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ABSTRACT

In this paper, we investigate the problem of embodied multi-agent cooperation,
where decentralized agents must cooperate given only egocentric views of the
world. To effectively plan in this setting, in contrast to learning world dynamics
in a single-agent scenario, we must simulate world dynamics conditioned on an ar-
bitrary number of agents’ actions given only partial egocentric visual observations
of the world. To address this issue of partial observability, we first train generative
models to estimate the overall world state given partial egocentric observations.
To enable accurate simulation of multiple sets of actions on this world state, we
then propose to learn a compositional world model for multi-agent cooperation by
factorizing the naturally composable joint actions of multiple agents and compo-
sitionally generating the video conditioned on the world state. By leveraging this
compositional world model, in combination with Vision Language Models to infer
the actions of other agents, we can use a tree search procedure to integrate these
modules and facilitate online cooperative planning. We evaluate our methods on
three challenging benchmarks with 2-4 agents. The results show our composi-
tional world model is effective and the framework enables the embodied agents
to cooperate efficiently with different agents across various tasks and an arbitrary
number of agents, showing the promising future of our proposed methods. More
videos can be found at https://combo-iclr.github.io/COMBO/.

1 INTRODUCTION

Building cooperative embodied agents that can engage in and help humans in tasks requiring visual
planning is a valuable yet challenging endeavor. To cooperatively plan in a multi-agent scenario,
in contrast to learning world dynamics in a single-agent scenario, there are additional challenges to
simulate world dynamics conditioned on joint actions and partial observations of the world.

Large generative models have brought remarkable advances to various domains, including language
understanding and generation (OpenAI, 2023), image understanding and generation (Liu et al.,
2023a; Ho et al., 2020), and video generation (Blattmann et al., 2023a). Many have explored how
to leverage these powerful foundation models for embodied AI, Ahn et al. (2022); Wang et al.
(2023a) leverage Large Language Models for decision-making, Zhang et al. (2023) incorporates
LLMs to build modular embodied agents for cooperation and communication, Driess et al. (2023)
uses Vision Language Models to build capable vision agents, Du et al. (2023b); Yang et al. (2024)
use Video Models to generate visual plans for robots and explore modeling world dynamics with
video models to improve single-agent planning. However, how to leverage Vision Language Models
and Video Models to build embodied agents capable of planning under a visual cooperation task
is under-explored where it’s important to accurately simulate the world dynamics conditioned on
an arbitrary number of agents’ actions given only partial egocentric observations at each step for
efficient cooperation.

We propose to learn a compositional world model for multi-agent cooperation by leveraging the nat-
ural compositionality of joint actions to generate future frames conditioned on the current world state
compositionally, which enables accurate simulation of multiple sets of actions on the world state. To
address the partial observability issue, we leverage a learned generative model to estimate the over-
all world state given partial egocentric observations. By leveraging the compositional world model,
in combination with Vision Language Models, we propose COMBO, a novel Compositional wOrld
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Figure 1: (a) Two challenging embodied multi-agent visual cooperation benchmarks TDW-Cook and TDW-
Game, where 2-4 agents cooperate to finish some dishes according to the recipe or finish puzzles according
to the visual clue. (b) The agent needs to infer other agents’ intents, propose possible actions, and accurately
simulate how the world may be affected by multiple sets of actions to make efficient cooperation in the long
run.

Model-based emBOdied multi-agent planning framework to facilitate online cooperative planning.
COMBO first estimates the overall world state from partial egocentric observations, then utilizes
Vision Language Models to act as an Action Proposer to propose possible actions, an Intent Tracker
to infer other agents’ intents, and an Outcome Evaluator to evaluate the different possible outcomes.
In combination with the compositional world model to simulate the effect of joint actions on the
world state, COMBO uses a tree search procedure to integrate these modules and empowers embod-
ied agents to imagine how different actions may affect the world with other agents in the long run
and plan more cooperatively.

We instantiate the challenging embodied multi-agent visual cooperation task in ThreeDWorld (Gan
et al., 2021), and build TDW-Game and TDW-Cook where 2-4 decentralized agents must cooper-
ate to finish several puzzles according to the visual clue or dishes according to the recipe given only
partial egocentric views of the world as shown in Figure 1, requiring extensive visual cooperation.
The agents need to estimate the overall world state given partial egocentric observations, infer other
agents’ intents, and accurately simulate how the world state may be affected by multiple sets of
actions to make efficient cooperation in the long run. Our extensive experiments on these two chal-
lenging benchmarks and another adapted cooperation task show our learned compositional world
model delivers accurate video synthesis, conditioned on multiple sets of actions from an arbitrary
number of agents and COMBO enables the embodied agents to cooperate efficiently with different
agents across various tasks and an arbitrary number of agents. In sum, our contribution includes:

• We propose to learn a compositional world model for multi-agent cooperation by factoriz-
ing joint actions of an arbitrary number of agents and compositionally generating the video
to enable accurate simulation of multiple sets of actions on the world state.

• We introduce COMBO, a Compositional wOrld Model-based emBOdied multi-agent plan-
ning framework to empower the agents to imagine how different actions may affect the
world with other agents in the long run and plan more cooperatively.

• We evaluate our methods on three challenging benchmarks and conduct ablation studies,
the results show our framework enables the embodied agents to cooperate efficiently with
different agents across various tasks and an arbitrary number of agents.

2
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2 RELATED WORK

2.1 MULTI-AGENT PLANNING

Multi-agent planning has a long-standing history (Stone & Veloso, 2000), with various tasks and
methods have been introduced (Lowe et al., 2017; Samvelyan et al., 2019; Carroll et al., 2019;
Suarez et al., 2019; Jaderberg et al., 2019; Amato et al., 2019; Baker et al., 2020; Bard et al., 2020;
Jain et al., 2020; Wen et al., 2022; Szot et al., 2023). For embodied intelligence, Puig et al. (2021)
explored the social perception of the agents during household tasks, Zhang et al. (2023) studied the
communication and cooperation of two agents in a multi-room house. However, these works didn’t
dig into the explicit challenge of modeling the world dynamics conditioned on an arbitrary number
of agents’ actions given partial egocentric observations of the world, which is essential for the agents
to cooperate efficiently in long-horizon cooperation-extensive visual tasks. In contrast, we learn a
compositional world model for multi-agent cooperation and propose a compositional world model-
based embodied multi-agent planning framework to empower the embodied agents to imagine and
plan more cooperatively with only partial egocentric observations.

2.2 LARGE GENERATIVE MODELS FOR EMBODIED AI

With the recent advance of large generative models (Bubeck et al., 2023; Liu et al., 2023a; Driess
et al., 2023; Blattmann et al., 2023b), numerous works have explored how they can help build better
agents (Wang et al., 2023b; Xi et al., 2023; Sumers et al., 2023), especially in embodied environ-
ments (Zhou et al., 2024a; Li et al., 2023; Padmakumar et al., 2022; Kolve et al., 2017; Misra et al.,
2018; Xia et al., 2018; Xiang et al., 2020). Specifically, Wang et al. (2023c); Ahn et al. (2022);
Sharma et al. (2021); Wang et al. (2023a); Park et al. (2023) leverage Large Language Models to
help decision-making. Brohan et al. (2023); Jiang et al. (2023); Wang et al. (2023d) use vision lan-
guage models to facilitate embodied agents to plan end-to-end in visual worlds. Hong et al. (2024);
Black et al. (2024) use diffusion models for decision-making. Xiang et al. (2024); Du et al. (2024);
Finn et al. (2016) use video models to help the robot make visual plans. There are two closely
related works. VLP (Du et al., 2023b) enables a single agent to perform complex long-horizon ma-
nipulation tasks by synergizing vision-language models and text-to-video models with tree search,
but they neglect the challenge of learning world dynamics conditioned on multiple sets of actions
of an arbitrary number of agents. RoboDreamer (Zhou et al., 2024b) decomposes language instruc-
tions into sets of lower-level primitives and compositionally synthesizes video plans on unseen goals
for robot manipulation tasks, however, they only focus on the low-level trajectory control, and as-
sume the observation is static and non-partial. In contrast, we learn a compositional world model
for multi-agent cooperation to enable accurate simulation of multiple sets of actions on the world
and leverage a learned generative model to estimate the overall world state given partial egocentric
observations to address the partial observability issue.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Embodied multi-agent cooperation problem can be formalized as a decentralized partially observ-
able Markov decision process (DEC-POMDP) (Oliehoek et al., 2016; Bernstein et al., 2002; Spaan
et al., 2006), defined by (n, S, {Ai}, {Oi}, T,G, h), where:

• n denotes the number of agents;
• S is a finite set of states;
• Ai is the action set for agent i;
• Oi is the observation set for agent i, including partial egocentric visual observation the agent

receives through its sensors;
• T (s, a, s′) = p(s′|s, a) is the joint transition model which defines the probability that after

taking joint action a ∈ A = A1 × · · · ×An in s ∈ S, the new state s′ ∈ S is achieved;
• G is the final goal state;
• h is the planning horizon.

3
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Starting from an initial state S0 ∈ S, n decentralized agents need to act ai ∈ Ai given egocentric
RGBD observations oi ∈ Oi each step to achieve the goal state G using a minimal number of steps.

3.2 VIDEO DIFFUSION MODELS

Given an initial image x0 and a text prompt txt as the condition, a video diffusion model learns to
model the distribution of possible future frames x1...T , denote as Pθ(x1...T |x0, txt). A denoising
function ϵθ is trained to predict the noise applied to x1..T at diffusion time step t given the noisy
frames by optimizing the objective of

LMSE = ∥ϵθ(x1...T , t|x0, txt)− ϵ∥2 (1)

where ϵ is sampled from a standard Gaussian distribution, and t is a randomly sampled diffusion
time step, following Ko et al. (2023).

3.3 COMPOSABLE DIFFUSION MODELS

Liu et al. (2022); Du et al. (2023a) shows that diffusion models are functionally similar to
Energy-Based Models, and can be composed to generate images conditioned on a set of concepts
{c1, c2, · · · , cn} by training diffusion models to learn a set of score functions ϵθ(xt, t|ci), and com-
posing them as

ϵ̂(xt, t|c1, c2, · · · , cn) = ϵθ(xt, t) +

n∑
i=1

ϵθ(xt, t|ci)− ϵθ(xt, t) (2)

Which corresponds to the production of the probability densities

Pθ(x|c1, c2, · · · , cn) ∝ Pθ(x)

n∏
i=1

Pθ(x|ci)
Pθ(x)

(3)

Then the sampling process changes to xt−1 ∼ N (xt − ϵ̂(xt, t|c1, c2, · · · , cn), σ2
t I).

4 COMPOSITIONAL WORLD MODEL

To cooperatively plan in a multi-agent scenario, in contrast to learning world dynamics in a single-
agent scenario, there is an additional challenge to simulate world dynamics conditioned on the ac-
tions of an arbitrary number of agents. We propose to learn a compositional world model for multi-
agent cooperation as shown in Figure 2 by factorizing the naturally composable joint actions of an
arbitrary number of agents as a set of text prompts and predicting the future state by compositionally
generating the future frames with a video diffusion model to enable accurate simulation of multiple
sets of actions on the world state. Our compositional world model aims to model P (s′|s, a), where
s represents the current world state, a represents the joint action of n agents, and s′ is the future
world states. We first discuss how we learn the composable video diffusion model to act as a com-
positional world model in 4.1, then introduce the Agent-Dependent Loss Scaling we designed for
the challenging situation where we need to accurately model multiple agents’ manipulating multiple
objects to improve the video synthesis performance in 4.2.

4.1 COMPOSABLE VIDEO DIFFUSION MODELS

Our compositional world model can be learned as a video diffusion model by treating the current
world state s as the initial frame x0, and the joint actions a as the text prompt, then modeling the
distribution of future frames X is learning the world dynamics and predicting future states s′. The
text prompt with multiple agents interacting with multiple objects is challenging to be handled ac-
curately. Observing that the joint action a can be naturally factorized into n components a1, · · · , an
corresponding to the action of each agent, we leverage the composable diffusion models introduced
in section 3.3 to learn the compositional world model as a composition of video diffusion models
conditioned on the initial frame x0 and each text component ai

4
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𝜖𝜃(𝑋𝑡, 𝑡|𝑥0, 𝑎1)

𝜖𝜃(𝑋𝑡, 𝑡|𝑥0, 𝑎2)

𝜖𝜃(𝑋𝑡, 𝑡|𝑥0, 𝑎3)

𝜖𝜃(𝑋𝑡, 𝑡|𝑥0, 𝑎4)

Alice pick up the green-brown piece 

     Bob pick up the blue-brown piece

     Charlie wait

    David pick up the aqua-black piece

Current State Joint Action

Figure 2: Compositional World Model. Given the current world state x0 and joint action of multiple agents
a, the compositional world model predicts the future states by first factorizing a into several components ai

corresponding to each agent, then generating multiple scores conditioned on the current world state and the text
components, finally composing them to generate the video.

P (s′|s, a) = Pθ(X|x0, a) = Pθ(X|x0, a1, · · · , an) ∝ Pθ(X)

n∏
i=1

Pθ(X|x0, ai)

Pθ(X)
(4)

Using Equation 2, the video diffusion models learn a set of score functions ϵθ(Xt, t|x0, ai) and
composes the joint score as

ϵ̂(Xt, t|x0, a) = ϵθ(Xt, t) +

n∑
i=1

ϵθ(Xt, t|x0, ai)− ϵθ(Xt, t) (5)

We train this composable video diffusion model with two stages. In stage one, we learn to model the
distribution of Pθ(X|x0, ai) by training with text component corresponding to a single agent action
only using the standard denoising diffusion training objective introduced in section 3.2.

Then in stage two, we fine-tune the model to specifically learn compositional generation to model
Pθ(X|x0, a) by training with conditions containing joint actions of multiple agents using the com-
posed score function loss

LComposed = ∥ϵ(Xt, t|x0, a)− ϵ∥2 =

∥∥∥∥∥ 1n
n∑

i=1

ϵθ(Xt, t|x0, ai)− ϵ

∥∥∥∥∥
2

(6)

After the two-stage training, we can sample from the composed distribution with the composed score
function at inference time given current world state x0 and joint action a = (a1, · · · , an) as

ϵ̂(Xt, t|x0, a) = ϵθ(Xt, t) +

n∑
i=1

ω(ϵθ(Xt, t|x0, ai)− ϵθ(Xt, t)) (7)

where ω is the guidance weight controlling the temperature scaling on the conditions.

4.2 AGENT-DEPENDENT LOSS SCALING

A well-trained stage one model is vital to the final compositional generation performance since the
accurate modeling of Pθ(X|x0, ai) is the basis for modeling Pθ(X|x0, a). We have employed a
technique named Agent-Dependent Loss Scaling to assist in stage one training.

5
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Figure 3: Method Overview. (a) Given partial egocentric RGBD observations, COMBO first reconstructs and
inpaints the top-down orthographic image as the overall world state estimation. (b) COMBO then leverage
the planning sub-modules built with Vision Language Models to propose actions, infer other agents’ intents,
and evaluate the outcomes simulated with the compositional world model to plan online with a tree search
procedure to cooperate in the long run.

Formally, we define an agent-dependent loss coefficient matrix C ∈ Rn×H×W for n agents and
images of H ×W pixel, and change the Equation 1 to

LMSE =

n∑
i=1

Ci · ∥ϵθ(X, t|x0, ai)− ϵ∥2 (8)

We simply set the loss coefficient matrix based on each agent’s reachable region in the image to su-
pervise the model to focus more on the related pixels. It’s observed that even this straightforward loss
coefficient approach brings a significant improvement to the modeling accuracy of Pθ(X|x0, ai).

5 COMPOSITIONAL WORLD MODEL FOR MULTI-AGENT PLANNING

To plan efficiently in the embodied multi-agent visual cooperation problem, we still need to address
the challenge of partial egocentric observation and model complex world dynamics in the long run.
We propose COMBO, a novel Compositional wOrld Model-based emBOdied multi-agent planning
framework, shown in Figure 3. After receiving the egocentric observations, COMBO first estimates
the overall world state to plan on, as discussed in 5.1. COMBO then utilizes Vision Language
Models to act as an Action Proposer to propose possible actions, an Intent Tracker to infer other
agents’ intents, and an Outcome Evaluator to evaluate the different possible outcomes, as detailed
in 5.2. In combination with the compositional world model to simulate the effect of joint actions
on the world state si+1 = CWM(si, a) introduced in 4, we discuss the tree search procedure to
integrate these planning sub-modules in 5.3. COMBO empowers embodied agents to imagine how
different plans may affect the world with other agents in the long run and plan cooperatively.

5.1 WORLD STATE ESTIMATION WITH PARTIAL EGOCENTRIC VIEWS

Directly planning based on partial egocentric views presents a considerable challenge. To address
this, we initially reconstruct partial point clouds from multiple egocentric RGBD views oi captured
from different perspectives. These point clouds are then transformed into a unified top-down or-
thographic image representation, serving as the world state. This representation is constructed by
overlaying the views in chronological order. It is important to note that our world is inherently
dynamic, with other agents actively interacting, resulting in a top-down orthographic image repre-
sentation that is both noisy and incomplete, as depicted in 3 (a). To refine this representation, we
employ a diffusion model to inpaint the partial and noisy orthographic image, thereby enhancing

6
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the estimation of the world state si for subsequent planning. This approach allows us to effectively
represent and rectify the world state, enabling more accurate planning in multi-agent environments.

5.2 PLANNING SUB-MODULES WITH VISION LANGUAGE MODELS

Action Proposer Given the estimated world state si and the long horizon goal G, the Action Pro-
poser first searches over the potential action spaces Ai, and then proposes multiple possible actions
ai,1...p = AP (si, G) to explore on. We implement this module by querying a VLM to generate the
possible actions in the text given the task goal and encoded image world state as context. We finetune
LLaVA on randomly collected rollouts with possible actions labeled to construct this module.

Intent Tracker Inferring what other agents may do given observation history is important for effec-
tive multi-agent cooperation. We implement this module a−i = IT (si, G) by keeping the estimated
world state from the last k steps and then feed into the VLM together with the task goal to query
for the possible actions of other agents a−i. We construct this module by finetuning LLaVA on
collected short rollouts with other agents’ actions labeled.

Outcome Evaluator It’s vital to have a way to assess the value of the achieved state from differ-
ent plans so the search can be effectively deepened utilizing pruning. We implement an Outcome
Evaluator to fulfill this functionality v = OE(s,G) by generating a heuristic score v for each image
state s given the task goal G. To construct this module, we finetune LLaVA to describe the state of
each object in the image and the corresponding heuristic score representing steps left to achieve the
task goal considering all objects.

Algorithm 1 COMBO Planning Procedure for Agent i.
1: Input: Estimated world state s0 from oi, task goal G
2: Sub-modules: Action Proposer AP (s,G), Intent Tracker IT (s,G), Compositional World Model

CWM(s, a), Outcome Evaluator OE(s,G)
3: Parameters: Action Proposes P , Planning Beams B, Rollout Depths D
4: plans← [[s0]]
5: new plans← [[s0]]
6: for d = 1 . . . D do
7: plans← new plans[1...B] # Keeps Only B Plan Beams with Best Scores
8: new plans← []
9: for plan in plans do

10: s← plan[−1] # Get the Last Image State in the Plan Beam
11: ai,1:P ← AP (s,G) # Generate P Different Action Proposals
12: a−i ← IT (s,G) # Infer Other Agents’ Possible Actions
13: for p = 1 . . . P do
14: a← (ai,p, a−i)
15: snext ← CWM(s, a) # Simulate Next State Conditioned on Joint Actions
16: new plans.append(plan + snext)
17: end for
18: end for
19: new plans← sorted(new plans, OE(s,G)) # Sort Plans by the Score of the Final State
20: end for
21: plan← new plans[1] # Return the Plan with the Best Score

5.3 PLANNING PROCEDURE WITH TREE SEARCH

With powerful generative sub-modules implemented so far, we can use an effective tree search algo-
rithm to integrate them into achieving the best planning performance. Formally, we need to search
for a sequence of actions that compose the plan to achieve the task goal with a minimal number of
steps. To sample the long-horizon plans, we can chain the sub-modules to expand future states from
current state si with si+1 = CWM(si, AP (si, G), IT (si, G)). By recursively deploying these
chained modules we can expand the plans until achieving the goal state. However this is impractical
due to the large search space, we implement a limited tree search procedure instead by always keep-
ing the B best-scored plan beams and exploring P action proposals at each plan step for a maximum
of D rollout steps. We show the complete COMBO planning procedure in Algorithm 1.

Due to the uncertainty of other agents, COMBO replans at every step to reflect the changing world
state. As similarly observed in (Du et al., 2023b), when searching for the best plan, the Outcome
Evaluator may leverage the irregular artifacts of the Compositional World Model to get artificially

7
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TDW-Game TDW-Cook
Cooperator 1 Cooperator 2 Cooperator 1 Cooperator 2

Recurrent World Models 0.00 / 0.00 / - 0.00 / 0.00 / - 0.00 / 0.00 / - 0.00 / 0.00 / -
MAPPO 0.00 / 0.00 / - 0.00 / 0.00 / - 0.00 / 0.00 / - 0.00 / 0.00 / -
CoELA * 0.90 / 0.95 / 18.4 0.60 / 0.95 / 27.6 0.15 / 0.40 / 37.8 0.05 / 0.10 / 29.5
LLaVA 0.55 / 0.95 / 28.4 0.60 / 0.95 / 29.2 0.35 / 0.80 / 33.0 0.50 / 0.95 / 35.0

COMBO (w/o IT) 0.65 / 0.65 / 16.2 0.60 / 0.60 / 17.0 0.80 / 0.95 / 24.8 0.80 / 0.95 / 23.8
COMBO (Ours) 1.00 / 1.00 / 17.5 1.00 / 1.00 / 17.4 0.90 / 1.00 / 22.8 1.00 / 1.00 / 22.9
Shared Belief Cooperator* 1.00 / 1.00 / 15.3 1.00 / 1.00 / 15.9 0.95 / 1.00 / 24.0 1.00 /1.00 / 21.4

Table 1: Main results on TDW-Game and TDW-Cook. We report the mean success rate over a horizon of
30 and 60 and the average steps of the successful episodes over 20 episodes here. COMBO (w/o IT) denotes
COMBO without the Intent Tracker module. Shared Belief Cooperator has access to the Oracle state of the
world and other agents’ policies. * denotes Oracle vision perception. Cooperator 1 and Cooperator 2 follow
different policies, as detailed in Appendix A.1.1.

2D-FetchQ.* BC-single BC-GAIL Co-GAIL COMBO (Ours)

Success Rate 21.1 27.2 53.3 81.3

Table 2: Results on 2D-FetchQ. We report the success rate on replay evaluation over 60 episodes.

high scores, such as where key objects are teleported to desired positions. To mitigate this artificial
exploitation issue, the Outcome Evaluator will use the default score from the last state if the new state
generated from the Compositional World Model suspiciously increases the score above a threshold.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We instantiate the challenging embodied multi-agent visual cooperation task in ThreeDWorld and
build two challenging benchmarks: TDW-Game and TDW-Cook where 2-4 decentralized agents
must cooperate to finish several puzzles according to the visual clue or dishes according to the
recipe given only egocentric views of the world as shown in Figure 1, requiring extensive visual
cooperation. All the agents have an observation space of egocentric 336 × 336 RGBD images and
the corresponding camera matrix. We also adapt the 2D-FetchQ challenge from Wang et al. (2022)
with a visual observation space and high-level action space to evaluate our method. In this challenge,
two agents must coordinate their strategy to hold buttons to unlock rooms and fetch treasures from
the unlocked room. More details on the tasks can be found in Appendix A.1 and Appendix A.2.

Metrics We evaluate the agent’s cooperation ability by task success rate and average steps of the
successful episodes when cooperating with different agents across 20 episodes. An episode is done
when the goal state is reached and considered successful, or the maximum planning horizon h is
reached and deemed failed. Specifically, we implement two different agent policies as cooperators
on both tasks to reliably evaluate the agents, which are elaborated in Appendix A.1.1.

Baselines We compare our methods to several multi-agent planning methods:
• Recurrent World Models (Ha & Schmidhuber, 2018), using VAE to encode the visual observations

and a generative recurrent neural network to learn the world model. An evolution-trained simple
policy is used as a controller.

• MAPPO (Yu et al., 2022), a MARL baseline where agents with shared weight Actor and Critic
are trained jointly with PPO.

• CoELA (Zhang et al., 2023), an LLM agent with access to the Oracle vision perception, re-
implemented due to the lack of ground truth segmentation needed to train the Perception Module.

• LLaVA (Liu et al., 2023a), an end-to-end VLM (LLaVA v1.5 7B) agent fine-tuned with the same
collected rollouts to train the Action Proposer in our method.

• Shared Belief Cooperator, a planner that shares the same policy as the cooperators and has access
to the Oracle state of the environment and other agents’ policies, acting as a strong baseline.

Implementation details The video diffusion model of the compositional world model is built upon
AVDC (Ko et al., 2023) codebase, with the architectural modification of introducing a cross attention
layer to the text condition in the ResNet block and replacing the Perceiver with an MLP to enhance
the text conditioning. More details are in Appendix A.3.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Alice pick up the green-brown piece 

    Bob pick up the blue-brown piece

    Charlie wait

    David pick up the aqua-black piece

Alice pick up the lettuce

Bob pick up the pickle slice

AVDC

COMBO
w.o ADLS

COMBO

√
×

Current State Joint Action Joint Action 

Predicted Frame 𝑋𝑋2 Predicted Frame 𝑋𝑋4 Predicted Frame 𝑋𝑋7 Predicted Frame 𝑋𝑋2 Predicted Frame 𝑋𝑋4 Predicted Frame 𝑋𝑋7

Current State

Figure 4: Compositional World Model learns world dynamics better. Our compositional world model can
simulate world dynamics conditioned on the joint action of multiple agents accurately while AVDC struggles
with simulating which agents should act, and COMBO w.o ADLS may simulate actions incorrectly.

TDW-Game TDW-Cook
Single Multiple Plan Single Multiple Plan

AVDC 65% 20% 29.7(80%) 85% 25% 34.5(90%)
COMBO w.o ADLS 70% 55% 26.9(100%) 85% 70% 28.3(100%)
COMBO 95% 75% 17.5(100%) 100% 100% 21.5(100%)

Table 3: Human evaluation of generated videos from different World Models and the corresponding
plan performance. Single denotes the accuracy of synthesized videos conditioned on a single agent’s action
among 20 samples. Multiple denotes the accuracy of synthesized videos conditioned on multiple agents’
actions among 20 samples. Plan denotes the average steps (success rate) across cooperating with two different
cooperators over 10 episodes. Best performances are in bold.

6.2 RESULTS

COMBO can cooperate efficiently with different cooperators As shown in Table 1, both co-
operators of different policies achieve the best performance when cooperating with COMBO on
TDW-Game and TDW-Cook, finishing all the tasks within the limited horizon with the least steps.
Both Recurrent World Models and MAPPO perform poorly due to the difficulty of the multi-agent
long-horizon task with only egocentric observations. Compared to LLM Agent CoELA and VLM
Agent LLaVA, COMBO with a compositional world model to explicitly model the world dynam-
ics and plan accordingly achieves more efficient cooperation. On adapted 2D-FetchQ, COMBO
surpasses other behavior cloning or Co-Gail baselines in a more challenging setting as shown in
Table 2, demonstrating the efficacy and adaptability of our proposed method.

Intent Tracker contributes to efficient cooperation Comparing the results of COMBO (w.o IT)
and COMBO in Table 1, we can see the Intent Tracker is important to empower the agent to infer
other agents’ intents and consider them during planning for better cooperation in the long run. A
qualitative case demonstrating the adaptability of the Intent Tracker Module is shown in Figure 13.

Compositional World Model is crucial to make cooperative plans We compared the generated
video quality with AVDC (Ko et al., 2023), a video diffusion model designed for robotics tasks,
and ablate on the effect of the Agent-Dependent Scaling Loss (COMBO w.o. ADSL) in Table 3
and Figure 4. Compared to AVDC, our CWM can accurately simulate which agents are acting
and what interactions are described in the text condition, leading to a large performance gain in the
accuracy of modeling agent actions on the world state. Removing the Agent-Dependent Scaling Loss

9
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Action Rollout Plan Success Average
Proposals P Depth D Beam B Rate Steps

3 1 1 50% 27.8
2 2 2 70% 18.1
3 3 3 100% 17.5

Table 4: Plan performance improves with
more compute budgets. We report the mean
success rate and average steps of the successful
episodes cooperating with two different cooper-
ators over 5 episodes on TDW-Game here.

4-agent 3-agent 2-agent

LLaVA 0.58 / 0.95 / 28.7 0.65 / 0.95 / 27.4 0.80 / 1.00 / 20.7

COMBO 1.00 / 1.00 / 17.5 1.00 / 1.00 / 15.0 1.00 / 1.00 / 10.5

Shared Belief* 1.00 / 1.00 / 15.9 1.00 / 1.00 / 13.5 1.00 / 1.00 / 8.7

Table 5: Results on TDW-Game with different number
of agents. We report the mean success rate over a horizon
of 30 and 60 and average steps cooperating with two dif-
ferent cooperators over 10 episodes here.

3 Action Proposals, 1 Rollout Depth, 1 Plan Beams

3 Action Proposals, 3 Rollout Depth, 3 Plan Beams

Step 5 Step 7 Step 9Step 8 Step 12 Step 14

Step 5 Step 7 Step 10Step 8 Step 12 Step 14

Figure 5: More Computation budgets leads to better plan. With more computation budgets (second row),
COMBO can search for a better plan where Alice first clears the common region with David so that he can pass
the next puzzle piece to her instead of having to wait, leading to a better state after same number of steps.

leads to considerable accuracy degradation, showing the effectiveness of the introduced technique.
Moreover, with the compositional world model, the overall plan performance boosts to 17.5 steps
for TDW-Game compared to 29.7 steps with AVDC. See A.5 for additional failure case analysis.

More computation budgets lead to better Plan We study the effect of computation budgets on the
long-horizon plan quality in Table 4, where we can see more computation budgets with more action
proposals, larger plan beams, and deeper rollout depth leads to higher success rate and less average
steps. A qualitative example of generated plans with different computation budgets is shown in
Figure 5, where more searches can obtain better plans in the long run.

COMBO can generalize to an arbitrary number of agents COMBO trained with only data of
four agents playing TDW-Game can surprisingly generalize to three and two agents version well
as shown in Table 5, showing the strong generalization and promising future of the compositional
world model-based modularized planning framework for multi-agent cooperation.

7 CONCLUSION

In this work, we learn a compositional world model for embodied multi-agent cooperation by fac-
torizing the naturally composable joint actions of an arbitrary number of agents and compositionally
generating the video to enable accurate simulation of multi-agent world dynamics. We then propose
COMBO, a novel Compositional World Model-based embodied multi-agent planning framework to
empower the agents to infer other agents’ intents and imagine different plan outcomes in the long
run. Our experiments on three challenging embodied multi-agent cooperation tasks show COMBO
can enable the embodied agents to cooperate efficiently with different agents across various tasks
and an arbitrary number of agents.

Future Work Our method leverages tree search combined with Large Generative Models to devise
long-horizon plans. The necessity for multiple inferences using large models leads to a relatively
slow inference speed, restricting the applicability of our method in scenarios demanding rapid re-
sponse. Exploring the development of more efficient models could potentially mitigate this draw-
back and enhance the practicality of our approach in time-sensitive environments.

10
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A ADDITIONAL EXPERIMENT DETAILS

A.1 TDW TASKS

TDW-Cook TDW-Game

onion
slice

tomato
slice

cheese
slice

burger
top

burger
bottom

brown
bread slice

black
bread slice

whole
onion

whole
tomato

whole
cheese

pickle lettuce patty

Figure 6: Objects of TDW-Cook and TDW-Game. Left: 13 food items that may occur on the table while 10
of them (except for the third row) may occur in the recipe. Right: 4 puzzles containing 3 to 4 pieces each with
different colors and shapes.

We instantiate the challenging embodied multi-agent visual cooperation task in ThreeDWorld (Gan
et al., 2021), and build two challenging benchmarks: TDW-Game and TDW-Cook where 2-4 de-
centralized agents must cooperate to finish several puzzles according to the visual clue or dishes
according to the recipe given only partial egocentric views of the world.

In TDW-Game, 3-4 agents cooperate to pass and place 6-8 puzzle pieces scattered randomly on the
table into the correct puzzle box according to visual clues such as the shape. The location of the
puzzle box and pieces are randomly initialized across different episodes. The action space includes
wait, pick up [obj], place [obj] onto [loc].

In TDW-Cook, 2 agents cooperate to pass, cut, and place 6-8 out of 10 possible food items randomly
scattered on the table to make some dishes according to the recipe. The location of the food items
and the recipe are randomly initialized across different episodes. Specifically, there is only one
cutting board where agents can pass or cut objects, making cooperation vital for efficient plans. The
action space is the same as TDW-Game with an addition of cut [obj].

The object assets of the two tasks are illustrated in Figure 6.

A.1.1 COOPERATOR POLICIES

In TDW-Game, Cooperator 1 takes the policy of always passing the unwanted puzzle pieces in
a clockwise manner, while Cooperator 2 takes the policy of always passing the unwanted puzzle
pieces in a counter-clockwise manner.

In TDW-Cook, Cooperator 1 takes a “selfish” policy of always operating objects in its own recipe
first, while Cooperator 2 takes an “altruistic” policy of always prioritizing operating objects in the
cooperator’s recipe.

A.2 2D-FETCHQ TASK

As shown in Figure 7, the 2D-FetchQ environment from Wang et al. (2022) was originally inspired
by the Fetch-Quest collaborative game in SuperMario Party where two agents must coordinate their
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Figure 7: 2D-FetchQ Task. Two agents coordinate their strategy to hold buttons to unlock rooms and fetch
treasures from the unlocked room.

strategy to hold buttons to unlock rooms and fetch treasures from the unlocked room. At the be-
ginning of the game, two treasures are locked in the rooms located in two corners of the map. For
each agent, the only way to fetch a treasure is to let its collaborator press the button beside the room
to hold the door. After the collaborator presses the button, the agent can enter the room and get
the treasure. To win the game, both agents should get a treasure and reach the closest destination.
Therefore, the agent who has already gotten the treasure will help the other agent to fetch its trea-
sure. We adapted this environment with a visual observation space and high-level action space to
evaluate our method.

Observation Space 128× 128 RGB image.

Action space move up, move down, move lfet, move right, wait.

Baselines BC-single refers to directly applying behavior cloning to learn robot trajectories. BC-
GAIL involves using behavior cloning to learn human trajectories first, followed by interactive
learning of robot trajectories through GAIL (Generative Adversarial Imitation Learning) with the
human policy. Co-GAIL leverages data of human-human collaboration demonstrations as guid-
ance to concurrently generate simulated interactive behaviors and train a human-robot collaborative
policy.

Evaluation We evaluated COMBO using replay evaluation, where COMBO collaborates with
human demonstration trajectories collected through replay and determines whether the task suc-
ceeds.

A.3 COMPOSITIONAL WORLD MODELS

Implementation Details We use the base resolution 128 × 128 for the video diffusion model
and train a super-resolution diffusion model to get the final 336 × 336 images. We use the T5-
XXL encoder to pre-process all the text conditions for a better contextual representation. All vision
language models used in the main experiments are LLaVA-v1.5-7B. The planning parameters are
set to Action Proposes P=3, Planning Beams B=3, and Rollout Depths D=3 unless other specified.

Dataset Collection We collect random rollouts with a scripted planner and generated 107k videos
of TDW-Game and 50k videos of TDW-Cook.
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Inpainting Super-Resolution Video Diffusion Model

num parameters 84M 38M 198M
input resolution 336× 336 128× 128 128× 128
output resolution 336× 336 336× 336 128× 128
base channels 64 64 128
num res block 2 2 2
attention resolutions (16,) (16,) (8, 16)
channel mult (1, 2, 4, 6, 8) (1, 2, 3, 4, 5) (1, 2, 3, 4, 5)

Table 6: Model Parameters.

Model Parameters The parameters of our inpainting diffusion model, super-resolution diffusion
model, and video diffusion model are shown in Table 6.

Agent-dependent Loss Scale We use a simple method to set the loss scale. If agent i is located
in the upper half of the image, then we set Ci,1:H/2,1:W = 2 and others are 1. Similarly, the same
approach is applied to other situations or conditions.

We utilize the agents’ reachable regions to define the coefficient matrix here, but it’s not the only
approach. The key idea of this technique is to encourage the model to focus more on the pixels
related to the action prompt. There are also other possible ways to leverage this technique when
such information of reachability is not available. One promising way is to use advanced object
detection and segmentation models like GroundingDINO (Liu et al., 2023b) and SAM2 (Ravi et al.,
2024) to identify the relevant regions in an image (e.g., “the lettuce” in the action prompt “Bob
pick up the lettuce”) and adjust the loss scale for those regions. Another promising approach is
to discover reachability during exploration, such as bootstrapping from zero-shot vision-language
models (VLMs), where an agent could learn reachability by interacting with the environment.

Compute We train the world model for 50k steps in the first stage with a batch size of 384 on 192
V-100 GPUs in 1 day. Then, we fine-tune the model for 25k steps in the second stage with 120 batch
size on 120 V-100 GPUs in 1 day. Both the inpainting model and the super-resolution model are
trained for 60k steps with a batch size of 288 on 24 V-100 GPUs in 1 day.

Samping We use DDIM sampling across the experiments with guidance weight 5 for the text-
guided video diffusion model.

A.4 BASELINES

A.4.1 MAPPO

Our task is multi-agent reinforcement learning with decentralized observation and control, as differ-
ent agents have disjoint observations to produce their actions. We followed the training procedure
in Yu et al. (2022). Each agent is an actor-critic network where the actor and critic share a common
convolutional backbone. We pre-define a set of all possible actions for each environment and let the
PPO agent choose among them. We design rewards to reflect the steps left to finish the episode in a
similar spirit to the Outcome Evaluator’s heuristics score design.

However, in our setting, the embodied multi-agent simulation samples are relatively slow, creating a
higher demand for sample efficiency of the method. We conducted a grid search on hyper-parameters
of learning rate in {1e-6, 5e-5, 1e-3}, batch size in {2, 64}. However, the results are poor and the
behavior either falls to near-random or collapses to a single action, which verifies the challenge of
cooperative planning on ego-centric RGBD observations.

A.4.2 RECURRENT WORLD MODELS

We followed the training procedure in Ha & Schmidhuber (2018), firstly training a variational au-
toencoder (VAE) on the same data collected for training COMBO to encode the egocentric observa-
tions in the TDW-Game and TDW-Cook environments into a 32-dimensional latent vector z ∈ R32.
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Figure 8: Recurrent world models failed to model world dynamics conditioned on single actions accu-
rately.

Then, we train a mixture density network combined with a recurrent neural network (MDN-RNN)
for predicting the future latent vector given a textual action which is encoded by BERT (Devlin
et al., 2019), the current egocentric observation and the current hidden state of the RNN, which is
modeling P (zt+1|at, zt, ht). Finally, we train two simple controllers using the covariance-matrix
adaptation evolution strategy (CMA-ES) (Hansen, 2016) to maximize the expected cumulative re-
ward of a rollout by interacting with the actual environments.

The recurrent world model failed to model world dynamics accurately conditioned on a single action,
as shown in Figure 8. Specifically, we predict the latent code zt+1 from MDN-RNN and use the
decoder of the VAE to generate the image of the next time step. Additionally, the simple controller
doesn’t work well on a task that requires complex planning as it keeps collapsing to single actions
in our experiments.

Figure 9: An example of the image quality error. The agent at the bottom places the green-black piece on
both sides.

Figure 10: An example of the misunderstanding error. The textual action condition for the agent on the right
is to “place the blue-brown piece onto the right border of the reachable region”, but the agent places the piece
on the left side.

A.5 FAILURE CASE ANALYSIS

As shown in Table 3, the compositional world model still fails 25% of the time for predicting the
next state conditioned on four agents’ actions. We attribute the errors to two primary factors:
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Initial Step 5

Step 2Step 1

Step 6

Step 3

Step 4

Human Workspace

Robot Workspace

Shared Region

Puzzle Box

(a) (b)

Figure 11: (a) Real-world task set up. The reachable region of the human and the robot is shown in blue and
yellow respectively. Their shared region is shown in green, and the puzzle box is shown in red. They need to
cooperate closely to pass and finish the puzzles. (b) An example plan execution. The robot passes the pieces
the human needs first and then finishes its own puzzle.

Figure 12: Two sampled video generations of the compositional world model conditioned on the same
current state but different joint actions.

• Image Quality: This is the most critical issue, accounting for 80% of the errors. We be-
lieve this problem arises from the use of CFG (Classifier-Free Guidance) based on multiple
textual action conditions. Since CFG strongly guides the diffusion model to fulfill textual
action conditions, it often results in contradictory behaviors, such as an agent simultane-
ously placing a block on both the left and right sides (see Figure 9) or attempting to pick
up a block but failing to do so.

• Misunderstanding: This error type involves the agent failing to act according to the textual
action conditions (see Figure 10). Compared to image quality issues, misunderstanding
errors are less frequent, likely due to the influence of CFG. These errors may stem from
data imbalance, insufficient training data, or inadequate model generalization capabilities.

Incorporating hidden physical parameters, such as object mass, is an essential direction for making
the task closer to real-world scenarios. Extending our framework to include physics-aware video
generation approaches (Liu et al., 2024; Zhang et al., 2024), is a promising avenue for future work
and could further improve the capability of world models to handle hidden variables effectively.

B REAL-WORLD TASK: HUMAN-ROBOT COLLABORATION

Task Setup: We instantiate the TDW-Game environment in the real world with two agents. As
shown in Figure 11(a), a human and an XArm sit on the upper and right sides of the table, each can
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Success Average Steps
COMBO 4 / 5 8.4

Table 7: Real-world experiment results. We report the number of successful trials / total trials and the average
steps of the successful trials over 5 trials here.

only reach the objects on his side of the table, so there is only one shared region to exchange objects,
which is located at the upper-right corner of the table. They must cooperate to pass and place 3-5
puzzle pieces scattered randomly on the table into the correct puzzle box according to visual clues
such as the shape. In each step, the human or the robot can only pick or place one object within his
reachable region.

Results: We fine-tune the Compositional World Model with collected real-world data and use the
same VLMs without fine-tuning for other sub-modules. We conducted 5 trials of experiments and
reported the number of successful trials and the average steps in Table 7. An example plan execution
is shown in Figure 11(b), where the robot first helps pass the puzzle pieces the human needs, and
finally picks and places its last piece of the puzzle to finish the task. We also show two sampled
video generations of the compositional world model from the same current state and conditioned on
two different joint actions in figure 12. The result demonstrates our method is capable in real-world
scenarios involving low-level control and non-trivial generalization.

C MORE DETAILS ON THE PLANNING SUBMODULES

C.1 TRAINING DATA COLLECTION

We generated 4k training environments by randomly sampling a recipe in TDW-Cook and a puzzle
box in TDW-Game for each agent. All objects were initialized at random positions on the table.
Scripted planners with randomness were then used to play out the episodes and collect the state and
action histories. We finetune LLaVA-1.5-7B (Liu et al., 2023a) with LoRA (Hu et al., 2021) for one
epoch to obtain one shared model for each submodule across all tasks and cooperators.

For the Intent Tracker, we collected 40k short rollouts consisting of three images of consecutive
observations and a textual description of the next actions of all the agents, converted by a template
given the action history.

For the Outcome Evaluator, we collected 138k data consisting of one image of the observation and
a textual description of the state of each object in the image and the heuristic score, converted by a
template given each object’s location.

Compute For each planning sub-module, we finetune LLaVA-1.5-7B with LoRA for one epoch
with a batch size of 144 on 18 V-100 GPUs in about 3 hours.

C.2 INTENT TRACKER CAN ADAPT THE PREDICTIONS

The intent tracker module should generalize to unseen cooperators and adapt its predictions dynam-
ically based on historical observations. Our approach employs a shared intent tracker module across
all tasks and cooperators. The test-time cooperator’s policy is agnostic to our agent during training,
meaning the intent tracker must rely on observation history to adapt its predictions and track the
intents of diverse cooperators effectively. As shown in Figure 13, given the same current state, the
intent tracker accurately predicts the next action of Agent Bob by leveraging its observation history,
which reveals a preference for preparing his recipe first or helping Agent Alice first. With accurate
intent tracking, it becomes possible for Agent Alice to select the best action to take.

While the intent tracker module is trained on a limited set of scripted planners (e.g., the 4-
agent TDW-Game setting), it generalizes reasonably well to new behaviors due to its reliance on
cooperator-independent observation patterns. As demonstrated in Table 5, the same intent tracker
was applied without retraining in 3-agent and 2-agent versions of TDW-Game, where cooperators
followed policies unseen during the training phase. The tracker demonstrated adaptability, achiev-
ing correct intent prediction rates of 75.8% in the 2-agent cooperation scenario and 64.6% in the
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LLaVA-1.5-7B Simpler Supervised Model
Action Proposer 98.3 90.3
Intent Tracker 79.4 73.2
Outcome Evaluator 99.7 62.7

Table 8: Comparison of LLaVA-1.5-7B and the Simpler Supervised Model across different components.
The accuracy of the model prediction on the test set.

3-agent cooperation scenario. Among the wrong predictions, 20% attributes to the intent prediction
of ”wait” while it shouldn’t be. This adaptation showcases the model’s ability to adapt dynamically
and predict intents effectively without over-reliance on memorization.

Generalizing to more diverse and complex cooperator behaviors remains a challenging yet promising
direction for future work. Enhancements such as Population-Based Training (Jaderberg et al., 2019)
and Behavior Diversity Play (Szot et al., 2023) could expand the variety of cooperators encountered
during training, thereby increasing the robustness of the intent tracker. Furthermore, integrating
advanced modeling approaches, such as the Bayesian Theory of Mind (Wu et al., 2021), could
facilitate more nuanced inference and adaptability in multi-agent collaboration scenarios.

History states Current state

Current stateHistory states

Alice Bob

Selfish 

cooperator 

Altruistic

cooperator 

Intent 
Tracker

Bob will pick 

up the brown 

bread. 

I should cut the 

onion.

Bob will cut the 

onion.
I should pick up the 

beef patty 

Step 1 Step 5 Step 9

Step 8Step 1 Step 5

Figure 13: The Intent Tracker Module dynamically adapts its predictions based on historical observa-
tions. When collaborating with agents exhibiting either selfish or altruistic policies, the Intent Tracker accu-
rately predicts the cooperator’s next action by considering their historical behavior. This enables the agent to
determine its appropriate next action based on the predicted intent, even when faced with the same current state
but different historical contexts.

C.3 OTHER IMPLEMENTATION ALTERNATIVES

These planning sub-modules could also be implemented with other methods. Additionally, we im-
plemented a simpler supervised model to serve as the planning sub-modules and trained it using the
same dataset we employed for fine-tuning the VLM. This model encodes the input image using a
VIT-B/16 CLIP encoder and the textual task description using the BERT-base-uncased encoder. The
encoded outputs are concatenated and passed through a two-layer fully connected network with a
hidden dimension of 256.

• For the Action Proposer, the output is a multi-hot vector of 157 dimensions, representing
all possible actions.
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• For the Intent Tracker, the output is a vector of 4×157 dimensions, capturing intents across
agents.

• For the Outcome Evaluator, the output is a scalar representing the heuristic score.

Compute For each component, we preprocess the images and the textual prompts to extract the
features on 8 V100 GPUs in about 30 minutes. We then train the supervised model for 10 epochs
with a batch size of 64 on 1 V100 GPU in about 20 minutes.

For each component, we selected the best result across 10 training epochs. The results shown in Ta-
ble 8 indicate that VLMs not only offer better generalizability but also achieve superior performance
compared to this supervised model. This can be attributed to the common-sense knowledge embed-
ded in the VLM during its pretraining on large-scale internet data, as well as its superior ability to
integrate the two modalities effectively.
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