Light-Weight Diffusion Multiplier and Uncertainty
Quantification for Fourier Neural Operators

Albert Matveev Sanmitra Ghosh Aamal Hussain
James-Michael Leahy Michalis Michaelides
PhysicsX
London, UK

albert.matveev@physicsx.ai

Abstract

Operator learning is a powerful paradigm for solving partial differential equations,
with Fourier Neural Operators serving as a widely adopted foundation. However,
FNOs face significant scalability challenges due to overparameterization and offer
no native uncertainty quantification — a key requirement for reliable scientific and
engineering applications. Instead, neural operators rely on post hoc UQ methods
that ignore geometric inductive biases. In this work, we introduce DINOZAUR: a
diffusion-based neural operator parametrization with uncertainty quantification.
Inspired by the structure of the heat kernel, DINOZAUR replaces the dense tensor
multiplier in FNOs with a dimensionality-independent diffusion multiplier that
has a single learnable time parameter per channel, drastically reducing parameter
count and memory footprint without compromising predictive performance. By
defining priors over those time parameters, we cast DINOZAUR as a Bayesian
neural operator to yield spatially correlated outputs and calibrated uncertainty
estimates. Our method achieves competitive or superior performance across several
PDE benchmarks while providing efficient uncertainty quantification. The code is
available at https://github. com/PhysicsXLtd/DINOZAUR.

1 Introduction

Partial differential equations (PDEs) are a fundamental mathematical tool that describe a wide range
of physical phenomena observed in the real world. Numerous problems in science and engineering
require formulating and solving PDESs, often presenting significant computational and methodological
challenges to researchers and practitioners. A common strategy for solving PDE:s is via conventional
numerical methods, such as finite difference, finite element, or finite volume method [[1]]. While
accurate, they become prohibitively expensive in complex engineering tasks, especially where rapid
iteration or real-time response is critical, such as design optimization or control [2].

In recent years, there has been a growing trend toward replacing computationally intensive numerical
solvers with neural network-based surrogate models trained to approximate PDE solutions. Since
discretized PDE domains are commonly represented using point clouds, meshes, or graphs, geometric
deep learning [3] has emerged as a promising paradigm for this class of problems. In particular,
message passing layers, initially developed for geometric and relational data, have proven effective
due to their structural resemblance to physical convolution operators. These layers are especially
suitable for capturing the spatial dependencies inherent in PDE systems, making them well-suited for
learning dynamics over irregular or non-Euclidean domains [4} 5].

However, geometric deep learning methods often lack key properties required for solving PDEs,
motivating alternative approaches. A PDE - its parameters, equation structure, and boundary
conditions — defines an operator that maps input functions to solution functions. Neural operators

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/PhysicsXLtd/DINOZAUR

a— P =1, Ui~ _ AT ,/\Im,\/\ L, FFN =Y Uy— Q —u
F AN a

Figure 1: Overview of DINOZAUR. NO block Ny, ., is revised by updating the integral transform
7., with diffusion multiplier exp(—Ax7;) and including gradient features Gy, to add anisotropy.
Feed-forward network (FFN) is applied to mix two sets of features.

(NOs) [6H8]] have recently emerged as a leading framework for approximating such solution operators
and, more generally, for tackling the operator learning problem implicitly present in PDEs. These
models incorporate inductive biases that improve performance and offer discretization invariance
and universal approximation [7], making them a strong alternative to geometric deep learning. A
prominent example is the Fourier Neural Operator (FNO) [9], which learns transformations in the
spectral domain via the Fast Fourier Transform. While FNOs are restrictive in requiring input
data on a regular grid, they remain a widely used backbone in neural operator architectures [10].
Despite their success on problems such as Darcy flow and Burgers’ equation, FNOs are known to be
overparameterized [[11}[12]. Their design leads to exponential growth with domain dimensionality,
causing overfitting and significant memory overhead.

Moreover, PDE solvers often inform downstream decision-making, so it is imperative for any
substitute method to quantify the uncertainty on its output. Uncertainty quantification (UQ) is a
common strategy to improve model robustness by estimating confidence in its predictions. It enhances
model outputs by accounting for different sources of error, helping guide more informed and reliable
downstream use. Uncertainty modeling has long relied on Bayesian inference [13]], ensembles [[14],
and conformal prediction [[15]] to produce confidence estimates. While some of these methods have
been adapted to deep learning with varying success [16H18]], UQ for GNNs and neural operators [19]
remains underdeveloped, often relying on post hoc methods ill-suited to their structure.

To address the scalability issues and limited UQ methods in FNOs, we present DINOZAUR - a
diffusion-based neural operator parametrization with uncertainty quantification. Our diffusion multi-
plier is inspired by the heat kernel in the Fourier basis and requires only one learnable parameter per
channel, resulting in superior scalability without sacrificing predictive performance. This physically
motivated choice of multiplier allows us to place meaningful probabilistic priors on the learnable time
parameters, recover the posterior via inexpensive variational inference (VI) [20] of these parameters,
and efficiently sample spatially correlated functions. We summarize our contributions as follows:

* We introduce dimensionality-independent spectral multiplier parametrization, reducing
the parameter count by several orders of magnitude compared to equivalent FNO-based
architectures.

* We define a Bayesian formulation of the heat kernel and build an interpretable uncertainty
quantification method to sample spatially correlated outputs.

* We demonstrate that our method is scalable, maintains strong predictive performance across
multiple PDE benchmarks, and achieves superior UQ estimates compared to conventional
probabilistic methods.

2 Related work

The area of designing learnable approximation for PDE solutions is vast and rapidly growing [21} 22].
Given the increasing availability of data, the need to incorporate inductive biases, and the inherently
geometric structure of many physical problems, two classes of deep learning models have come to
dominate the field: geometric deep learning models and neural operators.

Geometric deep learning Graph neural networks (GNNs) [23] offer a flexible framework for
learning on non-Euclidean domains. Many GNNs implement spatial convolution by performing
learnable aggregation of local neighborhoods [24,25]]. Neural PDE solvers increasingly rely on spatial
GNN layers to model and predict physical phenomena across various domains, including control [26]],
deformable material simulation [27]], and spatiotemporal mesh evolution [4]. Specific architectures
target building robust autoregressive solvers [S]] and encoding the geometric boundary conditions [28]].
However, their performance often suffers from sensitivity to discretization, limiting generalization
across mesh resolutions. Spectral GNNs define convolutions using the graph Laplacian’s eigen-
decomposition [29, 30], often with polynomial approximations of spectral filters [31}, 32]. These
have seen success in 3D shape analysis, particularly with functional maps [33]]. DiffusionNet [34]
exemplifies this approach by using the spectral form of the heat kernel for a simple and interpretable
kernel parametrization. It exhibits strong performance and generalization; we note that such a kernel
is applicable in arbitrary domains.

Neural operators Neural operators are a powerful class of models for learning mappings between
infinite-dimensional spaces in a resolution-invariant manner [7]], offering an alternative to GNNs. Lu
et al. [6]] introduced DeepONet, inspired by operator learning and universal approximation theory,
using a branch-trunk architecture to encode inputs and evaluate the solution at arbitrary locations. A
parallel line of work introduced the Graph Neural Operator (GNO) architecture [35,36], transferring
the message passing intuition from GNNs to NOs. A family of neural operators decomposes the input
function into a basis defined by one of the popular transforms: Fourier [9], Laplace [37], Wavelet [38]].
In particular, FNOs are popular for their performance and interpretability despite needing a regular
grid sampling, and are commonly used in other networks, such as Geo-FNO [39], U-FNO [40], and
Geometry-Informed Neural Operator (GINO) [10]], to name a few. However, FNOs face scalability
and generalization issues due to exponential parameter growth with domain dimensionality [[L1].
Efforts to improve this, such as FFT factorization [11], low-rank tensor decomposition [12], and
MLPs in the spectral domain [41]], have reduced growth but still rely on spatial dimensions.

Functional uncertainty quantification UQ in deep learning has been widely studied, with pop-
ular methods including MC Dropout [16], Laplace approximation [42], ensembles [43]], and non-
parametric conformal prediction [17]], which typically require extra computations or careful cali-
bration. In the context of functional UQ — crucial for neural operators — the landscape is further
limited. Recent approaches include applying a post hoc Laplace approximation to the final layer of
the NO [44], using conformal methods after training [45], or learning an uncertainty measure as an
auxiliary output [46]. Another family of approaches leverages diffusion-based generative models for
uncertainty quantification in physics surrogates [47H50]. While these methods use diffusion models to
capture statistics of high-dimensional dynamical systems and generate realistic samples, they require
solving a differential equation for reverse diffusion numerically through multiple denoising steps,
which is computationally intensive compared to deterministic forward passes in neural operators.
Despite these various approaches, none of them model uncertainty within the NO itself; instead, they
adopt generic methods for neural networks and neglect the inductive biases of neural operators.

3 Diffusion multiplier parametrization for neural operators

3.1 Problem setting

We consider the task of learning a parametric surrogate to map the initial and boundary conditions of a
PDE to its solution. Let 2 C R? be a bounded open set representing a PDE domain in d-dimensional
Euclidean space. Let also A = A(Q;R%) be a Banach space of real-valued functions defined on
Q and U = U(;R%) be a space of solution functions. We associate a € A with a function that
parametrizes the partial differential operator £, and trace operator B,. Then, we form the PDE:

Lalul(z) = f(z) Vze,

1
Bulul(x) = g(2) V€00, W
where f(x) is a fixed forcing function and g(x) is a boundary condition. This formulation is general
enough to include varying geometric boundaries by including the signed distance function of a
geometry in functions from 4 and defining a solution as an extension to the whole domain [51} [10].

We assume the PDE induces a continuous solution map A : A — U that maps inputs a to solutions
u, and we are seeking to find its parametrized approximation ANy with p parameters. Given the
discretized observations, {a.,, u, }._,, we pose a problem of the empirical risk minimization :

N
1 2

min N; i = Nolan]|I7-)

We construct the neural operator in the usual form as a sequence of lifting layer P, M NO blocks

Np,, and projection layer Q, where the NO block Ny, is given by:

vm(x):Neiwx)=o<W:k“’w<z>+bi+ / w(ac,y)vi(y)dy),z':l,...,M,)
Q

where £, is a kernel, matrix WskiP € Rdexde b, € R is a bias and d,. is the number of channels.

FNO restricts domain to be periodic torus 2 = T, kernels to be stationary and represents the integral
transform Z in the following way:

I [o)(x) = / o — yYuly)dy = F [By (W) Flol (k)]), 4

where F is Fourier transform, and R, (k) acts as a unique complex-valued matrix if k¥ < kmax € 74
and as zero otherwise.

Given the block’s width d,. and maximal truncation modes Kk = (k:1 k4)€ Z%, tensor

max’ * * 0 max

R, = [Ry(k)]k<ky., contains O(d? - H?zlkﬁﬂax) learnable parameters, yielding quadratic depen-
dency on the number of channels and exponential growth of parameters in the dimensionality d of the

domain €. In this paper, we target the form of kernel ., and propose an alternative parametrization.

3.2 DINOZAUR architecture

Diffusion multiplier Motivated by the success of DiffusionNet [34] and its resemblance to FNO,
we choose to restrict the form of x., to that of the heat kernel for our architecture. Consider the heat

equation on the torus 2 = T%:
O-v(t,x) = Av(r,)

v(0,x) = vo(x),)

with a solution [52] given by:
o(r,2) = I [vo)(z) = F ' [Ry (k) Flvo) (k)] (z) = F~ ! [exp(—AeT) © Flugl(k)] (z), (6)

where © is the Hadamard product and A\, = —472||k||2. We refer to R, = [exp(—AxT)]k<km.y 8 a
diffusion multiplier. Figure|l|illustrates the updated block architecture.

When integrated into the FNO block, R, € RFmax XX FnaxXde ig a tensor with the only learned
parameters being 7 = (71,...,7%) € R, Each 7¢ is an independent scalar defining diffusion time
within channel c of the NO block. Times 7 control the adjustable receptive field of the convolution
kernel and are not related to the time variable that may be present in the original PDE (I). We note
that our multiplier parametrization does not depend on dimensionality d of the domain €2 or on the
truncation modes kp,ax Since Ag is precomputed and fixed.

Gradient features The diffusion multiplier propagates information across the domain, enabling
efficient function convolution. However, the heat kernel is isotropic by construction, which may
limit its applicability. We found that including gradient features mitigates that issue and yields better
experimental results.

Since we already map to Fourier basis, it’s natural to calculate gradients in the spectral domain. Raw
gradients can be ill-defined due to non-periodic boundaries or uneven sampling. Following Sharp
et al. [34]], to improve robustness and add some flexibility, we apply a linear transformation W&ad ¢
R@ xde with a hyperbolic tangent non-linearity to normalize the output in the physical domain. We
denote the gradient features operator as Gy and define its output at channel c as follows:

Vo(z) = F~Hi2nkF[v] (k)] (z)

r=1

& ™
Go[v]°(x) = tanh <Z<V1}C(Jj), Wffader(x)>> ,e=1,...,d..

O
(D emém

(a) (b)

Figure 2: (a) Probabilistic graph for DINOZAUR, showing how the latent diffusion-times, 7, relate
to the observations and non-mechanistic model parameters, 6, c. (b) We define priors for 7 and
sample multiple time parameters from posterior in each block at inference time, which translates into
spatially correlated uncertainty at the output.

Since v € R, its Jacobi matrix is Vv € R% 9, By taking the inner product, we reduce the spatial
dimensionality d and end up with a compatible shape. We report the results with and without the
gradient features in Section 4.1}

Gradient features are applied to the output of the integral transform 7, and stacked with it inside the
DINOZAUR block, doubling the number of channels. We add a matrix W™* ¢ Rd:*2de to map all
features back to the width of the block. The final block architecture is:
) _ skip_ . mix ITi [Ul] (.17)
vip1(z) =0 (Wz vi(x) + b; + W; {(gei OI-,-i> [wil(2)|) (®)
Substituting the original blocks in (@) in the neural operator Ay with modified blocks from

results in DINOZAUR architecture that we denote as Ny ., with all non-diffusion parameters lumped
together in 6 and separated from 7.

Universal approximation Despite the seeming simplicity of the diffusion multiplier, we claim that
our formulation of a neural operator exhibits universal approximation properties: see Proposition [I]
Proposition 1. Let Q C R? be a bounded domain with Lipschitz boundary and such that the closure
Q C (0,2n)% For given integers s,s' > 0, let N : C5(Q;R%) — C¥' (€;; R%™) be a continuous
operator, and fix a compact set A C C*(Q; R%). Then there exists a continuous, linear operator
E: C3(R9%) — O%(T4; R%) such that E[a)|q = a for all a € C*(;R%). Furthermore, for any
€ > 0, there exists a DINOZAUR such that

sup [Na] = (No.- o Elal) a]
a€A

O (Rdu) = €5

where Ny, = Qo N, » o P : C5(T4 R%) — C%' (T, R%).
We provide the proof in the Appendix

3.3 Bayesian inference for diffusion multiplier

Now that we established the overall architecture, we will describe the Bayesian inference scheme to
obtain UQ. An advantage of the proposed diffusion multiplier as a message passing scheme is the
ability to impose meaningful priors on the diffusion-time parameters 7. Doing so recasts DINOZAUR
as a Bayesian neural operator, with the source of uncertainty coming from the integral transform.
In our method, other model parameters (6, o) are treated deterministically. The conciseness of our
multiplier’s parametrization allows for tractable inference and alleviates the need to grapple with
extremely high-dimensional distributions. We define our conditional generative model for any output
signal u,, given an input signal a,, as

In7f ~ N(upﬁm,agrim), i=1,....M;c=1,...,d.
un()]an(), 7 ~ N(Ng 7 [an](-), 02)7

where f(-) denotes functions evaluated at any finite number of points in the domain €2, N denotes
a normal distribution, and fprior, Oprior are hyperparameters of the prior distribution. We collect all

©))

M

time variables from each channel c and block 7 for notational convenience, 7 = {(Tf)f;l} . See
i=1
Figure[2{(a) for the corresponding graphical model. We also collect training data in a set of discrete

N

observations, D = {{ank}sz"l, {un; }3]:1} , with possibly different sets of function evaluation
n=1

points at the input and output.

We seek to recover the approximate posterior for the diffusion time, py (7|D), according to @])
which yields a posterior for the diffusion multipliers, R, and the entire neural operator Ny .. This
can be used to produce a posterior predictive distribution over the output for a new input function a,
(see Figure 2[b)):

Po.o(ux(-)lax, D) = /pe,o(TlD)N(u*(-);Ne,f[a*](~)7UQ)dﬂ (10)

where we marginalize over 7 to reflect epistemic uncertainty over the possible operators that fit the
data, as well as aleatoric uncertainty from the assumed normal noise with fitted o. Note that while
the noise is point-wise independent for a fixed 7, the 7 dependence spatially correlates predictions.

Variational inference As mentioned, the posterior pg ,(7|D) is intractable, so we resort to VI to
recover an approximate posterior. We assume that it can be adequately approximated by a distribution
q(7; ¢) parametrized by ¢. We choose ¢(7; ¢) such that it factorizes over the ¢ = 1, ..., M blocks of
the NO but keeps correlations between diffusion times of channels in a block:

M

M
Q(T;¢)iHQ(Ti;¢i)iHN(1flTi;M,21)7 (11
i=1

=1

where 7;, i1; € R%, and 3; € R% %9, We collect the parameters of the approximating factors, ¢ =
{03 M | = {(1s, 2:)}M,, for notational convenience. Due to their parsimonious and mechanistic role
in controlling message propagation, diffusion time parameters avoid the redundancy and symmetries
that challenge VI for typical neural network weights, allowing for better identifiability and justifying
a full-rank approximation within each block.

We then seek to find ¢ that minimizes the Kullback-Leibler divergence (KL) from ¢(7; ¢) to the true
posterior. As this objective is still intractable [53]], we instead maximize a lower bound (ELBO):

LrLpo(0,0;¢) =Ey(r.4)[Inpe - (D|7)] — Dxwrla(7; #)|lp(7)], (12)

which allows to jointly learn the network parameters (6, o) and variational parameters ¢. To predict
for a new instance, we replace the true posterior py , with its approximation ¢(7; ¢) in (10).

4 [Experiments

We evaluate the performance of the DINOZAUR architecture on several standard benchmarks.
Section 4. presents results for the deterministic variant of DINOZAUR. In Section 4.2} we enable the
Bayesian version and assess its UQ capabilities, comparing it to established UQ methods for neural
operators. Ablation studies and computational performance comparisons are detailed in Section

All models are implemented in PyTorch [54] and trained on a single NVIDIA A100 GPU for 150
epochs with AdamW [55]] and One-Cycle scheduler [56] or AdamW Schedule-Free [S7] with learning
rate (in most cases) set to 1073, See the Appendix [B|for details. All experiments were repeated
three times with random initialization of trainable parameters. Reported results include the mean and
standard deviation over all runs.

Benchmarks We evaluate our method on two regularly sampled datasets from [9]] and two datasets
with irregular domains used in [10]. For the 2D Darcy flow, we learn a mapping from a scalar
permeability field of resolution 2412 to a scalar pressure field, applying standard scaling to both. The
2D Navier-Stokes (NS) dataset contains 642 spatial points and 20 time steps of simulations with
viscosity # = 107° on a uniform grid. We learn to map the first 10 time steps of vorticity to the
last 10, without applying data scaling. For further dataset and PDE details, we refer to [58]. The
irregular-domain benchmarks include two datasets for predicting surface pressure on 3D meshes:
ShapeNet car [S9] and Ahmed bodies [60]]. Following the protocol of Li et al. [10], we evaluate the

signed distance function (SDF) of each mesh on a 643 uniform grid and apply standard scaling to the
outputs during training. We learn a map from SDF values to scalar pressure on mesh vertices, with
inlet velocity added to input in the Ahmed dataset. A summary of the benchmark datasets is provided
in the Appendix [A]

Baselines In all baselines, we used a "double skip" implementation of the FNO block introduced
in [12]. On uniform benchmarks, we compare DINOZAUR to the FNO architecture from Li et al.
[9] with 4 blocks. We set the width d. = 32 and modes ky.x = [12,12] for Darcy and d. = 64,
kmax = [16, 16, 4] for NS. For non-uniform domains, we follow the GINO-decoder setup from [10]]
with 4 FNO blocks, 1 GNO decoder block, and parameters d. = 64, kpa.x = [24,24,24]. The
original GINO applied low-rank Tucker factorization to the multipliers R, with a rank » = 0.4.
Given that FNO/GINO, even with moderate factorization, produce significantly more parameters than
DINOZAUR, we also include Tensorized FNO/GINO (TFNO/TGINO) [12] in our baselines. We
choose a factorization rank 7 = 10~* for TFNO/TGINO as it yields a comparable parameter count
to that of DINOZAUR in all cases. Additionally, for all models, we assess the influence of spatial
gradient features by including them in the (FNO/GINO), and (TFNO/TGINO), implementations,
as well as removing them from our model (DINOZAUR,,,_s). As the main metric, we report the
Relative Lo:

1 Nte:;t

test

|un () = Un(@)|

[[un ()l

We emphasize that the only structural change our model makes is the multiplier in FNO blocks.

RL, =

n=1

4.1 Results: deterministic performance

Table[T]reports evaluation results. DINOZAUR significantly outperforms all baselines on Darcy and
remains competitive on other benchmarks. The parameter counts in the table highlight a key trend: as
problem dimensionality increases, FNO’s parameter count grows by two orders of magnitude, whereas
DINOZAUR scales only with network width. Although TFNO shares DINOZAUR’s favorable scal-
ing, it suffers notable performance drops on uniform datasets. Interestingly, reducing the parameter
count in the non-uniform setting improves GINO’s performance, further underscoring the overparam-
eterization issue. In contrast, DINOZAUR maintains strong results across domains, demonstrating
the effectiveness of diffusion-based message passing as a parameter-efficient alternative.

Table 1: Comparison of DINOZAUR against the baselines in deterministic setting, reporting the RLo
values on test split. Mean and standard deviation values are computed from three trained models. The
best result is bold, second best is underlined

Model # params RLs | # params RLs |
(x10%) (x1072) (x10%) (x1072)
Darcy flow Navier-Stokes
FNO 361.4 0.90 4+ 0.03 12,650.8 15.90 £ 0.20
FNO, 371.9 0.91 +0.07 12,692.2 17.08 £0.12
TFNO 17.7 8.04 +0.86 69.1 21.48 £0.27
TFNO, 28.2 4.16 +0.61 110.6 19.47 +0.58
DINOZAUR . (Ours) 17.5 1.08 £ 0.06 68.2 20.10£0.31
DINOZAUR (Ours) 28.0 0.75+£0.10 109.7 15.68 +0.21
ShapeNet car Ahmed bodies
GINO 49,608.6 8.03 £0.39 49,612.9 8.57+0.13
GINO, 49,650.1 7.76 £ 0.64 49,645.3 8.25+0.16
TGINO 149.8 7.274+0.16 154.0 8.19 +0.49
TGINO, 191.3 8.30 £ 0.38 195.5 8.23 £ 0.64
DINOZAUR ;. (Ours) 138.9 8.34 +0.80 143.2 9.59 + 0.62
DINOZAUR (Ours) 180.4 7.04 £0.06 184.6 7.99 +£0.07

— 100 samples
— Ground truth

10 20 30 40 50 60 70
Point index

Figure 3: Uncertainty predictions. Left: mean of pressure samples on a test mesh with a geodesic
path traced along the top. Right, top: ground truth and 100 sampled predictions along the same
path. Right, bottom: car profile with a qualitative visualization of the standard deviation of pressure
samples along the outline. High uncertainty is near sharp field changes, e.g., between Points 0 and 10.

We find that gradient features do not consistently improve the performance of baseline models. While
general tensors in FNO are capable of implicitly learning gradient-like behavior, our experiments
suggest that the addition of explicit gradient features may introduce redundancy or interfere with
learned representations in models that already have sufficient capacity. In contrast, without gradients,
DINOZAUR,,,.; performs poorly on each benchmark. As noted earlier, this is due to the radial
symmetry of the diffusion operation, which limits the NO’s training capabilities. These observations
are consistent with the findings of Sharp et al. [34]. By incorporating gradient features into the
diffusion block, DINOZAUR matches the performance of dense FNO/GINO models.

4.2 Results: uncertainty quantification

In this section, we assess the UQ performance of the Bayesian version of our model, DINOZAURg,
introduced in Section [3:3] on the more challenging non-uniform data. As baselines, we consider
MC Dropout [16] (NOp) and Laplace approximation (NOy,). MC Dropout is a widely used,
model-agnostic UQ method, which we apply by enabling 10% dropout in the Fourier blocks’ MLPs
to emulate stochasticity in the message passing. The Laplace approximation follows [44]], modeling
uncertainty via a fitted distribution over the parameters of the final MLP layer Q. The discussion
of hyperparameter choice, including fprior, Oprior required for setting In 7 distributions is in the

Appendix

UQ metrics in Table 2] are calculated by drawing 100 posterior predictive distribution samples per
test data instance. The reported mean and standard deviation are obtained from three independently

Table 2: Evaluation of the uncertainty output quality of DINOZAUR and baseline models. Mean and
standard deviation values are computed from three trained models. The best result is bold, second
best is underlined

Model RLs | NLL{| MA] IS}
(x1072)
ShapeNet car

GINOp 7.944+0.54 3.090£0.044 0.288+0.010 14.731 £0.625
GINO;y, 7.90 £0.29 3.106 £0.023 0.283+£0.007 14.709 £ 0.343
TGINOp 7.18 £0.17 2,996 £0.010 0.278 £0.005 13.704 £ 0.189
TGINOy, 7.51£0.73 3.071 £ 0.059 0.266 £ 0.018 14.240 £ 0.811
DINOZAURp (Ours) 6.96 £+ 0.04 2.987£0.003 0.2724+0.002 13.479 4+ 0.044
DINOZAUR;y, (Ours) 7.11+0.05 3.041 £0.008 0.266 £0.001 13.749 £ 0.003
DINOZAURg (Ours) 7.49 +0.07 2.767+0.011 0.168+0.001 11.667 +0.136

Test Error

[

<= depth 2.048M depth 2 40 EFNO 300
o= modes 1.024M =modes s 35 ®TENO, r=0.4
0.1 == width - s width 4 2 TENO, r = 10"
o1k / g;g MDINOZAUR, no-g 0
2256k o mDINOZAUR €200
0.09 g P — 3 e
o . 5128k o g£20 £ 150
0os N \ \ w64k %15 =
. \ \ \ 2K /- =10 100
9
0.07 - \.>:—'~. 16k 4 50
0 i T l n

1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256 Train Predict 0 Train Predict
(a) (b) (© (d)

Figure 4: Scalability and efficiency of DINOZAUR. (a) Test RLy error on ShapeNet car as width,
depth, and modes are varied. (b) Model size under the same settings. (c) Average peak GPU memory
usage across five train-predict cycles on synthetic data. (d) Average time under the same settings.

trained models with random weight initialization. Metrics are computed using the Uncertainty
Toolbox [61]; full metric definitions are provided in the Appendix |D] Aleatoric noise was added at
prediction time to all model outputs, using a fixed 02 = e~* for dropout and Laplace models, and
a learned variance term for Bayesian DINOZAUR that converged to 0 ~ ¢~*%. DINOZAURgp
matches or surpasses all baselines, achieving lower negative log-likelihood (NLL) than dropout
models or Laplace approximation. It also outperforms all baselines in terms of miscalibration area
(MA) and interval score (IS). An important consideration is that the Laplace approximation requires
a secondary computationally expensive step to obtain the Hessian of the loss function with respect
to the network parameters after training. In contrast, DINOZAURGpg natively supports UQ, thereby
providing accurate uncertainty estimates out of the box. See results in Figure 3]

4.3 Ablation studies

To evaluate the scalability of DINOZAUR, we conduct experiments varying model width, depth,
and the number of truncation modes using the ShapeNet car dataset. As shown in Figure f{a), test
error (measured by RL, loss) decreases with increasing architectural hyperparameters, saturating
near the values used in our main experiments. Further improvements may be limited by the input data
resolution of 643, Figure b) confirms our scaling claims: depth increases parameter count almost
linearly, width affects it quadratically, while modes do not affect the model size.

We further assess runtime and memory efficiency using synthetic uniform data (64> resolution, 5 input
channels, 7 output channels), fixing architecture settings to 128 channels, [32, 32, 32] modes, and 4
FNO blocks. We compare our model with and without gradients, FNO, TFNO (r = 0.4), and TFNO
(r = 1079, matching DINOZAUR,,,_,’s parameter count). We record VRAM and training time
across five runs. Memory usage is highest for FNO and drops with rank r in TFNO. DINOZAUR,,,, ¢
and TFNO (r = 10~°) yield nearly identical memory profiles, while our full model uses roughly
twice the memory due to gradients. Runtime varies: TENO (r = 0.4) is slower than standard
FNO due to additional tensor multiplications in Tucker decomposition. Our model with gradients is
similarly slow, limited by FFT complexity, as we concatenate gradient features before inverse FFT.
Corresponding charts are in Figures [c-d).

5 Discussion

The recent emergence of neural operators has introduced a powerful alternative to traditional, compu-
tationally expensive numerical methods for solving PDEs in downstream applications. Architectures
such as the Fourier Neural Operator and the Geometry-Informed Neural Operator have demonstrated
notable success in learning solution operators across various physical systems. However, these models
rely on highly parameterized transformations in spectral space, which can hinder scalability and
interpretability. Furthermore, FNOs and other common architectures fail to provide native support for
uncertainty quantification, a critical requirement for reliable deployment in scientific and engineering
applications. As a result, practitioners are often forced to apply generic UQ techniques post hoc,
which fail to exploit the spatio-temporal inductive biases intrinsic to the underlying physical systems.

In this work, we introduced DINOZAUR, an FNO-based model featuring a parsimonious and
physically motivated parameterization of the message passing mechanism. This design stems

from the analytic solution to the heat equation and is augmented by spatial gradient features. By
presenting learned diffusion time parameters, DINOZAUR defines a new diffusion multiplier that is
dimensionality-independent and offers more favorable scalability than the original FNO. Through
extensive evaluation on benchmarks, we showed that DINOZAUR consistently matches or exceeds the
predictive performance of dense FNO and GINO architectures while using orders of magnitude fewer
parameters. Leveraging this efficient parameterization, we introduce meaningful priors over diffusion
time parameters, obtaining a Bayesian neural operator that delivers competitive UQ performance
against classical deep learning UQ methods such as MC Dropout and Laplace approximation. To the
best of our knowledge, DINOZAUR is the first Bayesian NO to explicitly define distributions in the
integral transform.

Limitations and future work In our investigations, we found that the primary limitation of the
diffusion mechanism is its radial symmetry. We observed that diffusion alone struggles to train
well. Our solution is to include gradient features, though at the cost of increased computational
time. Investigating other strategies, like introducing anisotropy intrinsically, using the modifications
proposed in [62], or mixing gradients with other features before applying inverse FFT overhead,
are promising directions for future work. We found that our Bayesian formulation is sensitive to
hyperparameter settings of the prior distributions. Customizing priors across network layers to capture
different physical properties could improve the robustness and interpretability of the model. More
broadly, exploring other parsimonious kernel parameterizations may offer both interpretability and
improved generalization, especially in settings with limited data or strong physical priors. Finally,
since our parameterization is independent of spatial dimensionality, it opens up opportunities for
pretraining on lower-dimensional or simpler physical systems, with the potential to accelerate learning
in more complex, higher-dimensional domains through transfer learning [63].

We believe our work is a step forward to a deeper understanding of neural operators, advancing them
toward becoming reliable tools for real-world scientific and engineering applications.

Acknowledgments and Disclosure of Funding

We want to thank Greg Bellchambers, Bachir Djermani, Axen Georget, Pavel Shmakov, and Phoenix
Tse for insightful discussions and collaboration on the implementation.

CRediT author statement: Albert Matveev: Conceptualization, Methodology, Software, Investigation,
Writing - Original Draft, Visualization. Sanmitra Ghosh: Conceptualization, Methodology, Software,
Investigation, Writing - Review and Editing, Visualization. Aamal Hussain: Software, Investigation,
Writing - Original Draft. James-Michael Leahy: Conceptualization, Methodology, Software, Writing
- Review and Editing. Michalis Michaelides: Conceptualization, Resources, Writing - Original Draft,
Supervision, Project administration.

References

[1] Stig Larsson and Vidar Thomée. Partial differential equations with numerical methods, volume 45.
Springer, 2003.

[2] Joaquim RRA Martins and Andrew Ning. Engineering design optimization. Cambridge University Press,
2021.

[3] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovi¢. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[4] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International conference on learning representations, 2020.

[5] Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural pde solvers. In
International Conference on Learning Representations, 2022.

[6] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identi-
fying differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

10

https://credit.niso.org/

(7]

(8]

(91

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications
to pdes. Journal of Machine Learning Research, 24(89):1-97, 2023.

Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms and analysis.
Handbook of Numerical Analysis, 25:419-467, 2024.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2021.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian,
Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed neural operator
for large-scale 3d pdes. Advances in Neural Information Processing Systems, 36, 2024.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural operators.
In The Eleventh International Conference on Learning Representations, 2023.

Jean Kossaifi, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar. Multi-grid
tensorized fourier neural operator for high- resolution PDEs. Transactions on Machine Learning Research,
2024. ISSN 2835-8856.

David John Cameron Mackay. Bayesian methods for adaptive models. California Institute of Technology,
1992.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers of Computer Science, 14:241-258, 2020.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050-1059. PMLR, 2016.

Jin Zhang, Ulf Norinder, and Fredrik Svensson. Deep learning-based conformal prediction of toxicity.
Journal of chemical information and modeling, 61(6):2648-2657, 2021.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun.
Hands-on bayesian neural networks—a tutorial for deep learning users. IEEE Computational Intelligence
Magazine, 17(2):29-48, 2022.

Apostolos F Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. Uncertainty
quantification in scientific machine learning: Methods, metrics, and comparisons. Journal of Computational
Physics, 477:111902, 2023.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859-877, 2017.

Haixin Wang, Yadi Cao, Zijie Huang, Yuxuan Liu, Peiyan Hu, Xiao Luo, Zezheng Song, Wanjia Zhao,
Jilin Liu, Jinan Sun, et al. Recent advances on machine learning for computational fluid dynamics: A
survey. arXiv preprint arXiv:2408.12171, 2024.

Shudong Huang, Wentao Feng, Chenwei Tang, Zhenan He, Caiyang Yu, and Jiancheng Lv. Partial
differential equations meet deep neural networks: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 2025.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for
graphs. In International conference on machine learning, pages 2014-2023. PMLR, 2016.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and Emanuele
Rossi. Grand: Graph neural diffusion. In International conference on machine learning, pages 1407-1418.
PMLR, 2021.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle

dynamics for manipulating rigid bodies, deformable objects, and fluids. In International Conference on
Learning Representations, 2019.

11

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. In International conference on machine
learning, pages 8459-8468. PMLR, 2020.

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes
Brandstetter. Boundary graph neural networks for 3d simulations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37(8), pages 9099-9107, 2023.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep locally
connected networks on graphs. In 2nd International Conference on Learning Representations, ICLR 2014,
2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph convolutional
neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1):
97-109, 2018.

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Functional
maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (ToG), 31(4):
1-11, 2012.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. Diffusionnet: Discretization
agnostic learning on surfaces. ACM Transactions on Graphics (TOG), 41(3):1-16, 2022.

Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi Li,
Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial differential equations.
In ICLR 2020 workshop on integration of deep neural models and differential equations, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. Advances in Neural Information Processing Systems, 33:6755-6766, 2020.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, 6(6):631-640, 2024.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial differ-
ential equations in computational mechanics problems. Computer Methods in Applied Mechanics and
Engineering, 404:115783, 2023.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with
learned deformations for pdes on general geometries. Journal of Machine Learning Research, 24(388):
1-26, 2023.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-fno—an
enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances in Water
Resources, 163:104180, 2022.

Zipeng Xiao, Siqi Kou, Hao Zhongkai, Bokai Lin, and Zhijie Deng. Amortized fourier neural operators.
Advances in Neural Information Processing Systems, 37:115001-115020, 2024.

David JC MacKay. The evidence framework applied to classification networks. Neural computation, 4(5):
720-736, 1992.

Rahul Rahaman et al. Uncertainty quantification and deep ensembles. Advances in neural information
processing systems, 34:20063-20075, 2021.

Emilia Magnani, Nicholas Kriamer, Runa Eschenhagen, Lorenzo Rosasco, and Philipp Hennig. Ap-
proximate bayesian neural operators: Uncertainty quantification for parametric pdes. arXiv preprint
arXiv:2208.01565, 2022.

Ziqi Ma, David Pitt, Kamyar Azizzadenesheli, and Anima Anandkumar. Calibrated uncertainty quantifica-

tion for operator learning via conformal prediction. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856.

12

[46]

[47]

(48]

[49]

(501

[51]

(52]
(53]
[54]

[55]

[56]

(571

(58]

(591

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Christopher Biilte, Philipp Scholl, and Gitta Kutyniok. Probabilistic neural operators for functional
uncertainty quantification. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.

Han Gao, Sebastian Kaltenbach, and Petros Koumoutsakos. Generative learning for forecasting the
dynamics of high-dimensional complex systems. Nature Communications, 15(1):8904, 2024.

Roberto Molinaro, Samuel Lanthaler, Bogdan Raonié, Tobias Rohner, Victor Armegioiu, Stephan Simonis,
Dana Grund, Yannick Ramic, Zhong Yi Wan, Fei Sha, et al. Generative ai for fast and accurate statistical
computation of fluids. arXiv preprint arXiv:2409.18359, 2024.

Naichen Shi, Hao Yan, Shenghan Guo, and Raed Al Kontar. Diffusion-based surrogate modeling and
multi-fidelity calibration. IEEE Transactions on Automation Science and Engineering, 2025.

Vivek Oommen, Aniruddha Bora, Zhen Zhang, and George Em Karniadakis. Integrating neural operators
with diffusion models improves spectral representation in turbulence modelling. Proceedings of the Royal
Society A, 481(2309):20240819, 2025.

Elias M Stein. Singular integrals and differentiability properties of functions. Princeton university press,
1970.

Walter A Strauss. Partial differential equations: An introduction. John Wiley & Sons, 2007.
Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large
learning rates. In Artificial intelligence and machine learning for multi-domain operations applications,
volume 11006, pages 369-386. SPIE, 2019.

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok Cutkosky.
The road less scheduled. Advances in Neural Information Processing Systems, 37:9974—10007, 2024.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pfliiger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. Advances
in Neural Information Processing Systems, 35:1596-1611, 2022.

Nobuyuki Umetani and Bernd Bickel. Learning three-dimensional flow for interactive aerodynamic design.
ACM Transactions on Graphics (TOG), 37(4):1-10, 2018.

Syed R Ahmed, G Ramm, and Gunter Faltin. Some salient features of the time-averaged ground vehicle
wake. SAE transactions, pages 473-503, 1984.

Youngseog Chung, lan Char, Han Guo, Jeff Schneider, and Willie Neiswanger. Uncertainty toolbox: an
open-source library for assessing, visualizing, and improving uncertainty quantification. arXiv preprint
arXiv:2109.10254, 2021.

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyar Azizzadenesheli, and Anima
Anandkumar. Neural operators with localized integral and differential kernels. In Proceedings of the 41st
International Conference on Machine Learning, pages 32576-32594, 2024.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandkumar,
Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-scale pde
pre-training. In International Conference on Machine Learning, pages 17616—-17635. PMLR, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural networks.
In International Conference on Learning Representations, 2018.

Samuel Lanthaler, Zongyi Li, and Andrew M Stuart. Nonlocality and nonlinearity implies universality in
operator learning. arXiv preprint arXiv:2304.13221, 2023.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds
for fourier neural operators. Journal of Machine Learning Research, 22(290):1-76, 2021.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Derivation of the method and results in Section @] support the claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Paragraph is presented in Section 3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: The main and only theoretical statement Proposition [T| has a proof presented in
the Appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Architecture is described in Section E} Description of the benchmarks, data
processing, optimization settings, and model specifications are included in Sectiondand
detailed in the Appendix [B]and [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper used publicly available datasets. Full source code is available at
https://github.com/PhysicsXLtd/DINOZAUR,

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Tables including this information are provided in the Appendix [B]and [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Numerical experiments had multiple runs, with mean and standard deviation
reported in Tables[T|and

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://github.com/PhysicsXLtd/DINOZAUR
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Provided in Section 4l
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: None of the concerns apply to our paper.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Impact Statement is provided in the Appendix [F|
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risks identified.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The source code contains documentation.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Light-Weight Diffusion Multiplier and Uncertainty
Quantification for Fourier Neural Operators:
Supplementary Material

A Benchmarks

Table 3: Summary of the benchmark datasets

Dataset d Input type Output type Nirain, Niest
Darcy flow 2 Regular [241; 241] Regular [241; 241] 1024, 1024
NS 2D+T 2+1 Regular [64; 64;10] Regular [64; 64; 10] 1000, 200
ShapeNetcar 3 Regular [64; 64; 64] Irregular [3,586] 561, 100
Ahmed bodies 3 Regular [64; 64; 64] Irregular ~ [150,000] 500, 51

Table 4: Data transformations during training

Dataset Inputs Input scaler Padded input Target Target scaler
Darcy flow Permeability Standard [271;271] Pressure Standard
NS 2D+T Vort.|o<¢<10, [, y,t] None 64; 64; 15] Vort.|10<¢t<20 None

[
ShapeNet car ~ SDF None [72;72;72] Pressure Standard
Ahmed bodies SDF, Inlet velocity None [72;72;72] Pressure Standard

To evaluate our model and compare it against the baselines, we selected two datasets with regularly
sampled domains and two datasets with non-uniform outputs.

Darcy flow This dataset contains steady-state 2D solutions of the Darcy flow equation on the
unit box, modeling the flow of fluid through a porous medium [9]]. It includes samples with spatial
resolution of 241 x 241 points. The network received a scalar permeability field as input and was
tasked to predict scalar pressure values. To ensure non-periodicity, we applied padding during training,
increasing the resolution to 271 x 271. A standard scaler was applied to both input and output fields.
Train and test splits had 1024 samples each.

Navier-Stokes The Navier—Stokes dataset includes simulations of incompressible, viscous fluid
flow with constant density and viscosity » = 10~° [9]. It features a periodic 2D domain of resolution
64 x 64, with 20 time steps of the vorticity field evolution. We trained models to predict the final
10 time steps from the initial 10, using 1000 training and 200 test samples. Inputs were composed
as 3D tensors containing 10 time steps for every spatial point. Padding was introduced only to the
time dimension, making the input to be of 64 x 64 x 15. We appended spatial coordinates uniformly
sampled in [0, 27) and a time coordinate with an integer index ¢ = [0, 1, ... 9], which resulted in 4
input channels that were mapped to one channel.

ShapeNet car This benchmark contains 661 car meshes paired with Reynolds-Averaged
Navier—Stokes (RANS) simulations [59]. We focus on predicting the scalar pressure field at the mesh
vertices, which are fixed in size at 3,586 points per mesh. The dataset is split into 561 training and
100 test samples. Target pressures were standardized during training. Following Li et al. [[1Q], inputs
are constructed by sampling a fixed-resolution 643 grid over the global bounding box encompassing
all meshes. A signed distance function (SDF) is computed per mesh. Grids are padded to 722 before
being passed to the network.

Ahmed bodies The Ahmed bodies dataset [60] follows a similar setup to the ShapeNet car but
introduces varying inlet velocities as an additional signal. This constant is appended to the SDF input,
resulting in two input channels. Meshes vary in size, containing between 90,000 and 200,000 vertices.
The grid resolution, padding, and target scaling match those used in the ShapeNet car.

21

The GINO-decoder architecture [[10] used for both ShapeNet and Ahmed datasets requires precom-
puted fixed-radius neighborhoods to map grid samples to mesh vertices. We use the radii from the
original paper: 0.05 for the ShapeNet car and 0.035 for Ahmed bodies.

For models trained on non-uniform data, we additionally apply Transformer-style positional encod-
ing [64] to the input features, grid locations, and mesh vertices.

Results in the main text are reported on the unscaled targets. Raw dataset specifications are provided
in Table 3] and data transformations are detailed in Table [d]

B Configurations of trained architectures

Table 5: Baseline configurations. GF indicates Gradient Features

Dataset Model d. Modes Rankr GF Extra parameters
Darcy FNO 32 [12,12] 1 False
flow FNO, 32 [12,12] 1 True
TFNO 32 [12,12] 107* False
TFNO, 32 [12,12] 107* True
DINOZAUR,,, 32 [12,12] No False
DINOZAUR 32 [12,12] No True
NS 2D+T FNO 64 [16, 16, 4] 1 False
FNO, 64 [16, 16, 4] 1 True
TENO 64 [16,16,4] 10~* False
TFNO, 64 [16,16,4] 10=* True
DINOZAUR,,., 64 [16,16,4] No False
DINOZAUR 64 [16,16,4] No True
ShapeNet GINO 64 [24,24,24] 04 False
car GINO, 64 [24,24,24] 04 True
TGINO 64 [24,24,24] 1074 False
TGINO, 64 [24,24,24] 107* True
DINOZAUR,., 64 [24,24,24] No False
DINOZAUR 64 [24,24,24] No True
GINOp 64 [24,24,24] 04 False
TGINOp 64 [24,24,24] 1074 False D=0.1,0%=¢"*
DINOZAURp 64 [24,24,24] No True
GINOy, 64 [24,24,24] 04 False 0% =e 4,
TGINOy, 64 [24,24,24] 107* False C = 500,
DINOZAURy, 64 [24,24,24] No True o« = 10°

N 1n (10 0.01, 1),

DINOZAURp 64 [24,24,24] No True Nl (=5,0.3)
Ahmed GINO 64 [24,24,24] 04 False
bodies GINO, 64 [24,24,24] 04 True

TGINO 64 [24,24,24] 10~% False

TGINO, 64 [24,24,24] 107% True

DINOZAUR,,., 64 [24,24,24] No False

DINOZAUR 64 [24,24,24] No True

All results reported in our paper are from experiments conducted specifically for this study to ensure a
fair and consistent comparison across models. Architectural settings for the baselines are summarized
in Table[5| All models featured 4 FNO blocks with GELU activations. The channel width d. and the
number of modes were selected to align with the original configurations of FNO [9] and GINO [10],
with the exception of Navier-Stokes data. We increased modes and channels to reflect the complexity
of this benchmark. For models employing Tucker factorization, the rank r was either adopted directly

22

from the original implementation (GINO) or chosen to match the total number of parameters in
DINOZAUR.

For all models incorporating dropout, the probability for a weight element to be zero was set to
D = 0.1 during training.

For the Laplace approximation, we fit the Hessian of the Negative log-likelihood loss (assuming
homoscedastic noise with 0% = exp(—4)) with respect to the parameters 6o of the final (linear)
layer Q of each model. Following Ritter et al. [[65], we scale the Hessian and regularize it by adding
a multiple of the identity matrix, yielding

0*logp(D | Ho)
062

where the expectation is approximated via Monte Carlo samples, and C' and « are hyperparameters
selected on a validation set. In our experiments, we set C' = 500, o = 10°

Heo =CE |- +al

DINOZAURE requires us to set the prior distribution parameters for each In 7 and specify the
initial values for the approximate posterior In7¢ | D; we initialize this distribution with a full-
rank covariance matrix within each NO block. Distribution parameters are informed by the time
distributions in the deterministic experiment on ShapeNet car (Figure 3).

Table 6: Baseline optimization parameters

Dataset Model Optimizer Nepochs Scheduler LR
Darcy FNO AdamW 150 One-Cycle 1073
flow FNO, AdamW 150 One-Cycle 1073
TFNO AdamW Schedule-Free 150 None 1073
TFNO, AdamW 150 One-Cycle 1073
DINOZAUR,,, AdamW 150 One-Cycle 1073
DINOZAUR AdamW 150 One-Cycle 1073
NS 2D+T FNO AdamW 150 One-Cycle 1073
FNO, AdamW 150 One-Cycle 1073
TFNO AdamW 150 One-Cycle 1073
TFNO, AdamW 150 One-Cycle 1073
DINOZAUR,,,., AdamW 150 One-Cycle 1072
DINOZAUR AdamW 150 One-Cycle 1072
ShapeNet GINO AdamW Schedule-Free 150 None 1073
car GINO, AdamW Schedule-Free 150 None 1073
TGINO AdamW Schedule-Free 150 None 1073
TGINO, AdamW 150 One-Cycle 1073
DINOZAUR,,,, AdamW 150 One-Cycle 1073
DINOZAUR AdamW 150 One-Cycle 1073
GINOp, AdamW Schedule-Free 150 None 10—3
GINOy, AdamW Schedule-Free 150 None 1073
TGINOp AdamW Schedule-Free 150 None 10—3
TGINOy, AdamW Schedule-Free 150 None 10-3
DINOZAURp AdamW 150 One-Cycle 1073
DINOZAURy, AdamW 150 One-Cycle 1073
DINOZAURp AdamW 200 One-Cycle 1073
Ahmed GINO AdamW Schedule-Free 150 None 1073
bodies GINO, AdamW Schedule-Free 150 None 1073
TGINO AdamW 150 One-Cycle 1073
TGINO, AdamW 150 One-Cycle 1073
DINOZAUR,,,, AdamW 150 One-Cycle 1073
DINOZAUR AdamW 150 One-Cycle 5 x 1073

Optimization hyperparameters are detailed in Table[6] All models were trained using either AdamW
Schedule-Free [57] or AdamW combined with a One-Cycle scheduler [56], weight decay set to 104,

23

Both options allow for faster convergence with fewer epochs and reduce sensitivity to hyperparameter
choices. The final setup was selected by comparing both options and reporting the results for the
configuration that achieved the best performance. A limited learning rate sweep was conducted in
the range [10~%, 1072, with early termination applied to underperforming runs. For the One-Cycle
scheduler, the learning rate in the table refers to the max LR parameter.

C Distributions of diffusion times

I :D_| ° Dataset

: — - O ShapeNet
[0 Ahmed
, - -
y —— T e
2
. —
’ . .
L -

2 5 0.001 2 5 0.01 2 501 2 5 1 2 5
T

Figure 5: Diffusion times gathered from FNO blocks of deterministic DINOZAUR trained on non-
uniform datasets.

Having trained the deterministic DINOZAUR on the non-uniform datasets ShapeNet car and Ahmed
bodies, we analyze the behavior of the learned diffusion times across the network. Figure 5| shows the
empirical distributions of the 64 diffusion times extracted from each block of the neural operator. We
observe two main trends. First, diffusion times generally decrease with network depth. This aligns
with the findings of Sharp et al. [34] and suggests that deeper blocks capture finer-scale features,
whereas earlier blocks encode broader, more global structures. Second, diffusion times learned on the
Ahmed bodies dataset are consistently larger than those learned on the ShapeNet car. We attribute this
to the presence of varying inlet velocities in the Ahmed bodies dataset, which increases the variability
in the data and may require coarser diffusion scales to capture the broader range of feature patterns
effectively.

For the Bayesian version of our model, we initialize all blocks with the same prior distributions
for In 7 and likewise set identical initial guesses for the corresponding variational posteriors. This
initialization allows each block to adapt its uncertainty about diffusion time scales through learning.
To visualize this, we draw samples from the approximate posteriors and estimate their empirical
location and scale parameters, characterizing the learned diffusion behavior in the probabilistic setting.
Figure [6] illustrates these posterior distributions alongside the prior. We find the same consistent
pattern: posteriors systematically shift toward shorter diffusion times as depth increases, and their
spread becomes tighter. This mirrors the trend observed in the deterministic setting (Figure [3)),
reinforcing the interpretation that deeper blocks specialize in capturing high-frequency, localized
features. The prior has a strong influence on the resulting posteriors, forcing diffusion times to be
lower (closer to the prior mean, which was chosen to promote shorter ranges for message passing).

Finally, in Figure [7] we provide the full covariance matrices for each of the posteriors that were
learned by the network. Analyzing covariances, we note that they are dominated by the diagonals
with few spots of strong correlation off-diagonal. This indicates a good separation of information
within features.

24

Prior /\

Block 1 -
Block 2 -
Block 3 -
Block 4 B

0 0.005 0.01 0.015 0.02 0.025 0.03

T

Figure 6: Prior distribution set according to In 7 ~ N(In 0.01, 1) and approximate posteriors gathered
from the NO blocks of DINOZAURg trained on ShapeNet car dataset through Lg1,50 maximization.

Block 1 Block 2 Block 3 Block 4
0 . 0r 0 . 0 1.0
T, .
20{ o 20 20 o 20 ™ 03
k .
. "o, 0.0
40 40 40 40 M,
z ", 05
< .
60 60 60 60 1o
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Figure 7: Lower diagonal full-rank learned covariance matrices of the posterior distributions. Each
matrix represents a d. X d. (64 x 64) covariance matrix of the multi-dimensional distribution of
diffusion times within each block.

D Metrics definitions

Given a test set element index n = 1, ..., Ny and a point evaluation index j = 1,.. ., Jy, let uy;
denote the ground truth observation of the target function u for element n at point j, and let ,,;
denote the corresponding neural operator prediction. For baseline models that support uncertainty
quantification via sampling, @, ; represents the empirical mean over samples, and &,,; denotes
the empirical standard deviation. In all probabilistic experiments, we generated 100 samples per
prediction.

Relative L, The RL; loss is a normalized metric that quantifies the discrepancy between predicted
outputs and ground truth values, scaled by the squared norm of the ground truth. This normalization
allows for fair comparisons across datasets or tasks with varying magnitudes and units.

1 N (/S (g =)

TN, 7
w e

RL2

Negative log-likelihood NLL reflects the mean log-likelihood of the true values under the predicted
Gaussian distribution. Lower NLL indicates better uncertainty calibration and fit to the data.

Ntest Jn

1 1 —~ (unj — ﬁnj)z

1

NLL =

This averaged formula was used only for reporting metrics for probabilistic models.

25

Miscalibration area The MA is a scalar metric that quantifies the discrepancy between predicted
confidence levels and the actual observed frequencies of events, providing a measure of uncertainty
calibration. It captures the area between the model’s empirical calibration curve and the ideal
diagonal (perfect calibration). Lower values indicate better uncertainty calibration. Let (%) = % for
k=0,..., K, denote the expected coverage levels. For each test sample n, the observed coverage at
level (%) is given by:

JIn
%'Ezk) — i 1 ‘u"7 un]' < CI)_l 1+ ﬂ-(k) ,
T » 2

j=

where @~ is the inverse of the standard normal cumulative distribution function. Then, the miscali-
bration area across all elements of the test set is given by averaging the area estimates for each of the
elements:

1 Niest K—1

Ntest

MA =

k+1 k
M RE) — 7] 4 (D) plhs)] ‘ .

n=1 k=0

Interval score IS is another metric for evaluating predictive uncertainty. It balances the width of
the prediction interval with a penalty for ground truth values falling outside the interval. For a chosen
coverage level p € (0, 1), define the lower and upper predictive bounds:

1- o) 1
bgf;.) = Upj + Onj - @ (2])) and bg}) = Up; + Opj - ! (—;—p)

where ® ! is the inverse of the standard normal cumulative distribution function. Then the interval
score at level p for prediction at point j in sample n is:

— 9 9 _ _
To compute the overall interval score, we average over a predefined set of P equally spaced coverage
levels (p = [0.01,0.02,...0.99)):

E Elaboration on the universal approximation

Here, we formulate the statement of Proposition [I] reported in the main text, more strictly.

Following the exposition of Lanthaler et al. [66], let 2 C R? be a bounded domain with Lips-
chitz boundary and let A(Q2, R%), ¢4(Q, R%), V(2, R%) denote Banach space of functions on .
DINOZAUR architecture defines a mapping

Nort A(Q,R%) — U(Q,R™),
which can be written as a composition of a form:
NO,T - Q ONQMJM O--- 0/\/91,71 o P7

consisting of lifting layer P, hidden blocks N, -,, i = 1,..., M, and a projection layer Q. Given
channel dimension d., the lifting layer P is given by mapping:

P AQ,RYS) - V(Q,RY), a(z) — Pla(z),z),

where P : R% x () — R% is a learnable neural network acting between finite-dimensional Euclidean
spaces. Fori = 1,..., M, each block Ny, -, is of the form

F [exp(—4n2||k|27) © Fo] (k)] («)])

— skip, (). . mix
No, = [v](x) == (Wz (@) +bi + Wi lgwfrad []-"1 [exp(—4m?(|k[*T;) ®]'—M(k)ﬂ (2)

26

Each hidden block defines a mapping Np, -, : V(Q,R%) — V(Q,R%). Fori = 1,..., M, the

matrices W, kip Wigrad € Rdexde Jymix ¢ Rdex2de diffusion times 7; € R% and bias b; € R% are

learnable parameters. The non-linearity o : R — R acts element-wise and is assumed to be smooth,

non-polynomial, and Lipschitz-continuous. Finally, the projection layer Q is given by a mapping:
Q: V(ULR™) - UQR™), v(z)— Q(v(z),z),

where Q : R% x Q — R% is also a learnable neural network acting between finite-dimensional

Euclidean spaces.

From now on, we will focus on the case of a single hidden block:

Norla](z) = (Qo Ny, - o P)la](x).

Now, we re-state the Propositionm

Proposition 1. Let Q C R? be a bounded domain with Lipschitz boundary and such that the closure
Q C (0,27)% For given integers s,s' > 0, let N' : C*(Q; R%) — C%' (Q;R%) be a continuous
operator;, and fix a compact set A C C*(Q; R%). Then there exists a continuous, linear operator
E: C*(Q;R%) — C%(T% R%) such that Ela)|q = a for all a € C*(2;R%). Furthermore, for any
€ > 0, there exists a DINOZAUR such that

sup [Na] — (N, o E[a])|al
a€A

O+ (Rdu) = €
where Ny = Qo Ny, , o P : C%(T% R%) — C%' (T4, R).

Proof. First, we consider a periodic torus T¢. Without loss of generality, since the weights of the
network are free to be updated, we let the matrices W;™* be of the block structure

. L7
mix _ | 1]
wps = (1),

with I € R >4 being the identity matrix and 0 € R% *9c a matrix of all zeros, which renders a
hidden block to:
1

Ny, -[v](z) =0 (Wfkipv(x) + by + W}"fl [exp(—47r2||k:||27') ® .F[v}(k)} (JU)))

By letting diffusion times 7 — 0o, we get
exp(—4n°|[k[*7) = 1, k]| = 0,
exp(—47r2||k||27') — 0, ||| >0,
which, in the limit, results in the block:

Naamm=oowmwm+m+ﬁQF*memw)

=0 (Wfki%(x) +b1+]fr) v(y)dy> ;

making a full network Ny = Q o Ny, o o P an averaging neural operator in the sense of
Equation 2.3 in [66] on the torus T?. By Corollary 3.3 [66], Ny, is a universal approximator on
the torus. Here, we note that the lifting and projection operators defined in [66] have an explicit
positional dependency, and thus, one should understand them as periodized MLPs. E]

Now consider a general domain 2 C (0, 27)?. By Lemma 41 by Kovachki et al. [67] and Lemma
Al in [66]], there exists a continuous, linear extension operator £ : C*(Q; R%) — C*(T%; R%) such
that €[a]|q = a and E[a] is periodic on [0, 27]¢ for all a € C*(Q; R%). We note that the conditions
of the Theorem 9 in [67] are satisfied. By following the proof of this theorem, we apply the extension

operator £ and use the universal approximation on the torus, establishing universal approximation on
Q. O

"Note that Theorem 2.1 in [66] as it is formulated, applies to bounded Lipschitz domains. Thus, the proof of
Corollary 3.3 [60] is not immediate. One must either follow the proof of Theorem 2.1 to see that it applies
to the torus, or first formulate it on the domain (0, 27)¢, invoke the Theorem 2.1, and then argue that it holds
when one restricts to periodic functions on (0, 27)%.

27

F Broader impact

This study presents a neural operator tailored for the efficient and scalable solution of partial differen-
tial equations, intending to advance computational modeling in scientific and engineering disciplines.
By enabling more resource-efficient simulations, our method has the potential to accelerate research
in various domains where PDEs play a central role. Furthermore, the integration of uncertainty
quantification in our model supports more robust decision-making, which is particularly valuable in
high-stakes applications.

While our work is primarily theoretical and presents a low immediate risk, we recognize that advances
in machine learning for scientific computing may influence decisions in sensitive contexts. As neural
operators become more widely adopted, it will be essential to ensure that they are used responsibly,
particularly in applications where predictive reliability and interpretability are critical. Ongoing
dialogue among machine learning researchers, domain experts, and the general public is essential to
ensure that the development and deployment of such tools remain aligned with societal values and
serve the public interest.

28

	Introduction
	Related work
	Diffusion multiplier parametrization for neural operators
	Problem setting
	DINOZAUR architecture
	Bayesian inference for diffusion multiplier

	Experiments
	Results: deterministic performance
	Results: uncertainty quantification
	Ablation studies

	Discussion
	Benchmarks
	Configurations of trained architectures
	Distributions of diffusion times
	Metrics definitions
	Elaboration on the universal approximation
	Broader impact

