,a) is continuous in x1,a and is bounded from above by supxa≤x1,a≤µ1
d′(µa, x1,a).

Similarly, −d′(µ1, x1,a) is bounded from above by supxa≤x1,a≤µ1
−d′(µ1, x1,a). This implies that

f(µ, a,N) is bounded from above by a positive constant and hence so is ha.

To see part 2, observe from definition of x(ã) that x1,ã ≤ x(ã). It follows that

Nã ≥ N1d
−1
ã . Therefore,

Nã ≥ Nd−1
ã (1 +

∑
a ̸=1

da)
−1. (31)

Again, x1,ã ≤ x(ã). Therefore, dã,ã = d(µã, x1,ã) ≤ d(µã, x(ã)) and d1,ã = d(µ1, x1,ã) ≥
d(µ1, x(ã)).

Further, d′(µã, x1,ã) is continuous in x1,ã and is bounded from below by

inf
xã≤x1,ã≤x(ã)

d′(µã, x1,ã).

Similarly, −d′(µ1, x1,ã) is bounded from below by infxã≤x1,ã≤x(ã)−d′(µ1, x1,ã).

Thus, f(µ, ã) is bounded from below. Further, since each Na ≤ daN1, N2
1 /(N1 + Nã)

2 ≥
(1 + dã)

−2, hence, hã is bounded from below by a positive constant.

Proof of Lemma (E.3): Recall from (31) that

Nã ≥ Nd−1
ã (1 +

∑
a ̸=1

da)
−1. (32)

Also, recall the definition of f(µ, a,N) and ha from Section 4.
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Because of (30) and (32), and since Nã ≤ N , we see that f(µ, ã) is bounded from below by a
positive constant, and the same is true for hã.

If ã ∈ B, recall that hB =
∑

a∈B had
−1
a,a. Thus, hB is greater than a constant times N . This ensures

that N ′
ã is bounded from below by a positive constant. Since dã,ã is also bounded from below by a

positive constant, we conclude that there exists a β > 0 such that I ′B(N) > β.

If ã /∈ B, then recalling that h(N) =
∑

a∈Bc/1 haNa, we conclude that N ′
ã is bounded from below

by a positive constant. This implies that as N increases by a positive fraction, so does each Na for
a ∈ B. This in turn ensures that then hB is thereafter bounded from below by a positive constant. In
particular, after some delay we have I ′B(N) > β for some β > 0.

E.1 Fluid dynamics starting at g < 0

Proposition E.1 provides us the ODEs by which the fluid allocations evolve in step 3 of the description
of fluid dynamics when g < 0.
Proposition E.1. Now consider the case where g < 0 at total allocations N , and B again denotes
the set of arms whose indexes have the minimum value. Then, till IB(N) increases with N to either
hit an index in B

c
, or for g to equal zero, whichever is earlier, I ′B(N) =

(∑
a∈B d−1

a,a

)−1
, and for

a ∈ B, N ′
a = d−1

a,a

(∑
a∈B d−1

a,a

)−1
. In particular, IB(N) and each (Na, a ∈ B), are increasing

functions of N .

Proof. Let i1 denote the arm corresponding to a minimum index. Recall that ω⋆ = (ω⋆
a : a ∈ [K])

denote the optimal proportions to the lower bound problem. Consider N̂a =
ω⋆

a

ω⋆
1
N1. Recall that at

these samples, g = 0 and all the indexes are equal. Let Î denote the corresponding value of the
indexes at this allocation.

First we argue that Ni1 < N̂i1 .

Suppose this is not true, then g < 0 implies that for N1 fixed, there exists an arm a so that Na < N̂a,
else if each Na ≥ N̂a then since g increases with Na, we would have g ≥ 0. This contradiction
implies that index for arm a is < ÎB(N). It follows that the index corresponding to i1 is < ÎB(N).
Since the index increases with Ni1 , it follows that Ni1 < N̂i1 .

Thus, initially N increases due to increase in Ni1 . Let B = {i1}. Suppose, iteratively that B =
{i1, . . . , ij−1}, denotes the smallest indexes that are equal and increase with N and g < 0. Proof
follows by observing that the derivative of each index a ∈ B satisfies the relation N ′

ada,a = I ′B(N).
Further,

∑
a∈B N ′

a = 1.

Thus, as N increases, each Na(N), a ∈ B increases, so that g increases. Since all indexes corre-
sponding to B

c
are constant, as N increases, either g = 0 first or another index Ij becomes equal to

IB(N).

E.2 Fluid dynamics of the β-EB-TCB algorithm ([16])

For every β ∈ (0, 1) and allocation N = (Na ∈ R≥0 : a ∈ [K]), we define the β-anchor function
as,

g(N ;β) = β − N1∑
a∈[K] Na

.

Note that, if g(N ;β) = 0, then β-fraction of the total no. of samples in the allocation N is allocated
to the first arm. The fluid dynamics for the β-EB-TCB algorithm (see [16]) can be constructed
similarly to that of the Anchored Top Two algorithm, by replacing the anchor function g(µ,N) with
the β-anchor function g(N ;β) in Section 4.

Existence of fluid dynamics: Recall that, for every B ⊆ [K]/{1}, B denotes the set B ∪ {1}.
Lemma E.4 and Proposition E.2 are essential for constructing the fluid behavior for β-EB-TCB
algorithm.
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Lemma E.4. Given a non-empty B ⊆ [K]/{1}, some tuple NB
c = (Na ∈ R≥0 : a ∈ B

c
) and

I ≥ 0, there is a unique tuple NB = (Na ∈ R≥0 : a ∈ B) which satisfies,

N1 = β
∑

a∈[K]

Na, and

for every a ∈ B, N1d(µ1, x1,a) +Nad(µa, x1,a) = I,

where x1,a = N1µ1+Naµa

N1+Na
.

Moreover, if we define N1,1 = β
∑

a∈B
c Na and N1,2 = I

mina∈B d(µ1,µa)
, then N1 ≥

max{N1,1, N1,2}.

Proof. Proof of this lemma follows an argument similar to the proof of Theorem D.1.

First we fix some I ≥ 0 and N1 ≥ N1,2. Note that for every a ∈ B, as Na increases from
0 to ∞, N1d(µ1, x1,a) + Nad(µa, x1,a) increases monotonically from 0 to N1d(µ1, µa). Since
N1 ≥ N1,2 ≥ I

d(µ1,µa)
, we have N1d(µ1, µa) ≥ I . This implies, for a given N1, there is a unique

value of Na for which N1d(µ1, x1,a) + Nad(µa, x1,a) = I . We call this value Na(N1) for every
a ∈ B.

Observe that N1 → Na(N1) is a strictly decreasing function of N1, and if N1 = N1,2, then there
exists an a ∈ B for which Na(N1,2) =∞. On the other hand, if N1 →∞, Na(N1)→ I

d(µa,µ1)
for

every a ∈ B.

For every N1, we consider the function

h(N1;β) = β − N1

N1 +
∑

a∈B Na(N1) +
∑

a∈B
c Na

.

Note that h(N1;β) is the value of g(N ;β), when the tuple N has Na = Na(N1) for every a ∈ B.
Note that N1 → h(N1;β) is strictly decreasing for N1 ≥ N1,2. Moreover, as N1 →∞, h(N1;β)→
β − 1 < 0. In the rest of the argument, we show that h(max{N1,1, N1,2};β) ≥ 0. After we prove
this, we can find a unique N1 for which h(N1;β) = 0. Using this, we take Na = Na(N1) for every
a ∈ B to obtain our unique tuple NB .

Now we consider two cases.

Case 1: If N1,1 ≥ N1,2, then at N1 = N1,1,

N1,1 = β
∑
a∈B

c

Na ≤ β(N1,1 +
∑

a∈[K]/{1}

Na).

As a result,
N1,1

N1,1 +
∑

a∈B
c Na +

∑
a∈B Na(N1,1)

≤ β,

which implies h(N1,1;β) ≥ 0.

Case 2: If N1,2 ≥ N1,1, then, as we argued before, there exists an a ∈ B for which Na(N1,2) =∞.
As a result,

N1,2

N1,2 +
∑

a∈B
c Na +

∑
a∈B Na(N1,2)

= 0

implying h(N1,2;β) = β > 0.

Proposition E.2 stated below is crucial for constructing the fluid dynamics of the β-EB-TCB policy
and is analogous to Proposition 2.1 used for constructing the fluid dynamics of the anchored top-two
algorithm.
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Proposition E.2. For every non-empty B ⊆ [K]/{1}, tuple NB
c = (Na ∈ R≥0 : a ∈ B

c
), and

N ≥ 1
1−β

∑
a∈B

c Na, there exists a unique tuple NB = (Na ∈ R≥0 : a ∈ B) and IB ≥ 0 for
which,

N1 = βN,
∑

a∈[K]

Na = N,

for every a ∈ B, N1d(µa, x1,a) +Nad(µa, x1,a) = IB , and

where x1,a =
N1µ1 +Naµa

N1 +Na
for every a ∈ [K]/{1}.

If we denote that tuple by NB(N) and IB(N), then the functions N → NB(N), IB(N) are
continuously differentiable with respect to N .

Proof. Proof of Proposition E.2 follows by an argument similar to the one used in the proof of
Proposition 2.1, by using Lemma E.4 instead of Theorem D.1. Observe that the β-anchor function
g(N ;β) is strictly decreasing in N1 and strictly increasing in Na, when N1 > 0. As a result,
statement 1 of Lemma C.1 in Appendix C holds true upon having,

Φ1(N ,η) = g(N ;β)− η0,

and defining the set ZB using the modified function ΦB .

With the above modification, if we can find a constant γ > 0 such that, 1T
|B|+1

(
∂Φ̃B

∂NB

)−1
∂Φ̃B

∂I ≤
−γ < 0 for every tuple in ZB , then statements 2 and 3 of Lemma C.1 also hold true for this modified
ΦB . As a result, Proposition E.2 follows using Lemma E.4 by the same argument used for proving
Proposition 2.1 using Theorem D.1.

In the rest of the proof we argue the existence of such a constant γ > 0.

Let v = (va : a ∈ B) ∈ R|B|+1 be the solution to the system

∂Φ̃B

∂NB
v =

∂Φ̃B

∂I
.

We have ∂Φ1

∂NB
v = ∂Φ1

∂I , and N1 = β
∑

a∈[K] Na, which after some algebraic manipulation implies,

−
(
1

β
− 1

)
v1 +

∑
a∈B

va = 0. (33)

(33) further implies,

1T
|B|+1v =

|B|+1∑
i=1

vi =
v1
β
.

Therefore proving that v1 is upper bounded by a negative constant is sufficient for proving the desired
result.

For every a ∈ B, we have
∂Φa

∂NB

v =
∂Φa

∂I
= −1,

which implies

v1d(µ1, x1,a) + vad(µa, x1,a) = − 1, (34)

where x1,a = N1µ1+Naµa

N1+Na
. We use d1,a and da,a, respectively, to denote d(µ1, x1,a) and d(µa, x1,a).
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For every a ∈ B, we can eliminate va for (33) using (34). After this procedure, we get,

−v1 =

∑
a∈B

1
da,a

1
β − 1 +

∑
a∈B

d1,a

da,a

≥
∑

a∈B
1

da,a

1
β − 1 +

∑
a̸=1

d1,a

da,a

≥
∑

a∈B
1

da,a

1
β − 1 +

∑
a̸=1

d(µ1,µa)
da,a

. (since d1,a ≤ d(µ1, µa)) (35)

Since N1 = β
∑

a∈[K] Na, using (6) we have da,a = Θ(1) for all a ∈ [K]/{1}, where the constant
hidden in Θ(·) is independent of N . As a result, by (35), −v1 = Ω(1). Hence we conclude the
proof.

Constructing the fluid ODEs: Without loss of generality, we assume that the fluid dynamics starts
from a state N where g(N ;β) = 0. Otherwise,

1. If g(N ;β) > 0, the algorithm gives samples to arm 1 till g(N ;β) = 0.
2. If g(N ;β) < 0, the β-EB-TCB algorithm follows the dynamics in Proposition E.1, and

reaches g(N ;β) = 0 in a finite amount of time.

Following Proposition E.2, the algorithm tracks the allocation NB(N) at a given time N , where
B denotes the set of minimum index arms. We now determine the ODEs by which the state of the
algorithm evolves.

To simplify the notations, we use gβ as a shorthand for g(N(N);β) at a given time N . For every
a ∈ [K], we use Na, N

′
a, IB , and I ′B , respectively, to denote Na(N), N ′

a(N), IB(N) and I ′B(N).
For every a ∈ B

c
, we use Ia to denote Ia(N). Also for every a ∈ [K]/{1}, we adopt the notation

d1,a and da,a, respectively, for the quantities d(µ1, x1,a) and d(µa, x1,a), where x1,a = N1µ1+Naµa

N1+Na
.

For every non-empty B ⊆ [K]/{1} we define the quantity,

dB =

(∑
a∈B

1

da,a

)−1

.

We now show the fluid ODEs in the following proposition.

Proposition E.3 (Fluid ODEs for β-EB-TCB). Let us assume the algorithm starts from a state
N(N0) = (N0

a : a ∈ [K]) with
∑

a∈[K] N
0
a = N0, N0

1 = βN0 and N0 > 0. Let B ⊆ [K]/{1} be
the set of arms having minimum index at a given time N ≥ N0. The following statements hold true
about the allocation NB(N) = (Na(N) : a ∈ B) made by β-EB-TCB algorithm,

1. The allocation N(N) = (Na(N) : a ∈ [K]) evolves by the following system of ODEs,

N ′
1 = β, and

for every b ∈ B, N ′
b =

((1− β)N −
∑

a∈B Na)dB +Nbdb,b

Ndb,b
. (36)

2. The index IB(N) of the arms in B evolves by the following ODE,

I ′B =

(
1− β −

∑
a∈B Na

N

)
dB +

IB
N

. (37)

3. There exists a constant c > 0 such that, I ′B ≥ c. On the other hand, indexes of the arms in
B

c
remains upper bounded by N0

ad(µa, µ1).
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Proof. Statement 1: N ′
1 = β follows directly from the fact that gβ = 0.

By definition of B, we have

N1d1,a +Nada,a = N1d1,b +Nbdb,b (38)

for every a, b ∈ [K]. Taking derivative on both sides, we get,

N ′
1d1,a +N ′

ada,a = N ′
1d1,b +N ′

bdb,b,

which implies,

N ′
a =

d1,b − d1,a
da,a

N ′
1 +

db,b
da,a

N ′
b. (39)

Using (38), we have

d1,b − d1,a =
Nada,a −Nbdb,b

N1
.

Using the above expression in (39), we get,

N ′
a =

Nada,a −Nbdb,b
N1da,a

N ′
1 +

db,b
da,a

N ′
b.

Since N ′
1 = β and N1 = βN (which follows from gβ = 0), the above equation implies,

N ′
a =

Nada,a −Nbdb,b
Nda,a

+
db,b
da,a

N ′
b.

Adding both sides for a ∈ B, we get,

1− β =
∑
a∈B

N ′
a =

∑
a∈B

Nada,a −Nbdb,b
Nda,a

+ db,bN
′
b

∑
a∈B

d−1
a,a

=

∑
a∈B Na

N
− Nb

N
db,bd

−1
B +N ′

bdb,bd
−1
B ,

which implies

N ′
b =

((1− β)N −
∑

a∈B Na)dB +Nbdb,b

Ndb,b
.

Statement 2: We know

I ′B = N ′
1d1,b +N ′

bdb,b for every b ∈ B.

Putting in the derivatives from (36), we obtain,

I ′B = βd1,b +

(
1− β −

∑
a∈B Na

N

)
dB +

Nbdb,b
N

=

(
1− β −

∑
a∈B Na

N

)
dB +

βNd1,b +Nbdb,b
N

=

(
1− β −

∑
a∈B Na

N

)
dB +

IB
N

. (since N1 = βN and Ib = IB for every b ∈ B)

Statement 3: For the following argument, the constants hidden in O(·), Ω(·) and Ω(·) are indepen-
dent of N .

Note that N1 = βN . As a result, using (6), da,a = Θ(1) for every a ∈ [K]/{1}. This implies, we
can find a constant c1 > 0 such that dB ≥ c1. On the other hand, using (12), we have,

IB = Θ

(
N1Na

N1 +Na

)
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for every a ∈ B. Since N1 = βN and Na ≤ N , we have

IB = Θ(Na).

Adding for all a ∈ B, we get IB = Θ(
∑

a∈B Na). Therefore, IB ≥ c2
∑

a∈B Na, for some constant
c2 > 0.

Now using (37),

I ′B =

(
1− β −

∑
a∈B Na

N

)
dB +

IB
N

≥ c1 ×
(
1− β −

∑
a∈B Na

N

)
+ c2 ×

∑
a∈B Na

N

≥ min{c1, c2} × (1− β).

Taking c = min{c1, c2} > 0, we have the desired result.

Now for arms a ∈ B
c
, note that x1,a = argminx∈[µa,µ1]

(
N1d(µ1, x) +N0

ad(µa, x)
)

and Ia =

N1d(µ1, x1,a) +N0
ad(µa, x1,a).

As a result, putting x = µ1, we have Ia ≤ N0
ad(µa, µ1).

Reaching β-optimal proportions: By statement 3 of Proposition E.3, the indexes of the arms in B

increase at a linear rate, whereas the indexes of the arms in B
c

stay bounded above by a constant.
As a result, by some finite time, IB crosses the index of some arm in a ∈ B

c
, after which B gets

updated to B ∪ {a}. The same process then continues with the updated B. In this way, eventually
B = [K]/{1} and the fluid dynamics reaches the β-optimal proportion ω⋆(β) = (ω⋆

a(β) : a ∈ [K])
(β-optimal proportion is the solution to the max-min problem (1) with the added constraint ω1 = β)
where,

N1

N
= ω⋆

1(β) = β and
Na

N
= ω⋆

a(β) for every a ∈ [K]/{1}.

Applying the same argument as used to bound the time to reach optimal proportions in Section 4, if
the fluid dynamics start at some time N0 with state N(N0) = (Na(N

0) : a ∈ [K]), then it reaches
stability by a time atmost N0

mina∈[K] ω⋆
a(β)

.

F Intuitions based on fluid dynamics applied to algorithmic behavior

F.1 Indexes once they meet do not separate

In the fluid dynamics described in Theorem 4.1, once the indexes meet thereafter they move up
together by construction. It turns out that I ′B(N) is positive. Below we give a heuristic argument
that in our fluid dynamics, once a set of smallest indexes that are equal, increase and catch up with
another index, their union then remains equal and increases together with N . This argument provides
important insights which help us later to prove that after after a random time of finite expectation, if
our algorithm picks a suboptimal arm, then it picks that arm again in a periodic manner, which helps
us prove closeness of indexes w.r.t. the algorithmic allocations (see Lemma 5.1). Differentiating
g = 0 with respect to N , we see that,

N ′
1

∑
a̸=1

f(µ, a,N)
Na∆a

(N1 +Na)2
=
∑
a ̸=1

N ′
af(µ, a,N)

N1∆a

(N1 +Na)2
. (40)

Inductively, suppose that a set B of indexes are moving up together and they run into another index b
at time N . Upon assuming contradiction, we can have a neighbourhood [N,N +∆N ] where the
algorithm only allocates to a subset C ⊂ B∪{b} and doesn’t allocate to arms in D = B∪{b}−C ̸= ∅.
Then the allocations follow the ODEs in (3) of Theorem 4.1 with B = C, in the interval [N,N+∆N ].

Consider the probability vector (pa : a ∈ [K]/{1}) where,

pa =
f(µ, a,N) Na∆a

(N1+Na)2∑
b ̸=1 f(µ, b,N) Nb∆b

(N1+Nb)2

.

34



Note that pa > 0 for every a ∈ [K]/{1}. We have from (40) that

N ′
1

N1
=
∑
a∈C

N ′
a

Na
pa (41)

Letting b = argmaxa∈C
N ′

a(N)
Na(N) (where N ′

a(N) is the derivative in (3) of Theorem 4.1, upon putting
B = C), we have

N ′
1

N1
≤

(∑
a∈C

pa

)
N ′

b

Nb

(1)
<

N ′
b

Nb
, (42)

where the strict inequality in (1) follows from the fact that D = B ∪ {b} − C ̸= ∅, causing∑
a∈C pa < 1.

We now argue that D must be empty. Suppose instead that D ̸= ∅ and a ∈ D. Because all indexes in
B are equal at time N , we have, N1d(µ1, x1,a) +Nad(µa, x1,a) = N1d(µ1, x1,b) +Nbd(µb, x1,b)
at N. Observe that for any arm d ∈ [K]/{1}, derivative of its index with respect to N equals
N ′

1d(µ1, x1,d)+N ′
dd(µd, x1,d) (since, by definition of x1,d, N1d2(µ1, x1,d)+Ndd2(µd, x1,d) = 0).

Since arm a gets no sample in [N,N +∆N ], we have N ′
a = 0, which implies

I ′a = N ′
1d(µ1, x1,a) in [N,N +∆N ].

By our previous discussion

I ′b = N ′
1d(µ1, x1,b) +N ′

bd(µb, x1,b). (43)

We now argue that N ′
1d(µ1, x1,a) is strictly less than (43) at N . As a result, if ∆N > 0 is picked

sufficiently small, index of b, which is the minimum index, outruns index of a in [N,N +∆N ].

Consider the difference

N ′
1d(µ1, x1,a)−N ′

1d(µ1, x1,b)−N ′
bd(µb, x1,b) = N ′

1((µ1, x1,a)− d(µ1, x1,b))−N ′
bd(µb, x1,b).

(44)
We want show that this is strictly negative. We consider two cases,

Case I: If d(µ1, x1,a)− d(µ1, x1,b) ≤ 0, it follows trivially.

Case II: If d(µ1, x1,a)− d(µ1, x1,b) > 0, since N ′
b > 0, using (42) we can upper bound (44) by

N ′
b ·
(
N1

Nb
(d(µ1, x1,a)− d(µ1, x1,b))− d(µb, x1,b)

)
. (45)

Since the two indexes are equal at this point, we have

N1(d(µ1, x1,a)− d(µ1, x1,b)) = Nbd(µb, x1,b)−Nad(µa, x1,a).

Substituting this in (45), the latter equals

N ′
b ·
(

1

Nb
(Nbd(µb, x1,b)−Nad(µa, x1,a))− d(µb, x1,b)

)
≤ −N ′

b ·
Na

Nb
d(µa, x1,a) < 0.

We thus have our contradiction. Therefore, indexes of the arms in B ∪ {b} move together.

F.2 Proof sketch of Lemma 5.1

We consider the situation where the algorithm picks some arm a ∈ [K]/{1} at iteration N and
doesn’t pick a for the next R(N) ≥ 1 iterations. For better readability, we denote R(N) using R. In
the following argument, we try to bound R from above using N . We can prove that Ñj(N) = Θ(N)
for every j ∈ [K] and N ≥ Tgood (see Remark G.1 in Appendix G.2). As a result, R is atmost O(N)

for N ≥ Tgood. Below, we improve the upper bound to O(N1−3α/8) by a refined analysis.

Let us define ∆Ñj(N, t) = Ñj(N + t)− Ñj(N) for every j ∈ [K] and N, t ≥ 1. By our choice of
Tgood, we have |g(µ, Ñ(N))| = O(N−3α/8) for N ≥ Tgood (see Remark G.1 in Appendix G.2).
By applying mean value theorem on g(·) for N ≥ Tgood, we have,∣∣∣∣∣∣∆Ñ1(N, t)

Ñ1(N)
−
∑
j ̸=1,a

p̂j(N, t)
∆Ñj(N, t)

Ñj(N)

∣∣∣∣∣∣ = O(N−3α/8), for every t ≤ R, (46)
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where (p̂j(N, t) : j ∈ [K]/{1}) is a probability distribution over the set [K]/{1}, depending on N
and t (this distribution is not important to the discussion and is spelt out at Appendix G.6). Taking
bt = argmaxa̸=1

∆Ña(N,t)

Ña(N)
, and using (46), we obtain,

∆Ñ1(N, t)

∆Ñbt(N, t)
≤ Ñ1(N)

Ñbt(N)
+O(N1−3α/8) for every t ≤ R. (47)

Observe that (46) and (47), respectively, resembles (41) and (42) from Appendix F.1, except for a
O(N1−3α/8) term due to the noise in µ̃.

Applying the mean value theorem, we can bound the difference between the empirical indexes of arm
a and bt at iteration N + t by,

Ia(N + t)− Ibt(N + t) ≤ ∆Ñ1(N, t) · (d(µ̃1, x̃1,a)− d(µ̃1, x̃1,bt))

−∆Ñbt(N, t) · d(µ̃bt , x̃1,bt) +O(N1− 3α
8 ). (48)

Now if d(µ̃1, x̃1,a)− d(µ̃1, x̃1,bt) < 0, (48) implies,

Ia(N + t)− Ibt(N + t) ≤ −∆Ñbt(N, t) · d(µ̃bt , x̃1,bt) +O(N1−3α/8).

Otherwise, if d(µ̃1, x̃1,a)− d(µ̃1, x̃1,bt) ≥ 0, using (47) we have

Ia(N + t)− Ibt(N + t)

≤ ∆Ñbt(N, t) ·

(
Ñ1(N)

Ñbt(N)
(d(µ̃1, x̃1,a)− d(µ̃1, x̃1,bt))− d(µ̃bt , x̃1,bt)

)
+O(N1−3α/8), (49)

Note that (48) resembles (45) in Appendix F.1. Since Ia(N − 1) ≤ Ibt(N − 1), we can prove
using the mean value theorem that Ia(N) ≤ Ibt(N) +O(N1−3α/8). Now expanding the empirical
indexes, we get

Ñ1(N) · d(µ̃1, x̃1,a) + Ña(N) · d(µ̃a, x̃1,a) ≤ Ñ1(N) · d(µ̃1, x̃1,a) + Ñbt(N) · d(µ̃bt , x̃1,bt)

+O(N1−3α/8).

Now dividing both sides by Ñbt(N) and using the fact that Ñbt(N) = Θ(N), we have

Ñ1(N)

Ñbt(N)
(d(µ̃1, x̃1,a)− d(µ̃1, x̃1,bt))− d(µ̃bt , x̃1,bt) ≤ −

Ña(N)

Ñbt(N)
d(µ̃a, x̃1,a) +O(N−3α/8).

Using the above inequality in (49), we have,

Ia(N + t)− Ibt(N + t) ≤ −∆Ñbt(N, t) · Ña(N)

Ñbt(N)
d(µ̃a, x̃1,a) +O(N1− 3α

8 )

+O(∆Ñbt(N, t) ·N− 3α
8 ),

≤ −∆Ñbt(N, t) · Ña(N)

Ñbt(N)
d(µ̃a, x̃1,a)

+O(N1− 3α
8 ) (since ∆Ñbt(N, t) ≤ R = O(N)), (50)

whenever d(µ̃1, x̃1,a)− d(µ̃1, x̃1,bt) ≥ 0.

Since Ñj(N) = Θ(N) and µ̃j(N) ≈ µj for all j ∈ [K] and N ≥ Tgood, the coefficient of
∆Ñbt(N, t) in (49) and (50) are −Θ(1). As a result, we can find a constant C3 > 0, such that, for
t ≤ R and N ≥ Tgood,

Ia(N + t)− Ibt(N + t) ≤ − C3∆Ñb(N, t) +O(N1−3α/8). (51)

36



Applying the mean value theorem and using the fact that t can be atmost O(N), we can prove that,
(51) implies,

Ia(N + t− 1)− Ibt(N + t− 1) ≤ − C3∆Ñb(N, t) +O(N1−3α/8).

As a result, we have a constant C4 > 0 such that,

Ia(N + t− 1)− Ibt(N + t− 1) ≤ − C3∆Ñb(N, t) + C4N
1−3α/8. (52)

Using (47), we can choose Tgood suitably, and find constants D1, D2 > 0, such that, whenever
N ≥ Tgood,

R ≥ D1N
1−3α/8 =⇒ ∆ÑbR(N,R) ≥ D2R (see Lemma G.15 of Appendix G.6).

We consider the case where R ≥ max
{
D1,

2C4

C3D2

}
×N1−3α/8.

Since R ≥ D1N
1−3α/8, we have

∆ÑbR(N,R) ≥ D2R ≥ D2 ×
2C4

C3D2
N1−3α/8 =

2C4

C3
N1−3α/8.

For notational simplicity, we use b to denote bR. We consider the iteration N + S where arm b was
selected for the last time before iteration N +R. Then by definition of bR and S, and using the above
inequality, we have

∆Ñb(N,S) = ∆Ñb(N,R) ≥ 2C4

C3
N1−3α/8. (53)

Also, since ∆Ñb(N,S) = ∆Ñb(N,R) and for every j ̸= 1 ∆Ñj(N,R) ≥ ∆Ñj(N,S), we
conclude b = bS . Therefore,

Ia(N + S − 1)− Ib(N + S − 1) = Ia(N + S − 1)− IbS (N + S − 1)

(using (52)) ≤ − C3∆ÑbS (N,S) + C4N
1−3α/8

(since b = bS) = − C3∆Ñb(N,S) + C4N
1−3α/8

(using (53)) ≤ − C3 ×
2C4

C3
N1−3α/8 + C4N

1−3α/8

= −C4N
1−3α/8.

The above inequality implies, the AT2 algorithm pulls arm b at iteration N + S, even though

Ia(N + S − 1) ≤ Ib(N + S − 1)− C4N
1−3α/8,

which is contradicting the algorithm’s description. Hence we must have

R ≤ max

{
D1,

2C4

C3D2

}
×N1−3α/8 = O(N1−3α/8).

G Algorithmic allocations: non fluid behaviour

In the following sections, unless otherwise stated, the proof of the mentioned results for AT2 (1)
and IAT2 (2) algorithms follow a similar argument. Also, the constants introduced while stating the
results in the following sections might be different for the two algorithms.

While using the O(·), Θ(·) and Ω(·) notations, we imply that the hidden constants can depend on the
choice of algorithm among AT2 and IAT2, instance µ, exploration factor α ∈ (0, 1) and no. of arms
K, and are independent of the sample path.
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G.1 Convergence of algorithmic allocations to the optimality conditions

In this section, our agenda is to prove the convergence of the allocations of AT2 and IAT2 algorithms
to the optimality conditions mentioned in Proposition 2.2. For ease of presentation we state the
conditions uniquely characterizing the optimal proportion ω⋆ below according to Proposition 2.2:∑

a̸=1

d(µ1, x
⋆
1,a)

d(µa, x⋆
1,a)

= 1 and ∀a ̸= 1, ω⋆
1d(µ1, x

⋆
1,a) + ωad(µa, x

⋆
1,a) = I⋆ = T ⋆(µ)−1

(54)

where x⋆
1,a =

ω⋆
1µ1 + ω⋆

aµa

ω⋆
1 + ω⋆

a

, and
∑

a∈[K]

ω⋆
a = 1.

Recall that for every a ∈ [K] and iteration N , ω̃a(N) = Ña(N)
N denotes the proportion of samples

allocated by the algorithm to arm a. Let ω̃(N) = (ω̃a(N) : a ∈ [K]).

Recall the anchor function g(µ, Ñ(·)) and index Ia(·) for every alternative arm a ∈ [K]/{1}. In
Section 5, we defined the normalized index Ha(·) of every arm a ∈ [K]/{1} at iteration N as
Ha(N) = 1

N Ia(N). In the next two sections, we prove,

|g(µ, ω̃(N))| =

∣∣∣∣∣∣
∑

a∈[K]

d(µ1, x1,a(N))

d(µa, x1,a(N)
− 1

∣∣∣∣∣∣ −→ 0, (55)

and
max

a,b∈[K]/{1}
|Ha(N)−Hb(N)| −→ 0 (56)

a.s. in Pµ as N → ∞. Moreover, we show that, after a random time of finite expectation, both
the convergences in (55) and (56) happen at a uniform rate over all sample paths. We prove these
convergence results in Proposition G.1 and G.2 stated below.
Proposition G.1 (Convergence of g to zero). There exists constants M4 ≥ 1 and C > 0 independent
of the sample paths, such that, if T6 is defined as the iteration at which g(µ̃(·), Ñ(·)) crosses the
value zero after iteration max{M4, T5} (T5 is a random time satisfying Eµ[T5] <∞ and defined in
Definition G.1 of Appendix G.1.1), then for N ≥ T6 we have,∣∣∣g(µ, Ñ(N))

∣∣∣ ≤ CN−3α/8.

Moreover, the random time T6 satisfies Eµ[T6] <∞.

Proposition G.2 (Closeness of the indexes). There exists a random time T8 (defined in Definition
G.4 of Appendix G.1.2) satisfying Eµ[T8] < ∞, such that, for N ≥ T8, every pair of alternative
arms a, b ∈ [K]/{1} has,

|Ia(N)− Ib(N)| = O(N1−3α/8).

Proof of Proposition 5.1: By the definition of Tstable in Definition G.5 of Appendix G.2, we have
Tstable ≥ T6, T8, where T6 and T8 are the random times mentioned, respectively, in Proposition G.1
and G.2. As a result, Proposition 5.1 follows trivially from Proposition G.1 and G.2.

Proof of Proposition G.1 is in Appendix G.1.1. We prove a detailed version of Proposition G.2 as
Proposition G.3 in Appendix G.1.2. Both these results are crucial later for proving the convergence of
the algorithmic proportions ω̃(N) = (ω̃a(N) : a ∈ [K]) to the optimal proportions ω⋆ = (ω⋆

a : a ∈
[K]) in Proposition 3.1 from Section 3. We prove a detailed version of Proposition 3.1 as Proposition
G.4 in Appendix G.2.

To prove Proposition G.1, G.2, and later Proposition G.4, we need to prove several technical properties
related to exploration and the allocations made by the algorithms. The detailed technical results
related to exploration are in Appendix G.4 and those related to the algorithmic allocations are in
Appendix G.5. The arguments in Appendix G.1.1, G.1.2, and G.2 are self-contained, and we refer the
reader to the related technical results whenever necessary. For ease of exposition, we provide below a
brief summary of the statements proven in Appendix G.4 and G.5.
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Summary of technical results in Appendix G.4 and G.5

We summarize below the results proven in Appendix G.4 and G.5 as events happening between the
non-decreasing sequence of random times T0, T1, T2, T3, and T4, which are defined in Appendix
G.5.

1. T0
def.
= min{N ′ ≥ 1 | ∀N ≥ N ′, maxa∈[K] |µ̃a(N) − µa| ≤ ϵ(µ)N−3α/8}, where ϵ(µ) >

0 (defined in Appendix B), is a constant depending on the instance µ. By definition, we have
ϵ(µ) ≤ 1

4 mina̸=1(µ1 − µa). As a result, the first arm becomes the empirically best arm and stays
that way forever after iteration T0. In Lemma G.7 of Appendix G.3, we prove that Eµ[T0] <∞,
which implies T0 <∞ a.s. in Pµ.

2. T1
def.
= max{Texplo, T0}, where Texplo < ∞ is a constant defined in Definition G.7 of Appendix

G.4. After iteration Texplo, the algorithm consecutively does exploration over a strech of atmost
K iterations. Moreover, over a single such “epoch” of consecutive explorations, the algorithm
explores every arm atmost once (follows from statement 1 and 3 of Proposition G.5). Note that
Eµ[T1] ≤ Texplo + Eµ[T0] <∞.

3. T2 is defined in Lemma G.11 as the iteration at which the anchor function g(µ̃(·), Ñ(·)) crosses
the value zero after the iteration max{M1, T1} (M1 ≥ 1 is a constant independent of the sample
paths and defined in the proof of Lemma G.11). By Lemma G.9, there exists a constant C1 ≥ 1
independent of the sample paths, such that T2 ≤ C1 max{M1, T1}. As a result, Eµ[T2] ≤
C1(M1 + Eµ[T1]) <∞. After iteration T2, the empirical anchor function g(µ̃(·), Ñ(·)) remains
bounded inside an interval of the form [−(1 − dmin), dmax − 1], where dmin ∈ (0, 1) and
dmax ∈ (1,∞) are constants independent of the sample paths (see Lemma G.11). Exploiting
this, we argue that both Ñ1(N) and maxa∈[K]/{1} Ña(N) become Ω(N) after iteration T2 (see
Corollary G.1).

4. T3
def.
= max{M2, T2} + 2, where M2 ≥ 1 is a constant chosen in the proof of Lemma G.12

and is independent of the sample paths. After iteration T3, whenever the algorithm picks an
alternative arm a ∈ [K]/{1}, then for every other alternative arm b ∈ [K]/{1, a}, we have
Ñb(N) ≥ γÑa(N), for some constant γ ∈ (0, 1) independent of the sample paths (see Lemma
G.12). Note that Eµ[T3] ≤M2 + 2 + Eµ[T2] <∞.

5. T4 = C2(T3 + 1) for some constant C2 ≥ 1 independent of the sample paths, defined in Lemma
G.13. After iteration T4, all the arms a ∈ [K] have Ña(N) = Θ(N) (see Lemma G.13). Note
that Eµ[T4] ≤ C2(Eµ[T3] + 1) <∞.

G.1.1 Convergence of the anchor function to zero

The following lemma bounds the fluctuation of g(µ̃, Ñ) around g(µ, Ñ) due to the noise in the
estimate µ̃ of µ. We need this lemma later for proving convergence of the anchor function g to zero
in Proposition G.1.

Lemma G.1 (Bounding the noise in g). For every N ≥ T2 (where T2 is the random time defined in
Lemma G.11 and satisfies Eµ[T2] <∞), we have,

|g(µ̃(N), Ñ(N))− g(µ, Ñ(N))| = O(N−3α/8).

Proof. Using mean value theorem for function of several variables, we have,

|g(µ̃(N), Ñ(N))− g(µ, Ñ(N))| ≤
K∑

a=1

∣∣∣∣ ∂g∂µa
(µ̂, Ñ(N))

∣∣∣∣ · |µ̃a(N)− µa|,

where µ̂a lies between µa and µ̃a(N) for every a ∈ [K].

We define

x̂1,a =
Ñ1(N)µ̂1 + Ña(N)µ̂a

Ñ1(N) + Ña(N)
, for every a ∈ [K]/{1}.
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Note that,

∂g

∂µ1
(µ̂, Ñ(N)) =

∑
a̸=1

(
d1(µ̂1, x̂1,a)

d(µ̂a, x̂1,a)
− f(µ̂, a, N̂) · Ñ1

Ñ1 + Ña

)
, and,

∀a ̸= 1,
∂g

∂µa
(µ̂, Ñ(N)) = − d(µ̂1, x̂1,a)d1(µ̂a, x̂1,a)

(d(µ̂a, x̂1,a))2
− f(µ̂, a, N̂) · Ña

Ñ1 + Ña

, (57)

where f(µ̂, a, N̂) = − d2(µ̂1, x̂1,a)

d(µ̂a, x̂1,a)
+

d(µ̂1, x̂1,a)d2(µ̂a, x̂1,a)

(d(µ̂a, x̂1,a))2
,

and recall that d1(·, ·) and d2(·, ·), respectively, denote the partial derivatives of d(·, ·) with respect to
its first and second argument.

By (6), for N > T2, we have,

d(µ̂a, x̂1,a) = Θ
(
(x̂1,a − µ̂a)

2
)

= Θ

(
Ñ1(N)2

(Ñ1(N) + Ña(N))2

)
.

By Corollary G.1 from Appendix G.5, we have Ñ1(N) = Ω(N) for N > T2. As a result,
d(µ̂a, x̂1,a) = Θ(1) for N > T2.

Moreover, for N > T2, we have: |d1(µ̂1, x̂1,a)| = O(1), |d1(µ̂a, x̂1,a)| = O(1) (using (7)) ;
|d2(µ̂1, x̂1,a)| = O(1), |d2(µ̂a, x̂1,a)| = O(1) (using (8)) ; and d(µ̂1, x̂1,a) = O(1) (using (6)).
As a result, for N > T2, all the partial derivatives in (57) are O(1). Therefore, for N > T2,

|g(µ̃(N), Ñ(N))− g(µ, Ñ(N))| = O

 ∑
a∈[K]

|µ̃a(N)− µ̃a|

 = O(N−3α/8), (58)

and hence completing the proof.

Halting of exploration: By Lemma G.13, for N ≥ T4, every arm a ∈ [K] has Ña(N) = Θ(N).
As a result, we can find a constant λ ∈ (0, 1) such that Ña(N) ≥ λN for every a ∈ [K] and
N ≥ T4. We choose M3 large enough such that, for every N ≥ M3, λ(N − 1) > Nα. Then we
have mina∈[K]/{1} Ña(N − 1) > Nα for every N ≥ max{M3, T4 + 1}. As a result, the algorithm
doesn’t do any exploration after iteration max{M3, T4 + 1}. With this, we define the following
random time,
Definition G.1. We define T5 = max{M3, T4 + 1}.

Note that Eµ[T5] <∞, since, Eµ[T4] <∞.

We restate Proposition G.1 below,

Statement of Proposition G.1. There exists constants M4 ≥ 1 and C > 0 independent of the
sample paths, such that, if T6 denotes the iteration at which g(µ̃(·), Ñ(·)) crosses the value zero
after iteration max{M4, T5}, then for N ≥ T6 we have,∣∣∣g(µ, Ñ(N))

∣∣∣ ≤ CN−3α/8. (59)

Moreover, the random time T6 satisfies Eµ[T6] <∞.

Proof. We prove the proposition via an inductive argument consisting of two main steps,

1. Initialization: We start with a choice of the constants C > 0 and M4 ≥ 1 and show that
g(µ, Ñ(·)) satisfies (59) at iteration T6.

2. Induction: We show that, for every N ≥ T6,
∣∣∣g(µ, Ñ(N))

∣∣∣ ≤ CN−3α/8 implies∣∣∣g(µ, Ñ(N + 1))
∣∣∣ ≤ C(N + 1)−3α/8.
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By Lemma G.1, we have a constant C1 > 0 independent of the sample path, such that,∣∣∣g(µ̃(N), Ñ(N))− g(µ̃, Ñ(N))
∣∣∣ ≤ C1N

−3α/8, for N ≥ T5. (60)

By Lemma G.13, we have Ña(N) = Θ(N) for every a ∈ [K] and N ≥ T5. As a result, by (15), we
have constants C2, C

′
2 > 0 independent of the sample paths, such that: for all N ≥ T5, and N̂a ∈[

Ña(N − 1), Ña(N)
]
,

−C ′
2N

−1 ≤ ∂g

∂N1
(µ, N̂) ≤ − C2N

−1, and

for a ∈ [K]/{1}, C ′
2N

−1 ≥ ∂g

∂Na
(µ, N̂) ≥ C2N

−1, (61)

where N̂ = (N̂a : a ∈ [K]).

We use the constants C1, C2, and C ′
2 as defined above in the rest of our proof.

Initialization: We choose C = 4C1 + C ′
2 and M4 = max{M41,M42,M43,M44}, where

M41,M42,M43,M44 are defined as,

1. M41 ≥ 1 is the smallest number such that, for every N ≥ M41 we have 2C1N
−3α/8 >

C1(N − 1)−3α/8,

2. M42 ≥ 1 is the smallest number such that, for every N ≥M42 we have C(N + 1)−3α/8 ≥
(C1 + C ′

2)N
−3α/8,

3. M43 ≥ 1 is the smallest number such that, for every N ≥M43 we have C(N + 1)−3α/8 ≥
C ′

2N
−1, and

4. M44 ≥ 1 is the smallest number such that, for every N ≥ M44 we have 3Cα
8 (N +

1)−(1+ 3α
8 ) < C2N

−1.

By definition of T6, g(µ̃(·), Ñ(·)) has opposite signs at iterations T6 − 1 and T6. Therefore,∣∣∣g(µ̃(T6), Ñ(T6))
∣∣∣ ≤ ∣∣∣g(µ̃(T6), Ñ(T6))− g(µ̃(T6 − 1), Ñ(T6 − 1))

∣∣∣
≤
∣∣∣g(µ, Ñ(T6))− g(µ, Ñ(T6 − 1))

∣∣∣+ C1T
−3α/8
6 + C1(T6 − 1)−3α/8 (using (60))

≤
∣∣∣g(µ, Ñ(T6))− g(µ, Ñ(T6 − 1))

∣∣∣+ 3C1T
−3α/8
6 (using the definition of M41).

(62)

Let a ∈ [K] be the arm pulled at iteration T6. Applying the mean value theorem we can find
N̂a between Ña(T6 − 1) and Ña(T6), can take N̂b = Ñb(T6) for all b ̸= a, and define the
tuple N̂ = (N̂b)b∈[K], such that, (62) is bounded by,∣∣∣∣ ∂g

∂Na
(µ, N̂)

∣∣∣∣+ 3C1T
−3α/8
6 .

Using (60) and the above upper bound, we have,∣∣∣g(µ, Ñ(T6))
∣∣∣ ≤ ∣∣∣g(µ, Ñ(T6))− g(µ̃(T6), Ñ(T6))

∣∣∣+ ∣∣∣g(µ̃(T6), Ñ(T6))
∣∣∣

≤ C1T
−3α/8
6 +

∣∣∣∣ ∂g

∂Na
(µ, N̂)

∣∣∣∣+ 3C1T
−3α/8
6

≤ 4C1T
−3α/8
6 + C ′

2T
−1
6 (using (61))

≤ (4C1 + C ′
2)T

−3α/8
6 = CT

−3α/8
6 .
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Induction: Note that at a given iteration N the algorithm can only see g(µ̃(N), Ñ(N)). By (60), for
N ≥ T6, g(µ̃, Ñ) and g(µ, Ñ) may have different signs only when

∣∣∣g(µ, Ñ(N))
∣∣∣ ≤ C1N

−3α/8.
Based on this, we consider two cases.

Case I: |g(µ, Ñ(N))| ≤ C1N
−3α/8: We assume a ∈ [K] to be the arm pulled in iteration N + 1.

Using the mean value theorem, we can find N̂a ∈
[
Ña(N), Ña(N + 1)

]
, can take N̂b = Ñb(N)

for all b ̸= a, and define the tuple N̂ = (N̂b)b∈[K], such that,∣∣∣g(µ, Ñ(N + 1))
∣∣∣ ≤ ∣∣∣g(µ, Ñ(N))

∣∣∣+ ∣∣∣∣ ∂g

∂Na
(µ, N̂)

∣∣∣∣
(1)

≤ C1N
−3α/8 + C ′

2N
−1 ≤ (C1 + C ′

2)N
−3α/8,

where (1) follows from (61).

Note that N ≥ T6 ≥M4 ≥M42. By the definition of M42, we have

∣∣∣g(µ, Ñ(N + 1))
∣∣∣ ≤ (C1 + C ′

2)N
−3α/8 ≤ (4C1 + C ′

2)(N + 1)−3α/8 = C(N + 1)−3α/8,

for every N ≥ T6.

Case II: |g(µ, Ñ(N))| > C1N
−3α/8: In this case g(µ̃(N), Ñ(N)) and g(µ, Ñ(N)) have the

same sign. Let arm a has been sampled from in iteration N + 1. Using the mean value theorem,
we have N̂a ∈

[
Ña(N), Ña(N + 1)

]
, can take N̂b = Ñb(N) for all b ̸= a, and define the tuple

N̂ = (N̂b)b∈[K], such that,

g(µ, Ñ(N + 1)) = g(µ, Ñ(N)) +
∂g

∂Na
(µ, N̂). (63)

We first consider the case when g(µ, Ñ(N)) > 0. After the algorithm sees g(µ̃(N), Ñ(N)) > 0, it
pulls the first arm. As a result, by (61) and (63), g(µ, Ñ(·)) decreases in iteration N + 1 atmost by
C ′

2N
−1 and atleast by C2N

−1. Now there can be two possibilities:

1. If g(µ, Ñ(N + 1)) < 0, we must have g(µ, Ñ(N + 1)) ≥ −C ′
2N

−1. Since
N ≥ T6 ≥M4 ≥M43, we have C(N+1)−3α/8 ≥ C ′

2N
−1 by the definition of M43. As a result,

g(µ, Ñ(N + 1)) ≥ − C ′
2N

−1 ≥ − C(N + 1)−3α/8.

2. If g(µ, Ñ(N + 1)) ≥ 0, then g(µ, Ñ(·)) has moved towards zero by atleast C2N
−1. Whereas,

by iteration N + 1, the interval
[
− CN−3α/8, CN3α/8

]
has reduced from both ends by

CN−3α/8 − C(N + 1)−3α/8 ≤ 3Cα

8
N−(1+ 3α

8 ).

Since N ≥ T6 ≥M4 ≥M44, by the definition of M44, we have 3Cα
8 (N + 1)−(1+ 3α

8 ) < C2N
−1

for every N ≥ T6. As a result, we can ensure g(µ, Ñ(N + 1)) ≤ C(N + 1)−3α/8 at iteration
N + 1.

In the other case, when g(µ, Ñ(N)) < 0, the algorithm sees g(µ̃(N), Ñ(N)) < 0, and hence
pulls some arm a ∈ [K]/{1}. As a result, by (61) and (63), g(µ, Ñ(·)) increases in iteration
N + 1 atmost by C ′

2N
−1 and atleast by C2N

−1. Then we apply the same argument as for the case
g(µ, Ñ(N)) > 0, but by reversing the signs. Therefore, the inductive statement holds true for this
case as well. Hence (59) stands proved.

T6 has finite expectation: By Lemma G.9, we can have a constant C3 > 0, such that T6 ≤
C3 max{M4, T5}. As a result, since Eµ[T5] <∞, we have Eµ[T6] ≤ C1(M4 + Eµ[T5]) <∞.
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G.1.2 Closeness of the indexes

Lemma G.2 is a detailed version of Lemma 5.1 mentioned in Section 5, and is essential for proving
closeness of the indexes under the allocations made by AT2 and IAT2 algorithms. Recall that T6 is
the random time defined in Proposition G.1 and satisfies Eµ[T6] <∞.
Lemma G.2. For both AT2 and IAT2 algorithms, there exists constants M5 ≥ 1 and C1 > 0
independent of the sample paths, such that, for every N ≥ max{M5, T6}, if the algorithm picks an
arm a ∈ [K]/{1} at iteration N , then it again picks arm a within the next ⌈C1N

1−3α/8⌉ iterations.

Proof of Lemma G.2 is in Appendix G.6, and requires proving several technical lemmas. Some of
those supporting lemmas involve arguments similar to the ones used for proving closeness of the
indexes while the algorithm operates under an idealized fluid model (discussed in Section 4). In
the rest of this section, we use Lemma G.2 to prove closeness of indexes for alternative arms in
Proposition G.2.
Definition G.2. We define the random time T7 = max{M5, T6}.

Note that Eµ[T7] <∞, since Eµ[T6] <∞.
Definition G.3. For every M ≥ 1, define T7,M = max{M,T7}, and T8,M as the smallest iteration
after T7,M by which all the alternative arms in [K]/{1} have been picked atleast once by the
algorithm.

Below we state a detailed version of Proposition G.2.
Proposition G.3. For every M ≥ 1, we have Eµ[T7,M ] < ∞ and Eµ[T8,M ] < ∞. Moreover, for
every M ≥ 1 and N ≥ T8,M , every pair of arms a, b ∈ [K]/{1} satisfy,

|Ia(N)− Ib(N)| = O(N1−3α/8),

where the constant hidden in O(·) is independent of M and the sample path after T7.
Definition G.4. We define T8 = T8,1, where T8,1 is defined according to Proposition G.3.

By the defintion of T8 above, Proposition G.2 follows trivially from Proposition G.3.

The following lemma helps us to bound the deviation of the empirical index Ia(N) from the index
Ia(N) due to the noise in the estimates µ̃, for every alternative arm a ∈ [K]/{1}.
Lemma G.3. For a ∈ [K]/{1} and N ≥ T0, we have,

|Ia(N)− Ia(N)| = O(N1−3α/8).

Proof. Proof of this lemma uses mean value theorem. For any arm a ∈ [K]/{1}, upon expanding
the indexes,

|Ia(N)− Ia(N)| ≤ Ñ1 · |d(µ̃1, x̃1,a)− d(µ1, x1,a)|+ Ña · |d(µ̃a, x̃1,a)− d(µa, x1,a)|, (64)

where Ñ1, Ña, µ̃1, µ̃a, and x̃1,a are evaluated at N . Since Ñ1, Ña ≤ N , the difference (64) is
bounded above by,

|Ia(N)− Ia(N)| ≤ N · (|d(µ̃1, x̃1,a)− d(µ1, x1,a)|+ |d(µ̃a, x̃1,a)− d(µa, x1,a)|) .

Now considering the first term in the RHS, and applying mean value theorem, we get

|d(µ̃1, x̃1,a)− d(µ1, x1,a)| =

∣∣∣∣∣ d1(µ̂1, x̂1,a) + d2(µ̂1, x̂1,a) ·
Ñ1

Ñ1 + Ña

∣∣∣∣∣ · |µ̃1 − µ1|

+

∣∣∣∣∣ d2(µ̂1, x̂1,a) ·
Ña

Ñ1 + Ña

∣∣∣∣∣ · |µ̃a − µa|,

where µ̂1, µ̂a, respectively, lie between µ̃1, µ1, and µ̃a, µa, and x̂1,a = Ñ1µ̂1+Ñaµ̂a

Ñ1+Ña
. Using (7) and

(8), all the partial derivatives in the above upper bound are O(1) for N ≥ T0. Therefore,
|d(µ̃1, x̃1,a)− d(µ1, x1,a)| = O (|µ̃1 − µ1|+ |µ̃a − µa|)

= O(N−3α/8). (65)
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Following a similar procedure, we can argue using (7) and (8), that the partial derivatives of d(µ̃j , x̃1,j)
with respect to µ̃1 and µ̃j are O(1) in magnitude. As a result, using the mean value theorem,

|d(µ̃a, x̃1,a)− d(µa, x1,a)| = O(N−3α/8). (66)

Therefore, we have,

|Ia(N)− Ia(N)| = O(N1−3α/8),

for N ≥ T0 and completing the proof.

Proof of Proposition G.2: We have Eµ[T7,M ] ≤M + Eµ[T7] <∞. By Lemma G.13, Ña(N) =
Θ(N) for N ≥ T7,M . Hence, by the definition of T8,M , there exists a constant C ′ > 0 independent
of M , such that, for every M ≥ 1, T8,M ≤ C ′T7,M . As a result, Eµ[T8,M ] ≤ C ′Eµ[T7,M ] <∞.

Note that T7,1 = T7. Also, for every M ≥ 1, T8,M ≥ T8,1 = T8 (T8 is defined in Definition G.4).
It is sufficient to prove the proposition for every N ≥ T8.

We now argue for the algorithms AT2 and IAT2 separately.

AT2: We consider any two alternative arms a, b ∈ [K]/{1}, and define the time τa,b(N) as,

τa,b(N) = min
{
t ≥ 1

∣∣∣ Ib(N + t)− Ia(N + t) and Ib(N)− Ia(N) have opposite signs
}
.

Note that N + τa,b(N) must be before the iteration after N by which the algorithm has picked both a
and b atleast once. By the definition of T7 and T8, for every N ≥ T8, all alternative arms in [K]/{1}
has been sampled from atleast once between iterations T7 and N . Therefore, by Lemma G.2, we
have τa,b(N) = O(N1−3α/8).

Since Ia(N)− Ib(N) and Ia(N + τa,b(N))− Ib(N + τa,b(N)) have opposite signs, we have,

|Ia(N)− Ib(N)| ≤ |(Ia(N)− Ib(N)) − (Ia(N + τa,b(N))− Ib(N + τa,b(N)))|
≤ |Ia(N + τa,b(N))− Ia(N)| + |Ib(N + τa,b(N))− Ib(N)|
≤ |Ia(N + τa,b(N))− Ia(N)| + |Ib(N + τa,b(N))− Ib(N)|
+ O((N + τa,b(N))1−3α/8),

where the last step follows from Lemma G.3. Now,

O
(
(N + τa,b(N))

1−3α/8
)

= O

((
N +O(N1−3α/8)

)1−3α/8
)

= O(N1−3α/8).

Therefore,

|Ia(N)−Ib(N)| ≤ |Ia(N + τa,b(N))− Ia(N)| + |Ib(N + τa,b(N))− Ib(N)| +O(N1−3α/8).

By Lemma G.3, we know |Ia(N) − Ib(N)| ≤ |Ia(N) − Ib(N)| + O(N1−3α/8). Therefore, the
above inequality implies,

|Ia(N)− Ib(N)| ≤ |Ia(N)− Ib(N)| + O(N1−3α/8)

≤ |Ia(N + τa,b(N))− Ia(N)| + |Ib(N + τa,b(N))− Ib(N)|
+ O(N1−3α/8). (67)

Using mean value theorem, for j ∈ {a, b}, we have,

|Ij(N + τa,b(N))− Ij(N)| ≤

 ∑
i∈{1,j}

∂Ij
∂Ni

(N̂1, N̂j)

 · τa,b(N), (68)

where N̂i ∈
[
Ñi(N), Ñi(N + τa,b(N))

]
for i = 1, a, b.
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We know,
∂Ij
∂N1

(N̂1, N̂j) = d(µ1, x̂1,j) and
∂Ij
∂Nj

(N̂1, N̂j) = d(µj , x̂1,j),

where x̂1,j =
N̂1µ1+N̂jµj

N̂1+N̂j
. Note that both the partial derivatives above are bounded from above by

max{d(µ1, µa), d(µa, µ1)}, and therefore O(1). As a result, since τa,b(N) = O(N1−3α/8), we
have,

|Ij(N + τa,b(N))− Ij(N)| ≤ O(N1−3α/8) for j = a, b. (69)

Using (69) in (67), we get

|Ia(N)− Ib(N)| = O(N1−3α/8), for N ≥ T8.

IAT2: First we define the modified empirical index of every alternative arm a ∈ [K]/{1} using the
notation I(m)

a (N) as,
I(m)
a (N) = Ia(N) + log(Ña(N)).

We define the time τ
(m)
a,b (N) as,

τ
(m)
a,b (N) = min

{
t ≥ 1

∣∣∣ I(m)
b (N + t)− I(m)

a (N + t) and

I(m)
b (N)− I(m)

a (N) have opposite signs
}
.

Note that, for every a ∈ [K]/{1}, I(m)
a (N) differs from Ia(N) by atmost log(N) and Ia(N) differs

from Ia(N) by atmost O(N1−3α/8) for N ≥ T0. Therefore,

|I(m)
a (N)− Ia(N)| = O(N1−3α/8) for N ≥ T0 and every a ∈ [K]/{1}.

Now N + τ
(m)
a,b (N) must be earlier than the iteration after N by which the algorithm has picked

both a and b atleast once. Using the same argument as AT2, by Lemma G.2, we have τ
(m)
a,b (N) =

O(N1−3α/8). Also, following the same steps as AT2, by replacing the empirical index I with the
modified empirical index I(m) for every alternative arm, we obtain,

|Ia(N)−Ib(N)| ≤ |Ia(N+τ
(m)
a,b (N))−Ia(N)| + |Ib(N+τ

(m)
a,b (N))−Ib(N)| + O(N1−3α/8).

Using the mean value theorem, since the parital derivatives of Ia and Ib with respect to Ñ1, Ña and
Ñb are O(1), we have

|Ij(N + τ
(m)
a,b (N))− Ij(N)| ≤ O

(
τ
(m)
a,b (N)

)
= O(N1−3α/8) for j = a, b.

From the last two observations, we conclude

|Ia(N)− Ib(N)| ≤ O(N1−3α/8) for N ≥ T8.

G.2 Convergence of algorithm to optimal proportions

In this appendix we prove a slightly detailed version of Proposition 3.1 from Section 3. In Proposition
3.1, we argue that the proportion of samples allocated by the algorithm converges to the optimal
proportions for the instance, a.s. in Pµ, as the no. of samples grows to∞.
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For every M ≥ 1, we use T7,M and T8,M as defined in Definition G.3 in Appendix G.1.2. Recall that
T7 = T7,1 and T8 = T8,1. By Proposition G.3, we have Eµ[T8,M ] <∞, and T8,M ≥ T8 for every
M ≥ 1.

Recall that ω⋆ is the unique optimal allocation according to Proposition 2.2, and ω̃(N) = (ω̃a(N) :

a ∈ [K]) with ω̃a(N) = Ña(N)
N is the algorithms allocation at iteration N . We now state a slightly

detailed version of Proposition 3.1 from Section 3,

Proposition G.4. There exists constants C1 > 0 and M6 ≥ 1 depending on µ, α, and K such that,
for every N ≥ T8,M6

and a ∈ [K], we have

|ω̃a(N)− ω⋆
a| ≤ C1N

−3α/8 and |µ̃a(N)− µa| ≤ ϵ(µ)N−3α/8,

where ϵ(µ) is a constant depending only on µ and defined in Appendix B.

Detailed proof of Proposition G.4 is in Appendix G.2.2 and relies on using IFT.

Below we define the random times Tgood and Tstable, which are mentioned in the statements of
Proposition 3.1, 5.1, and Lemma 5.1 from the main body of the paper.

Definition G.5 (Tstable and Tgood). We define Tgood = T7,M6 and Tstable = T8,M6 , where M6 ≥ 1
is introduced in Proposition G.4.

Remark G.1. Note that, by definition, Tgood ≥ T4, T6. As a result, by Proposition G.1 and Lemma

G.13,
∣∣∣g(µ, Ñ(N))

∣∣∣ = O(N−3α/8) and Ñj(N) = Θ(N) for every j ∈ [K] and N ≥ Tgood.

Proof of Lemma 5.1: By the definition of T7,M , T8,M in Appendix G.1.2, and since
Tgood = T7,M6

, Tstable = T8,M6
, every alternative arm in [K]/{1} gets picked atleast once between

the iterations Tgood and Tstable. The other part of the statement of Lemma 5.1 follows from Lemma
G.2 because Tgood ≥ T7.

Before proving Proposition G.4 in Appendix G.2.2, we find a tighter upper bound on the time to
reach optimal proportion Tstable in the following Appendix G.2.1. While doing this, we identify a
similarity between the time to reach stabilty in fluid dynamics and that for the algorithm.

G.2.1 Bounding time to reach stability

Lemma G.4 gives an upper bound on the time to reach stability for the algorithmic allocations. We
define ω⋆

min = mina∈[K]/{1} ω
⋆
a.

According to the discussion in Section 4, if the fluid dynamics has state Ñ(Tgood) at time Tgood, then
it hits all the indexes and reaches stability by a time atmost Tgood

ω⋆
min

. In Lemma G.4, we argue that, the

algorithm also approximately reaches the optimal proportion ω⋆ by atmost ≈ Tgood

ω⋆
min

iterations.

Lemma G.4. For every M ≥M6 (M6 is a constant defined in the statement of Proposition G.4),

T8,M ≤ T7,M + 1

ω⋆
min − C1M−3α/8

,

which implies

Tstable ≤
Tgood + 1

ω⋆
min − C1M

−3α/8
6

.

Moreover, we have

lim sup
M→∞

T8,M

T7,M
≤ 1

ω⋆
min

a.s. in Pµ.

Proof. From Proposition G.4, it follows that, for every M ≥M6 and N ≥ T8,M ≥ T8,M6
, we have,

max
a∈[K]

|ω̃a(N)− ω⋆
a| ≤ C1N

−3α/8. (70)
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Since T8,M is the first iteration after T7,M by which every alternative arm has been picked atleast
once, we have some arm a ∈ [K]/{1} such that,

Ña(T8,M ) = Ña(T7,M ) + 1 ≤ T7,M + 1.

Now by (70), we have

Ña(T8,M ) ≥ (ω⋆
a − C1T

−3α/8
8,M )T8,M ≥ (ω⋆

min − C1M
−3α/8)T8,M .

Combining the last two observation, we have,

T8,M ≤ T7,M + 1

ω⋆
min − C1M−3α/8

a.s. in Pµ

for every M ≥M6.

Since T8,M , T7,M →∞ as M →∞ a.s. in Pµ, we have,

lim sup
M→∞

T8,M

T7,M
≤ 1

ω⋆
min

a.s. in Pµ.

G.2.2 Proving Proposition G.4

By Proposition G.1 and G.3, there exists a constant C > 0 independent of the sample paths, such that
ω̃(N) = (ω̃a(N))a∈[K] satisfies,

|g(µ, ω̃(N))| =

∣∣∣∣∣∣
∑

a∈[K]/{1}

d(µ1, x1,a(N))

d(µa, x1,a(N))
− 1

∣∣∣∣∣∣ ≤ CN−3α/8, and

max
a,b∈[K]/{1}

|Ia(N)− Ib(N)| ≤ CN−3α/8, (71)

for all N ≥ T8 a.s. in Pµ.

Proof of Proposition G.4 relies on using the implicit function theorem. Before proving the proposition,
we describe below the framework over which we apply the implicit function theorem. We define the
following functions,

Ψ1(ω,η) = g(µ,ω)− η1 =
∑
a̸=1

d(µ1, x1,a(ω1, ωa))

d(µa, x1,a(ω1, ωa))
− 1− η1,

for a ∈ [K]/{1}, Ψa(ω, I,η) = Wa(ω1, ωa)− I − ηa, and

ΨK+1(ω) =
∑

a∈[K]

ωa − 1,

where ω = (ωa)a∈[K] ∈ RK
≥0, η = (ηa)a∈[K] ∈ RK , I ∈ R, and for every

a ∈ [K]/{1}, x1,a(ω1, ωa) = ω1µ1+ωaµa

ω1+ωa
and Wa(ω1, ωa) = ω1d(µ1, x1,a(ω1, ωa)) +

ωad(µa, x1,a(ω1, ωa)).

Using the functions defined above, we define the vector valued function Ψ(ω, I,η) as follows,

Ψ(ω, I,η) = ( Ψ1(ω,η), Ψ2(ω, I,η), Ψ3(ω, I,η), . . . , ΨK(ω, I,η), ΨK+1(ω) ) .

Ψ maps tuples of the form (ω, I,η) ∈ RK
≥0 × R× RK to RK+1.

Its easy to observe that for every ω = (ωa : a ∈ [K]) ∈ RK
≥0 satisfying

∑
a∈[K] ωa = 1, and I ∈ R,

there is a unique η ∈ RK for which Ψ(ω, I,η) = 0K+1. We refer to the quantity maxa∈[K] |ηa| as
the violation caused by the pair (ω, I) to the optimality conditions in (54).
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By (54), all the alternative arms in [K]/{1} have equal normalized index under the optimal allocation
ω⋆. Let I⋆ = Wa(ω

⋆
1 , ω

⋆
a) for every a ∈ [K]/{1}. Then Proposition 2.2 implies (ω⋆, I⋆) is the

unique tuple satisfying
Ψ(ω⋆, I⋆,0K) = 0K+1.

To prove Proposition G.4 we need the two technical lemmas: Lemma G.5 and G.6. Let us define
∥x∥∞ = maxa∈[K] |xa| for every x ∈ RK .

Lemma G.5 shows that, the set of allocations satisfying the optimality conditions in (54) upto a
maximum violation of r > 0 shrinks to ω⋆ as r decreases to zero. In Lemma G.6, we use Lemma
G.5 and IFT to argue that if the perturbation vector η satisfies ∥η∥∞ ≤ ηmax, where ηmax > 0 is
a constant depending only on µ, then there is a unique pair (ω, I) satisfying Ψ(ω, I,η) = 0K+1.
Moreover, the function mapping a perturbation vector η ∈ [−ηmax, ηmax]

K to the unique pair (ω, I)
solving Ψ(ω, I,η) = 0K+1 is Lipschitz continuous.

It is now easy to see Proposition G.4 follows from Lemma G.5 and G.6. By (71), the violation
caused by the algorithmic allocation ω̃(N) to the optimality conditions in (54) converges to zero
uniformly at a rate O(N−3α/8). We wait for sufficiently many iterations such that, the violation
becomes smaller than ηmax. Then using Lipschitzness of the allocation as a function of perturbation
(proven in Lemma G.6), we have ∥ω̃(N)− ω⋆∥∞ = O(N−3α/8).

Lemma G.5. For every r ≥ 0, we define the quantity,

dist(ω⋆, r) = max
{

max{∥ω − ω⋆∥∞, |I − I⋆|}
∣∣∣ ω ∈ RK

≥0, I ∈ R, and

∃ η ∈ [−r, r]K such that Ψ(ω, I,η) = 0K+1

}
.

The following statements are true about the mapping r 7→ dist(ω⋆, r),

1. dist(ω⋆, 0) = 0,

2. dist(ω⋆, r) is non-decreasing in r, and

3. limr→0 dist(ω
⋆, r) = 0.

Proof. Statement 1: Statement 1 follows directly from the fact that (ω⋆, I⋆) is the unique tuple
satisfying Ψ(ω⋆, I⋆,0K) = 0K+1, as proven in Proposition 2.2.

Statement 2: Follows directly from the definition of dist(ω⋆, r).

Statement 3: By statement 2, limr→0 dist(ω
⋆, r) exists and is non-negative. We consider a contra-

diction to statement 3 and assume that limr→0 dist(ω
⋆, r) = d > 0.

Since r → dist(ω⋆, r) is non-decreasing, we can construct a decreasing sequence {rn}n≥1 such
that, for every n ≥ 1, rn > 0, dist(ω⋆, rn) ≥ d, and limn→∞ rn = 0. As a result, using the
definition of dist(ω⋆, r), we have a sequence of tuples {(ωn, In,ηn)}n≥1, such that,

for every n ≥ 1, ∥ηn∥∞ ≤ rn, Ψ(ωn, In,ηn) = 0K+1, and

lim inf
n→∞

max {∥ωn − ω⋆∥∞, |In − I⋆|} ≥ d.

Since ΨK+1(ωn) = 0 for every n ≥ 1, the whole sequence (ωn)n≥1 lies in the set (ω1, ω2, . . . , ωK) ∈ RK
≥0

∣∣∣ ∑
i∈[K]

ωi = 1

 ,

which is compact with respect to the norm ∥·∥∞.
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Let for every n ≥ 1 and a ∈ [K], ωa,n and ηa,n be, respectively, the a-th component of the vectors
ωn and ηn. For every n ≥ 1 and a ∈ [K]/{1}, we have In = Wa(ω1,n, ωa,n)− ηa,n. Since Wa(·, ·)
always lies in the interval [0, d(µ1, µa) + d(µa, µ1)] and |ηa,n| ≤ rn, we have

−rn ≤ In ≤ d(µ1, µa) + d(µa, µ1) + rn for every n ≥ 1.

By our assumption, we already have rn → 0, which also implies, the sequence rn is bounded
from above. As a result, In is also bounded. Therefore, we can have a convergent subsequence
{(ωnk

, Ink
)}k≥1, with limits ωnk

→ ω′ and Ink
→ I ′ in the ∥·∥∞-norm.

For every k ≥ 1, we have Ψ(ωnk
, Ink

,ηnk
) = 0K+1. As a result, using the continuity of Ψ(·) with

respect to its arguments, we have Ψ(ω′, I ′,0K) = 0K+1, implying ω′ is an optimal allocation for
the instance µ.

Hence, our assumption lim infn→∞ max{∥ωn − ω⋆∥∞, |In − I⋆|} ≥ d implies max{∥ω′ −
ω⋆∥∞, |I ′ − I⋆|} ≥ d > 0, which further implies ω′ ̸= ω⋆. As a result, the instance µ has
two distinct optimal allocations ω′ and ω⋆, which contradicts Proposition 2.2.

Lemma G.6. There exists ηmax > 0 depending only on the instance µ, such that the following
statements are true,

1. For every η ∈ [−ηmax, ηmax]
K , there exists a unique tuple (ω, I) ∈ RK

≥0×R which satisfies,
Ψ(ω, I,η) = 0K+1.

2. For every η ∈ [−ηmax, ηmax]
K , we call the unique tuple mentioned in statement 1 as

(ω(η), I(η)). Then the function

(ω, I) : [−ηmax, ηmax]
K 7→ RK

≥0 × R

is L-Lipschitz, for some L > 0 depending on the instance µ.

Proof. By Proposition 2.2, we know that the optimal allocation ω⋆ is the unique allocation satisfying,

Ψ(ω⋆, I⋆,0K) = 0K+1

for some I⋆ > 0. Note that Ψ(ω, I,η) = Φ(ω, I,η, 1) for every tuple (ω, I,η), where Φ is the
function defined in Appendix C. By statement 3 of Lemma C.1, the Jacobian ∂Ψ

∂(ω,I) of the function
Ψ(ω, I,η) is invertible at the tuple (ω⋆, I⋆,0K).

Therefore, applying the Implicit function theorem, we can find δ0, δ1 > 0, and continuously differen-
tiable functions

(ω(·), I(·)) : (−δ0, δ0)K 7→ RK
≥0 × R,

such that,

1. ω(0K) = ω⋆, I(0K) = I⋆, and

2. for every η ∈ (−δ0, δ0)K , (ω(η), I(η)) is the unique tuple in RK
≥0 × R to satisfy,

max
{
∥ω(η)− ω⋆∥∞, |I(η)− I⋆|

}
≤ δ1 and Ψ(ω(η), I(η),η) = 0K+1.

By statement 3 of Lemma G.5, we can find a δ2 > 0 such that, dist(ω⋆, r) < δ1 for r ∈ [0, δ2]. We
define ηmax = min

{
δ0
2 , δ2

}
.

By the definition of dist(ω⋆, ·), for every η ∈ [−ηmax, ηmax]
K , if a tuple (ω, I) satisfies

Ψ(ω, I,η) = 0K+1, then it also satisfies max{∥ω − ω⋆∥∞, |I − I⋆|} < δ1.

On the other hand, by IFT, since ηmax < δ0, (ω(η), I(η)) is the only such tuple possible. There-
fore, for every η ∈ [−ηmax, ηmax]

K , (ω(η), I(η)) is the unique element in RK
≥0 × R such that

Ψ(ω(η), I(η),η) = 0K+1. This proves the first statement of Lemma G.6.

Since ω(·), I(·) is continuously differentiable in (−δ0, δ0)K , every component of this mapping must
be L-Lipschitz for some L > 0 in

[
− δ0

2 ,
δ0
2

]K
equipped with ∥·∥∞-norm. We can take L to be

49



the maximum of the ∥·∥1-norm of the gradients of different components of (ω(·), I(·)) over the set[
− δ0

2 ,
δ0
2

]K
. Since the gradients are all continuous, their ∥·∥1-norm must be bounded in a compact

set like
[
− δ0

2 ,
δ0
2

]K
, and hence L <∞. Therefore, the second part of Lemma G.6 follows from our

assumption ηmax ≤ δ0
2 .

We now proceed on proving Proposition G.4.

Proof of Proposition G.4: Recall that in Section 5, for every a ∈ [K]/{1}, we defined the normalized
index as Ha(N) = Ia(N)

N .

Taking H(N) = H2(N) = I2(N)
N , let η̃(N) be the unique η ∈ RK to satisfy, Ψ(ω̃(N), H(N),η) =

0K+1.

Note that for every a ∈ [K]/{1}, we have Wa(ω̃1(N), ω̃a(N)) = Ha(N). As a result, by (71), we
have ∥η̃(N)∥∞ ≤ CN−3α/8 for all N ≥ T8.

Now we pick M6 ≥ 1 large enough, such that,

CM
−3α/8
6 < ηmax,

where ηmax is introduced in Lemma G.6. We define Tstable = T8,M6 . Note that Tstable ≥ T6 ≥ T0.
As a result, by the definition of T0 in Appendix G.3, we have maxa∈[K] |µ̃a(N)−µa| ≤ ϵ(µ)N−3α/8

for every N ≥ Tstable.

Now, by (71), for N ≥ Tstable, the allocations ω̃(N) satisfies, Ψ(ω̃(N), H(N), η̃(N)) = 0K+1

with
∥η̃(N)∥∞ ≤ CN−3α/8 ≤ CM

−3α/8
6 < ηmax.

As a result, by Lemma G.6, we have
ω̃a(N) = ωa(η̃(N)) for every a ∈ [K], and N ≥ Tstable,

where ωa(·) is the a-th component of the vector valued function ω(·) introduced in Lemma G.6.

By Lemma G.6, for every a ∈ [K], ωa(·) is L-Lipschitz in [−ηmax, ηmax]
K equipped with ∥·∥∞-

norm. As a result, for N ≥ Tstable, we have,
max
a∈[K]

|ω̃a(N)− ω⋆
a| = max

a∈[K]
|ωa(η̃(N))− ωa(0K)| ≤ L∥η̃(N)− 0K∥∞

= L∥η̃(N)∥∞ ≤ LCN−3α/8.

Taking C1 = LC, we have the desired result.

G.3 T0 has finite expectation

In Section 5, we introduced the random time T0 as,

T0 = min

{
N ′ ≥ 1

∣∣∣ ∀N ≥ N ′, max
a∈[K]

| µ̃a(N)− µa| ≤ ϵ(µ)N−3α/8

}
,

where ϵ(µ) is a positive constant defined in Appendix B and depends only on the instance µ.
Lemma G.7. The random time T0 satisfies Eµ[T0] <∞ and hence T0 <∞ a.s. in Pµ.

Proof. To avoid notational clutter, let P = Pµ and ϵ = ϵ(µ). Then for any N ,

P(T0 = N + 1) ≤ P
(
∃a ∈ [K], |µ̃a(N)− µa| > ϵN−3α/8

)
≤
∑

a∈[K]

P
(
|µ̃a(N)− µa| > ϵN−3α/8

)

≤
∑

a∈[K]

N∑
t=(Nα−C1)+

P
(
|µ̂a,t − µa| > ϵN−3α/8

)
,
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where µ̂a,t denotes the empirical mean of t i.i.d. samples drawn from the a-th arm, and the last step
follows from statement 2 of Proposition G.5, which says Ña(N) ≥ Nα − C1 for some constant
C1 > 0.

Using Chernoff’s bound (like in the proof of Lemma 19 of [11]), we have,

P
(
|µ̂a,t − µa| > ϵN−3α/8

)
≤ P

(
µ̂a,t > µa + ϵN−3α/8

)
+ P

(
µ̂a,t < µa − ϵN−3α/8

)
≤ exp

(
−t · d(µa + ϵN−3α/8, µa)

)
+ exp

(
−t · d(µa − ϵN−3α/8, µa)

)
≤ 2 exp

(
−t ·min

{
d(µa + ϵN−3α/8, µa), d(µa − ϵN−3α/8, µa)

})
Using (6), we have a constant C2 > 0 depending on the instance µ and such that,

min
{
d(µa + ϵN−3α/8, µa), d(µa − ϵN−3α/8, µa)

}
≥ ϵ2C2N

− 3α
4 .

Therefore, we have,

P
(
|µ̂a,t − µa| > ϵN−3α/8

)
≤ 2 exp

(
−tϵ2C2N

− 3α
4

)
.

Therefore,

P(T0 = N + 1) ≤
∑
i∈[K]

N∑
t=(Nα−C1)+

2 exp
(
−tϵ2C2N

− 3α
4

)

≤
∑
i∈[K]

N∑
t=Nα−C1

2 exp
(
−tϵ2C2N

− 3α
4

)

≤ 2
∑
i∈[K]

exp
(
−ϵ2C2(N

α − C1)N
− 3α

4

)
·
( N∑

t=Nα−C1

exp
(
−ϵ2C2N

− 3α
4 (t−Nα + C1)

))
≤ 2KN exp

(
−ϵ2C2(N

α − C1)N
− 3α

4

)
= 2KN exp(−Ω(N

α
4 )),

where the constant hidden in Ω(·) depends only on µ. Using the obtained upper bound,

E[T0] = P(T0 = 1) +
∑
N≥1

(N + 1)P(T0 = N + 1)

≤ 1 +
∑
N≥1

2KN(N + 1) exp(−Ω(N
α
4 )).

Note that the series on the RHS is convergent for any α ∈ (0, 1). Therefore Eµ[T0] <∞.

G.4 Properties of exploration

In the following discussion, the set of iterations in which the algorithm does exploration is defined as
all iterations N where mina∈[K] Ña(N − 1) < Nα (which is equivalent to having VN ̸= ∅, where
VN denotes the set of starved arms at iteration N , and is defined in Section 3). We define the epoch
of exploration at some arbitrary iteration as follows,
Definition G.6. If the algorithm does exploration at iteration N , the epoch of exploration at N is the
maximum no. of consecutive iterations including N in which the algorithm has done exploration.
More precisely, if N1 and N2 are, respectively, defined as,

N1 = max {t ≤ N | t− 1 is not an exploration} and
N2 = min {t ≥ N | t+ 1 is not an exploration}

then the epoch of exploration at iteration N is N2 −N1 + 1.
Proposition G.5. The following statements are true:
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1. For every iteration which is an exploration, the epoch of exploration at that iteration is
upper bounded by a constant depending on K and α. We denote this constant using Tepoch.

2. There exists a constant C depending on K and α such that , over every sample path, we
have

min
a∈[K]

Ña(N) ≥ Nα − C.

As a result, Ña(N) = Ω(Nα) for every arm a ∈ [K].

3. There exists a M depending on K and α such that, every epoch of exploration starting after
iteration M has length atmost K, and every arm can get pulled atmost once in that epoch.
We call the constant M as Mexplo.

4. If an epoch of exploration starts from some N ≥Mexplo, then the next epoch of exploration
doesn’t start before another Θ(N1−α) iterations.

5. Let N̂ ≥Mexplo be such that, N̂ is an exploration. Define the following sequence, N0 = N̂ ,
and for k ≥ 1,

Nk = min

{
N > Nk−1

∣∣∣∣∣ Nk is the begining of an epoch of exploration

}
.

Then Nk = N̂+Ω(k1/α). In other words, for any N ≥Mexplo, the k-th epoch of exploration
after iteration N starts after N +Ω(k1/α) iterations.

6. For any N ≥Mexplo + Tepoch + 1 and T ≥ 1, the no. of epochs of exploration intersecting
with the set of iterations {N,N + 1, N + 2, . . . , N + T} is O(Tα).

Proof. Statement 1: Let the algorithm does exploration at iteration N . We can always choose N in
such a way that, iteration N − 1 was not an exploration, by choosing N to be the iteration at which
an epoch begins. If the epoch of exploration starting at iteration N continues till iteration N + t, i.e.,
the iterations N,N + 1, . . . , N + t are exploration, then,

(N + t)α ≥ min
a∈[K]

Ña(N + t− 1)
(1)

≥ min
a∈[K]

Ña(N − 1) +
t

K

≥ min
a∈[K]

Ña(N − 2) +
t

K

(2)

≥ (N − 1)α +
t

K
,

where (1) follows from the fact that, mina∈[N ] Ña(·) increments by atleast 1 over every K consecutive
iterations in an epoch of exploration, and (2) from the fact that iteration N − 1 is not an exploration.
From the above inequality, we have,

t

K
≤ (N + t)α − (N − 1)α.

Note that, N → (N + t)α− (N − 1)α is decreasing in N . Hence RHS ≤ (1+ t)α ≤ 1+ tα ≤ 2tα

(since t ≥ 1). Therefore, we have,
t

K
≤ 2tα implying t ≤ (2K)1/(1−α).

Therefore every epoch of exploration is atmost (2K)1/(1−α) iterations long.

Statement 2: In the following discussion we use [i : j] for a pair of integers i < j to denote the
set {i, i + 1, i + 2, . . . , j}. We consider only those iterations where mina∈[K] Ña(N − 1) < Nα.
By statement 1, if we consider N1 ≤ N ≤ N2 such that, N1, N1 + 1, . . . , N2 − 1, N2 are all
explorations and N1 − 1, N2 + 1 are not explorations, then we must have, N2 −N1 ≤ Tepoch. As a
result, we have,

Nα − min
a∈[K]

Ña(N) ≤ max
N∈[N1:N2]

(Nα − min
a∈[K]

Ña(N)).
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Now, the slowest rate at which mina∈[K] Ña(N) can grow while iterations N ∈ {N1, N1 +
1, . . . , N2−1, N2} is if the algorithm pulls the K arms consecutively in those iterations. Therefore,
we have,

min
a∈[K]

Ña(N) ≥ min
a∈[K]

Ña(N1 − 1) +
N −N1 + 1

K
for every N ∈ [N1 : N2].

Using this, we have,

Nα − min
a∈[K]

Ña(N) ≤ max
N∈[N1:N2]

(
Nα − min

a∈[K]
Ña(N1 − 1)− N −N1 + 1

K

)
.

Since iteration N1 − 1 is not an exploration, we have

min
a∈[K]

Ña(N1 − 1) ≥ min
a∈[K]

Ña(N1 − 2) ≥ (N1 − 1)α.

Using this, the upper bound becomes,

max
N∈[N1:N2]

(
Nα − (N1 − 1)α − N −N1 + 1

K

)
≤ max

N∈[N1:N2]

(
(N −N1 + 1)α − N −N1 + 1

K

)
≤ max

z∈[0,Tepoch]

(
(z + 1)α − 1 + z

K

)
= C,

where C depends only on K and α.

Hence we get,
min
a∈[K]

Ña(N) ≥ Nα − C = Ω(Nα).

Statement 3: If the epoch of exploration starts from T and continues for more than K iterations,
note that mina∈[K] Ña(·) gets incremented by atleast 1 during the iterations T, T + 1, . . . , T +K.
As a result, we have,

min
a∈[K]

Ña(T +K − 1)− min
a∈[K]

Ña(T − 1) ≥ 1.

Since iteration T − 1 is not an exploration, we have Ña(T − 1) ≥ Ña(T − 2) ≥ (T − 1)α. Similarly,
since iteration T +K is an exploration, mina∈[K] Ña(T +K − 1) < (T +K)α. Using these two
observations, we have,

1 ≤ (T +K)α− (T − 1)α ≤ (T − 1)α×
((

1 +
K + 1

T − 1

)α

− 1

)
≤ α(K +1)(T − 1)−(1−α).

Therefore,
T ≤ (α(K + 1))1/(1−α) + 1.

Let Mexplo = (α(K + 1))1/(1−α) + 2. Then from the above argument, if T ≥Mexplo, the epoch of
exploration starting at T will last for at most K iterations.

Let us assume that, the epoch begining from some Ti ≥Mexplo lasts till iteration Tf . Therefore, we
have,

min
a∈[K]

Ña(Tf − 1) < Tα
f and min

a∈[K]
Ña(Ti − 2) ≥ (Ti − 1)α.

Using this,

min
a∈[K]

Ña(Tf − 1)− min
a∈[K]

Ña(Ti − 2) ≤ Tα
f − (Ti − 1)α ≤ α(Ti − 1)−(1−α)(Tf − Ti + 1).
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We argued earlier that Tf − Ti ≤ K. We also have, Ti − 1 ≥Mexplo − 1 ≥ (α(K + 1))1/(1−α) + 1.
Using this observations, we get

min
a∈[K]

Ña(Tf − 1)− min
a∈[K]

Ña(Ti − 2) ≤ α(K + 1)

((α(K + 1))1/(1−α) + 1)1−α
< 1.

Since mina∈[K] Ña(Tf ) ≤ mina∈[K] Ña(Tf−1)+1 and mina∈[K] Ña(Ti−2) ≤ mina∈[K] Ña(Ti−
1), we obtain,

min
a∈[K]

Ña(Tf )− min
a∈[K]

Ña(Ti − 1) < 2,

implying mina∈[K] Ña(Tf ) − mina∈[K] Ña(Ti − 1) ≤ 1, which is possible only if every arm is
pulled at most once in iterations Ti, Ti + 1, . . . , Tf − 1, Tf .

Statement 4: Let an epoch of exploration starts from N ≥ Mexplo and the next epoch starts from
N + T for some T ≥ 1. The epoch starting from N continues till atmost min{N +K, N + T − 2}
by statement 3. Moreover in that epoch, every arm gets pulled atmost once and mina∈[K] Ña(·)
increments by 1. Therefore,

min
a∈[K]

Ña(N + T − 1)− min
a∈[K]

Ña(N − 1) ≥ 1.

Since iteration N−1 is not an exploration, we have, mina∈[K] Ña(N−1) ≥ mina∈[K] Ña(N−2) ≥
(N − 1)α. Since iteration N + T is an exploration, we have mina∈[K] Ña(N + T − 1) < (N + T )α.
Using these in the above inequality, we obtain,

1 ≤ (N + T )α − (N − 1)α ≤ α(N − 1)−(1−α)(T + 1),

which implies T ≥ 1
α (N − 1)1−α − 1 = Θ(N1−α).

Statement 5: Using statement 4, we can have a constant C1 such that,

Nk ≥ Nk−1 + C1N
1−α
k−1 ,

for k ≥ 1, where N0 = 1. We now inductively argue that, there exists some constant C2 independent
of k and N such that, Nk ≥ N + C2k

1/α for k ≥ 1.

• For k = 1, we choose C2 ≤ 1.

• Now for some k ≥ 2, if Nk−1 ≥ N + C2(k − 1)1/α, we have,

Nk ≥ Nk−1 + C1N
1−α
k−1 ≥ N + C2(k − 1)1/α + C1(N + C2(k − 1)1/α)1−α

≥ N + C2k
1/α +

(
C1(N + C2(k − 1)1/α)1−α − C2(k

1/α − (k − 1)1/α)
)

≥ N + C2k
1/α +

(
C1(N + C2(k − 1)1/α)1−α − C2

α
k

1
α−1

)
.

Upon choosing C2 ≤
(

αC1

2
1
α

−1

)1/α
, since we already have k ≥ 2, we obtain

C1(N + C2(k − 1)1/α)1−α ≥ C1

(
C2

(
k

2

)1/α
)1−α

=

(
C−α

2

αC1

2
1
α−1

)
C2

α
k1/α

≥ C2

α
k1/α.

Therefore, Nk ≥ N + C2k
1
α .
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Therefore, choosing C2 = min

{
1,
(

αC1

2
1
α

−1

) 1
α

}
, we have Nk ≥ N + C2k

1
α for all k ≥ 1.

Statement 6: If N ≥ Mexplo + Tepoch + 1 and T ≥ 1, every epoch of explorations intersecting
with the iterations {N, N + 1, . . . , N + T − 1, N + T} has length atmost K (by statement 3).
Hence, every such epoch must have started on or after iteration N −K. Let N0 be the time when
the first such epoch has started and the sequence (Nk)k≥1 be defined similar to statement 5. Then
N0 ≥ N −K and Nk ≥ N0 + C2k

1
α ≥ N −K + C2k

1
α . Now, if the k-th epoch starting after N0

intersects with the iterations {N, N + 1, . . . , N + T − 1, N + T}, then,

N + T ≥ N −K + C2k
1
α , which implies, k ≤ (T +K)α

Cα
2

= O(Tα).

Definition G.7. We define the constant Texplo = Mexplo + Tepoch + 1, where the constants Mexplo, and
Tepoch are defined in Proposition G.5.

Lemma G.8. For N ≥ Texplo and T ≥ 1, the no of times an arm a ∈ [K] is pulled for exploration by
the algorithm during iterations N, N + 1, . . . , N + T − 1, N + T is O(Tα).

Proof. By statement 3 of Proposition G.5, for N ≥ Texplo and T ≥ 1, every epoch of exploration
intersecting with the set of iterations N, N +1, N +2, . . . , N +T is of length atmost K. In every
such epoch, every arm is pulled atmost once. As a result, no. of times an arm is pulled during the
iterations N, N + 1, . . . , N + T is upper bounded by the no. of epoch of iterations intersecting
with the set {N, N + 1, . . . , N + T − 1, N + T}. The later quantity is O(Tα) by statement 6 of
Proposition G.5. Hence the lemma stands proved.

G.5 Technical lemmas related to algorithmic allocations

In this appendix we prove several properties about the anchor function (g) and the algorithmic
allocations Ñ(N) = (Ña(N) : a ∈ [K]). We exploit the results proven in Appendix B and G.4 to
prove that the following properties hold after a random time of finite expectation,

• if the algorithm has g ̸= 0 at some iteration N , then g crosses the value zero withing an
O(N) iterations, where the constant hidden in O(·) is independent of the sample paths (in
Lemma G.9), and

• every arm a ∈ [K] has Ña(N) = Θ(N) samples (in Lemma G.13).

Each of the properties stated above are used extensively in the proofs of Proposition G.1 and G.2.

Definition G.8. We define the random time T1 = max{T0, Texplo} (where Texplo and T0 are defined,
respectively, in Appendix G.4 and G.3).

Note that Eµ[T1] ≤ Eµ[T0] + Texplo <∞.

We can have g far from the value zero at iteration T1. g will still be finite at T1 because of exploration.
Lemma G.9 bounds the no. of iterations the algorithm takes to reach the value zero.

Lemma G.9 (Upper bound to the time to reach g = 0). If g(µ̃(N), Ñ(N)) ̸= 0 at iteration
N ≥ T1, and

U = min
{
t > 0

∣∣∣ g
(
µ̃(N + t), Ñ(N + t)

)
and g

(
µ̃(N), Ñ(N)

)
have opposite signs

}
,

then there exists a constant C1 > 0 independent of the sample paths such that U ≤ C1N .
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Proof. Using (10), for N ≥ T1, we have,

g
(
µ̃(N), Ñ(N)

)
= Θ

∑
a̸=1

Ña(N)2

Ñ1(N)2

− 1 = Θ


∑

a ̸=1

Ña(N)

Ñ1(N)

2
− 1

= Θ

( N

Ñ1(N)
− 1

)2
− 1. (72)

We now consider two situations separately,

Case I: g
(
µ̃(N), Ñ(N)

)
> 0: We know that, there is a constant D1 > 0, such that,

g
(
µ̃(N + t), Ñ(N + t)

)
≤ D1

(
N + t

Ñ1(N + t)
− 1

)2

− 1,

for every t ≥ 1. Now for t < U , the algorithm selects an alternative arm from [K]/{1} only while
exploring. Therefore, using statement 6 of Proposition G.5, we have a constant c1 > 0 such that,
Ñ1(N + t) ≥ t− c1t

α. Hence,

g
(
µ̃(N + t), Ñ(N + t)

)
≤ D1

(
N + t

t− c1tα
− 1

)2

− 1 = D1

(
N + c1t

α

t− c1tα

)2

− 1 for t < U.

Since g
(
µ̃(N + U − 1), Ñ(N + U − 1)

)
≥ 0, RHS of the above inequality is non-negative at

t = U − 1. After some algebraic manipulation, this implies,

U − 1− c1(1 +D
1/2
1 )(U − 1)α ≤ D

1/2
1 N,

Since LHS of the above inequality is linear in U , we can find a constant C11 such that U ≤ C11N .

Case II: g
(
µ̃(N), Ñ(N)

)
< 0: Using (72), we have a constant D2 such that,

g
(
µ̃(N + t), Ñ(N + t)

)
≥ D2

(
N + t

Ñ1(N + t)
− 1

)2

− 1

for all t ≥ 1. Now for t < U , the algorithm pulls arm 1 only for exploration. As a result, using
statement 6 of Proposition G.5, we have, a constant c1 > 0 such that Ñ1(N + t) ≤ N + c1t

α. Using
this,

g
(
µ̃(N + t), Ñ(N + t)

)
≥ D2

(
N + t

N + c1tα
− 1

)2

− 1 ≥ D2

(
t− c1t

α

N + c1tα

)2

− 1,

for t < U . Since g(µ̃(N + U − 1), Ñ(N + U − 1)) ≤ 0, the RHS of the above inequality is not
positive at t = U − 1. After some algebraic manipulation, this implies,

U − 1− c1(1 +D
−1/2
2 )(U − 1)α ≤ D

−1/2
2 N.

Again the LHS of the above inequality is linear in U . As a result, we can find a constant C12 such
that, U ≤ C12N .

We take C1 = max{C11, C12} and have U ≤ C1N .

Lemma G.10, G.11, and G.12 are necessary for proving Lemma G.13, which says Ña(N) = Θ(N)
for every arm a ∈ [K], after a random time of finite expectation. This property is essential for proving
Proposition G.1 and G.2 stated earlier.
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Lemma G.10. There exists constants γ1, γ2 ∈ (0, 1) independent of the sample path, such that, for

N ≥ T1, whenever g
(
µ̃(N), Ñ(N)

)
and g

(
µ̃(N + 1), Ñ(N + 1)

)
have opposite signs, we have,

1. Ñ1(N) ≥ γ1N , and

2. maxa∈[K]/{1} Ña(N) ≥ γ2N .

Proof. For N ≥ T1, we have constants D1, D2 > 0 such that,

D1

(
N

Ñ1(N)
− 1

)2

− 1 ≤ g
(
µ̃(N), Ñ(N)

)
≤ D2

(
N

Ñ1(N)
− 1

)2

− 1

We consider only the situation where g
(
µ̃(N), Ñ(N)

)
≥ 0 and g

(
µ̃(N + 1), Ñ(N + 1)

)
≤ 0.

Extending this to the other case follows similar argument.

From g(µ̃(N + 1), Ñ(N + 1)) ≤ 0, we have,

D1

(
N + 1

Ñ1(N + 1)
− 1

)2

− 1 ≤ 0, which implies

Ñ1(N + 1) ≥ (1 +D
−1/2
1 )−1N. (73)

Since Ñ1(N) ≥ 1 (for exploration), we have Ñ1(N + 1) ≤ Ñ1(N) + 1 ≤ 2Ñ1(N). Therefore,
using (73) we get Ñ1(N) ≥ 1

2 (1 +D
−1/2
1 )−1N and we can take γ1 = 1

2 (1 +D
−1/2
1 )−1.

Similarly from, g(µ̃(N), Ñ(N)) ≥ 0, we have,

D2

(
N

Ñ1(N)
− 1

)2

− 1 ≥ 0, which implies

Ñ1(N) ≤ (1 +D
−1/2
2 )−1N. (74)

Using (74), we have,
∑

a∈[K]/{1} Ña(N) ≥ (1 +D
1/2
2 )−1N . This further implies

max
a∈[K]/{1}

Ña(N) ≥ 1

K − 1
(1 +D

1/2
2 )−1N.

Hence we can take γ2 = 1
K−1 (1 +D

1/2
2 )−1.

Lemma G.11. There exists constants M1 ≥ 1, dmax ∈ [1,∞) and dmin ∈ (0, 1] independent of
the sample path, such that, if T2 is the time at which g crosses zero after the iteration max{M1, T1},
then, for N > T2, we have:

dmin ≤
∑
a ̸=1

d(µ̃1(N), x̃1,a(N))

d(µ̃a(N), x̃1,a(N))
≤ dmax.

Moreover, we have Eµ[T2] <∞.

Proof. Let,

D(µ̃(N), Ñ(N)) =
∑
a ̸=1

d(µ̃1(N), x̃1,a(N))

d(µ̃a(N), x̃1,a(N))
.

Also for every M ≥ 1, we define T1,M = max{M,T1} and T2,M as the iteration at which g crosses
zero for the first time after the iteration T1,M , i.e.,

T2,M
def.
= min

{
N ≥ T1,M

∣∣∣ g(µ̃(N + 1), Ñ(N + 1)) and

g(µ̃(T1,M ), Ñ(T1,M )) are of opposite signs
}
.
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Existence of dmax: If g(µ̃(N), Ñ(N)) ≤ 0, then D(µ̃(N), Ñ(N)) is bounded above trivially by 1.

Otherwise if g(µ̃(N), Ñ(N)) > 0 for some N > T2,M , let T = max{ t ≤ N | g(µ̃(t), Ñ(t)) ≤
0 } i.e. the time before iteration N when g has crossed the level zero. As a result, T ≥ T2,M (by
definition of T2,M ), and by Lemma G.10, Ñ1(T ) ≥ γ1T for some γ1 ∈ (0, 1). Let S = N − T .
During iterations T+1, . . . , T+S, since g is positive, the algorithm pulls alternative arms in [K]/{1}
only for exploration. As a result, using statement 6 of Proposition G.5, we have

Ñ1(T + S) ≥ Ñ1(T ) + S − c1S
α ≥ γ1T + S − c1S

α

for some c1 > 0. Using (72), we have a constant D2 > 0 such that,

D(µ̃(T + S), Ñ(T + S)) ≤ D2

(
T + S

γ1T + S − c1Sα
− 1

)2

= D2

(
(1− γ1)T + c1S

α

γ1T + S − c1Sα

)2

.

We take M11 = − 2
γ1

minS≥0(S − c1S
α). It is easy to observe that for T ≥ M11 and S ≥ 0, the

function of T, S in the RHS is bounded above. Therefore, we take,

dmax = max

{
1, max

T≥M11,S≥0
D2

(
(1− γ1)T + c1S

α

γ1T + S − c1Sα

)2
}

<∞.

Hence, if M ≥M11, we have g(µ̃(N), Ñ(N)) ≤ dmax for every N > T2,M .

Existence of dmin: If g(µ̃(N), Ñ(N)) ≥ 0, we have 1 has the trivial lower bound. Otherwise, if
g(µ̃(N), Ñ(N)) < 0, we define T = max{ t ≤ N | g(µ̃(t), Ñ(t)) ≥ 0 } and S = N − T . As
a result, T ≥ T2,M (by definition of T2,M ). By Lemma G.10, we have Ñ1(T ) ≤ (1 − γ2)N for
some γ2 ∈ (0, 1). Also, the algorithm pulls the first arm only for exploration during the iterations
T + 1, T + 2, . . . , T + S, since g is negative. Therefore, using statement 6 of Proposition G.5, we
have, Ñ1(T + S) ≤ Ñ1(T ) + c1S

α ≤ (1− γ2)T + c1S
α. By (72), we have D1 > 0 such that,

D(µ̃(T + S), Ñ(T + S)) ≥ D1

(
T + S

(1− γ2)T + c1Sα
− 1

)2

= D1

(
γ2T + S − c1S

α

(1− γ2)T + c1Sα

)2

.

Let M12 = − 2
γ2

minS≥0(S−c1Sα). The function of T, S in the RHS is bounded below by a positive
constant for T ≥M12 and S ≥ 0. Let,

dmin = min

{
1, min

T≥M12, S≥0
D1

(
γ2T + S − c1S

α

(1− γ2)T + c1Sα

)2
}

> 0.

Then for M ≥M12, we have g(µ̃(N), Ñ(N)) ≥ dmin > 0 for every N > T2,M .

Now, upon taking M1 = max{M11,M12}, and T2 = T2,M1 , the lemma follows. By Lemma
G.9, we have a constant C1 > 0 such that, T2 ≤ C1 max{M1, T1}. As a result, Eµ[T2] ≤
C1(M1 + Eµ[T1]) <∞.

Using a technique similar to the one used in the proof of Lemma G.10 using (72), Lemma G.11
implies the following corollary. We define the random time T2 as the one introduced in Lemma G.11.

Corollary G.1. There exists constants β1, β2 ∈ (0, 1) independent of the sample paths, such that,
for every N > T2,

1. Ñ1(N) ≥ β1N , and

2. maxa∈[K]/{1} Ña(N) ≥ β2N .
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Lemma G.12. There exists constants γ > 0 and M2 ≥ 1 independent of the sample path, such that,
for N > max{M2, T2}+ 1, if the algorithm pulls some arm a ∈ [K]/{1}, then for every alternate
arm b ∈ [K]/{1, a}, Ñb(N) ≥ γÑa(N).

Proof. We consider two separate cases.

Case I: Iteration N is an exploration: Then we have a constant C1 (introduced in statement 2 of
Proposition G.5) such that,

Ñb(N) ≥ Nα − C1 ≥ Ña(N − 1)− C1 = Ña(N)− 1− C1. (75)

We also have Ña(N) ≥ Nα − C1. Now let M2 ≥ 2 be chosen such that, Mα
2 > 3C1 + 2. As a

result, for N ≥ max{M2, T2} we have, Ña(N) ≥ Nα − C1 ≥ 2(1 + C1). This together with (75)
implies, Ñb(N) ≥ 1

2Ña(N).

Case II: Iteration N is not an exploration: We consider the AT2 (1) and IAT2 (2) algorithms
separately.

Case II.I AT2 Algorithm: If iteration N is not an exploration, we have, Ia(N − 1) ≤ Ib(N − 1).
Using (11), for N ≥ max{M2, T2}, we have constants C2 and C3 such that,

C2
Ñ1(N − 1) · Ña(N − 1)

Ñ1(N − 1) + Ña(N − 1)
≤ Ia(N − 1)

≤ Ib(N − 1) ≤ C3
Ñ1(N − 1) · Ñb(N − 1)

Ñ1(N − 1) + Ñb(N − 1)
.

As a result, we have,

Ña(N − 1) ≤ C3

C2

Ñ1(N − 1) + Ña(N − 1)

Ñ1(N − 1) + Ñb(N − 1)
Ñb(N − 1)

(1)

≤ 2C3

β1C2
Ñb(N − 1) ≤ 2C3

β1C2
Ñb(N),

where, for (1), we first note that N > T2 + 1. As a result, using Corollary (G.1), Ñ1(N − 1) ≥
β1(N − 1) (β1 ∈ (0, 1) is the constant introduced in Corollary G.1), and on the other hand
Ñ1(N − 1) + Ñb(N − 1) ≤ 2(N − 1). Hence, we get

Ñb(N) ≥ β1C2

2C3
Ña(N − 1) =

β1C2

2C3
(Ña(N)− 1).

Again using statement 2 of Proposition G.5, Ña(N) ≥ Nα − C1 ≥ Mα
2 − C1 ≥ 2 (since

Mα
2 ≥ 3C1 + 2). As a result,

Ñb(N) ≥ β1C2

4C3
Ña(N).

Taking γ = min
{

1
2 ,

β1C2

4C3

}
, we have the desired result for AT2 algorithm.

Case II.II IAT2 Algorithm: In this case, we have,

log(Ña(N − 1)) + Ia(N − 1) ≤ log(Ñb(N − 1)) + Ib(N − 1).

Using (11), we have constants C2 and C3 such that,

C2
Ñ1(N − 1) · Ña(N − 1)

Ñ1(N − 1) + Ña(N − 1)
≤ log(Ña(N − 1)) + Ia(N − 1)

≤ Ib(N − 1) + log(Ñb(N − 1)) ≤ C3
Ñ1(N − 1) · Ñb(N − 1)

Ñ1(N − 1) + Ñb(N − 1)
+

1

e
Ñb(N − 1).
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As a result, using the same arguments used for the AT2 algorithm in Case II.I, we can conclude,

Ñb(N) ≥ β1

4

(
C3

C2
+

1

e

)−1

Ña(N),

for N > max{M2, T2}+ 1.

Now taking γ = min

{
1
2 ,

β1

4

(
C2

C3
+ 1

e

)−1
}

, we have the desired result for IAT2 algorithm.

Definition G.9. We define the random time T3 = max{M2, T2} + 2, where M2 is the constant
introduced in Lemma G.12, and T2 is the random time defined in Lemma G.11.
Definition G.10. We define the random time T4 as T4 = 1

β2
(T3 + 1), where β2 ∈ (0, 1) is the

constant introduced in Corollary G.1.

Note that Eµ[T3] < ∞, since Eµ[T2] < ∞. For the same reason, by Definition G.10, T4 satisfies
Eµ[T4] <∞ since Eµ[T3] <∞.

Lemma G.13 (Sufficient sampling). For every N ≥ T4, we have Ña(N) = Θ(N) for every
a ∈ [K].

Proof. For a = 1 and every N ≥ T4, we have Ñ1(N) = Θ(N) by Corollary G.1.

Otherwise for a ̸= 1 and every N ≥ T4, we define A′
N = argmaxb∈[K]/{1} Ñb(N). By Corollary

G.1,
ÑA′

N
(N) ≥ β2N ≥ β2T4 = T3 + 1.

Therefore, arm A′
N must have been pulled by the algorithm somewhere between iterations T3

and N . Let us define the time N ′ to be the last time before N when A′
N was pulled. Then

N ′ ≥ T3 > max{M2, T2}+ 1. As a result, using Lemma G.12, we have,

Ña(N
′) ≥ γÑA′

N
(N ′)

(i)
= γÑA′

N
(N),

where (i) follows by definition of N ′. Since N ≥ N ′, we have Ña(N) ≥ Ña(N
′). As a result, we

obtain, for every a ∈ [K]/{1} and N ≥ T4,

Ña(N) ≥ γÑA′
N
(N) = γ max

b∈[K]/{1}
Ñb(N) ≥ γβ2N,

where β2 ∈ (0, 1) is the constant mentioned in Corollary G.1. Hence we have Ña(N) = Ω(N) for
N ≥ T4 and the lemma follows.

G.6 Proving Lemma G.2

In this appendix, we prove Lemma G.2 from Appendix G.1.2. For improved clarity, we reiterate
Lemma G.2 from Appendix G.1.2.

Statement of Lemma G.2. For both AT2 and IAT2 algorithms, there exists constants M5 ≥ 1 and
C1 > 0 independent of the sample paths, such that for every N ≥ max{M5, T6}, if the algorithm
picks an arm a ∈ [K]/{1} at iteration N , then it again picks arm a within the next ⌈C1N

1−3α/8⌉
iterations.

For every arm a ∈ [K], iteration N ≥ 1 and R ≥ 1, we define the following quantities,

∆Ña(N,R) = Ña(N +R)− Ña(N),

b(N,R) = arg max
j∈[K]/{1}

∆Ñj(N,R)

Ñj(N)
, and

τ(N,R) = max{ t ≤ N +R | At = b(N,R) }.

For proving Lemma G.2, we need the three technical lemmas: Lemma G.14, G.15 and G.16.
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Lemma G.14. For N ≥ T6 (T6 is the random time defined in the statement of Proposition G.1 and
it satisfies Eµ[T6] <∞), we have,

∆Ñ1(N,R)

∆Ñb(N,R)(N,R)
≤ Ñ1(N)

Ñb(N,R)(N)
+O

(
RN−1 + (∆Ñb(N,R)(N,R))−1N1−3α/8(1 +RN−1)3

)
.

(76)

Proof. In the proof, for readability, we use b to denote b(N,R). Also, for every arm a ∈ [K], we use
∆Ña to denote ∆Ña(N,R).

By Proposition G.1, we have a constant C > 0 independent of the sample paths, such that for
N ≥ T6, ∣∣∣ g(µ, Ñ(N +R))− g(µ, Ñ(N))

∣∣∣ ≤ 2CN−3α/8.

Therefore, applying the mean value theorem, we have,∣∣∣∣∣∣ ∂g

∂N1
(µ, N̂)∆Ñ1 +

∑
a∈[K]/{1}

∂g

∂Na
(µ, N̂)∆Ña

∣∣∣∣∣∣ ≤ 2CN−3α/8,

where N̂ = (N̂a)a∈[K], with N̂a ∈
[
Ña(N), Ña(N +R)

]
for every a ∈ [K].

Now expanding the partial derivatives of g with respect to Na’s for a ∈ [K], we get∣∣∣∣∣∣∆Ñ1

∑
a∈[K]/{1}

f(µ, a, N̂)
N̂a∆a

(N̂1 + N̂a)2
−

∑
a∈[K]/{1}

f(µ, a, N̂)∆Ña
N̂1∆a

(N̂1 + N̂a)2

∣∣∣∣∣∣ ≤ 2CN−3α/8,

(77)

where, f(µ, a, N̂) were defined in (13) of Appendix B.

Letting

p̂j =
f(µ, j, N̂)

N̂j∆j

(N̂1+N̂j)2∑
a̸=1 f(µ, a, N̂) N̂a∆a

(N̂1+N̂a)2

for every arm j ∈ [K]/{1}, we have,∣∣∣∣∣∣ ∆Ñ1

N̂1

−
∑
a ̸=1

p̂a
∆Ña

N̂a

∣∣∣∣∣∣ ≤ 2CN−3α/8 × N̂−1
1

 ∑
a∈[K]/{1}

f(µ, a, N̂)
N̂a∆a

(N̂1 + N̂a)2

−1

. (78)

We know from (14) of Appendix B that f(µ, a,N) = Θ

(
Na

N1

(
1 + Na

N1

)2)
. As a result,

N̂−1
1

∑
a ̸=1

f(µ, a, N̂)
N̂a∆a

(N̂1 + N̂a)2

−1

= Θ

(
N̂2

1∑
a∈[K]/{1} N̂

2
a

)

By Lemma G.13, we have N̂a ≥ Ña = Θ(N) and N̂1 ≤ N +R for N ≥ T6. As a result, we get,

Ñ−1
1

∑
a ̸=1

f(µ, a, N̂)
N̂a∆a

(N̂1 + N̂a)2

−1

= O
(
(1 +RN−1)2

)
.

Putting this in (78), we obtain∣∣∣∣∣∣ ∆Ñ1

N̂1

−
∑
a ̸=1

p̂a
∆Ña

N̂a

∣∣∣∣∣∣ = O
(
N−3α/8(1 +RN−1)2

)
,
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which further implies,

∆Ñ1

N̂1

≤
∑
a ̸=1

p̂a
∆Ña

N̂a

+O
(
N−3α/8(1 +RN−1)2

)
≤
∑
a ̸=1

p̂a
∆Ña

Ña

+O
(
N−3α/8(1 +RN−1)2

)
(since Ña ≥ N̂a).

Let b = argmaxa̸=1
∆Ña

Ña
. The above inequality implies,

∆Ñ1

N̂1

≤ ∆Ñb

Ñb

+O
(
N−3α/8(1 +RN−1)2

)
.

Now multiplying both sides by N̂1/∆Ñb, we get,

∆Ñ1

∆Ñb

≤ N̂1

Ñb

+O
(
∆Ñb

−1
N̂1N

−3α/8(1 +RN−1)2
)

≤ N̂1

Ñb

+O
(
∆Ñb

−1
N1−3α/8(1 +RN−1)3

)
(since N̂1 ≤ N +R).

(76) follows from the above inequality upon observing that, N̂1 ≤ Ñ1 + R and Ñb = Ω(N) (by
Lemma G.13).

Lemma G.15. There exists constants M51 ≥ 1, D1, D2 > 0 independent of the sample
paths such that, for N ≥ max{M51, T6}, we have ⌈D1N

1−3α/8⌉ < N , and for all R ∈
{⌈D1N

1−3α/8⌉, ⌈D1N
1−3α/8⌉+ 1, . . . , N}, we have ∆Ñb(N,R)(N,R) ≥ D2R.

Proof. To simplify notation, we adopt b to denote b(N,R) and, for every arm j ∈ [K], we use ∆Ñj

to denote ∆Ñj(N,R).

By (76) of Lemma G.14, there exists a constant D3 > 0 independent of the sample paths, such that,
for all N ≥ T6 and R ∈ {1, 2, . . . , N},

∆Ñ1 ≤ ∆Ñb ×

(
Ñ1

Ñb

+D3

(
1 +∆Ñ−1

b N1−3α/8
))

(we have RN−1 ≤ 1)

≤

(
Ñ1

Ñb

+D3

)
∆Ñb +D3N

1−3α/8

Since Ñ1(N) and Ñb(N) are both Θ(N) (by Lemma G.13), we have a constant D4 > 0 such that,
Ñ1(N)

Ñb(N)
+D3 ≤ D4 for every N ≥ T6. Using this in the above inequality, we get,

∆Ñ1 ≤ D4∆Ñb +D3N
1−3α/8. (79)

We take D1 = 2D3 and M51 ≥ 1 to be the smallest number such that, every N ≥ M51 satisfies
⌈D1N

1−3α/8⌉ < N .

Now if N ≥ max{M51, T6} and R ∈ {⌈D1N
1−3α/8⌉, ⌈D1N

1−3α/8⌉+1, . . . , N}, from (79) we
get,

∆Ñ1 ≤ D4∆Ñb +D3N
1−3α/8

≤ D4∆Ñb +
R

2
. (80)

By definition of b, we have,

Ña

Ñb

∆Ñb ≥ ∆Ña for every a ∈ [K]/{1}.
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Again, since Ña(N) = Θ(N) for every a ∈ [K] (by Lemma G.13), there exists a constant D5 > 0
independent of the sample paths such that,

D5∆Ñb ≥ ∆Ña for every a ∈ [K]/{1, b}.

As a result,

R =
∑

a∈[K]/{1,b}

∆Ña +∆Ñ1 +∆Ñb

≤ (K − 2)D5∆Ñb +D4∆Ñb +
R

2
+∆Ñb (using (80))

≤ (1 + (K − 2)D5 +D4)∆Ñb +
R

2
,

=⇒ ∆Ñb ≥
1

2(1 + (K − 2)D5 +D4)
R.

Now taking D2 = 1
2(1+(K−2)D5+D4)

> 0, we have the desired conclusion.

Lemma G.16. For AT2 (1) and IAT2 (2) algorithms, there exists constants C3, C4 > 0 independent
of the sample paths, such that, for N ≥ T6 and R ∈ {1, 2, . . . , N}, if the algorithm pulls some arm
a ∈ [K]/{1} at iteration N and doesn’t pull a for the next R iterations, then,

AT2: Ia(N +R)− Ib(N,R)(N +R) ≤ − C3∆Ñb(N,R)(N,R) + C4N
1−3α/8

+O
((

N−3α/8 +RN−1
)
R
)
, (81)

IAT2: I(m)
a (N +R)− I(m)

b(N,R)(N +R) ≤ − C3∆Ñb(N,R)(N,R) + C4N
1−3α/8

+O
((

N−3α/8 +RN−1
)
R
)
, (82)

where for every alternative arm j ∈ [K]/{1},

I(m)
j (N) = Ij(N) + log(Ñj(N))

is the modified empirical index of that arm at iteration N

Proof. For cleaner presentation, we use b to denote b(N,R). We also use µ̃j , x̃1,j , ∆Ñj and Ñj ,
respectively, to denote µ̃j(N), x̃1,j(N), ∆Ñj(N,R) and Ñj(N) for every arm j ∈ [K], whenever
it doesn’t cause confusion.

AT2 Algorithm: Let
Sa,b(Ñ(N), µ̃(N)) = Ia(N)− Ib(N)

denote the the difference between the empirical indexes of the two arms a and b at iteration N . Note
that Sa,b(Ñ , µ̃) depends only on the tuple of variables (Ñ1, Ña, Ñb, µ̃1, µ̃a, µ̃b). In the following
argument, we apply mean value theorem over Sa,b and the empirical indexes Ia and Ib, treating them
as functions of Ñ1, Ña, Ñb, µ̃1, µ̃a, and µ̃b.

Using the multivariate mean value theorem, we have,

Sa,b(Ñ(N +R), µ̃(N +R))−Sa,b(Ñ(N), µ̃(N)) =
∑

j=1,a,b

∂Sa,b

∂µj
(N̂ , µ̂)∆µ̃j

+
∂Sa,b

∂N1
(N̂ , µ̂) ·∆Ñ1 +

∂Sa,b

∂Nb
(N̂ , µ̂) ·∆Ñb, (83)

where ∆µ̃j = µ̃j(N +R)− µ̃j(N) for j = 1, a, b, and (N̂ , µ̂) = (N̂1, N̂a, N̂b, µ̂1, µ̂a, µ̂b) such

that, for j = 1, a, b, µ̂j lies between µ̃j(N) and µ̃j(N +R), and N̂j lies in
[
Ñj(N), Ñj(N +R)

]
.

Note that there is no contribution on the RHS in (83) due to Ña, because Ña(·) doesn’t change during
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iterations N + 1, N + 2, . . . , N +R, owing to our assumption that the algorithm doesn’t pull arm a
during the mentioned iterations.

First we consider the partial derivatives of Sj,b with respect to µ1, µj and µb in (83). We have

∂Sa,b

∂µ1
(N̂ , µ̂) = N̂1 (d1(µ̂1, x̂1,a)− d1(µ̂1, x̂1,b)) ,

where x̂1,j =
N̂1µ̂1+N̂j µ̂j

N̂1+N̂j
for j = a, b.

Since R ≤ N , we have for j = 1, a, b, N̂j ≤ Ñj +N = Θ(N) (by Lemma G.13). As a result,

using (7) of Appendix B, both d1(µ̂1, x̂1,a) and d1(µ̂1, x̂1,b) are Θ(1). Using this,
∣∣∣∂Sa,b

∂µ1
(N̂ , µ̂)

∣∣∣ is
O(N).

Similarly,

∂Sa,b

∂µa
(N̂ , µ̂) = N̂ad1(µ̂a, x̂1,a) and

∂Sa,b

∂µb
(N̂ , µ̂) = −N̂bd1(µ̂b, x̂1,b).

Using the same argument as for the partial derivative of Sa,b with respect to µ1, we have∣∣∣∂Sa,b

∂µj
(N̂ , µ̂)

∣∣∣ = O(N) for both j = a, b.

Therefore, the contribution in the RHS of (83) due to the noisiness in the empirical means µ̃1, µ̃a, µ̃b

is bounded above by,∑
j=1,a,b

∂Sa,b

∂µj
(N̂ , µ̂)∆µ̃j ≤

∑
j=1,a,b

∣∣∣∣∂Sa,b

∂µj
(N̂ , µ̂)

∣∣∣∣ · |∆µ̃j |

(1)
= O(N)×O(N−3α/8)

= O(N1−3α/8), (84)

where (1) follows since for N ≥ T0 and j = 1, a, b, |∆µ̃j | = O(N−3α/8).

Now considering the partial derivative of Sa,b(·) with respect to N1, we get

∂Sa,b

∂N1
(N̂ , µ̂) = d(µ̂1, x̂1,a)− d(µ̂1, x̂1,b).

Using Lemma G.13, Ñj(N) and Ñj(N +R) are both Θ(N) for all j = 1, a, b and N ≥ T6, since
R ≤ N . As a result, using (7), (8), we have,∣∣∣∣ ∂2Sa,b

∂µj∂Nk
(N ′,µ′)

∣∣∣∣ = O(1), and
∣∣∣∣ ∂2Sa,b

∂Nj∂Nk
(N ′,µ′)

∣∣∣∣ = O(N−1)

for every j, k ∈ {1, a, b}, and tuple (N ′,µ′) = (N ′
1, N

′
a, N

′
b, µ

′
1, µ

′
a, µ

′
b) having N ′

i ∈[
Ñi(N), Ñi(N +R)

]
and µ′

i lying between µ̂i and µ̃i, for every i = 1, a, b.

Therefore, applying the mean value theorem, we get,

∂Sa,b

∂N1
(N̂ , µ̂) = d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b) +O

 ∑
j=1,a,b

|µ̂j − µ̃j |

+O

N−1
∑
j=1,b

∆Ñj


= d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b) +O

(
N−3α/8 +RN−1

)
.

Similarly, considering the partial derivative with respect to Nb,

∂Sa,b

∂Nb
(N̂ , µ̂) = − d(µ̃b, x̃1,b) +O

(
N−3α/8 +RN−1

)
.
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Now, using all these upper bounds in the RHS of (83), we obtain

Sa,b(Ñ(N +R), µ̃(N +R))− Sa,b(Ñ(N), µ̃(N))

≤ ∆Ñ1 · (d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))−∆Ñb · d(µ̃b, x̃1,b)

+O
(
N1−3α/8 +R(N−3α/8 +RN−1)

)
. (85)

Since arm a was pulled in iteration N , we have Ia(N − 1) ≤ Ib(N − 1). Also since arm b was not
pulled in iteration N , its empirical index remains unchanged, i.e. Ib(N − 1) = Ib(N). Combining
these two observations, we have Ia(N − 1) ≤ Ib(N).

As a result,

Sa,b(Ñ(N), µ̃(N)) = Ia(N)− Ib(N)

= (Ia(N)− Ia(N − 1)) + (Ia(N − 1)− Ib(N))

≤ Ia(N)− Ia(N − 1)

= Ia(N)− Ia(N − 1) +O(N1−3α/8) (using Lemma G.3)

≤ d(µa, µ1) +O(N1−3α/8) = O(N1−3α/8), (86)

where the last step follows from the fact that, the partial derivatives of Ia(·) with respect to Na

is d(µa, x1,a(N)) ≤ d(µa, µ1). As a result, since arm a was pulled in iteration N , the increment
Ia(N)− Ia(N − 1) in Ia(·) is upper bounded by d(µa, µ1).

Therefore (85) implies,

Sa,b(Ñ(N +R), µ̃(N +R)) ≤ ∆Ñ1 · (d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))−∆Ñb · d(µ̃b, x̃1,b)

+ Sa,b(Ñ(N), µ̃(N)) +O
((

N−3α/8 +RN−1
)
R
)

≤ ∆Ñ1 · (d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))−∆Ñb · d(µ̃b, x̃1,b)

+O
(
N1−3α/8 +

(
N−3α/8 +RN−1

)
R
)
. (87)

Now we consider two possibilities:

Case I d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b) < 0 : In this case, by (85), Sa,b(Ñ(N +R), µ̃(N +R)) is upper
bounded by,

−∆Ñb · d(µ̃b, x̃1,b) +O
(
N1−3α/8 +

(
N−3α/8 +RN−1

)
R
)
.

By Lemma G.13 and (6), since both Ñ1(N) and Ñb(N) are Θ(N), we have d(µ̃b, x̃1,b) = Θ(1). As
a result, (81) follows.

Case II d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b) ≥ 0 : In this case, the RHS of (85) can be rewritten as,

∆Ñb

(
∆Ñ1

∆Ñb

(d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))− d(µ̃b, x̃1,b)

)
+O

(
N1−3α/8 +

(
N−3α/8 +RN−1

)
R
)
.

(88)

Using (76) in Lemma G.14, the upper bound becomes

∆Ñb

(Ñ1

Ñb

(d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))− d(µ̃b, x̃1,b)
)

+O
(
N1−3α/8(1 +RN−1)3 +

(
N−3α/8 +RN−1

)
R
)

= ∆Ñb

(
Ñ1

Ñb

(d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))− d(µ̃b, x̃1,b)

)
+O

(
N1−3α/8 +

(
N−3α/8 +RN−1

)
R
)

(since R ≤ N ). (89)
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By (86), we have,

Ia(N) ≤ Ib(N) +O(N1−3α/8). (90)

Expanding the empirical index terms, we get,

Ñ1d(µ̃1, x̃1,a) + Ñad(µ̃a, x̃1,a) ≤ Ñ1d(µ̃1, x̃1,b) + Ñbd(µ̃b, x̃1,b) +O(N1−3α/8).

By Lemma G.13 we have Ñb = Θ(N). As a result, upon dividing both sides of the above inequality
by Ñb and after some re-arrangement of terms, we obtain,

Ñ1

Ñb

(d(µ̃1, x̃1,j)− d(µ̃1, x̃1,b))− d(µ̃b, x̃1,b) ≤ − Ñj

Ñb

d(µ̃j , x̃1,j) +O(N−3α/8).

Using the above inequality in (89), we get the upper bound,

−∆Ñb

(
Ñj

Ñb

d(µ̃a, x̃1,a)

)
+O

(
N1−3α/8 +

(
N−3α/8 +RN−1

)
R
)

(91)

By Lemma G.13 and (6), we have, Ñj

Ñb
d(µ̃j , x̃1,j) = Θ(1). Therefore (81) follows.

IAT2 Algorithm: The proof of (82) for IAT2 is very similar to the proof of (81) for AT2. We first
consider the difference of the modified empirical indexes between the two arms a and b,

S
(m)
a,b (Ñ(N), µ̃(N)) = I(m)

a (N)− I(m)
b (N).

Following a similar procedure as the AT2 algorithm, we apply the mean value theorem to obtain,

S
(m)
a,b (Ñ(N +R), µ̃(N +R))− S

(m)
a,b (Ñ(N), µ̃(N)) =

∑
j=1,a,b

∂S
(m)
a,b

∂µj
(N̂ , µ̂) ·∆µ̃j

+
∂S

(m)
a,b

∂N1
(N̂ , µ̂) ·∆Ñ1 +

∂S
(m)
a,b

∂Nb
(N̂ , µ̂) ·∆Ñb, (92)

where ∆µ̃j = µ̃j(N +R)− µ̃j(N), and (N̂ , µ̂) = (N̂1, N̂a, N̂b, µ̂1, µ̂a, µ̂b), such that, µ̂j lies

between µ̃j(N) and µ̃j(N +R), and N̂j ∈
[
Ñj(N), Ñj(N +R)

]
, for every j = 1, a, b.

The contribution to (92) due to noise in µ̃ is O(N1−3α/8) by the same argument we proved (84) for
AT2.

Now we consider the partial derivatives of S(m)
a,b with respect to N1, Na, Nb. Following the same

steps as used for AT2 algorithm, we have,

∂S
(m)
a,b

∂N1
(N̂ , µ̂) =

∂Sa,b

∂N1
(N̂ , µ̂) = d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b) +O(N−3α/8 +RN−1), and

∂S
(m)
a,b

∂Nb
(N̂ , µ̂) =

∂Sa,b

∂Nb
(N̂ , µ̂)− 1

N̂b

≤ − d(µ̃b, x̃1,b) +O(N−3α/8 +RN−1).

As a result, the contribution to (92) due to Ñ1 and Ñb is,

∂S
(m)
a,b

∂N1
(N̂ , µ̂) ·∆Ñ1 +

∂S
(m)
a,b

∂Nb
(N̂ , µ̂) ·∆Ñb

≤ ∆Ñ1 · (d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))−∆Ñb · d(µ̃b, x̃1,b) +O
((

N−3α/8 +RN−1
)
R
)
.
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Therefore, adding the contributions of the noise in (µ̃j)j=1,a,b, (92) can be further upper bounded by,

S
(m)
a,b (Ñ(N +R), µ̃(N +R))− S

(m)
a,b (Ñ(N), µ̃(N))

≤ ∆Ñ1 · (d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))−∆Ñb · d(µ̃b, x̃1,b)

+O
(
N1−3α/8 +

(
N−3α/8 +RN−1

)
R
)
. (93)

Now, we find an upper bound to S
(m)
a,b (Ñ(N), µ̃(N)). Since the algorithm pulls arm a and doesn’t

pull arm b at iteration N , we must have

I(m)
a (N − 1) ≤ I(m)

b (N − 1) = I(m)
b (N).

Therefore,

S
(m)
a,b (Ñ(N), µ̃(N)) = I(m)

a (N)− I(m)
b (N)

= (I(m)
a (N)− I(m)

a (N − 1)) + (I(m)
a (N − 1)− I(m)

b (N))

≤ I(m)
a (N)− I(m)

a (N − 1)

= Ia(N)− Ia(N − 1) + log

(
Ña(N)

Ña(N − 1)

)
(1)
= Ia(N)− Ia(N − 1) +O(1)

(2)
= O(N1−3α/8), (94)

where (1) follows from the fact that Ña(N) = Θ(N) for N ≥ T6, and (2) follows using the
arguments used while bounding Ia(N)− Ia(N − 1) in (86).

Putting this in (93), we get,

S
(m)
a,b (Ñ(N +R), µ̃(N +R)) ≤ ∆Ñ1 · (d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))−∆Ñb · d(µ̃b, x̃1,b)

+O
(
N1−3α/8 +R(N−3α/8 +RN−1)

)
. (95)

Now there can be two cases.

Case I d(µ̃1, x̃1,a) − d(µ̃1, x̃1,b) < 0 : Then, using the same argument as was used for Case I of
AT2 algorithm, we get (82).

Case II d(µ̃1, x̃1,a)−d(µ̃1, x̃1,b) ≥ 0 : Using (76) of Lemma G.12, the RHS in (95) is upper bounded
by,

∆Ñb

(
Ñ1

Ñb

(d(µ̃1, x̃1,a)− d(µ̃1, x̃1,b))− d(µ̃b, x̃1,b)

)
+O

(
N1−3α/8 +

(
N−3α/8 +RN−1

)
R
)
.

Using (94), we have
I(m)
a (N) ≤ I(m)

b (N) +O
(
N1−3α/8

)
,

which implies,

Ia(N) ≤ Ib(N) + log

(
Ñb

Ña

)
+O(N1−3α/8)

(1)
= Ib(N) +O(N1−3α/8),

where (1) follows from the fact that Ña(N) and Ñb(N) are both Θ(N), causing log
(

Ña(N)

Ñb(N)

)
= O(1)

for N ≥ T6. Note that the above inequality is same as (90) obtained in Case II of AT2. Now (82)
follows using exactly the same argument as in the Case II of AT2 after (90).
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For every a ∈ [K]/{1}, N ≥ T6 and R ∈ {1, 2, . . . , N}, we have,

|Ia(N +R)− Ia(N +R− 1)| (1)
= |Ia(N +R)− Ia(N +R− 1)|+O((N +R)1−3α/8)

(2)
= |Ia(N +R)− Ia(N +R− 1)|+O(N1−3α/8)

(3)

≤ max{d(µ1, µa), d(µa, µ1)}+O(N1−3α/8) = O(N1−3α/8),
(96)

where: (1) follows by Lemma G.3; (2) follows since R ≤ N ; and (3) follows from the fact that Ia(·)
can increment by atmost max{d(µ1, µa), d(µa, µ1)} in one iteration.

Since, at every iteration N ≥ 1 and for every arm, the modified empirical index differ from the
empirical index by atmost log(N), we have,∣∣∣I(m)

a (N +R)− I(m)
a (N +R− 1)

∣∣∣ ≤ |Ia(N +R)− Ia(N +R− 1)|+ 2 log(N +R)

(i)
≤ |Ia(N +R)− Ia(N +R− 1)|+O(log(N))

= O(N1−3α/8) +O(log(N)) = O(N1−3α/8), (97)

where (i) follows because R ≤ N .

Using (96) and (97), the following corollary follows from Lemma G.16,

Corollary G.2. For AT2 (1) and IAT2 (2) algorithms, for N ≥ T6 and R ∈ {1, 2, . . . , N}, if the
algorithm pulls some arm a ∈ [K]/{1} at iteration N and doesn’t pull a for the next R iterations,
then,

AT2: Ia(N +R− 1)− Ib(N,R)(N +R− 1) ≤ − C3∆Ñb(N,R)(N,R) + C5N
1−3α/8

+O
((

N−3α/8 +RN−1
)
R
)
, (98)

IAT2: I(m)
a (N +R− 1)− I(m)

b(N,R)(N +R− 1) ≤ − C3∆Ñb(N,R)(N,R) + C5N
1−3α/8

+O
((

N−3α/8 +RN−1
)
R
)
, (99)

where C3, C5 > 0 are constants independent of the sample paths.

Proof of Lemma G.2: We prove the proposition for the AT2 algorithm. The proof for IAT2 algorithm
follows the exact same argument by replacing I with I(m).

In the proof, we argue via contradiction. We show that, there exists constants M5 ≥ 1 and C1 > 0
independent of the sample paths, such that for N ≥ max{M5, T6}, if the algorithm pulls some arm
a ∈ [K]/{1} at iteration N and doesn’t pull it for the next R(N)

def.
= ⌈C1N

1−3α/8⌉ iterations, then at
iteration τ(N,R(N)), the algorithm pulls arm b(N,R(N)), even though arm a has empirical index
strictly less than that of arm b(N,R(N)).

Using Corollary G.2, there exists constants C3, C5, C6 > 0 independent of the sample paths, such
that, for N ≥ T6 and R ∈ {1, 2, . . . , N},

Ia(N +R− 1)− Ib(N,R)(N +R− 1) ≤ − C3∆Ñb(N,R)(N,R) + C4N
1−3α/8

+ C5R(N−3α/8 +RN−1). (100)

We define

C1 = max

{
D1,

2C4

D2C3

}
+ 1,
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where D1 and D2 are the constants introduced in Lemma G.15. Let M52 ≥ 1 to be the smallest
number such that, every N ≥M52 satisfies ⌈C1N

1−3α/8⌉ < N . Since C1 > D1, by the definition
of M51 in the proof of Lemma G.15, we have M52 > M51.

Now let R(N) = ⌈C1N
1−3α/8⌉. Then by Lemma G.15, for N ≥ max{M52, T6}, since R(N) >

⌈D1N
1−3α/8⌉, we have,

∆Ñb(N,R(N))(N,R(N)) ≥ D2R(N) ≥ 2C4

C3
N1−3α/8. (101)

Since arm b(N,R) is not pulled between the iterations τ(N,R) and N +R, we have

∆Ñb(N,R)(N, t) = ∆Ñb(N,R)(N,R)

for all t ∈ { τ(N,R)−N, τ(N,R)−N + 1, . . . , R }.
As a result, by definition of b(N,R) we have,

b(N,R(N)) = b(N, τ(N,R(N))−N) and

∆Ñb(N,R(N))(N,R(N)) = ∆Ñb(N,R)(N, τ(N,R(N))−N).

In the rest of the proof, we denote b(N,R(N)) and τ(N,R(N))−N , respectively, using b(N) and
τb(N).

Therefore, using Corollary G.2, we have, for N ≥ max{M52, T6},
Ia(N + τb(N)− 1)− Ib(N)(N + τb(N)− 1)

≤ − C3∆Ñb(N)(N, τb(N)) + C4N
1−3α/8 + C5τb(N)× (N−3α/8 + τb(N)N−1)

(1)

≤ − C3 ×
2C4

C3
N1−3α/8 + C4N

1−3α/8 + C5R(N)× (N−3α/8 +R(N)N−1)

(2)

≤ − C4N
1−α/8 + C5(C1 + 1)(C1 + 2)N1−3α/8 ×N−3α/8

(3)
= − (C4 − C6N

−3α/8)N1−3α/8, (102)

where: (1) follows using (101) and τb(N) ≤ R(N), (2) follows since R(N) ≤ (C1 + 1)N−3α/8,
and (3) follows by letting C6 = C5(C1 + 1)(C1 + 2).

We now take M53 ≥ 1 to be large enough, such that, C6M
−3α/8
53 < C4. Let M5 = max{M52,M53}.

Then (102) implies, for N ≥ max{M5, T6} and R(N) = ⌈C1N
1−3α/8⌉, if the algorithm picks some

arm a ∈ [K]/{1} at iteration N and doesn’t pick a for the next R(N) iterations, then, at iteration
N+τb(N), the algorithm picks arm b(N), even though, Ia(N+τb(N)−1)−Ib(N)(N+τb(N)−1) <
0. Thus we arrive at a contradiction.

H Proof of Theorem 3.1

By Proposition 3.1, we know that, for every a ∈ [K] and N ≥ Tstable,

|ω̃a(N)− ω⋆
a| ≤ C1N

−3α/8.

Recall the functions Wa(·, ·) defined in Appendix G.2.2. Note that for every allocation ω =
(ωa)a∈[K], and a ∈ [K]/{1}, we have,

∂Wa

∂ω1
(ω1, ωa) = d(µ1, x1,a(ω1, ωa)) and

∂Wa

∂ωa
(ω1, ωa) = d(µa, x1,a(ω1, ωa)),

where x1,a(ω1, ωa) =
ω1µ1+ωaµa

ω1+ωa
.

As a result, for every a ∈ [K]/{1}, the partial derivatives of Wa(ω1, ωa) with respect to ω1 and ωa

are both O(1). Therefore, using the mean value theorem, for every a ∈ [K]/{1} and N ≥ Tstable,
we have,

|Wa(ω̃1(N), ω̃a(N))−Wa(ω
⋆
1 , ω

⋆
a)| = O(N−3α/8). (103)
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Define the normalized index of every arm as

Ha(N) =
Ia(N)

N
= Wa(ω̃1(N), ω̃a(N)).

Also by (54), Wa(ω
⋆
1 , ω

⋆
a) = I⋆ = T ⋆(µ)−1 for every alternative arm a ∈ [K]/{1}.

Therefore (103) gives us,

|Ha(N)− T ⋆(µ)−1| = O(N−3α/8), for a ∈ [K]/{1} and N ≥ Tstable. (104)

By Lemma G.3, we also know,

|Ia(N)−NHa(N)| = |Ia(N)− Ia(N)| = O(N1−3α/8). (105)

Combining (104) and (105), we get

|Ia(N)−NT ⋆(µ)−1| ≤ |Ia(N)−NHa(N)|+N |Ha(N)− T ⋆(µ)−1|
= O(N1−3α/8),

for every a ∈ [K]/{1}. Hence, we can find a constant C2 > 0, independent of the sample paths,
such that,

Ia(N) ≥ N

T ⋆(µ)
− C2N

1−3α/8,

for every N ≥ Tstable and a ∈ [K]/{1}. As a result, for N ≥ Tstable, we have,

min
a∈[K]/{1}

Ia(N) ≥ N

T ⋆(µ)
− C2N

1−3α/8. (106)

The threshold function β(N, δ) deciding our stopping condition satisfies,

log(1/δ) ≤ β(N, δ) ≤ log(1/δ) + C3 log log(1/δ) + C4 log log(N) + C5

for constants C3, C4, C5 > 0. For every δ > 0, we define the deterministic quantity,

tmax,δ = min

{
N ≥ Tstable

∣∣∣ N

T ⋆(µ)
− C2N

1−3α/8 > β(N, δ)

}
. (107)

Now we make the following observations about tmax,δ ,

1. Note that N
T⋆(µ) − C2N

1−3α/8 increases linearly in N and β(N, δ) is O(log log(N) +

log(1/δ)), for a fixed δ > 0. Hence, tmax,δ is finite for every δ > 0.

2. We have β(N, δ) ≥ log(1/δ) and N
T⋆(µ) − C2N

1−3α/8 < N
T⋆(µ) . As a result, tmax,δ is

atleast the iteration at which N
T⋆(µ) exceeds log(1/δ), which is atleast T ⋆(µ) log(1/δ). This

implies tmax,δ ≥ T ⋆(µ) log(1/δ). As a result, tmax,δ →∞ as δ → 0.

3. If τδ > Tstable, then mina∈[K]/{1} Ia(N) exceed β(N, δ) before the lower bound of
mina∈[K]/{1} Ia(N) in (106) exceeds β(N, δ). As a result, τδ ≤ tmax,δ, whenever τδ ≥
Tstable. This gives us the upper bound,

τδ ≤ max{Tstable, tmax,δ} a.s. in Pµ. (108)

We have Eµ[Tstable] <∞, which also implies Tstable <∞ a.s. in Pµ. Now using (108), we get,

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ lim sup

δ→0

Eµ[Tstable] + tmax,δ

log(1/δ)
= lim sup

δ→0

tmax,δ

log(1/δ)
.
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Similarly, we have,

lim sup
δ→0

τδ
log(1/δ)

≤ lim sup
δ→0

Tstable + tmax,δ

log(1/δ)
= lim sup

δ→0

tmax,δ

log(1/δ)
a.s. in Pµ.

Therefore to prove asymptotic optimality, it is sufficient to prove lim supδ→0
tmax,δ

log(1/δ) ≤ T ⋆(µ).

Let smax,δ = tmax,δ − 1. Note that lim supδ→0
tmax,δ

log(1/δ) = lim supδ→0
smax,δ

log(1/δ) . By definition of
tmax,δ , we have
smax,δ

T ⋆(µ)
− C2s

1−3α/8
max,δ ≤ β(smax,δ, δ) = log(1/δ) + C3 log log(1/δ) + C4 log log(smax,δ) + C5.

After some rearrangement of terms, upon dividing both sides by log(1/δ), we get,
1

T ⋆(µ)

smax,δ

log(1/δ)

(
1− C2s

−3α/8
max,δ − C3s

−1
max,δ log log(smax,δ)

− C5s
−1
max,δ

)
≤ 1 + C3

log log(1/δ)

log(1/δ)
.

By Observation 2, smax,δ = tmax,δ − 1→∞ as δ → 0. As a result, the above inequality implies,

1

T ⋆(µ)
lim sup

δ→0

smax,δ

log(1/δ)
≤ 1.

We already argued that lim supδ→0
tmax,δ

log(1/δ) ≤ T ⋆(µ). As a result, we have a constant C6 > 0, such
that tmax,δ ≤ C6 log(1/δ) for all δ. By (108) we have:

tmax,δ − 1

T ⋆(µ)
− C2(tmax,δ − 1)1−3α/8 ≤ β(tmax,δ − 1, δ)

which implies,
tmax,δ ≤ T ⋆(µ) log(1/δ) +O

(
log log(1/δ) + t

1−3α/8
max,δ

)
.

Putting tmax,δ ≤ C6 log(1/δ) in the above inequality,

tmax,δ ≤ T ⋆(µ) log(1/δ) +O
(
(log(1/δ))

1−3α/8
)
. (109)

Since τδ ≤ max{Tstable, 1 + tmax,δ}, we can find a constant C > 0 such that τδ ≤
max

{
Tstable, T

⋆(µ) log(1/δ) + C(log(1/δ))1−3α/8
}

. Hence Theorem 3.1 stands proved.

I Extending the proposed algorithm to distributions with bounded support

We describe a natural extension of AT2 and IAT2 algorithms to bandit instances from a non-parametric
family. We conduct experiments to compare the proposed algorithm with the existing ones. We
consider the class of distributions having their supports contained in [0, 1], which we denote by F[0,1].
This is similar to the assumptions made in [16]. Some definitions are in order. We use µ(G) to denote
the mean of distribution G ∈ F[0,1].

For every F ∈ F[0,1] and x ∈ [0, 1], we define KL+
inf and KL−

inf as:

KL+
inf(F, x) = inf{ KL(F,G) | µ(G) > x } and

KL−
inf(F, x) = inf{ KL(F,G) | µ(G) < x }.

At iteration N of the algorithm, let F̃a(N) be the empirical distribution of the samples collected from
some arm a ∈ [K], F̃ (N) = (F̃a(N) : a ∈ [K]), Ña(N) be the total no. of samples collected from a

till N , and Ñ(N) = (Ña(N) : a ∈ [K]). Let µ̃a(N) = µ(F̃a(N)) and îN = argmaxa∈[K] µ̃a(N).
We now define:

xîN ,a(N) = arg min
x∈[0,1]

{
ÑîN

(N) · KL−
inf(F̃îN

(N), x) + Ña(N) · KL+
inf(F̃a(N), x)

}
.
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At every iteration, we compute the empirical index of every arm a ̸= îN as:

Ia(N) = min
x∈[0,1]

{
ÑîN

(N) · KL−
inf(F̃îN

(N), x) + Ña(N) · KL+
inf(F̃a(N), x)

}
,

and the anchor function as,

g(F̃ (N), Ñ(N)) =
∑
a ̸=îN

KL−
inf(F̃îN

(N), xîN ,a(N))

KL+
inf(F̃a(N), xîN ,a(N))

− 1.

The AT2 and IAT2 algorithm for the class F[0,1], respectively, follows the same steps as in (1) and (2)
with the anchor and index functions defined as above.

We experimentally demonstrate the performance of the proposed algorithms in Appendix J.5.

J Experiments

J.1 Dynamics of the algorithms

Experiment 1 (Gaussian and Bernoulli bandits with well-separated arms): In the main text
(Figure 1), we presented the evolution of normalized indexes for the sub-optimal arms for AT2, when
run without the stopping rule. Numerically, we observe similar plots for normalized indexes even
for the other algorithms: 0.5-EB-TCB (proposed in [16] with β = 0.5), and TCB (proposed in [22]).
Hence, we do not report them. However, we do observe differences in the evolution of the anchor
function value across these algorithms. We present this in two different settings in the current section.

Interestingly, as per our implementations, we observe that only AT2 satisfies the asymptotic optimality
conditions, maintaining the anchor function close to 0, in addition to maintaining the equality of the
normalized indexes.

In this section, we consider the following two examples:

1. Gaussian bandit. In the first setup (Figure 4), we consider a 4 armed Gaussian bandit with
unit variance and mean vector µ = [10, 8, 7, 6.5]. This is the same setting as in Section 6
from the main text.

2. Bernoulli bandit. In the second setup (Figure 5), we consider a Bernoulli bandit with means
µ = [0.91, 0.73, 0.64, 0.59].

In Figures 4 and 5, we plot the evolution of anchor function value for the three algorithms in the two
settings, without implementing the stopping rule. The solid lines in the figure represent the average
of anchor function over 4, 000 independent runs. The shaded bands around the sold lines (almost
invisible in these figures), represent 2 standard deviation bands around the mean.

We observe that only AT2 maintains the anchor function value close to 0. Our experiments suggest that
that TCB algorithm, as per our implementation, doesn’t satisfy the asymptotic optimality conditions.

J.2 Sample complexity comparison

In Section 6 in the main text, we compared the sample complexities (SC) of the three algorithms on a
well-separated Gaussian bandit (Figure 2). In this section, we compare the SC of all the algorithms, as
a function of different parameters. We consider harder Gaussian as well as Bernoulli bandit instances
(with means close to each other), presented below.

1. Gaussian bandit. A 4 armed Gaussian bandit with unit variance and mean vector µ =
[7.25, 7.05, 7, 7.1] so that the means are closer together.

2. Bernoulli bandit. As a second example, we consider a 4-armed Bernoulli bandit with
close-by means: µ = [0.99, 0.96, 0.95, 0.97].

Experiment 2 (SC as function of β): In this experiment, we compare SC of (I)AT2, (I)TCB, β-EB-
(I)TCB algorithms, for β ∈ [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], on the Gaussian instance (Figure 6) and
the Bernoulli instance (Figure 7), described above. The error probability δ in both these experiments
is set to 0.001. All the algorithms use the same forced exploration rule and stopping rules.
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Figure 4: Anchor function value for easy Gaussian
bandit (Exp.1), averaged over 4,000 sample paths.

Figure 5: Anchor function value for easy Bernoulli
bandit (Exp.1), averaged over 4,000 sample paths.

The lines with the markers in the figures represent the average number of samples generated before
stopping, averaged over 4, 000 independent simulations, while the shaded regions denote 2 standard
deviations around the mean. We also report the average sample complexity and the standard deviation
of the average sample complexity for AT2, IAT2, TCB, and ITCB, across 4, 000 independent
simulations.

In both these simulations, we observe that AT2 and IAT2, respectively, have about 5% lower sample
complexity compared to TCB and ITCB.

Algorithm Avg. SC Std. Dev.
AT2 2013.0 17.85
IAT2 1925.9 16.36

0.5-EB-TCB 2084.84 17.74
0.5-EB-TCBI 1987.92 16.33

TCB 2109.82 17.82
ITCB 2041.03 16.55

Figure 6: Sample complexity (SC) on Gaussian bandit from Exp. 2, averaged over 4, 000 independent
sample paths. δ = 0.001

Algorithm Avg. SC Std. Dev.
AT2 4735.09 50.4
IAT2 4412.16 27.36

0.5-EB-TCB 4735.65 45.44
0.5-EB-TCBI 4426.59 27.27

TCB 4972.07 49.64
ITCB 4681.63 28.52

Figure 7: Sample complexity (SC) on Bernoiulli bandit from Exp. 2, averaged over 4, 000 independent
sample paths. δ = 0.001
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Experiment 3 (SC as function of δ): In Figure 8 and Figure 9, we plot the sample complexities of the
three algorithms — AT2, 0.5-EB-TCB, and TCB — as a function of δ, for the Gaussian and Bernoulli
bandits considered in Experiment 2 above. All the algorithms use the same forced exploration and
stopping rules. We observe that AT2 consistently outperforms both the previously known algorithms,
and the gap in performance increases as we reduce δ.

Figure 8: Sample complexity of Gaussian bandit
(Exp.3), averaged over 4,000 sample paths.

Figure 9: Sample complexity for Bernoulli bandit
(Exp.3), averaged over 4,000 sample paths.

Experiment 4 (SC as a function of number of arms). We plot the number of samples needed by
the three algorithms, as a function of number of arms in the bandit instance. δ is set to 0.001 in this
experiment.

For scalability, in this experiment, we consider a simple Gaussian bandit (well-separated means) with
all arms having a unit variance. Arm 1 is optimal with mean 10. To study the effect of number of
arms on sample complexity, we choose all the other arms to be same with mean 8. Thus, the bandit
instances have Gaussian arms with unit variance, and means

µ = [10, 8, . . . ].

As in the earlier experiments, for fair comparison, all the algorithms are implemented with the same
forced exploration and stopping rules. Results are presented in Figure 10. We observe that the sample
complexity increases linearly with number of arms for the three algorithms. In this experiment,
the performance of TCB and AT2 looks comparable, with TCB requiring slightly more number of
samples. However, the gap in their performance is expected to increase for smaller values of δ.

Figure 10: Sample complexity on Gaussian bandit (Exp.4), averaged over 4, 000 independent sample
paths.

J.3 Runtime comparison

Experiment 5: In this experiment, we compare the run-time of (I)AT2 and (I)TCB algorithms on a
4 armed Gaussian bandit with means µ = [10, 9.4, 7, 6.5] and unit variance, averaged over longer
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100,000 simulations. δ is set to 0.001, and the four algorithms use the same forced exploration and
stopping rules.

Table 1 represents the average run-time of the two algorithms. We observe that TCB and ITCB take
roughly two times more computational time compared to AT2 and IAT2, respectively.

Algorithm Avg. Sample Complexity Std. Dev. Avg. Run Time (microsec.) Run Time Std. Dev.
AT2 90.53 0.2 129.76 32.34
IAT2 90.63 0.2 310.76 55.88
TCB 96.55 0.21 501.22 82.60
ITCB 96.69 0.21 845.19 145.97

Table 1: Runtime of (I)AT2 and (I)TCB on Gaussian bandit with µ = [10, 9.4, 7, 6.5] and unit
variances (Exp.6). Results reported are for 100, 000 independent runs of each algorithm.

J.4 Effect of forced-exploration parameter α on sample complexity

In this section, we provide a numerical evaluation of the impact of forced exploration on the
performance of AT2 and IAT2. Our experiments suggest that unlike IAT2, AT2 needs forced
exploration. On instances where the second and third best arms have equal means, AT2 might see
some bad samples from the best arm in the beginning. As a result, without forced exploration, it will
sample the second and the third best arms forever. However, we see that AT2 performs sufficient
exploration for instances having all arms with different means. Note that similar observations were
made in [16] for β-EB-TCB.

Experiment 6: To see the above mentioned behavior of AT2, we study the performance of AT2 and
IAT2 on the following two bandit instances.

1. A 4 armed Gaussian bandit with unit variance and mean vector µ = [7.25, 7.05, 7, 7.1], so
that the means are close together, yet all different.

2. A 4 armed Gaussian bandit with unit variance and mean vector µ = [7.25, 7, 7, 7], so that
the three suboptimal arms have equal means.

Intuitively, it might appear that forced exploration could significantly increase the sample complexity
of AT2 and IAT2. However, in Figure 11, we see that IAT2’s performance remains unaffected and AT2
performs at least as well as IAT2 with moderate amount of forced exploration on the first instance,
where the gap between the means is small.

Figure 12 shows that without forced exploration, AT2’s sample complexity blows up on the instance
with equal sub-optimal arm means. We see that on this instance, IAT2 performs significantly better
than AT2. Furthermore, IAT2’s sample complexity remains almost unaffected with respect to the
amount of forced exploration done.

Figure 11: Sample complexity of Gaussian bandit
with means µ = [7.25, 7.05, 7, 7.1], as a function
of α (Exp.6)

Figure 12: Sample complexity of Gaussian bandit
with means µ = [7.25, 7, 7, 7], as a function of α
(Exp.6)
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J.5 Experiments for bandits with bounded-support distributions

In this section, we experimentally demonstrate the performance of a natural extension of AT2 to a
non-parametric setting of bandits with arms having distributions supported in [0, 1] (see Appendix I
for the modified AT2). This is the setting considered in, for example, [16].

Experiment 7: Consider a 4-armed bandit with the following arm distributions:

Beta(1.5, 1), Beta(2, 6), Beta(1, 1.5), and Beta(1, 7).

Here, the arms have means
µ = [0.6, 0.25, 0.4, 0.125].

While we do not provide the analysis of the algorithm for this setting, numerically we observe that
even in this non-parametric setting, extension of AT2 to this setting outperforms β-EB-TCB, and a
corresponding natural extension of TCB to this setting.

Figure 13: Sample complexity (Exp.6), averaged
over 4,000 sample paths. We set δ = 0.001.

Figure 14: Sample complexity (Exp.6), averaged
over 4,000 sample paths.

Reproducibility: Our code is implemented in Julia 1.7.1, and the plots are generated with
the Plots.jl package. Other dependencies are listed in the Readme.md file, which also includes
instructions to reproduce the figures and tables presented here. We build upon the publicly available
code for [16]. Our experiments are conducted on an institutional cluster computing facility having an
Intel Xeon Gold 6130 2.1GHz CPU with 32 cores.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The optimality of the proposed algorithm is proven in Theorem 3.1. We also
demonstrate the dynamics of the algorithm, as proposed in Theorem 4.1 via numerical
simulations.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the results presented in this paper due to
model assumptions such that independence, considering bandit instances from an SPEF, etc.
at the end of Section 1.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We include all the assumptions made in the statements of the results.
We provide all the formal proofs in Appendix, and refer to them. All the theo-
rems/lemmas/propositions are numbered and referenced appropriately.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our key contribution is a new algorithm with its theoretical guarantees. We
perform numerical simulations to support the theoretical results. We include all the imple-
mentation details with the choices for different parameters in our numerical experiments
discussion in the Appendix J.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include the code with scripts for reproducing the numerical results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include the choices of all the parameters in each simulation.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include mean and standard deviations in all our experiments, along with
the assumptions made (independence of different runs of same simulation).
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We use an institutional computing facility for our experiments (see, end of
Appendix J).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The results of this work are theoretical in nature. We appropriately reference
all existing works to the best of our knowledge. We include justifications for all the results,
and implementation details for reproducing the simulation results of this work.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The main contributions of this work are theoretical in nature. While we propose
a new algorithm, there are no harmful societal impacts or consequences of this research.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We run numerical simulations. We do not use any publicly available datasets
for our experiments.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please see paragraph on Reproducibility in Appendix J.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowd sourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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