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ABSTRACT

Finger-Fitts law [6] is a variant of Fitts’ law which accounts for the
finger ambiguity in touch pointing. It involves the effective target
width We (i.e.,

√
2πeσ ) in modeling touch pointing. We hypothesize

that the nominal target width (W ) can be used in lieu of We in Finger-
Fitts law. Such a model, called Finger-Fitts-W model, complements
the original Finger-Fitts law because it suits the situation where
the distribution of endpoints is unknown, such as answering the
following question without running a study: "what would be the
target selection time if the target size increases from 2 to 3 cm?".
Although the Finger-Fitts-W model has been implied, it is under-
studied. In this short paper, we compare using nominal width (W )
vs. effective width (We) in one-dimensional touch modeling. The
results showed that the Finger-Fitts-W model improves the model
fitness over the conventional Fitts’ law and has a slight improvement
over the original Finger-Fitts law. Our key takeaway is that Finger-
Fitts-W is a valid model for predicting touch pointing movement
time. It complements the original Finger-Fitts law as it can predict
movement time of touch pointing even if the distribution of endpoints
is unknown.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction techniques—Pointing; Human-
centered computing—Human computer interaction (HCI)—HCI
theory, concepts and models; Human-centered computing—Human
computer interaction (HCI)—Empirical studies in HCI

1 INTRODUCTION

Among a number of finger-touch based interaction, pointing has been
a dominant input modality on mobile devices such as smartphones
and tablets. Due to its prevalence, modeling touch pointing is crucial
in designing touch interfaces. Fitts’ law [13,22] (Equation 1), which
relates the pointing movement time (MT ) to the relative precision of
the tasks ( A

W ), is the most widely known pointing model. However,
despite its success in modeling pointing actions with mouse or stylus,
Fitts’ law does not address the ambiguity caused by finger touch,
which is the widely recognized “fat finger” problem. Hence, it
cannot accurately model touch-based pointing.

MT = a+b log2(
A
W

+1). (1)

Finger-Fitts law (a.k.a FFitts law, Equation 2) [6] is a refinement
of Fitts’ law for modeling touch pointing:

MT = a+b log2

( A√
2πe(σ2−σ2

a )
+1
)

= a+b log2

( A√
W 2

e −2πeσ2
a
+1
)
. (2)

Previous research [6,34] has shown that Finger-Fitts law (Equation 2)
can more accurately model finger-touch pointing than Fitts’ law, and
has been used for modeling typing speed on soft keyboard [4], for

developing a keyboard decoding algorithm [5], and for modeling
other touch interaction such as crossing [21].

The Finger-Fitts law (Equation 2) uses the effective width We
for modeling, which is calculated from the observed touch points
variance (We =

√
2πeσ ). Drawing an analogy from Fitts’ law re-

search that both effective width (We) and nominal width W (i.e., the
width defined by the geometry of the target) are commonly used to
model pointing, we hypothesize that using the nominal target width
W in lieu of the We in Finger-Fitts law with a small adjustment is
also a valid touch pointing model. We call it Finger-Fitts-W model
(Equation 3):

MT = a+b log2

(
A√

W 2− c2
+1

)
, (3)

where a, b, and c are empirically determined parameters. Because
the Finger-Fitts-W model avoids using the observed touch point
variance (σ2), it supports predicting the movement time MT without
actually carrying out the studies to obtain the variance of touch
point distribution (σ2). It allows interface designers to ask "what
if" questions such as "what would be the target selection time if I
increase the target size from 2 cm to 3 cm?". In contrast, the original
Finger-Fitts law (referred to as Finger-Fitts-We model hereafter)
requires to observe the variance of touch point distribution with the
new target size to make prediction.

The Finger-Fitts-W model (Equation 3) is also an extension of the
recently proposed 2D Finger-Fitts law [19], which uses nominal tar-
get width and height in the model. Given the promising performance
of 2D Finger-Fitts law, it is likely that using the nominal task param-
eter W in lieu of the observed touch points variance (We =

√
2πeσ )

is also valid for modeling one-dimensional touch pointing. Although
such a model has been implied, it is not explicitly expressed nor
studied, especially in the context of one-dimensional touch pointing.

To fill this knowledge gap, in this short paper, we explicitly ex-
press the Finger-Fitts-W model (Equation 3), and present a study
comparing the effective width (We) vs. nominal-width (W ) in Finger-
Fitts law for modeling one-dimenional touch pointing. Our investi-
gation showed that Finger-Fitts-W model performed the best among
tested models including Fitts’ law and Finger-Fitts-We model, show-
ing that Finger-Fitts-W model is valid for modeling touch pointing.
Although it is only a small adjustment over the original Finger-Fitts
law [6], it is rather necessary and advances our understanding of
touch pointing. It also generalizes the nominal parameter based
two-dimensional Finger-Fitts law model [19] to one-dimensional
touch pointing.

2 RELATED WORK

We review related work on (1) using Fitts’ law and its variants to
model pointing, and (2) modeling finger touch pointing with Finger-
Fitts law.

2.1 Modeling 1D pointing
As one of the best known theoretical foundations of HCI, Fitts’
law (Equation 1) [13, 22] has served as a cornerstone for interface
and input device evaluation [9, 22], interface optimization [20], and
interaction behavior modeling [11].

The beauty of the original Fitts’ law lies in its simplicity. It is a
pure task model of human pointing performance, in which all of the



model’s independent variables are a priori task parameters A and
W . For a given graphical object’s distance and size, for example,
designers can predict or estimate the average time it takes a user to
complete a pointing task at it.

One challenge of applying Fitts’ law is that a user might or might
not comply with the task precision defined by A/W when performing
the tasks, causing over- or under-utilization of target width [35].
This is partly because a user may adopt different speed-accuracy
trade-off policies [3, 4, 15, 16, 23, 25, 33]. The way researchers have
addressed the varied degree of task compliance is to bend Fitts’ law
away from a pure task model towards a behavioral one by changing
an independent variable in the model from a task parameter W (target
width) to "effective width", an a posterior quantity depending on
user’s behavior. First proposed by Crossman [12] and explored
further [22,26,32], the effective width adjustment method has shown
stronger model fit if the observed error rates deviate from 4%. It
replaces the nominal target width W with the so-called effective
width We (i.e.,

√
2πeσ ), as shown in Equation 4.

MT = a+b · log2(
A√

2πeσ
+1) (4)

= a+b · log2(
A

We
+1), (5)

Controlled studies [35] showed that using We could partially but
not fully account for the subjective layer of speed-accuracy trade-
off. Involving the posterior variable σ complicates Fitts’ law as a
predictive tool for design. Later in the next section we explain in
detail that because the Fitts’ law with effective width adjustment
(Equations 4 and 5) is the basis of Finger-Fitts law [6]), the limitation
of involving a posterior variable also limits the predictive power of
Finger-Fitts law.

Another line of Fitts’ law research closely related to the current
work is about modeling small-sized target acquisition tasks. Previous
researchers [32] have proposed using W −c instead of We =

√
2πeσ

to adjust the target width in Fitts’ law, where c was an experimentally
determined constant attributed to hand tremor. The modified version
gave a good fit for both pencil-based [32] and mouse-based [10]
pointing tasks. Our research later shows that c-constant model could
serve as a simplification of the refined Finger-Fitts model, with
reduced model fitness.

2.2 Modeling finger touch pointing
As finger touch has become the dominant input modality in mobile
computing, a sizable amount of research has been carried out to
understand and model the uncertainty in touch interaction. On a
capacitive touchscreen, a touch point is converted from the contact
region of the finger. This is an ambiguous and “noisy” procedure,
which inevitably introduces errors. Factors such as finger angle [17,
18] and pressure [14] may affect the size and shape of the contact
region, unintentionally altering the touch position. The lack of visual
feedback on where the finger lands due to occlusion (the “fat finger”
problem) further exacerbates the issue [17,18,27–29]. As a result, it
is hard to precisely control the touch position even with fine motor
control ability.

This “fat finger” problem, or the lack of absolute precision in
finger touch, presented a challenge to use Fitts’ law as a model for
finger touch-based pointing, because the only variable in Fitts’ law,
namely Fitts’ index of difficulty, log2(A/W + 1), is solely deter-
mined by the relative movement precision, or the distance to target
size ratio.

Bi, Li and Zhai [6–8] identified this challenge, and proposed
the Finger Fitts law [6] to address it. They derived their model
by separating two sources of end point variance - those due to the
absolute imprecision of finger touch (denoted by σa

2) and those due
to the speed-accuracy trade-off demonstrated in a pointing process

(denoted by σr
2). The end point variance caused by the imprecision

of finger touch (σa
2) is irrelevant to the speed-accuracy trade-off

so it should be accounted for. They accounted for it by subtracting
σa

2 from the observed variance σ2, which led to Finger-Fitts law
(Equation 2). Following the notation of effective width We =

√
2πeσ

(or 4.133σ ) [12, 26, 32], Finger-Fitts law (Equation 2) can be re-
expressed as Equation 6:

MT = a+b log2(
A√

We
2−2πeσa2

+1). (6)

Later research [4, 6, 21, 34] showed that Finger-Fitts law was
successful in modeling touch interaction. For example, research [4]
showed it was more accurate than the typical Fitts’ law in estimat-
ing the upper bound of typing speed on a virtual keyboard. Re-
searchers [21] extended the Finger-Fitts law to the crossing action
with finger touch, which improved the model fitness (R2) from 0.75
to 0.84 over the original Fitts’ law. The recent work [19] extends
Finger-Fitts law from 1D to 2D, which shows using nominal target
width and height is valid for modeling 2-dimensional touch pointing.
Complementary to the previous work [19], this work investigates
modeling 1-dimensional target selection with nominal target widths.
We also compare effective width vs. nominal width while the previ-
ous work [19] did not draw such a comparison.

As alluded to earlier, previous research on Finger-Fitts law is
mostly based on using the effective width We. Next, we describe
how we use the nominal width W in Finger-Fitts law (a.k.a the
Finger-Fitts-W model), and present a study comparing it with using
effective width and the typical Fitts’ law.

3 USING NOMINAL WIDTH W TO MODEL TOUCH POINTING

To use nominal width W in touch modeling, a straightforward ap-
proach is to replace the effective width We in Finger-Fitts-We mode
(Equation 2) with W :

MT = a+b log2

(
A√

W 2−2πeσ2
a
+1

)
(7)

A potential problem is that it leaves the equation undefined if
W <

√
2πeσa. To address this problem, we assume that σ2

a , which
represents the absolute variance caused by finger touch, is an em-
pirical parameter determined from the data, instead of a pre-defined
constant:

MT = a+b log2

(
A√

W 2− c2
+1

)
, (8)

where a, b, c are all empirically determined parameters. The impli-
cation of this adjustment is that σ2

a may differ across task contexts,
and treating it as a free parameter would provide more flexibility in
modeling. The drawback is that it introduces an extra free parameter
c to the model. In the model evaluation, we take the number of free
parameters into consideration and control for the overfitting.

Replacing We with W also has a physical meaning. The We
represents the observed variance in the endpoint distribution, which
is the actual endpoint variability a user exhibits. In contrast, W 2

represents the endpoint variability allowance specified by the task
parameter, which is the variability allowance a user is supposed to
consume.

4 EVALUATION IN 1D POINTING TASKS

We carried out an experiment to investigate whether the Finger-
Fitts-W law can accurately predict MT , compared with Fitts’ law
and the original Finger-Fitts law. The study was a reciprocal target
acquisition task with finger touch.



4.1 Participants and Apparatus
We recruited 14 subjects for an IRB approved study (3 females; aged
from 22 - 35). All of them were right-handed and daily smartphone
users. A Google Pixel C tablet with 2560x1800 resolution and
308 ppi was used throughout the experiment. Each participant was
instructed to perform the tasks on the tablet. They were instructed
to select the target with the index finger as fast and accurately as
possible. All the subjects were daily smartphone users.

4.2 Design and Data Processing
4.2.1 Target Acquisition Task
We designed a within-subject reciprocal target acquisition task for
circular targets with various diameters. We chose circular target
acquisition mainly because of two reasons. First, this is one of the
common tasks used in Fitts’ law studies (e.g., [6,24]). Second, σa =
1.5 is obtained from the circular target acquisitions in [6]. Adopting
a similar circular targets experiment setting allows us to investigate
not only vertical finger traveling but horizontal movements.

The study included 15 conditions with 5 levels (4, 6, 8, 10, 12
mm) of diameters (W ) and 3 levels (16, 28, 60 mm) of distance
(A). It had two different movement directions, which are vertical
and horizontal movements. Each condition included 20 touches (19
trials, where the first touches in each condition are considered the
starting action) and the condition would show up in random order.
We have 14 (participants) × 15 (conditions) × 2 (directions) × 19
(trials) = 7,980 (trials) in total.

At the beginning of each trial, two circular targets were displayed
on the touch screen, one in red (a.k.a the start circle) and one in blue
(a.k.a the destination circle). The participant was instructed to select
the start circle to start the trial. Upon successfully selecting the start
circles, the colors of start and destination circles got swapped and
the participant was instructed to select the destination circle as fast
and accurately as possible. A successful sound would be played if
the target was successfully selected. Otherwise, a failure sound was
played. The elapsed time between the moment the user successfully
selected the start circle and the moment the user subsequently landed
down the touch point to select the destination circle was recorded as
the movement time of the current trial; the touch point for selecting
the destination circle was the location of the endpoint, regardless of
whether the touch point was within or outside the target boundary.
If the participant succeeded in selecting the destination circle, the
colors of two circles were swapped again and the next trial started
immediately. If the participant failed in selecting the destination
circle, she had to successfully select it again to start the next trial.
This setting ensured that in each trial the finger always starts from
somewhere within the starting circle, reducing the noise in measuring
A.

4.2.2 Data processing
We pre-processed the data by removing touch points which fell
beyond 3 standard deviations to the target center. In circular acquisi-
tion tasks, 50 out of 7,980 touch points (0.63%) were removed as
outliers.

4.3 Results
4.3.1 MT and error rates across the condition
We observe movement time and the error rates across different target
widths and distances (Table 1 and 2).

For movement times, a repeated measure ANOVA test showed
that both width W (F4,52 = 175.3, p < 0.0001) and distance A
(F2,26 = 320.7, p < 0.0001) had a statistically significant effect.
The interaction effect of width and distance was also significant
(F8,104 = 2.077, p < 0.05). For error rates, a repeated measure
ANOVA test showed that width W had a significant effect (F4,52 =
56.19, p < .0001), but not distance A (F2,26 = 1.443, p = 0.255).

(a) Demonstration (b) Targets (Circular)

Figure 1: (a) A participant was doing the task. (b) A screenshot of
the task.

The interaction effect of width and distance was not significant
(F8,104 = 1.965, p = 0.058).

The results also showed that participants were more error-prone
with smaller targets, especially with diameters under 6 mm. A
repeated measure ANOVA test showed that the size of the targets
(targets which are 4 and 6 mm are considered small targets) had a
significant effect (F1,13 = 80.21, p< 0.0001). This results concurred
with conclusion from other research [6, 8].

Diameters (mm) MT Mean (SD) Error rate

4 0.50 (0.13) 24.9%

6 0.37 (0.13) 10.9%

8 0.31 (0.11) 6.4%

10 0.28 (0.10) 2.8%

12 0.25 (0.09) 1.1%

Table 1: Movement time and error rates over different target widths

Distances (mm) MT Mean (SD) Error rate

16 0.26 (0.11) 8.2%

28 0.31 (0.12) 9.3%

60 0.45 (0.13) 10.0%

Table 2: Movement time and error rates over different distances

4.3.2 Regression for MT vs. ID

Figure 2 shows the regression results of MT vs. ID. As shown,
the Finger-Fitts-W law has the highest R2 value (0.986) among
all the test models, indicating its high model fitness. The results
also showed that Finger-Fitts-We model was better than the typical
Fitts’ law - W and the Fitts’ law - We, consistent with findings from
previous work [6].

4.3.3 RMSE of MT Prediction
To increase the external validity of the evaluation, we also examine
the Root Mean Square Error (RMSE) of MT prediction with cross
validation. We conduct leave-one-(A, W )-out cross validation and
obtain the RMSE for Finger-Fitts-W , Fitts’ law - We and Fitts’ law -
W . The results (Table 2) are 0.015 for Finger-Fitts-W model, 0.021
for Finger-Fitts-We model, 0.033 for Fitts’ law - W , and 0.064 for
Fitts’ law - We. It showed Finger-Fitts-W outperformed all the other
three models.
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Figure 2: MT vs.ID regressions for Fitts’ law, Fitts’ law with effective width, Finger-Fitts-W , and Finger-Fitts-We models. As shown,
Finger-Fitts-W model shows the best model fitness.

R2 RMSE AIC WAIC Parameters

Fitts’ Law - W Eq. (1) 0.927 0.033 -94.00 -86.87 a =−0.009,b = 0.149

Fitts’ Law - We Eq. (4) 0.719 0.064 -73.82 -69.21 a =−0.051,b = 0.180

Finger-Fitts Law - W Eq. (8) 0.986 0.015 -118.81 -109.46 a = 0.021,b = 0.123,c2 = 11.260

Finger-Fitts Law - We Eq. (2) 0.968 0.021 -106.37 -100.35 a =−0.109,b = 0.167,σa = 1.5

Table 3: The parameters, R2, RMSE of leave-one-(A,W )-out cross validation, and Information Criteria AIC and WAIC of the models. For AIC
and WAIC, the smaller the values, the more accurate the model prediction.

4.3.4 Information Criteria
Information criteria [1, 2, 30, 31] have been widely used to compare
the quality of models because they take into account the complexity
of the model (i.e., the number of parameters). Commonly used
information criteria include AIC, and WAIC, both of which penalize
the complexity of a model. In general, the smaller the information
criterion, the better the model is. We have calculated multiple
information criteria including AIC and WAIC (Table 3). As shown,
the Finger-Fitts-W law outperforms the Fitts’ law - W and Finger-
Fitts-We law in these metrics.

4.4 Discussion
4.4.1 The validity of the Finger-Fitts-W model.
Our study showed that the Finger-Fitts-W law had the highest predic-
tion accuracy among all the test models across a number of metrics,
including information criteria that take into account the number
of model parameters. The R2 value, a commonly used measure
for pointing model fitness, is 0.986, higher than both Fitts’ law -
W (R2 = 0.927) and Finger-Fitts-We (R2 = 0.968). Its RMSE, a
cross-validation metric, is also the lowest among all the test models.
To take into account the number of model parameters, we exam-
ined the information criteria. The AIC and WAIC showed that the
Finger-Fitts-W law improved prediction accuracy over Fitts’ and
Finger-Fitts law. It reduced AIC from -94.00 to -118.81, and WAIC
from -86.87 to -109.46. These two metrics added penalty to adding
extra parameters in the Finger-Fitts-W law, adding evidence to the
strength of the Finger-Fitts-W model.

4.4.2 The “w− c” model serves as a simplification of Finger-
Fitts-W model.

We notice that the Finger-Fitts-W law resembles the model proposed
in 1968 by Welford [32] in which W − c was used in lieu of W to
account for the hand tremor when acquiring small-sized targets with
pencil (i.e., MT = a+b log2(

A
W−c +1)). We investigated whether

this W − c model could serve as a simplification of the Finger-Fitts-
W model based on the data collected in our experiment. Our analysis

shows that the W − c model has slightly weaker prediction perfor-
mance than the Finger-Fitts-W law, with R2 = 0.984 and RMSE =
0.016. Its performance is still better than the Fitts’ law - W and
Finger-Fitts-We law. Therefore, it can serve as a simplification of
the Finger-Fitts-W law for touch modeling.

5 CONCLUSIONS

Our main conclusion is that the one-dimensional Finger-Fitts-W
model (Equation 9), a variant of the Finger-Fitts law [6] can model
the movement time in touch pointing quite well:

MT = a+b log2

(
A√

W 2− c2
+1

)
. (9)

It complements the original Finger-Fitts law [6] which predicts
movement time with the variance of observed touch point distri-
bution. Because it uses nominal parameters only for prediction,
the Finger-Fitts-W model can answer “what if” questions without
obtaining the variance of touch point distribution. Our evaluation
shows the Finger-Fitts-W model outperforms Fitts’ law (which also
uses nominal parameters only for prediction) in model fitness, mea-
sured by R2 values, cross-validation RMSE, and information criteria.
Overall, our investigation shows that the Finger-Fitts-W model is a
valid model for modeling one-dimensional touch pointing.
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