
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAN TEST-TIME COMPUTATION MITIGATE REPRODUC-
TION BIAS IN NEURAL SYMBOLIC REGRESSION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic regression aims to discover mathematical equations that fit given nu-
merical data. It has been applied in various fields of scientific research, such as
producing human-readable expressions that explain physical phenomena. Recently,
Neural symbolic regression (NSR) methods that involve Transformers pre-trained
on large-scale synthetic datasets have gained attention. While these methods offer
advantages such as short inference time, they suffer from low performance, partic-
ularly when the number of input variables is large. In this study, we analyze the
reasons for this limitation and suggest ways to improve NSR. We first provide a
theoretical analysis showing that, under naive inference strategies, Transformers
are unable to construct expressions in a compositional manner while verifying their
numerical validity. Next, we explore how Transformers generate expressions in
practice despite the lack of compositional generalizability. Our empirical analysis
shows that the search space of NSR methods are greatly restricted due to reproduc-
tion bias, where the majority of generated expressions are merely copied from the
training data. We finally examined if tailoring test-time strategies can reduce re-
production bias and improve numerical accuracy. We empirically demonstrate that
providing additional information to the model at test time can significantly mitigate
reproduction bias. On the other hand, we also found that reducing reproduction bias
does not necessarily correlate with improved accuracy. These findings contribute to
a deeper understanding of the limitation of NSR approaches and offer a foundation
for designing more robust, generalizable symbolic regression methods.

1 INTRODUCTION

Discovering underlying equations from collected experimental data is a crucial process in many
fields of scientific research. Symbolic regression is a branch of regression analysis that seeks to
automatically identify underlying mathematical expressions. In contrast to methods that model
data without explicit mathematical expressions, symbolic regression offers advantages in terms of
interpretability and generalizability. This is because the outputs of symbolic regression are usually
compact, human-readable equations, making them less susceptible to overfitting. However, symbolic
regression is a challenging task due to its vast search space; the number of possible mathematical
expressions grows exponentially with expression length or the number of input variables. Applications
for symbolic regression span various fields of scientific research such as physics (Tenachi et al., 2023),
materials science (Wang et al., 2019), and weather forecasting (Abdellaoui & Mehrkanoon, 2021).

Various methods for symbolic regression have been proposed in recent years. Traditionally, ap-
proaches based on genetic programming (GP) (Koza, 1994) have been employed to solve symbolic
regression. These methods tend to be computationally expensive because they generate each expres-
sion entirely from scratch. To mitigate this inefficiency, a research direction called neural symbolic
regression (NSR) has emerged. NSR methods leverage encoder-decoder Transformer architectures
Vaswani et al. (2017) pre-trained on large-scale synthetic datasets Biggio et al. (2021); Valipour
et al. (2021). NSR methods generate expressions similar to natural language processing tasks, where
expressions are generated token-by-token in a auto-regressive manner. Since a single forward pass
through the Transformer suffices to output a mathematical token (e.g., x1, sin,+), NSR models can
generate solutions far more quickly than GP-based approaches. However, NSR methods often falls
short in terms of numerical accuracy, with particularly poor performance when the number of input

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

variables is large (Kamienny et al., 2022; Bendinelli et al., 2023). This study aims to uncover the
underlying cause of this drawback and explore methods to alleviate it.

Our analysis began with the question of what mechanisms a Transformer relies on to select the next
token while generating an expression. We first conducted a theoretical analysis of the limitations
faced by Transformers when generating mathematical expressions. An ideal way to generate the
next token would be to generate the token that, if appended to the expression generated so far,
most increases the probability for the final expression to fit the numerical data. However, by using
circuit complexity theory, we show that Transformers fail to generate expressions in such ways;
they cannot compositionally generate mathematical expressions while taking numerical data into
account. For example, consider a situation where a Transformer has generated an expression up to
x2
1 + sin(x2)+. Our analysis implies that Transformers are unable to internally compute which leaf

token (e.g., x1, x2, x3, . . .) would lead to an expression that best fits the input numerical data. The
result indicates that in practice, Transformers generate expressions by some alternative mechanism
instead of generating them in a compositional manner.

We next investigated how NSR methods generate expressions under empirical conditions. We
hypothesized that, in NSR methods, naively using a Transformer for inference leads to reproduction
bias, meaning that models struggle to generate novel expressions not seen during training and instead
tend to generate expressions copied from the training data. Given that the expressions in the training
data typically represent only a small subset of the full space of possible expressions, our hypothesis
implies that standard NSR methods operate within a significantly constrained search space. We
investigated this hypothesis in NSR methods such as NeSymReS (Biggio et al., 2021), a pioneering
work in NSR models. We found that the majority of expressions generated by Transformers are
expressions that were included in the training dataset, which supports our hypothesis of reproduction
bias. Prior work has highlighted NSR methods’ limited generalizability with respect to the range of
numerical data—e.g., models trained on data whose input variable x lies in the interval [−1, 1] often
fail when evaluated on inputs from the wider interval [−2, 2] (Li et al., 2024; Shojaee et al., 2023).
However, the reproduction bias that we identify is orthogonal to this phenomenon, and represents an
even more fundamental limitation: NSR models often fail to generalize even within their training
domain. This work is the first to show that standard NSR models primarily copy training expressions
instead of composing familiar components into genuinely novel formulas.

Towards the end of this paper, we explore methodologies to mitigate the reproduction bias of standard
NSR models and improve numerical accuracy. We focus particularly on test-time strategies and
investigated how they affect reproduction bias and numerical accuracy. We compared three strategies:
decoding with a large beam size, decoding using MCTS, and providing verification feedback at the
subtree level. The last strategy is a new method that we propose, which we refer to as neural symbolic
regression guided by verified subtrees (NSR-gvs). We found that providing new information to the
model during test-time leads to generating expressions beyond the training dataset. However, we also
identified cases where reproduction bias was mitigated but numerical accuracy decreased, as well
as cases where numerical performance improved despite little alleviation in reproduction bias. We
conclude this paper by discussing the underlying causes of these differences across varying types of
test-time strategies.

The contributions of our work are summarized as follows:

• We conducted a theoretical analysis and formally show that Transformers lack the ability to
compositionally generate expressions while accounting for numerical data.

• We empirically demonstrate, under various settings, that naively applying a Transformer to
symbolic regression leads to reproduction bias.

• We compared varying test-time computing strategies and analyzed how such strategies affect
reproduction bias and numerical accuracy.

2 RELATED WORK

Several approaches to symbolic regression exist, such as GP, brute force algorithms, reinforcement
learning, and NSR. Since our study focuses on analyzing and improving NSR methods, we mainly
describe NSR in detail in this section, and provide explanation for other symbolic regression methods
in Section F.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison between our work and other major NSR studies
NSR Methods Automatic Direct Information Assessing

Training Data Constant Added During Reproduction Bias
Generation Prediction Test-time

Biggio et al. (2021) ✓ - - -
Kamienny et al. (2022) ✓ ✓ - -
Shojaee et al. (2023) ✓ ✓ MCTS Feedback -

Li et al. (2024) - - Historical Context -
Bendinelli et al. (2023) ✓ - Prior Knowledge -

Ours (NSR-gvs) ✓ - Verified Subtrees ✓

Traditional symbolic regression methods such as GP generate each equation from scratch, resulting
in long inference times, with equation generation potentially taking hours. In order to achieve a
shorter inference time, studies such as NeSymReS (Biggio et al., 2021) and SymbolicGPT (Valipour
et al., 2021) carried out large scale pre-training of Transformers. In these studies, an artificial dataset
consisting of millions of randomly generated equations was used for training. These methods, often
categorized as NSR, can generate an expression in just a few seconds, significantly reducing inference
time compared with other approaches.

In the recent years, a number of studies, summarized in Table 1, have focused on enhancing NSR
methods. Studies such as (Kamienny et al., 2022) and (Vastl et al., 2024) proposed an end-to-end
approach using a Transformer model to directly predict full mathematical expressions including
constants, whereas previous methods followed a two-step procedure where constant fitting had to
be done separately. Lalande et al. (2023) analyzed several different architectures to find the suitable
encoder architecture for NSR. Shojaee et al. (2023) focused on improving the decoding strategy
for NSR, incorporating the MCTS algorithm during the generation of expressions. In their study,
Li et al. (2024) trained a Transformer model to imitate the process of improving mathematical
formulas, as performed in the reinforcement learning-based approach proposed by Mundhenk et al.
(2021). Bendinelli et al. (2023) proposed a model called NSRwH that enables incorporating prior
knowledge, which is often available during application in scientific research. For example, scientists
may anticipate symmetries between variables or expect certain partial expressions to appear in the
mathematical laws governing the data. NSRwH adds a dedicated encoder that processes such prior
knowledge, allowing the model to generate expressions that are consistent with both the numerical
data and the provided prior knowledge.

More recently, there has been growing research on methods that iteratively refine mathematical
expressions, most of which rely on large language models (LLMs) rather than pre-trained Transformer
models. These methods are similar to NSR-gvs, one of the test-time computation approaches
considered in this paper, in that they iteratively improve their outputs by incorporating feedback
from the generated expressions. In (Merler et al., 2024) and (Sharlin & Josephson, 2024), the
authors introduce approaches in which a base equation structure is generated using LLMs, and
the equation is subsequently improved iteratively by receiving feedback from external numerical
solvers. While Shojaee et al. (2023) follows a similar methodology, it incorporates supplementary
descriptions regarding the variables in the prompt, facilitating more effective use of the LLM’s
scientific knowledge. Grayeli et al. (2024) proposes a method that uses an LLM to identify “concepts”
representing features of high-performing expressions and leverages them to further evolve a set of
equations. Zhang et al. (2025) introduces an iterative algorithm that replaces features of suboptimal
expressions at each step while incorporating relevant expressions as needed. Pre-training-free methods
described above may have the potential to address some of the limitations of conventional NSR
approaches. On the other hand, using a pre-trained Transformer, as opposed to an LLM, offers
certain advantages similar to those of small language models (SLMs), such as keeping the model
size manageable and enhancing domain specificity through careful design of the training data. For
these reasons, we believe that conducting a deeper analysis of pre-trained Transformer-based NSR
and exploring ways to improve it remains a valuable research direction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PROBLEM FORMULATION

We formalize NSR as the problem of learning a parameterized symbolic regressor Sθ that maps a
numerical dataset D to a symbolic expression ê = Sθ(D). The learning algorithm is formulated as
minimizing a loss that measures how well ê matches the ground-truth expression e∗ underlying D.
In this section, we specify how synthetic training pairs (e∗,D) are generated in NeSymReS (Biggio
et al., 2021), since it is the foundational work underlying our research.

3.1 SYNTHETIC EXPRESSION DISTRIBUTION

We first sample a random binary–unary tree whose internal nodes are operators and whose leaves are
variables.

Let V = {x1, . . . , xd} be a finite set of variables, Obin the binary operators (e.g., {+, −, ×, ÷}),
and Oun the unary operators (e.g., {sin, cos, log, exp}). Denote by C = [cmin, cmax] ⊂ R the
interval from which numeric constants are drawn. The complete vocabulary for the expression is
Σ = V ∪ Obin ∪ Oun ∪ C.

Let E be an expression space and pE be the generator of symbolic expressions employed in NeSymReS
(Biggio et al., 2021). We also denote by pTree the generator of unary-binary trees introduced by
Lample & Charton (2019). We write e∗ ∼ pE for the following procedure.

1. Draw a random binary-unary tree T ∼ pTree.

2. Assign internal nodes independently and uniformly from Obin ∪Oun, and leaves uniformly
from the variable set V , resulting in a template expression etempl.

3. For each unary operator u, sample a constant cmul from distribution Dmul and replace u
with cmulu; otherwise keep the unary operator as is.

4. For each variable x, sample a constant cmul from distribution Dmul and a constant cadd from
distribution Dadd and replace x with cmulx+ cadd; otherwise keep the variable as is.

5. The resulting expression is the final e∗ ∈ E .

3.2 SYNTHETIC DATASET GENERATION

Given an expression e∗, we construct the dataset

D = { (xi, yi) }ni=1, xij ∼ U([xmin,j , xmax,j]) for j = 1, 2, . . . , d, yi = e∗(xi).

Where {[xmin,j , xmax,j]}dj=1 denotes the intervals for each independent variable. The joint distri-
bution of training pairs is therefore (e∗,D) ∼ pE × G, where G denotes the above stochastic data
generation process.

We now denote by Γ = V ∪Obin ∪Oun ∪ {C, END} the vocabulary for token sequences, where C is
a placeholder token to represent constants, and END denotes the explicit end-of-sequence marker. The
vocabulary Γ is slightly different from Σ since continuous numeric constants cannot be represented
with a finite number of tokens.

Let seq : E −→Γ∗ be a serialization map that converts any symbolic expression into its unique prefix
token representation. For a ground–truth expression e∗ ∈ E we set

s∗ = seq
(
e∗
)

= (s∗1, . . . , s
∗
L), L := |s∗|.

The predictive distribution qθ(· | s<j ,D) is realized by an encoder–decoder Transformer
parametrized by θ. Conditioned on the dataset D (encoded by the encoder) and the previously
emitted prefix s<j , the decoder outputs a probability over the next token sj ∈ Γ.

The token-level loss for a single training pair (e∗,D) is then

Ltok

(
e∗;θ

)
= −

L∑
j=1

log qθ(s
∗
j | s∗<j , D). (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Note that, in practice, the training dataset is the collection of etempl, and both e∗ and D are generated
dynamically during training. Further details concerning the work of NeSymReS (Biggio et al., 2021)
are described in Appendix A.

4 THEORETICAL ANALYSIS ON EXPRESSION GENERATION ABILITY OF
TRANSFORMERS

Transformer-based symbolic regression tend to suffer from low performance, particularly when the
number of input variables is large. In this section, we explore the theoretical basis of this limitation.
Ideally, Transformers should be able to generate tokens in a compositional manner, while maximizing
the probability for the final expression to fit the numerical data. However, we show that Transformers
inherently lack the capacity to generate expressions compositionally while accounting for their
numerical characteristics. We introduce a simplified version of the symbolic regression task and show
that Transformers are not expressive enough to solve the task.

We define the last-token prediction problem as the task of predicting the most suitable final token in
an otherwise complete mathematical expression. Although predicting the entire optimal expression is
NP-hard Virgolin & Pissis (2022), this task is much easier since the search space is limited to several
leaf tokens. We present a formal definition of this task in the following.

We first introduce expr : Γ∗ × R(d+1)∗n−→E , a function that maps a token sequence s to the most
appropriate expression es that can be represented by s, taking numerical data D into account. Since
the token sequence may contain the placeholder token C representing constants, the mapping is
tasked with identifying the optimal values for these constants and transforming the sequence into a
corresponding expression tree.
Definition 1 (Last-token prediction problem). Given numerical data D of n features-value pairs
(xi, yi) ∈ Rd × R, a metric L : Rn × Rn → R, and an incomplete token sequence s̃ that forms a
prefix representation of an expression when terminated with a leaf token, the last-token prediction
problem asks for finding a leaf token u∗ such that:

u∗ = argmin
u∈Γ

L(y, e(̃s,u)(x)),

where e(̃s,u) = expr((s̃, u),D) with (s̃, u) representing the concatenation of sequence s̃ and token u.
When the length of s̃ = m, we denote this problem as LastTokenPrediction(m).

For the analysis, we assume a bounded-depth log-precision Transformer as in (Feng et al., 2023;
Merrill & Sabharwal, 2023b;a; Strobl, 2023), a realistic setting where the intermediate computation
values of the Transformer are limited to O(log k) bit precision, with k denoting the maximal length
of the input sequence. We now present the theoretical result stating that Transformers with bounded
size cannot solve the last-token prediction problem.
Theorem 1. Assume TC0 ̸= NC1. For any integer D and any polynomial Q, there exists a problem
size m such that no log-precision Transformer defined in Section E.1 with depth D and hidden
dimension d ≤ Q(m) can solve LastTokenPrediction(m).

We show the above theorem by leveraging circuit complexity theory. Specifically, TC0 and NC1

are types of circuit complexity classes, and it is generally conjectured that TC0 ⊊ NC1. Prior work
(Merrill & Sabharwal, 2023b) shows that log-precision Transformers can be simulated with TC0

circuits. We provide a proof for the above theorem by showing that the complexity of the last-token
prediction problem is lower bounded by NC1. Detailed specifications of the problem setting and
proof of the theorem are provided in Appendix E.

Although the final token of a mathematical expression is arguably the easiest to predict among its
components, the above theorem shows that even this seemingly simple task presents substantial
difficulties for Transformer models.

5 EXPLORING REPRODUCTION BIAS IN NSR

In Sec. 4, our theoretical analysis showed that Transformers lack the ability to generate
expressions in a compositional manner while accounting for numerical data. Given the limitations

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: (Left) Percentage of expressions beyond the training dataset generated by NeSymReS on
the not_included dataset. Throughout the training procedure, NeSymReS can hardly generate
expressions that are not included in the training data, indicating strong reproduction bias. (Right)
NeSymReS exhibits strong fitting performance on the baseline dataset but performs poorly on
expressions from the not_included dataset, whose tree structures are absent from the training
data. The result indicates the severe effect of reproduction bias on numerical accuracy.

of Transformers described above, this section empirically analyzes how expressions are actually
generated by NSR models. When generating expressions in an auto-regressive manner, a seemingly
appropriate strategy would be to compositionally produce the next token that maximizes accuracy,
conditioned on both the previously generated partial expression and the numerical data. However,
our theoretical analysis from the last section showed that Transformers lack the ability to do so,
bringing us to the following question: How, in practice, does a transformer generate expressions
during inference? In this section, we empirically analyze how expressions are actually generated by
NSR models. We demonstrate that NSR models primarily rely on reproduction—that is, they tend to
generate expressions by directly copying those seen in the training data.

5.1 REPRODUCTION BIAS IN SIMPLIFIED SETTING

We first tested how expressions are generated in NeSymReS, which is the method that we mainly
focus on in this study. We examined whether expressions generated by NeSymReS are merely copies
from the training data or newly constructed formulas generated compositionally by the model.

We constructed a simplified training dataset consisting of 100K equations. The allowed operators
were add, sub, sin, cos, tan, and exp, with up to 5 independent variables per equation. We then
trained a NeSymReS model on this dataset for 1, 000 epochs. The variation of operators was limited
due to the complicated training procedure of NeSymReS, where expressions with operators such as
mul or pow are dynamically transformed and presented in different forms across epochs, making it
difficult to judge whether the model’s generated expressions are novel or memorized from training.
The dataset size was also kept relatively small due to computational cost and to balance the size of
the training data against the size of the search space.

As outlined in Section 3, the training dataset for NeSymReS comprises multiple instances of etempl,
each of which is an expression tree without numerical constants. Accordingly, we assessed the
novelty of output expressions at the level of tree structure while ignoring numerical constants.

For evaluation, we constructed two test datasets: not_included and baseline, each containing
150 expressions. For the not_included set, we removed every etempl appearing in the training
data. In contrast, the baseline set was sampled directly from the generator pE without any filtering.
We associated each expression with 100 data points, generated in the same way as during training.
We set the beam size to 5 for this experiment.

To evaluate fitting performance, we used the R2 score, defined as follows. Given a test equation, a
set of n data points {xi, yi}ni=1, and the corresponding model predictions {ŷi}ni=1, the R2 score is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

computed as:

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)
2 where ȳ =

1

n

n∑
i=1

yi.

Note that these m evaluation points are distinct from the inputs provided to the model at test time. By
definition, R2 ≤ 1, and values closer to 1 indicate that the predicted outputs closely match the true
equation. In our experiments, we counted the number of predictions whose R2 exceeds thresholds
of 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, and 0.9999, respectively. This allows us to assess the model’s
ability to fit the data under both moderate and stringent accuracy requirements.

Figure 1 shows the results for NeSymReS under the simplified setting. The left figure demonstrates
NeSymReS’s ability to generate novel expressions using the not_included dataset. As this
dataset comprises instances of etempl unseen in the training data, the model is expected to produce
previously unseen tree structures. However, the result indicates that NeSymReS struggles to generate
expression trees beyond the training data across varying epochs. After 1000 epochs of training, over
97% of the generated expression trees were direct copies from the training data, which highlights the
strong reproduction bias and reveals that the search space of NeSymReS is severely restricted. The
right figure demonstrates how this reproduction bias negatively affects numerical accuracy, where
NeSymReS’s fitting performance on the not_included and baseline datasets are compared.
The results indicate a substantial drop in performance for expressions whose tree structures are
not present in the training data, compared with those sampled randomly. This suggests that for
expressions not seen during training, the model’s reproduction bias directly leads to poor numerical
accuracy. This result also helps explain why NSR methods often fail to achieve high performance
on expressions with many input variables; an increase in the number of input variables leads to an
expanded search space, thereby increasing the likelihood that a given expression is absent from the
training set.

5.2 REPRODUCTION BIAS IN PRACTICAL SETTING

Figure 2: Reproduction Bias in transformer4sr
under practical setting. Even for practical settings,
the majority of generated expressions are expres-
sions copied from the training data.

Due to the complicated training procedure of
NeSymReS, the above analysis was carried out
in a simplified setting. To examine whether re-
production bias is a general phenomenon, we
conducted an additional analysis in a more prac-
tical setting using transformer4sr (Lalande et al.,
2023), a method similar to NeSymReS but with
a simpler training process. In transformer4sr, no
dynamic transformations of expressions are ap-
plied during training, which makes it much eas-
ier than in NeSymReS to verify whether the gen-
erated expressions are included in the training
data. We were also able to analyze the novelty
of the expressions not only in the tree-structure
(excluding constants) level, but also taking into
account the position of the constant placeholder
tokens.

In this experiment, we followed the model ar-
chitecture, training data size, number of epochs,
operator selection, and inference strategies de-
scribed in Lalande et al. (2023). We constructed
a training dataset consisting of 1.5M equations and the model was trained for 100 epochs. We used
the full set of operators, which are add, mul, cos, log, exp, neg, inv, sqrt, sq (squared),
cb (cubed), and the number of independent variables were 6. We constructed a test set similar to
not_included in the previous analysis, which consists of 300 expressions that were not included
in the training data.

Figure 2 shows the result for transformer4sr’s ability to generate expressions beyond the training
data. After 100 epochs of training, less than 12% of the expressions generated by transformer4sr
were novel expressions (taking into account the position of the constant placeholder tokens) beyond

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the training data, and less than 6% of the expressions had novel tree structures (excluding constants).
The result demonstrates that reproduction bias persists even under more practical settings.

6 CAN TEST-TIME STRATEGIES MITIGATE REPRODUCTION BIAS?

The results from the previous section indicate that the search space of NeSymReS is mostly confined
to expressions seen during training due to reproduction bias. Since our theoretical analysis indicates
that naively performing next-token prediction makes it difficult to generate novel expressions in
a compositional manner, we investigated the possibility of devising inference-time computational
techniques to reduce reproduction bias in this section. Our hypothesis is that providing the model
with hints about which tokens are appropriate could help steer the model to generate expressions that
were not included in the training data. We begin by briefly introducing the three test-time strategies
employed in our experiments. The detailed explanation for the strategies are presented in Section B.

6.1 TEST-TIME STRATEGIES

Decoding with large beam size. Beam search serves as the default decoding strategy employed by
NeSymReS. During decoding, Given a beam size of b, the decoding process generates b candidate
sequences via beam search. Each candidate’s constant placeholders are subsequently optimized
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2000). The expression
exhibiting the highest numerical accuracy on the test data is then selected as the model’s output.
While the experiments in Section 5.1 used a beam size of b = 5, in this section we conducted
experiments with a larger beam size of b = 150. Since increasing the beam size does not provide the
model with any additional information, our hypothesis is that simply adopting a decoding strategy
with a larger beam size will not alleviate reproduction bias.

Figure 3: Overview of NSR-gvs’s inference proce-
dure. We first sampled subtrees from the candidate
pool, then supplied them to the model together
with numerical data. Then, the generated predic-
tion is numerically verified and the self-verification
feedback is used to update the candidate pool. This
procedure is performed repeatedly to generate bet-
ter predictions over time.

Transformer-based planning for symbolic re-
gression (TPSR). TPSR (Shojaee et al., 2023)
is a method that leverages MCTS during decod-
ing time. In TPSR, the process starts by prepar-
ing a pre-trained NSR model (e.g., the NeSym-
ReS model). Instead of relying on standard de-
coding methods like beam search, the method
generates tokens using MCTS, where both the
expansion and evaluation stages of MCTS lever-
age the pre-trained NSR model. In the expan-
sion phase, to avoid unnecessary exploration,
the set of expandable tokens is restricted to the
top-kmax candidates based on the logits from the
NSR model. During the evaluation phase, the
NSR model first completes the remainder of the
expression following the expanded token. The
completed expression is then evaluated primar-
ily based on its fitting accuracy, with additional
consideration given to its complexity. In the ex-
periments presented in this section, we used the
default hyperparameter settings of TPSR as spec-
ified in the original paper; we set the number of
rollouts to r = 3, the number of expandable to-
kens to kmax = 3, and beam size for expression
completion to b = 1.

NSR-gvs. TPSR provides feedback to the
model by assigning a reward to each token, re-
flecting the quality or appropriateness of that
token. In contrast, we hypothesized that incor-
porating feedback at the subtree level as well
may have a positive effect on the model. To this end, we propose NSR-gvs, a method grounded in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the following intuition: expressions that fit the same numerical data well are likely to share common
substructures.

We first trained a slightly modified version of the NeSymReS model, where the model takes subtrees
as prompts and generates expressions that incorporate them. We achieved this by extracting subtrees
from the ground-truth expressions and feeding them to the model together with numerical data during
training. Figure 3 illustrates the inference procedure of NSR-gvs. We generated multiple predictions
iteratively by augmenting the model with varying prompts. For each iteration, we first sampled
subtrees from a pool of candidate subtrees, which were extracted from high-performing expressions
in previous predictions. To maintain output diversity, we also occasionally sampled subtrees from a
random distribution. We then provided the sampled subtrees to the pre-trained model as prompts,
along with the numerical data. After the model generates a prediction, it is automatically verified
according to the fitting accuracy on the test data. Finally, the pool of candidate subtrees are updated
based on the results of self-verification. This method can be formulated within the framework of
reinforcement learning, and we provide a more detailed explanation in Appendix. B.

We conducted experiments in this section using 30 iteration loops per expression, with the beam size
b = 5 for generating each prediction. In addition, we experimented with a method that combines
NSR-gvs with TPSR; in this approach, each prediction is produced via MCTS-based decoding instead
of simple beam search.

6.2 RESULTS

Figure 4: Evaluation of test-time strategies on the
not_included dataset. The x-axis represents the per-
centage of expressions generated that were not included in
the training data. The y-axis shows the proportion of expres-
sions that exceeded the R2 thresholds of 0.5, 0.9, 0.95, 0.99,
0.999, 0.9999 and 0.99999, respectively.

We evaluated the impact of each test-
time strategy on reproduction bias
and numerical accuracy in a exper-
imental setting. The experimental
setup closely follows that described
in Section 5.1. We trained a NeSym-
ReS model and a prompt-augmented
model for NSR-gvs with the same
training dataset for the same number
of epochs. We evaluated the strategies
using the not_included dataset,
where we used the R2 metric to evalu-
ate numerical accuracy, and the num-
ber of novel expressions to evaluate
reproduction bias.

Figure 4 shows how the test-time
strategies perform under the simpli-
fied setting. In terms of the abil-
ity to generate novel expressions,
TPSR, NSR-gvs, and their combina-
tion demonstrate strong performance.
These results imply that strategies in-
volving the provision of additional
information during inference (TPSR
and NSR-gvs) are more effective in reducing reproduction bias. However, the result shows that high
novelty in generated expressions does not necessarily imply high numerical accuracy. In some cases,
acquiring the ability to generate novel expressions leads to a decrease in numerical accuracy (TPSR),
whereas some strategies can improve numerical accuracy despite high reproduction bias (large beam
size).

6.3 DISCUSSION

The experimental results show that while methods such as TPSR, which mitigate reproduction bias,
can lead to a drop in numerical accuracy, decoding with large beam size improves numerical accuracy
despite retaining a high level of reproduction bias. In this subsection, we discuss possible reasons
why such phenomena occur.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Given that the additional information in TPSR and NSR-gvs is derived from self-verification, it
should in theory offer better alternatives beyond the model’s own logits, and is expected to assist
in generating better expressions. Despite providing such useful information, the methods often
under-perform in terms of numerical accuracy compared to the simple strategy of increasing beam
size. This suggests that the Transformer struggles to leverage the additional information effectively,
and in some cases, it might even be negatively impacted by it. For example, when the Transformer
encounters an unfamiliar prefix within an partially constructed expression, it may become confused
and could complete the expression with suboptimal tokens.

We therefore argue that providing additional information at test time in a way that is easy for the
Transformer to leverage is important for developing a truly generalizable NSR approach. Viewed
in this way, the use of subtrees at inference, as in the proposed method NSR-gvs, can be seen as a
potentially valuable approach, since it contributes to mitigating reproduction bias and improving
numerical accuracy.

7 CONCLUSION

In this work, we identified a major drawback of standard NSR models both theoretically and
empirically. Our theoretical analysis shows that Transformers are incapable of generating expressions
in a compositional way, while taking numerical data into account. We then examined the strategies
that Transformers actually employ to generate expressions, and the results suggest that they mostly
generate expressions copied from the training data, highly limiting the search space. We then
demonstrate that incorporating additional information to the model during test-time can reduce
reproduction bias. However, we also show that mitigating reproduction bias does not necessarily
lead to higher numerical accuracy. The main limitation of this work is the absence of a method that
simultaneously mitigates reproduction bias and improves numerical accuracy to a significant extent.
In future work, we aim to build on the findings of this study to design symbolic regression methods
with improved generalizability.

REFERENCES

Ismail Alaoui Abdellaoui and Siamak Mehrkanoon. Symbolic regression for scientific discovery:
an application to wind speed forecasting. In 2021 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 01–08. IEEE, 2021.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Univer-
sity Press, 2009.

Tommaso Bendinelli, Luca Biggio, and Pierre-Alexandre Kamienny. Controllable neural symbolic
regression. arXiv preprint arXiv:2304.10336, 2023.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning, pp.
936–945. PMLR, 2021.

Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda. Operon c++ an efficient genetic
programming framework for symbolic regression. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, pp. 1562–1570, 2020.

Samuel R Buss. The boolean formula value problem is in alogtime. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pp. 123–131, 1987.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36:70757–70798, 2023.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
regression with a learned concept library. Advances in Neural Information Processing Systems,
37:44678–44709, 2024.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87–112, 1994.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrício Olivetti de França, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression methods
and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

Florian Lalande, Yoshitomo Matsubara, Naoya Chiba, Tatsunori Taniai, Ryo Igarashi, and Yoshitaka
Ushiku. A transformer model for symbolic regression towards scientific discovery. arXiv preprint
arXiv:2312.04070, 2023.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena,
Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for deep
symbolic regression. Advances in Neural Information Processing Systems, 35:33985–33998,
2022.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Yanjie Li, Weijun Li, Lina Yu, Min Wu, Jingyi Liu, Wenqiang Li, Meilan Hao, Shu Wei, and Yusong
Deng. Generative pre-trained transformer for symbolic regression base in-context reinforcement
learning. arXiv preprint arXiv:2404.06330, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Matteo Merler, Katsiaryna Haitsiukevich, Nicola Dainese, and Pekka Marttinen. In-context sym-
bolic regression: Leveraging large language models for function discovery. arXiv preprint
arXiv:2404.19094, 2024.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in neural information processing systems, 36:52453–52463, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Samiha Sharlin and Tyler R Josephson. In context learning and reasoning for symbolic regression
with large language models. arXiv preprint arXiv:2410.17448, 2024.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based
planning for symbolic regression. Advances in Neural Information Processing Systems, 36:45907–
45919, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits. arXiv
preprint arXiv:2308.03212, 2023.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. arXiv preprint arXiv:2205.13134, 2022.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Wassim Tenachi, Rodrigo Ibata, and Foivos I Diakogiannis. Deep symbolic regression for physics
guided by units constraints: toward the automated discovery of physical laws. arXiv preprint
arXiv:2303.03192, 2023.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in
Neural Information Processing Systems, 33:4860–4871, 2020.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Martin Vastl, Jonáš Kulhánek, Jiří Kubalík, Erik Derner, and Robert Babuška. Symformer: End-to-end
symbolic regression using transformer-based architecture. IEEE Access, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Marco Virgolin and Solon P Pissis. Symbolic regression is np-hard. arXiv preprint arXiv:2207.01018,
2022.

Marco Virgolin, Tanja Alderliesten, and Peter AN Bosman. Linear scaling with and within semantic
backpropagation-based genetic programming for symbolic regression. In Proceedings of the
genetic and evolutionary computation conference, pp. 1084–1092, 2019.

Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science.
MRS Communications, 9(3):793–805, 2019.

Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In The Twelfth
International Conference on Learning Representations, 2024.

Hengzhe Zhang, Qi Chen, Wolfgang Banzhaf, Mengjie Zhang, et al. Rag-sr: Retrieval-augmented
generation for neural symbolic regression. In The Thirteenth International Conference on Learning
Representations, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 2: Operators used in NeSymReS
Arity Operators

Unary pow2, pow3, pow4, pow5
sqrt, log, exp
sin, cos, asin

Binary add, sub, mul, div

Table 3: Hyperparameters in NeSymReS’s dataset generation
Name Explanation Value

d Dimension for input variables 5
n Number of input points Sampled from U(1, 1000)
Dmul Distribution over multiplicative constants Sampled from LU(0.05, 10)
Dadd Distribution over additive constants Sampled from U(−10, 10)

{xmin,j}dj=1 Lower bound for sampling input variable Sampled from U(−10, 9)
{xmax,j}dj=1 Upper bound for sampling input variable Sampled from U(xmin,j + 1, 10)

A DETAILS FOR NESYMRES

In this section, we present a detailed explanation for the study of NeSymReS that could not be
fully explained in Section 3. We discuss the details of the dataset generation process, the model
architecture, and the training procedure.

Generating the dataset. In the first step for generating the expression e∗, the unary-binary tree
structure T is generated randomly within the limits of a maximum depth of 6. In the third step, the
total number of constants added to the expression is also limited to a maximum of 6. The binary and
unary operators Obin ∪ Oun are shown in Table 2. Other hyparparameters are specified in Table 3,
where LU denotes the log-uniform distribution.

Model architecture. The NeSymReS model consists of two architectural components: the nu-
merical encoder encnum and a decoder dec. The numerical encoder processes the numerical data
D, represented as a tensor of shape (b, n, d), where b denotes the batch size, n the number of input
points, and d the sum of dependent and independent variables. First, an embedding layer converts the
numerical data into a higher dimensional tensorD′ of shape (b, n, h). This tensor is then processed by
a 5-layer set-transformer (Lee et al., 2019) encoder that outputs a new tensor Znum of shape (b, s, h),
where s denotes the number of embedding vectors produced by the encoder. The resulting tensor
Znum is subsequently passed to the decoder dec, a five-layer standard Transformer decoder that
auto-regressively generates the corresponding expression token by token. We set b = 200, h = 512,
and s = 32 for our experiments.

Details for training. During training, cross-entropy loss is used as the objective function, and
teacher forcing (Sutskever et al., 2014) is applied during next-token prediction. The AdamW
(Loshchilov & Hutter, 2017) optimizer is employed with an initial learning rate of 10−4. After 4000
steps, the learning rate is adjusted proportionally to the inverse square root of the number of steps
taken.

B DETAILS FOR TEST-TIME STRATEGIES

This section is devoted to supplementing the details that were not fully covered in Section 6. We first
supplement our explanation of TPSR, followed by a detailed formulation of NSR-gvs.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.1 TPSR

We detail the exact procedure for computing the reward in TPSR. As explained in Section 6, the
reward is mainly calculated based on the generated expression’s numerical accuracy, with additional
consideration given to its complexity. In TPSR, a hyperparameter λ controls the balance between
fitting accuracy and complexity. Given a set of n data points {xi, yi}ni=1, and a candidate prediction
f̃ , the reward r(f̃(·) | x,y) is calculated as follows:

r(f̃(·) | x,y) = 1

1 + NMSE(y, f̃(x))
+ λ exp

(
−|seq(f̃)|

L

)
,

where seq is the serialization mapping introduced in Section 3, L denotes the the model’s maximum
sequence length, and NMSE represents the normalized mean square loss. In our work, we always set
λ to 0.01, which is the default value in the original study of TPSR.

B.2 NSR-GVS

As described in Section 6, NSR-gvs is a method that iteratively improves its predictions by providing
expression subtrees as prompts to the model and receiving feedback through verification. In this
section, we formulate the training and inference procedures of NSR-gvs within the framework of
reinforcement learning.

B.2.1 TRAINING

We first introduce a prompt-conditioned symbolic regressor S′
θ defined by parameters θ, that maps a

numerical dataset D and an auxiliary prompt sequence p to a symbolic expression ê = S′
θ(D,p).

Learning aims to align ê with the ground-truth expression e∗ underlying D. Among the elements of
the synthetic training tuple (e∗,D,p), the generation of e∗ and D is the same as explained in Section
3. Here we specify how prompt sequences are constructed.

We first define extract : E −→ P(E) as a stochastic mapping, which assigns to each symbolic
expression e ∈ E a probability distribution over the subtrees of e. The space P(E) denotes the power
set of expressions.

Using this stochastic mapping, we first obtain N subtrees {e′i | e′i ∼ extract(e∗), i = 1, 2, . . . , N}
from the ground-truth expression e∗. Then, each of the subtrees are converted to token sequences
{ti | ti = seq(e′i), i = 1, 2, . . . , N}using the serialization map seq. Given an expression e∗, we
construct the prompt:

p = (τstart, t1, τend, τstart, t2, τend, . . . , τstart, tN , τend),

where tokens τstart and τend are partition tokens representing the beginning and end of each subtree
representation.

Similar to the formulation in Section 3, the predictive distribution q′θ(· | (p, s<j),D) is realized by
an encoder-decoder Transformer parametrized by θ. In NSR-gvs, however, the decoder is conditioned
on (p, s<j), which is the concatenation of the prompt p and previously emitted prefix s<j .

B.2.2 INFERENCE

During inference, we guide the symbolic regressor S′
θ by prompting it with expression subtrees,

which are obtained by a self-verification process. We formalize the inference-time mechanism of
NSR-gvs within the framework of a Markov Decision Process (MDP). The core components of the
MDP are defined as follows:

State space S and action space A. The state at time t is denoted by st ∈ S . The state is defined as
st = {(e′i, zi, ci) | i = 1, 2, . . . , nt}, which is a nt-sized set comprising tuples of subtrees e′i ∈ E , its
corresponding verification scores zi ∈ R, and its appearance count ci ∈ N. Therefore, the state space
can be represented as S = P(E × R× N). The action at ∈ A is a prompt sequence described in the
previous subsection. The action space is represented as A = (Γ ∪ {τstart, τend})∗.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters in NSR-gvs
Name Explanation Value

k Size of high-scored subtree set E′
topk 39

krand Size of randomly sampled subtree set E′
rand 9

zthres Threshold value for high-scored subtrees 0.213
lmax Maximum length of a subtree’s representation 9
lt Total length of the subtrees’ representation Sampled from U(0, ⌊15.58 + 0.42t⌋)

Policy π(at | st). We define a stochastic policy to sample an action at from the current state st. An
action is sampled following the procedure below.

First, we deterministically select a set of subtrees E′
topk, consisting of the top k subtrees with the

highest verification scores in state st, as follows:

E′
topk = {e′i | (e′i, zi, ci) ∈ stopk, i = 1, 2, . . . , k}, where stopk = argmax

s⊆st, |s|=k

∑
(e′,z,c)∈s

z.

Subsequently, we filter out subtrees whose corresponding score z is smaller than a threshold value
zthres. The purpose of this operation is to prioritize exploration over exploitation when the quality of
obtained subtrees are poor.

Next, we construct a set E′
rand by extracting krand subtrees from expressions sampled from the

expression generator pE :

E′
rand = {e′i | e′i ∼ extract(e), e ∼ pE , i = 1, 2, . . . , krand}.

Finally, we uniformly sample a set of subtrees from the merged set E′
topk∪E′

rand and convert them to
tokens in the same way as during training time, resulting in a prompt sequence at. During sampling,
we filter out subtrees whose token representation is longer than lmax, and we sample subtrees until
the total length of the subtrees’ token representation exceeds the limit lt.

By sampling from both the self-verification-based set E′
topk and the randomly obtained set E′

rand,
the policy enables both exploration and exploitation. The hyperparameters k, krand, zthres, lmax, and
lt characterize the policy.

Reward function R(at, st) and transition probability T (st+1 | at, st). After an action at is
sampled, it is provided to the prompt-conditioned symbolic regressor S′

θ together with numerical
data D. We compute the reward based on the numerical accuracy of the prediction ê = S′

θ(D, at).
Let L : Rn × Rn → R be a metric to evaluate the difference between two vectors (in practice, we
use the R2 value described in Section 5). When D = {(xi, yi)}ni=1, the reward is computed as:

R(at, st) = L(y, ê(x)).

Finally, we define the transition probability T (st+1 | at, st), determined by the following process.
We denote by Ê′ the set comprising all subtree expressions of ê. For each subtree ê′ in Ê′, we update
st so that the verification score of each subtree matches the average reward of all expressions that
included the subtree, as described below.

1. If ∀(e′, z, c) ∈ st, ê
′ ̸= e′ holds, add the tuple (ê′, R(at, st), 1) to st.

2. If ∃(e′, z, c) ∈ st, ê
′ = e′ holds, replace the tuple (ê′, z, c) with (ê′,

cz +R(at, st)

c+ 1
, c+ 1).

The updated state serves as the state st+1 at the next timestep t+ 1.

The overall algorithm during inference-time is detailed in 1. For the hyperparameters that characterize
the policy, we use the values shown in Table 4, which were tuned via Bayesian optimization on 5
randomly generated expressions. The function ⌊·⌋ indicates the floor function, which rounds down
the input to its nearest integer.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Inference-time Algorithm
function VERIFY(e, D)

(X,y)← D
ŷ← e(X)
Compute R2 score between y and ŷ
return R2

function UPDATE(e, st, R2)
E′

p ← Partial expressions extracted from e
st+1 ← []
for (ep, z, c) in st do

if ep ∈ E′
p then

z ← cz +R2

c+ 1
c← c+ 1

Append (ep, z, c) to st+1

return st+1

procedure NSR-GVS-INFERENCE(D)
s1 ← []
ebest ← None
R2

best ← −∞
for t← 1 to T do

if t = 1 then
at ← []

else
E′

topk ← Top k expressions in st with high score
Filter out expressions in E′

topk whose corresponding score z < zthres
E′

rand ← Randomly sampled partial expressions
E′

merged ← E′
topk ∪ E′

rand

at ← Uniformly sampled subset from E′
merged, converted to tokens

s← Transformer(D, at)
Convert sequence s to expression e
R2 ← Verify(e,D)
st+1 ← Update(e, st, R

2)
if R2 > R2

best then
ebest ← e
R2

best ← R2

return ebest

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C DETAILS FOR EXPERIMENTS, IMPLEMENTATION, AND USE OF LLMS

In this section, we describe the details for the experiments conducted in Section 5, 6, and D. We
also provide details regarding our implementation and the computational resources used in our
experiments.

We provide the model with 100 data points in all experiments. We selected the range of the data
support as follows: for the AI Feynman dataset, we used the support defined by the dataset itself. For
all other datasets, we sampled the support range using the same procedure as used when generating
the training data. For error bars, we report the standard deviation across three different random seeds.
For the method combining NSR-gvs and TPSR, however, we conducted experiments with only a
single seed due to the long inference time. Our implementation for data generation, model training,
and related components is based on the original implementation of NSRwH 1. For the transformer4sr
and TPSR experiments, we used the official implementation provided by the authors 2, 3. For both
implementations, we used the version of the implementation that was available on May 15. 2025. We
trained and tested the model on a single NVIDIA A100 GPU. Training requires approximately 24
hours either for 1000 epochs on a dataset with 100, 000 expressions or for 10 epochs on a dataset
with 10 million expressions. The time required to generate a single expression at test time is less than
one minute when using only NeSymReS or NSRwH, approximately 3 to 10 minutes with TPSR or
NSR-gvs, and around 2 to 5 hours when combining TPSR with NSR-gvs.

We used large language models (LLMs) to aid writing and coding, where we mainly used Gemini 2.5
Flash and GPT-5 to generate code and check on errors in writing.

D ADDITIONAL EXPERIMENTS

D.1 VARYING THE TRAINING DATASET SIZE IN TRANSFORMER4SR

In Section 5, we tested whether reproduction bias occurs in the practical setting of transformer4sr.
Although the dataset size that we tested on was fairly large (1.5M expressions), there is a possibility
that further scaling the dataset size alone can mitigate reproduction bias. We therefore construct
multiple training datasets with varying size to examine how reproduction bias trends as the dataset
size increases. We construct datasets with the size ranging from 100K to 1.5M and present the result
in Figure 5. The result shows that increasing the training dataset size does mitigate reproduction bias
at the start, but not necessarily after a certain limit to the training dataset size.

D.2 NUMERICAL ACCURACY IN PRACTICAL SETTINGS

We additionally evaluate and compare the numerical performance of the test-time strategies under
conditions that better reflect practical applications. A total of 10 million expressions were used to
construct the training dataset, employing all operators described in Section A without any restriction
on operator types. We trained both a NeSymReS model and a prompt-augmented model on this
dataset for 10 epochs. For the test datasets, we prepared the following two sets:

• AI-Feynman. This dataset consists of 91 equations with up to five independent variables,
extracted from the AIFeynman database (Udrescu & Tegmark, 2020). It is commonly used
in various studies to assess the performance of symbolic regression methods.

• only_five_variables_nc. This dataset consists of expressions containing exactly
five independent variables, making it a challenging dataset. The “nc” designation indicates
that the expressions do not include constants, which simplifies the problems slightly; how-
ever, it remains more difficult than the first dataset. The dataset was constructed by sampling
expressions from pE , filtering for expressions that include exactly five variables, and finally
deleting its constants. This dataset is derived from the study of NSRwH (Bendinelli et al.,
2023), and we use the first 100 expressions for evaluation.

1https://github.com/SymposiumOrganization/ControllableNeuralSymbolicRegression
2https://github.com/omron-sinicx/transformer4sr
3https://github.com/deep-symbolic-mathematics/TPSR

17

https://github.com/SymposiumOrganization/ControllableNeuralSymbolicRegression
https://github.com/omron-sinicx/transformer4sr
https://github.com/deep-symbolic-mathematics/TPSR

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: Reproduction bias in transformer4sr with varying training dataset sizes. While small
training dataset sizes (100K, 200K) exhibit stronger reproduction bias, scaling the training dataset
size does not necessarily mitigate reproduction bias after a certain limit.

• black-box. We also evaluated on numerical data collected from the real world, whose
ground-truth expressions do not exist. We extracted 35 expressions from the black-box
dataset in SR-Bench (La Cava et al., 2021) whose number of independent variables are
five or less. The data are often noisy and may be sampled from a range different from the
numerical data that the models were trained on, making the task challenging for the test-time
computation methods.

Figure 6 demonstrates how the different test-time strategies perform under more practical settings.
TPSR relatively performs slightly better than in the controlled setting; however, the general pattern
of numerical accuracy remains consistent. These results demonstrate that, even in practical settings,
test-time strategies that mitigate reproduction bias do not always result in better performance.

The result for the black-box dataset is shown in Figure 7. Consistent with the results above,
NSR-gvs improves performance, and combining it with TPSR leads to further gains. This result show
how NSR-gvs can improve performance robustly even on noisy datasets with the range of numerical
data different from training time. TPSR also improves performance to a certain extent in this case.

D.3 TRADE-OFF BETWEEN PERFORMANCE AND COMPUTATIONAL COST

The results in Section 6 show how the relationship between reproduction bias and numerical accuracy
differ between various test-time strategies. However, test-time strategies also differ in terms of the
computational cost required to generate an expression. In this section, we aim to better understand
each test-time strategy by analyzing the trade-off between performance and the computational cost of
expression generation. We also varied the beam size during decoding for NeSymReS, TPSR, and
NSR-gvs for a more comprehensive analysis. We tested under the controlled setting described in
Section 5, using the not_included dataset as the test dataset.

To measure the computational cost, we followed the approach of Shojaee et al. (2023) and used the
number of candidate expressions generated by the model during the generation of a single equation.
For example, this value corresponds to the beam size in NeSymReS, the number of total rollouts
multiplied by beam size in TPSR, and the number of iteration loops multiplied by beam size in
NSR-gvs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: Comparison of test-time strategies under practical settings. The figure on the left shows
the performance on the AI-Feynman dataset, and the figure on the right presents results on the
only_five_variables_nc dataset.

Figure 7: Comparison of test-time strategies under practical settings. The figure shows the perfor-
mance on the 35 expressions with less than five independent variables extracted from the black-box
dataset in SR-Bench.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Trade-off between performance and computational cost for different test-time strategies. We
varied the beam sizes for each model as follows: {1, 5, 50, 100, 150} for NeSymReS, and {1, 3, 5}
for both NeSymReS+TPSR and NSR-gvs. For NSR-gvs+TPSR, we only experimented with beam
size set to 1. The left figure shows the trade-off between the ability to generate expressions and
computational cost, while the right figure shows the trade-off between numerical accuracy and
computational cost.

We present the results in Figure 8. It can be observed that, unlike NeSymReS—where larger beam size
yields only limited reduction in reproduction bias—TPSR and NSR-gvs achieve notable reductions
in reproduction bias at comparable computational costs. However, in terms of numerical accuracy,
simply increasing the beam size in NeSymReS yields better performance than using NSR-gvs or
TPSR at a comparable computational cost. The results support the conclusion in Section 6 that the
reduction of reproduction bias is only weakly correlated with numerical accuracy.

D.4 CAN NSRWH ALSO MITIGATE REPRODUCTION BIAS?

When researchers in fields of natural sciences or engineering model their experimental data, they
often make use of prior knowledge. For example, scientists may anticipate a symmetry between
variables or predict that a particular operator appears in the mathematical laws describing the data.
NSRwH (Bendinelli et al., 2023) is a method that enables incorporating such prior knowledge into
the NeSymReS model. The types of prior knowledge provided to the model include the following:

• Complexity. The complexity of an expression is defined by the number of tokens used in the
expression’s token sequence. The model is provided with the complexity of the ground-truth
expression.

• Symmetry. The presence or absence of symmetry among the input variables is provided to
the model.

• Positives. Subtrees appearing in the ground-truth expression are provided to the model.
Additionally, the value of constants appearing in the ground-truth expression may also be
provided.

• Negatives. Subtrees that do not appear in the ground-truth expression are provided to the
model.

In NSRwH, prior knowledge is encoded by an additional symbolical encoder encsym. The output of
the symbolical encoder is summed together with the output of NeSymReS’s numerical encoder and is
fed to the decoder.

While prior knowledge is required beforehand to use NSRwH, it is a method that provides the model
with additional information during inference, similar to TPSR and NSR-gvs. In this section, we test

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Evaluation of NSRwH on the not_included dataset. The x-axis represents the per-
centage of expressions generated that were not included in the training data. The y-axis shows the
proportion of expressions that exceeded the R2 thresholds of 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999 and
0.99999, respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Breakdown of generated expressions by novelty and high accuracy (R2 > 0.99) across
test-time strategies

Test-time Strategy Novel, Novel, Not Novel, Not Novel,
R2 > 0.99 R2 ≤ 0.99 R2 > 0.99 R2 ≤ 0.99

NeSymReS (BS=1) 0.45 2.89 12.92 83.74
NeSymReS (BS=5) 0.67 2.23 17.59 79.52
NeSymReS (BS=50) 4.23 2.23 25.17 68.38

NeSymReS (BS=100) 4.45 2.45 26.72 66.37
NeSymReS (BS=150) 6.25 3.79 26.33 63.62

NeSymReS + TPSR (BS=1) 0.45 27.17 14.70 57.69
NeSymReS + TPSR (BS=3) 0.67 29.62 18.04 51.67
NeSymReS + TPSR (BS=5) 2.02 34.31 18.16 45.51

NSR-gvs (BS=1) 4.91 38.18 14.05 42.86
NSR-gvs (BS=3) 6.67 36.00 15.56 41.78
NSR-gvs (BS=5) 8.68 30.51 19.38 41.43

NSR-gvs + TPSR (BS=1) 12.75 44.30 23.46 19.46

NSRwH (Complexity, BS=5) 2.23 5.80 15.18 76.78
NSRwH (Symmetry, BS=5) 1.11 2.90 14.93 81.06
NSRwH (Positives, BS=5) 2.46 24.83 6.71 66.00
NSRwH (Negatives, BS=5) 0.89 4.68 13.81 80.62

NSRwH (All, BS=5) 4.90 47.66 4.23 43.21

whether NSRwH can mitigate reproduction bias when prior knowledge is provided. We obtained
a NSRwH model by finetuning the NeSymReS model that we trained in Section 5. We froze the
numerical encoder of the NeSymReS model, attached a symbolical encoder, and finetuned the model
for 250 epochs. We used the same training dataset as in Section 5 consisting of 100, 000 expressions;
however, during fine-tuning, prior knowledge was extracted from the ground-truth expressions and
fed into the symbolic encoder. At test time, we evaluated the NSRwH model under settings where
each type of prior knowledge is provided individually, as well as under a setting where all types of
prior knowledge are provided simultaneously. We follow the default settings of NSRwH to determine
the amount of prior knowledge provided during test-time, and we used the not_included dataset
as the test dataset. We set the beam size to 5 and compare the results with those of NeSymReS, which
is also configured with a beam size of 5.

Figure 9 shows the results for this experiment. While providing complexity, symmetry, or absent
subtrees mitigates reproduction bias only to a limited extent, providing appearing subtrees or providing
all properties significantly mitigates reproduction bias. However, we also observe that the numerical
accuracy of NSRwH decreases when provided with appearing subtrees or with all properties. This
indicates a limitation of NSRwH when dealing with data not included in the training set. The results
also show that not all kinds of additional data are effective for mitigating reproduction bias.

D.5 DO NOVEL EXPRESSIONS CONTRIBUTE TO IMPROVEMENTS IN NUMERICAL ACCURACY?

In Section 6, we saw that providing additional information to the model during inference can lead
to generation of novel expressions. However, we also demonstrated that mitigating reproduction
bias does not necessarily lead to better numerical accuracy. In this section, we analyzed how much
the novel expressions generated under each test-time strategy (including NSRwH) contribute to
improvements in numerical accuracy, and present the corresponding results in Table 5. “Novel”
indicates that the generated expression does not appear in the training data, while “Not Novel” means
it does. The values indicate the percentage of expressions that satisfy each condition.

The results show that for test-time strategies that are capable of mitigating reproduction bias (strategies
shown in bold), a large proportion of generated novel expressions do not perform well in terms of
numerical accuracy. Especially for TPSR, hardly any of the novel expressions exhibit high numerical
accuracy. This indicates the difficulty of generating appropriate expressions from an expanded search

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

space. However, for strategies using NSR-gvs, novel expressions contribute to high accuracy to some
extent, showing that additional information can be beneficial for both mitigating reproduction bias
and improving numerical accuracy in some occasions.

D.6 FURTHER RESULTS ON THE BASELINE DATASET

As described in Section 5, the empirical results show that the baseline dataset is a much more
easier dataset compared to the not_included dataset with naive inference. In this section,
we present the results concerning the numerical accuracy for various test-time strategies on the
baseline dataset. We also test with NSRwH as well as the test-time strategies described in Section
6.

Figure 10: The y-axis shows the proportion of expressions that exceeded the R2 thresholds of 0.5,
0.9, 0.95, 0.99, 0.999, 0.9999 and 0.99999, respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 11: The y-axis shows the proportion of expressions that exceeded the R2 thresholds of 0.5,
0.9, 0.95, 0.99, 0.999, 0.9999 and 0.99999, respectively.

E THEORETICAL BACKGROUND AND PROOF

In this section, we provide background knowledge, detailed settings, and a complete proof for the
theoretical result presented in Section 5.

E.1 PRELIMINARY

We first provide a brief overview of relevant circuit complexity classes. We then define the class
of log-precision Transformers and introduce its simulation guarantees. We also present a formal
definition of the Boolean formula value problem, which we use in our proof.

E.1.1 CIRCUIT COMPLEXITY CLASSES

We offer an explanation to several fundamental circuit complexity classes that are used in our
theoretical analysis. Particularly, we discuss the complexity classes AC0,TC0 and , NC1. The
relationship between these three classes can be summarized as follows:

AC0 ⊊ TC0 ⊂ NC1.

Whether TC0 is a proper subset of NC1 is an open question, but it is widely believed that this is the
case. For a more detailed and comprehensive introduction, we recommend reference to (Arora &
Barak, 2009).

Circuit class AC0 . The class AC0 consists of Boolean circuits of constant depth and polynomial
size whose gates have unbounded fan-in and are restricted to the basis {AND,OR,NOT}. Intuitively,
AC0 captures extremely shallow parallel computation.

Circuit class TC0 . The class TC0 is an extension of AC0, where a gate called the majority gate
can be additionally used. A majority gate has unbounded fan-in and outputs false when half or more
of the inputs are false, and true otherwise. Other definitions are the same as AC0.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Circuit class NC1 . Circuits in NC1 are polynomial sized with the depth logarithmic to the input
size. They comprise of {AND,OR,NOT} gates with constant fan-in. The class NC1 contains several
well-known problems such as the parity check on a bit string.

E.1.2 LOG-PRECISION TRANSFORMERS

We assume bounded-depth log-precision Transformers throughout the theoretical analysis. We first
model the parametrized Transformer TFθ as a next-token prediction function;

TFθ : Γm × R(d+1)×n −→ Γ, (2)

i.e. the Transformer receives a length-m prefix along with a numerical dataset D and outputs a single
token u ∈ Γ.
Definition 2 ((D, d)-bounded log-precision Transformer). Let k be the input length. A (D, d)-
bounded log-precision Transformer is an encoder–decoder model that satisfies

1. constant depth D = O(1),

2. hidden size d≤Q(k) for a fixed polynomial Q,

3. the values at all layers, as well as the outputs of all key intermediate operations in it
(attention, activation, arithmetic operators, etc.), are represented using O(log k) bits.

For specific definitions of operations that enable approximation in O(log k) bits, please refer to
Section 4 and Appendix A of Merrill & Sabharwal (2023b). We introduce the simulation guarantees
for bounded-depth log-precision Transformers as follows.
Lemma 1 (Circuit simulation (Merrill & Sabharwal, 2023b, Cor. 2.1)). Any (D, d)-bounded log-
precision Transformer can be simulated by a family of TC0 circuits of size poly(k) and constant
depth with respect to k.

E.1.3 THE BOOLEAN FORMULA VALUE PROBLEM

Following the definition by Buss (1987), we introduce the definition of the Boolean formula value
problem as follows.
Definition 3 (Boolean formula value problem). Let Λ = {0, 1,∧,∨,¬, (,)} be the alphabet. A
Boolean formula is a string defined recursively as follows:

1. 0 and 1 are Boolean formulae;

2. If t1 and t2 are two Boolean formulae, then (¬t1), (t1 ∧ t2), (t1 ∨ t2) are also Boolean
formulae.

When given a boolean formula t, the goal of the Boolean formula value problem is to compute
whether the evaluation result eval(t) of a given Boolean formula is 0 or 1.

E.2 MAIN THEOREM

Prior to proving the main theorem, we state the following Lemma from Feng et al. (2023). The
detailed proof of this Lemma can be found in the same paper. The Lemma states that TC0 circuits
are capable of identifying the indexes of paired brackets in a string.
Lemma 2 (Bracket parsing (Feng et al., 2023, Lem. D.3)). Consider any string t = t1t2 · · · tn of
length n containing brackets ‘(’, ‘)’, and other characters, and all brackets in t are paired. Let g be
a boolean function taking t as input and output n pairs of integers defined as follows:

gi(t) =


(−1, j) if ti is a left bracket and ti, tj are paired.
(j,−1) if ti is a right bracket and ti, tj are paired.
(j, k) if ti is not a bracket, and tj , tk are the nearest paired brackets containing ti.

Then g can be implemented by the TC0 circuits.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We now proceed to prove the main theorem of our theoretical analysis.

Theorem 2 (Bounded log-precision Transformer lower bound). Assume TC0 ̸= NC1. For any integer
D and any polynomial Q, there exists a problem size m such that no (D, d)-bounded log-precision
Transformer with d ≤ Q(m) can solve LastTokenPrediction(m).

Proof. Fix D and Q and suppose, for contradiction, that for some sufficiently large m there exists
an (D, d)-bounded log-precision Transformer TFθ with d ≤ Q(m) that solves the problem of
LastTokenPrediction(m).

Step 1 (simulation). By Lemma 1, TFθ can be simulated by a TC0 circuit family of size poly(m).
Hence, under our assumption, LastTokenPrediction(m) ∈ TC0.

Step 2 (TC0 construction). We show that there exists a TC0 circuit that can translate any instance
of a Boolean formula value problem to an instance of the last-token prediction problem.

Let t be a boolean formula. There exists a TC0 circuit that performs:

1. Translation of t to a ∨-free Boolean formula t′.

2. Conversion of t′ to its prefix notation t′pre.

3. Conversion of t′pre to a token sequence s ∈ Γ∗ by the following procedure:

(a) replace 0 with {×, x1, x2} and 1 with {−, x1, x2};
(b) replace ∧ with ×;
(c) replace ¬ with {−,−, x1, x2}.

4. Local edits:

(a) prepend + to s to form the incomplete token sequence s̃;
(b) set n = 2, and attach the data points (x1,1, x2,1, y1) = (1, 0, 1) and (x1,2, x2,2, y2) =

(0,−1, 0) to the input numerical data D;
(c) define the metric as the mean squared error: L(y, ŷ) = 1

n

∑n
i=1(yi − ŷi)

2

To perform the first step, for all ∨ in t, we must replace the nearest left bracket containing ∨ with
¬(¬ and also replace ∨ with ∧¬. By using the results of Lemma 2, it follows that this operation
can be performed by a circuit within TC0 complexity. The second step can be implemented by AC0

circuits, according to Buss (1987, Cor. 11). Since the third and fourth steps only involve replacing
and extending obtained sequences, these steps can also be implemented by AC0 circuits.

Step 3 (soundness of the reduction). When eval(t) = 0, the losses L(y, e(̃s,u)(x)) for each leaf
token u ∈ {x1, x2, C} can be computed as follows:

L(y, e(̃s,x1)(x)) =
1

2

2∑
i=1

(yi − x1,i)
2 =

1

2
(02 + 02) = 0,

L(y, e(̃s,x2)(x)) =
1

2

2∑
i=1

(yi − x2,i)
2 =

1

2
(12 + 12) = 1,

L(y, e(̃s,C)(x)) = argmin
c∈C

1

2

2∑
i=1

(yi − c)2 = argmin
c∈C

1

2
((1− c)2 + (−c)2) ≥ 1

4
,

where C is the interval from which numeric constants are drawn, and es = expr(s,D) is the mapping
function defined in Section 5. When eval(t) = 1, the losses L(y, e(̃s,u)(x)) can be computed as

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

follows:

L(y, e(̃s,x1)(x)) =
1

2

2∑
i=1

(yi − (1 + x1,i))
2 =

1

2
((−1)2 + (−1)2) = 1,

L(y, e(̃s,x2)(x)) =
1

2

2∑
i=1

(yi − (1 + x2,i))
2 =

1

2
(02 + 02) = 0,

L(y, e(̃s,C)(x)) = argmin
c∈C

1

2

2∑
i=1

(yi − (1 + c))2 = argmin
c∈C

1

2
((−c)2 + (−1− c))2) ≥ 1

4
,

Consequently, when eval(t) = 0, the result for the corresponding last-token prediction problem is
u∗ = x1, while when eval(t) = 1, the result is u∗ = x2. Hence the mapping introduced in Step 2 is
a valid TC0 many-one reduction from the Boolean formula value problem to the last-token prediction
problem.

Step 4 (contradiction). The Boolean formula value problem is NC1-complete under AC0 reductions
(Buss, 1987, Thm. 9). Hence Step 2 and Step 3 indicate that LastTokenPrediction(m) /∈ TC0,
contradicting Step 1 and the assumed strict inclusion TC0 ⊊ NC1. Therefore, such a Transformer
cannot exist.

E.3 PAC APPROXIMATION VIA ITERATED SELF-VERIFICATION

We further present theoretical analysis regarding the performance of the proposed method, NSR-gvs.
Assumption 1. We make the following assumptions.

1. Hypothesis class. Fix a maximum depth D0 and a grid spaced in ε/2 on [−1, 1].
U := {e : depth(e) ≤ D0}, U := |U| ≤ poly(n),

where n := |D|.

2. Data. D = {(xi, yi)}ni=1 with yi ∈ [−1, 1] and e⋆ = argmine∈U MSE(e;D).

3. Transformer. A depth-L log-precision Transformer T (L constant).

4. Exact oracle. A routineM returns MSE(e;D) for any e.

5. Hit rate. If every subtree of e⋆ is present in the prompt, T outputs e⋆ with probability at
least β ∈ (0, 1].

6. Dictionary growth. Each round appends at least one uniformly random unseen subtree to
the prompt (chosen without replacement; if fewer than r remain, insert all).

Theorem 3 (informal). Let the algorithm cycle long enough for its prompt to have seen every possible
sub-expression; then keep running a few more rounds. With very high probability, it returns a formula
whose error is no worse than an optimally chosen tree by more than a tiny tolerance, and it has
queried the oracle only a moderate, logarithmically growing number of times.
Theorem 4 (PAC guarantee). Run the loop

et ← T (prompt); Rt ←M(et); prompt += sub-trees(et)

for a burn-in B =
⌈
U
r ln
(
2D0/(δ/2)

)⌉
rounds, followed by R =

⌈ ln(2/δ)
β

⌉
additional rounds, and

return the best-so-far expression ebest.

Then, Under Assumption 1, for any ε, δ ∈ (0, 1),

Pr
[
MSE

(
ebest,D

)
≤ MSE

(
e⋆,D

)
+ ε
]
≥ 1− δ, #oracle calls = O

(
U ln(1/δ)

)
.

Proof. (i) Burn-in. There are K≤2D0 distinct sub-trees of e⋆. Drawing r ≥ 1 uniform sub-trees per
round, the probability a fixed sub-tree is never drawn in B rounds is (1− r

U)B ≤ e−rB/U ≤ δ/(2K).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A union bound over all K sub-trees implies that, after B rounds, the prompt contains every sub-tree
of e⋆ with probability at least 1− δ/2.

(ii) Post burn-in success. Condition on the burn-in success event. By assumption (3) each subsequent
round now hits e⋆ with probability at least β, regardless of possible prompt changes. Therefore

Pr[miss in all R rounds] ≤ (1− β)R ≤ e−βR ≤ δ/2,

for R = ⌈ln(2/δ)/β⌉.

(iii) Union bound. Total failure probability ≤ δ/2 + δ/2 = δ.

(iv) Quality of ebest. Whenever e⋆ appears, the exact oracle certifies its MSE; the algorithm stores
it permanently. Hence on the complement of failure the returned expression meets the stated error
bound.

(v) Oracle calls. At most one full-expression evaluation per round, so the algorithm issues B +R =
O(U ln(1/δ)) oracle calls.

F ADDITIONAL RELATED WORK

In this section, we describe symbolic regression methods other than NSR. Specifically, we provide
explanation for methods that use GP, brute-force algorithms, and reinforcement learning.

The GP framework is a traditional and widely used framework for solving symbolic regression.
The GP algorithm is a method based on evolutionary computation; initially, several mathematical
expressions are formed randomly, and subsequently the expressions are “evolved” by operations such
as recombining two expressions, mutating an expression, and eliminating inappropriate expressions
(Burlacu et al., 2020; Schmidt & Lipson, 2009; Virgolin et al., 2019; Cranmer, 2023).

An example of using brute-force algorithms for symbolic regression is AI Feynman (Udrescu &
Tegmark, 2020; Udrescu et al., 2020). In AI Feynman, neural networks were used to identify
properties such as symmetry and separability within given numerical data. These properties were then
used to recursively simplify the problem, ultimately reducing it to a form amenable to brute-force
solutions.

Petersen et al. (2019) proposed Deep Symbolic Regression (DSR), a method that uses reinforcement
learning to tackle symbolic regression. In this approach, the authors used a recurrent neural network
(RNN) to generate equations as token sequences, with the parameters that govern the selection of the
token learned through reinforcement learning. Studies such as Symbolic Physics Learner (Sun et al.,
2022) and Reinforcement Symbolic Regression Machine (Xu et al., 2024) also use reinforcement
learning, where Monte Carlo Tree Search (MCTS) is applied to discover expressions.

Some studies combine several approaches for symbolic regression. For example, neural-guided
genetic programming (Mundhenk et al., 2021) integrates DSR and genetic programming (GP), while
the Unified DSR Framework (Landajuela et al., 2022) combines GP, AI Feynman, DSR, linear models,
and NSR.

G DISCUSSION CONCERNING THE DEFINITION OF REPRODUCTION BIAS

Throughout the paper, we have defined and measured reproduction bias based on whether the training
dataset contains an expression that is structurally equivalent to the generated one. However, one may
argue that we should define and measure reproduction based on functional equivalence; there are
many expressions that are structurally different but functionally equivalent (e.g., x1(x1 + x2) and
x2
1 + x1x2), and that such expressions should also be considered as equivalent expressions. This

section organizes the premises of our discussion and shows that defining reproduction bias using
structural equivalence does not alter any of the paper’s central claims.

In the context of defining reproduction bias, the situation in which functional equivalence becomes
an issue—following the example above—is the case where x1(x1 + x2) is present in the training

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

set, and for numerical data generated from an unrelated ground truth (for example, x2
1 + x2

2), the
model produces x2

1 + x1x2. (We consider an unrelated ground truth because the space of all possible
expressions is far larger than the training data, so it is highly unlikely that the ground truth in the test
data appears in the training set.) Under the current definition, such an output is classified as novel.

Whether such an output should be regarded as a novel expression (a success under our definition of
reproduction bias) or as a non-novel expression (a failure under the definition) is not entirely clear-cut.
Since the token sequence x2

1 + x1x2does not appear in the training data, the model must have
generated it through some process other than copying from the training set. In this sense, the output
can be considered novel. We refer to reproduction bias defined from this perspective as structural
reproduction bias. On the other hand, from the user’s perspective, the insight provided by the output
x2
1 + x1x2 regarding the numerical data is nearly indistinguishable from the insight provided by

the output x1(x1 + x2). Therefore, one might argue that x2
1 + x1x2 should also be regarded as

non-novel, just like x1(x1 + x2). We refer to reproduction bias defined from this standpoint as
functional reproduction bias.

In this paper, we define reproduction bias from the perspective of structural reproduction bias (this is
because structural reproduction bias is easier to measure in terms of computational cost). However,
even if we were to redefine reproduction bias from the perspective of functional reproduction bias,
the claims of this paper would remain unaffected. This is because every expression regarded as
novel under the definition of functional reproduction bias is already also regarded as novel under the
definition of structural reproduction bias. Since the central claim of the paper is that the proportion of
expressions classified as novel is small for naive NSR methods, adopting the definition of functional
reproduction bias would only further reduce that proportion, without altering the direction of the
conclusions.

29

	Introduction
	Related Work
	Problem Formulation
	Synthetic Expression Distribution
	Synthetic Dataset Generation

	Theoretical Analysis on Expression Generation Ability of Transformers
	Exploring Reproduction Bias in NSR
	Reproduction Bias in Simplified Setting
	Reproduction Bias in Practical Setting

	Can Test-time Strategies Mitigate Reproduction Bias?
	Test-time Strategies
	Results
	Discussion

	Conclusion
	Details for NeSymReS
	Details for Test-time Strategies
	TPSR
	NSR-gvs
	Training
	Inference

	Details for Experiments, Implementation, and use of LLMs
	Additional Experiments
	Varying the Training Dataset Size in transformer4sr
	Numerical Accuracy in Practical Settings
	Trade-off Between Performance and Computational Cost
	Can NSRwH Also Mitigate Reproduction Bias?
	Do Novel Expressions Contribute to Improvements in Numerical Accuracy?
	Further Results on the baseline dataset

	Theoretical Background and Proof
	Preliminary
	Circuit Complexity Classes
	Log-precision Transformers
	The Boolean Formula Value Problem

	Main Theorem
	PAC approximation via iterated self-verification

	Additional Related Work
	Discussion Concerning the Definition of Reproduction Bias

