

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN TEST-TIME COMPUTATION MITIGATE REPRODUCTION BIAS IN NEURAL SYMBOLIC REGRESSION?

Anonymous authors

Paper under double-blind review

ABSTRACT

Symbolic regression aims to discover mathematical equations that fit given numerical data. It has been applied in various fields of scientific research, such as producing human-readable expressions that explain physical phenomena. Recently, Neural symbolic regression (NSR) methods that involve Transformers pre-trained on large-scale synthetic datasets have gained attention. While these methods offer advantages such as short inference time, they suffer from low performance, particularly when the number of input variables is large. In this study, we analyze the reasons for this limitation and suggest ways to improve NSR. We first provide a theoretical analysis showing that, under naive inference strategies, Transformers are unable to construct expressions in a compositional manner while verifying their numerical validity. Next, we explore how Transformers generate expressions in practice despite the lack of compositional generalizability. Our empirical analysis shows that the search space of NSR methods are greatly restricted due to reproduction bias, where the majority of generated expressions are merely copied from the training data. We finally examined if tailoring test-time strategies can reduce reproduction bias and improve numerical accuracy. We empirically demonstrate that providing additional information to the model at test time can significantly mitigate reproduction bias. On the other hand, we also found that reducing reproduction bias does not necessarily correlate with improved accuracy. These findings contribute to a deeper understanding of the limitation of NSR approaches and offer a foundation for designing more robust, generalizable symbolic regression methods.

1 INTRODUCTION

Discovering underlying equations from collected experimental data is a crucial process in many fields of scientific research. Symbolic regression is a branch of regression analysis that seeks to automatically identify underlying mathematical expressions. In contrast to methods that model data without explicit mathematical expressions, symbolic regression offers advantages in terms of interpretability and generalizability. This is because the outputs of symbolic regression are usually compact, human-readable equations, making them less susceptible to overfitting. However, symbolic regression is a challenging task due to its vast search space; the number of possible mathematical expressions grows exponentially with expression length or the number of input variables. Applications for symbolic regression span various fields of scientific research such as physics (Tenachi et al., 2023), materials science (Wang et al., 2019), and weather forecasting (Abdellaoui & Mehrkanoon, 2021).

Various methods for symbolic regression have been proposed in recent years. Traditionally, approaches based on genetic programming (GP) (Koza, 1994) have been employed to solve symbolic regression. These methods tend to be computationally expensive because they generate each expression entirely from scratch. To mitigate this inefficiency, a research direction called neural symbolic regression (NSR) has emerged. NSR methods leverage encoder-decoder Transformer architectures Vaswani et al. (2017) pre-trained on large-scale synthetic datasets Biggio et al. (2021); Valipour et al. (2021). NSR methods generate expressions similar to natural language processing tasks, where expressions are generated token-by-token in a auto-regressive manner. Since a single forward pass through the Transformer suffices to output a mathematical token (e.g., x_1 , \sin , $+$), NSR models can generate solutions far more quickly than GP-based approaches. However, NSR methods often falls short in terms of numerical accuracy, with particularly poor performance when the number of input

variables is large (Kamienny et al., 2022; Bendinelli et al., 2023). This study aims to uncover the underlying cause of this drawback and explore methods to alleviate it.

Our analysis began with the question of what mechanisms a Transformer relies on to select the next token while generating an expression. We first conducted a theoretical analysis of the limitations faced by Transformers when generating mathematical expressions. An ideal way to generate the next token would be to generate the token that, if appended to the expression generated so far, most increases the probability for the final expression to fit the numerical data. However, by using circuit complexity theory, we show that Transformers fail to generate expressions in such ways; they cannot compositionally generate mathematical expressions while taking numerical data into account. For example, consider a situation where a Transformer has generated an expression up to $x_1^2 + \sin(x_2) +$. Our analysis implies that Transformers are unable to internally compute which leaf token (e.g., x_1, x_2, x_3, \dots) would lead to an expression that best fits the input numerical data. The result indicates that in practice, Transformers generate expressions by some alternative mechanism instead of generating them in a compositional manner.

We next investigated how NSR methods generate expressions under empirical conditions. We hypothesized that, in NSR methods, naively using a Transformer for inference leads to **reproduction bias**, meaning that models struggle to generate novel expressions not seen during training and instead tend to generate expressions copied from the training data. Given that the expressions in the training data typically represent only a small subset of the full space of possible expressions, our hypothesis implies that standard NSR methods operate within a significantly constrained search space. We investigated this hypothesis in NSR methods such as NeSymReS (Biggio et al., 2021), a pioneering work in NSR models. We found that the majority of expressions generated by Transformers are expressions that were included in the training dataset, which supports our hypothesis of reproduction bias. Prior work has highlighted NSR methods’ limited generalizability with respect to the range of numerical data—e.g., models trained on data whose input variable x lies in the interval $[-1, 1]$ often fail when evaluated on inputs from the wider interval $[-2, 2]$ (Li et al., 2024; Shojaee et al., 2023). However, the reproduction bias that we identify is orthogonal to this phenomenon, and represents an even more fundamental limitation: NSR models often fail to generalize even within their training domain. This work is the first to show that standard NSR models primarily copy training expressions instead of composing familiar components into genuinely novel formulas.

Towards the end of this paper, we explore methodologies to mitigate the reproduction bias of standard NSR models and improve numerical accuracy. We focus particularly on test-time strategies and investigated how they affect reproduction bias and numerical accuracy. We compared three strategies: decoding with a large beam size, decoding using MCTS, and providing verification feedback at the subtree level. The last strategy is a new method that we propose, which we refer to as neural symbolic regression guided by verified subtrees (NSR-gvs). We found that providing new information to the model during test-time leads to generating expressions beyond the training dataset. However, we also identified cases where reproduction bias was mitigated but numerical accuracy decreased, as well as cases where numerical performance improved despite little alleviation in reproduction bias. We conclude this paper by discussing the underlying causes of these differences across varying types of test-time strategies.

The contributions of our work are summarized as follows:

- We conducted a theoretical analysis and formally show that Transformers lack the ability to compositionally generate expressions while accounting for numerical data.
- We empirically demonstrate, under various settings, that naively applying a Transformer to symbolic regression leads to reproduction bias.
- We compared varying test-time computing strategies and analyzed how such strategies affect reproduction bias and numerical accuracy.

2 RELATED WORK

Several approaches to symbolic regression exist, such as GP, brute force algorithms, reinforcement learning, and NSR. Since our study focuses on analyzing and improving NSR methods, we mainly describe NSR in detail in this section, and provide explanation for other symbolic regression methods in Section F.

108

109

Table 1: Comparison between our work and other major NSR studies

110

111

112

113

NSR Methods	Automatic Training Data Generation	Direct Constant Prediction	Information Added During Test-time	Assessing Reproduction Bias
Biggio et al. (2021)	✓	-	-	-
Kamienny et al. (2022)	✓	✓	-	-
Shojaee et al. (2023)	✓	✓	MCTS Feedback	-
Li et al. (2024)	-	-	Historical Context	-
Bendinelli et al. (2023)	✓	-	Prior Knowledge	-
Ours (NSR-gvs)	✓	-	Verified Subtrees	✓

119

120

121

122

123

124 Traditional symbolic regression methods such as GP generate each equation from scratch, resulting
 125 in long inference times, with equation generation potentially taking hours. In order to achieve a
 126 shorter inference time, studies such as NeSymReS (Biggio et al., 2021) and SymbolicGPT (Valipour
 127 et al., 2021) carried out large scale pre-training of Transformers. In these studies, an artificial dataset
 128 consisting of millions of randomly generated equations was used for training. These methods, often
 129 categorized as NSR, can generate an expression in just a few seconds, significantly reducing inference
 130 time compared with other approaches.

131 In the recent years, a number of studies, summarized in Table 1, have focused on enhancing NSR
 132 methods. Studies such as (Kamienny et al., 2022) and (Vastl et al., 2024) proposed an end-to-end
 133 approach using a Transformer model to directly predict full mathematical expressions including
 134 constants, whereas previous methods followed a two-step procedure where constant fitting had to
 135 be done separately. Lalande et al. (2023) analyzed several different architectures to find the suitable
 136 encoder architecture for NSR. Shojaee et al. (2023) focused on improving the decoding strategy
 137 for NSR, incorporating the MCTS algorithm during the generation of expressions. In their study,
 138 Li et al. (2024) trained a Transformer model to imitate the process of improving mathematical
 139 formulas, as performed in the reinforcement learning-based approach proposed by Mundhenk et al.
 140 (2021). Bendinelli et al. (2023) proposed a model called NSRwH that enables incorporating prior
 141 knowledge, which is often available during application in scientific research. For example, scientists
 142 may anticipate symmetries between variables or expect certain partial expressions to appear in the
 143 mathematical laws governing the data. NSRwH adds a dedicated encoder that processes such prior
 144 knowledge, allowing the model to generate expressions that are consistent with both the numerical
 145 data and the provided prior knowledge.

146 More recently, there has been growing research on methods that iteratively refine mathematical
 147 expressions, most of which rely on large language models (LLMs) rather than pre-trained Transformer
 148 models. These methods are similar to NSR-gvs, one of the test-time computation approaches
 149 considered in this paper, in that they iteratively improve their outputs by incorporating feedback
 150 from the generated expressions. In (Merler et al., 2024) and (Sharlin & Josephson, 2024), the
 151 authors introduce approaches in which a base equation structure is generated using LLMs, and
 152 the equation is subsequently improved iteratively by receiving feedback from external numerical
 153 solvers. While Shojaee et al. (2023) follows a similar methodology, it incorporates supplementary
 154 descriptions regarding the variables in the prompt, facilitating more effective use of the LLM’s
 155 scientific knowledge. Grayeli et al. (2024) proposes a method that uses an LLM to identify “concepts”
 156 representing features of high-performing expressions and leverages them to further evolve a set of
 157 equations. Zhang et al. (2025) introduces an iterative algorithm that replaces features of suboptimal
 158 expressions at each step while incorporating relevant expressions as needed. Pre-training-free methods
 159 described above may have the potential to address some of the limitations of conventional NSR
 160 approaches. On the other hand, using a pre-trained Transformer, as opposed to an LLM, offers
 161 certain advantages similar to those of small language models (SLMs), such as keeping the model
 size manageable and enhancing domain specificity through careful design of the training data. For
 these reasons, we believe that conducting a deeper analysis of pre-trained Transformer-based NSR
 and exploring ways to improve it remains a valuable research direction.

162 **3 PROBLEM FORMULATION**

164 We formalize NSR as the problem of learning a parameterized symbolic regressor S_θ that maps a
 165 numerical dataset \mathcal{D} to a symbolic expression $\hat{e} = S_\theta(\mathcal{D})$. The learning algorithm is formulated as
 166 minimizing a loss that measures how well \hat{e} matches the ground-truth expression e^* underlying \mathcal{D} .
 167 In this section, we specify how synthetic training pairs (e^*, \mathcal{D}) are generated in NeSymReS (Biggio
 168 et al., 2021), since it is the foundational work underlying our research.

170 **3.1 SYNTHETIC EXPRESSION DISTRIBUTION**

172 We first sample a random binary–unary tree whose internal nodes are operators and whose leaves are
 173 variables.

174 Let $\mathcal{V} = \{x_1, \dots, x_d\}$ be a finite set of variables, \mathcal{O}_{bin} the binary operators (e.g., $\{+, -, \times, \div\}$),
 175 and \mathcal{O}_{un} the unary operators (e.g., $\{\sin, \cos, \log, \exp\}$). Denote by $\mathcal{C} = [c_{\min}, c_{\max}] \subset \mathbb{R}$ the
 176 interval from which numeric constants are drawn. The complete vocabulary for the expression is
 177 $\Sigma = \mathcal{V} \cup \mathcal{O}_{\text{bin}} \cup \mathcal{O}_{\text{un}} \cup \mathcal{C}$.

178 Let \mathcal{E} be an expression space and $p_{\mathcal{E}}$ be the generator of symbolic expressions employed in NeSymReS
 179 (Biggio et al., 2021). We also denote by p_{Tree} the generator of unary-binary trees introduced by
 180 Lample & Charton (2019). We write $e^* \sim p_{\mathcal{E}}$ for the following procedure.

182 1. Draw a random binary-unary tree $T \sim p_{\text{Tree}}$.
 183 2. Assign internal nodes independently and uniformly from $\mathcal{O}_{\text{bin}} \cup \mathcal{O}_{\text{un}}$, and leaves uniformly
 184 from the variable set \mathcal{V} , resulting in a template expression e_{templ} .
 185 3. For each unary operator u , sample a constant c_{mul} from distribution \mathcal{D}_{mul} and replace u
 186 with $c_{\text{mul}}u$; otherwise keep the unary operator as is.
 187 4. For each variable x , sample a constant c_{mul} from distribution \mathcal{D}_{mul} and a constant c_{add} from
 188 distribution \mathcal{D}_{add} and replace x with $c_{\text{mul}}x + c_{\text{add}}$; otherwise keep the variable as is.
 189 5. The resulting expression is the final $e^* \in \mathcal{E}$.

191 **3.2 SYNTHETIC DATASET GENERATION**

193 Given an expression e^* , we construct the dataset

195 $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \quad x_{ij} \sim \mathcal{U}([x_{\min,j}, x_{\max,j}]) \quad \text{for } j = 1, 2, \dots, d, \quad y_i = e^*(\mathbf{x}_i).$

197 Where $\{[x_{\min,j}, x_{\max,j}]\}_{j=1}^d$ denotes the intervals for each independent variable. The joint distri-
 198 bution of training pairs is therefore $(e^*, \mathcal{D}) \sim p_{\mathcal{E}} \times \mathcal{G}$, where \mathcal{G} denotes the above stochastic data
 199 generation process.

200 We now denote by $\Gamma = \mathcal{V} \cup \mathcal{O}_{\text{bin}} \cup \mathcal{O}_{\text{un}} \cup \{C, \text{END}\}$ the vocabulary for token sequences, where C is
 201 a placeholder token to represent constants, and END denotes the explicit end-of-sequence marker. The
 202 vocabulary Γ is slightly different from Σ since continuous numeric constants cannot be represented
 203 with a finite number of tokens.

204 Let $\text{seq} : \mathcal{E} \rightarrow \Gamma^*$ be a serialization map that converts any symbolic expression into its unique prefix
 205 token representation. For a ground-truth expression $e^* \in \mathcal{E}$ we set

207 $\mathbf{s}^* = \text{seq}(e^*) = (s_1^*, \dots, s_L^*), \quad L := |\mathbf{s}^*|.$

209 The predictive distribution $q_{\theta}(\cdot \mid \mathbf{s}_{<j}, \mathcal{D})$ is realized by an encoder–decoder Transformer
 210 parametrized by θ . Conditioned on the dataset \mathcal{D} (encoded by the encoder) and the previously
 211 emitted prefix $\mathbf{s}_{<j}$, the decoder outputs a probability over the next token $s_j \in \Gamma$.

212 The token-level loss for a single training pair (e^*, \mathcal{D}) is then

214
$$L_{\text{tok}}(e^*; \theta) = - \sum_{j=1}^L \log q_{\theta}(s_j^* \mid \mathbf{s}_{<j}^*, \mathcal{D}). \quad (1)$$

216 Note that, in practice, the training dataset is the collection of e_{templ} , and both e^* and \mathcal{D} are generated
 217 dynamically during training. Further details concerning the work of NeSymReS (Biggio et al., 2021)
 218 are described in Appendix A.

220 **4 THEORETICAL ANALYSIS ON EXPRESSION GENERATION ABILITY OF**
 221 **TRANSFORMERS**

224 Transformer-based symbolic regression tend to suffer from low performance, particularly when the
 225 number of input variables is large. In this section, we explore the theoretical basis of this limitation.
 226 Ideally, Transformers should be able to generate tokens in a compositional manner, while maximizing
 227 the probability for the final expression to fit the numerical data. However, we show that Transformers
 228 inherently lack the capacity to generate expressions compositionally while accounting for their
 229 numerical characteristics. We introduce a simplified version of the symbolic regression task and show
 230 that Transformers are not expressive enough to solve the task.

231 We define the last-token prediction problem as the task of predicting the most suitable final token in
 232 an otherwise complete mathematical expression. Although predicting the entire optimal expression is
 233 NP-hard Virgolin & Pissis (2022), this task is much easier since the search space is limited to several
 234 leaf tokens. We present a formal definition of this task in the following.

235 We first introduce $\text{expr} : \Gamma^* \times \mathbb{R}^{(d+1)*n} \rightarrow \mathcal{E}$, a function that maps a token sequence s to the most
 236 appropriate expression e_s that can be represented by s , taking numerical data \mathcal{D} into account. Since
 237 the token sequence may contain the placeholder token C representing constants, the mapping is
 238 tasked with identifying the optimal values for these constants and transforming the sequence into a
 239 corresponding expression tree.

240 **Definition 1** (Last-token prediction problem). *Given numerical data \mathcal{D} of n features-value pairs
 241 $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$, a metric $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$, and an incomplete token sequence \tilde{s} that forms a
 242 prefix representation of an expression when terminated with a leaf token, the last-token prediction
 243 problem asks for finding a leaf token u^* such that:*

$$u^* = \underset{u \in \Gamma}{\operatorname{argmin}} \mathcal{L}(\mathbf{y}, e_{(\tilde{s}, u)}(\mathbf{x})),$$

245 where $e_{(\tilde{s}, u)} = \text{expr}((\tilde{s}, u), \mathcal{D})$ with (\tilde{s}, u) representing the concatenation of sequence \tilde{s} and token u .
 246 When the length of $\tilde{s} = m$, we denote this problem as $\text{LastTokenPrediction}(m)$.

248 For the analysis, we assume a bounded-depth log-precision Transformer as in (Feng et al., 2023;
 249 Merrill & Sabharwal, 2023b;a; Strobl, 2023), a realistic setting where the intermediate computation
 250 values of the Transformer are limited to $O(\log k)$ bit precision, with k denoting the maximal length
 251 of the input sequence. We now present the theoretical result stating that Transformers with bounded
 252 size cannot solve the last-token prediction problem.

253 **Theorem 1.** *Assume $\text{TC}^0 \neq \text{NC}^1$. For any integer D and any polynomial Q , there exists a problem
 254 size m such that no log-precision Transformer defined in Section E.1 with depth D and hidden
 255 dimension $d \leq Q(m)$ can solve $\text{LastTokenPrediction}(m)$.*

256 We show the above theorem by leveraging circuit complexity theory. Specifically, TC^0 and NC^1
 257 are types of circuit complexity classes, and it is generally conjectured that $\text{TC}^0 \subsetneq \text{NC}^1$. Prior work
 258 (Merrill & Sabharwal, 2023b) shows that log-precision Transformers can be simulated with TC^0
 259 circuits. We provide a proof for the above theorem by showing that the complexity of the last-token
 260 prediction problem is lower bounded by NC^1 . Detailed specifications of the problem setting and
 261 proof of the theorem are provided in Appendix E.

262 Although the final token of a mathematical expression is arguably the easiest to predict among its
 263 components, the above theorem shows that even this seemingly simple task presents substantial
 264 difficulties for Transformer models.

266 **5 EXPLORING REPRODUCTION BIAS IN NSR**

269 In Sec. 4, our theoretical analysis showed that Transformers lack the ability to generate
 270 expressions in a compositional manner while accounting for numerical data. Given the limitations

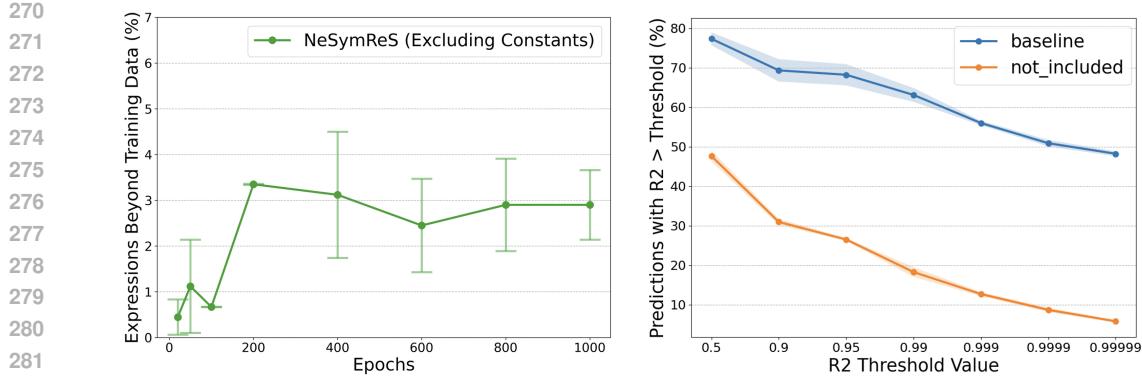


Figure 1: (Left) Percentage of expressions beyond the training dataset generated by NeSymReS on the not_included dataset. Throughout the training procedure, NeSymReS can hardly generate expressions that are not included in the training data, indicating strong reproduction bias. (Right) NeSymReS exhibits strong fitting performance on the baseline dataset but performs poorly on expressions from the not_included dataset, whose tree structures are absent from the training data. The result indicates the severe effect of reproduction bias on numerical accuracy.

of Transformers described above, this section empirically analyzes how expressions are actually generated by NSR models. When generating expressions in an auto-regressive manner, a seemingly appropriate strategy would be to compositionally produce the next token that maximizes accuracy, conditioned on both the previously generated partial expression and the numerical data. However, our theoretical analysis from the last section showed that Transformers lack the ability to do so, bringing us to the following question: *How, in practice, does a transformer generate expressions during inference?* In this section, we empirically analyze how expressions are actually generated by NSR models. We demonstrate that NSR models primarily rely on reproduction—that is, they tend to generate expressions by directly copying those seen in the training data.

5.1 REPRODUCTION BIAS IN SIMPLIFIED SETTING

We first tested how expressions are generated in NeSymReS, which is the method that we mainly focus on in this study. We examined whether expressions generated by NeSymReS are merely copies from the training data or newly constructed formulas generated compositionally by the model.

We constructed a simplified training dataset consisting of 100K equations. The allowed operators were add, sub, sin, cos, tan, and exp, with up to 5 independent variables per equation. We then trained a NeSymReS model on this dataset for 1,000 epochs. The variation of operators was limited due to the complicated training procedure of NeSymReS, where expressions with operators such as mul or pow are dynamically transformed and presented in different forms across epochs, making it difficult to judge whether the model's generated expressions are novel or memorized from training. The dataset size was also kept relatively small due to computational cost and to balance the size of the training data against the size of the search space.

As outlined in Section 3, the training dataset for NeSymReS comprises multiple instances of e_{templ} , each of which is an expression tree without numerical constants. Accordingly, we assessed the novelty of output expressions at the level of tree structure while ignoring numerical constants.

For evaluation, we constructed two test datasets: not_included and baseline, each containing 150 expressions. For the not_included set, we removed every e_{templ} appearing in the training data. In contrast, the baseline set was sampled directly from the generator p_E without any filtering. We associated each expression with 100 data points, generated in the same way as during training. We set the beam size to 5 for this experiment.

To evaluate fitting performance, we used the R^2 score, defined as follows. Given a test equation, a set of n data points $\{\mathbf{x}_i, y_i\}_{i=1}^n$, and the corresponding model predictions $\{\hat{y}_i\}_{i=1}^n$, the R^2 score is

324 computed as:

$$R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \quad \text{where} \quad \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i.$$

328 Note that these m evaluation points are distinct from the inputs provided to the model at test time. By
329 definition, $R^2 \leq 1$, and values closer to 1 indicate that the predicted outputs closely match the true
330 equation. In our experiments, we counted the number of predictions whose R^2 exceeds thresholds
331 of 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, and 0.99999, respectively. This allows us to assess the model’s
332 ability to fit the data under both moderate and stringent accuracy requirements.

333 Figure 1 shows the results for NeSymReS under the simplified setting. The left figure demonstrates
334 NeSymReS’s ability to generate novel expressions using the `not_included` dataset. As this
335 dataset comprises instances of e_{templ} unseen in the training data, the model is expected to produce
336 previously unseen tree structures. However, the result indicates that NeSymReS struggles to generate
337 expression trees beyond the training data across varying epochs. After 1000 epochs of training, over
338 97% of the generated expression trees were direct copies from the training data, which highlights the
339 strong reproduction bias and reveals that the search space of NeSymReS is severely restricted. The
340 right figure demonstrates how this reproduction bias negatively affects numerical accuracy, where
341 NeSymReS’s fitting performance on the `not_included` and `baseline` datasets are compared.
342 The results indicate a substantial drop in performance for expressions whose tree structures are
343 not present in the training data, compared with those sampled randomly. This suggests that for
344 expressions not seen during training, the model’s reproduction bias directly leads to poor numerical
345 accuracy. This result also helps explain why NSR methods often fail to achieve high performance
346 on expressions with many input variables; an increase in the number of input variables leads to an
347 expanded search space, thereby increasing the likelihood that a given expression is absent from the
348 training set.

349 5.2 REPRODUCTION BIAS IN PRACTICAL SETTING

350 Due to the complicated training procedure of
351 NeSymReS, the above analysis was carried out
352 in a simplified setting. To examine whether re-
353 production bias is a general phenomenon, we
354 conducted an additional analysis in a more prac-
355 tical setting using transformer4sr (Lalande et al.,
356 2023), a method similar to NeSymReS but with
357 a simpler training process. In transformer4sr, no
358 dynamic transformations of expressions are ap-
359 plied during training, which makes it much eas-
360 ier than in NeSymReS to verify whether the gen-
361 erated expressions are included in the training
362 data. We were also able to analyze the novelty
363 of the expressions not only in the tree-structure
364 (excluding constants) level, but also taking into
365 account the position of the constant placeholder
366 tokens.

367 In this experiment, we followed the model ar-
368 chitecture, training data size, number of epochs,
369 operator selection, and inference strategies de-
370 scribed in Lalande et al. (2023). We constructed
371 a training dataset consisting of 1.5M equations and the model was trained for 100 epochs. We used
372 the full set of operators, which are `add`, `mul`, `cos`, `log`, `exp`, `neg`, `inv`, `sqrt`, `sq` (squared),
373 `cb` (cubed), and the number of independent variables were 6. We constructed a test set similar to
374 `not_included` in the previous analysis, which consists of 300 expressions that were not included
375 in the training data.

376 Figure 2 shows the result for transformer4sr’s ability to generate expressions beyond the training
377 data. After 100 epochs of training, less than 12% of the expressions generated by transformer4sr
378 were novel expressions (taking into account the position of the constant placeholder tokens) beyond

379 Figure 2: Reproduction Bias in transformer4sr
380 under practical setting. Even for practical settings,
381 the majority of generated expressions are expres-
382 sions copied from the training data.

378 the training data, and less than 6% of the expressions had novel tree structures (excluding constants).
 379 The result demonstrates that reproduction bias persists even under more practical settings.
 380

381 6 CAN TEST-TIME STRATEGIES MITIGATE REPRODUCTION BIAS?

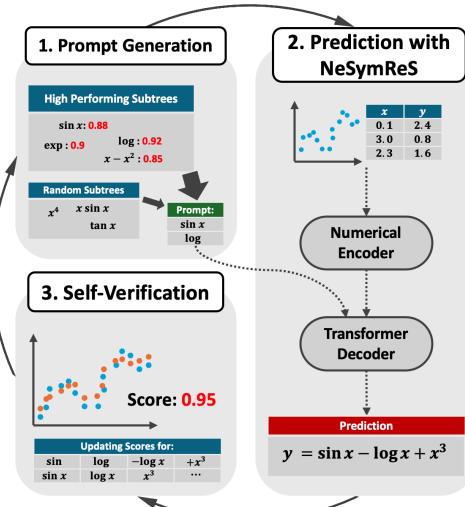
384 The results from the previous section indicate that the search space of NeSymReS is mostly confined
 385 to expressions seen during training due to reproduction bias. Since our theoretical analysis indicates
 386 that naively performing next-token prediction makes it difficult to generate novel expressions in
 387 a compositional manner, we investigated the possibility of devising inference-time computational
 388 techniques to reduce reproduction bias in this section. Our hypothesis is that providing the model
 389 with hints about which tokens are appropriate could help steer the model to generate expressions that
 390 were not included in the training data. We begin by briefly introducing the three test-time strategies
 391 employed in our experiments. The detailed explanation for the strategies are presented in Section B.
 392

393 6.1 TEST-TIME STRATEGIES

394 **Decoding with large beam size.** Beam search serves as the default decoding strategy employed by
 395 NeSymReS. During decoding, Given a beam size of b , the decoding process generates b candidate
 396 sequences via beam search. Each candidate’s constant placeholders are subsequently optimized
 397 using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2000). The expression
 398 exhibiting the highest numerical accuracy on the test data is then selected as the model’s output.
 399 While the experiments in Section 5.1 used a beam size of $b = 5$, in this section we conducted
 400 experiments with a larger beam size of $b = 150$. Since increasing the beam size does not provide the
 401 model with any additional information, our hypothesis is that simply adopting a decoding strategy
 402 with a larger beam size will not alleviate reproduction bias.

403 **Transformer-based planning for symbolic re-
 404 gression (TPSR).** TPSR (Shojaee et al., 2023)
 405 is a method that leverages MCTS during decod-
 406 ing time. In TPSR, the process starts by pre-
 407 paring a pre-trained NSR model (e.g., the NeSym-
 408 ReS model). Instead of relying on standard dec-
 409 coding methods like beam search, the method
 410 generates tokens using MCTS, where both the
 411 expansion and evaluation stages of MCTS lever-
 412 age the pre-trained NSR model. In the expansion
 413 phase, to avoid unnecessary exploration, the
 414 set of expandable tokens is restricted to the
 415 top- k_{\max} candidates based on the logits from
 416 the NSR model. During the evaluation phase, the
 417 NSR model first completes the remainder of the
 418 expression following the expanded token. The
 419 completed expression is then evaluated primar-
 420 ily based on its fitting accuracy, with additional
 421 consideration given to its complexity. In the ex-
 422 periments presented in this section, we used the
 423 default hyperparameter settings of TPSR as spec-
 424 ified in the original paper; we set the number of
 425 rollouts to $r = 3$, the number of expandable to-
 426 kens to $k_{\max} = 3$, and beam size for expression
 427 completion to $b = 1$.

428 **NSR-gvs.** TPSR provides feedback to the
 429 model by assigning a reward to each token, re-
 430 flecting the quality or appropriateness of that
 431 token. In contrast, we hypothesized that incor-
 432 porating feedback at the subtree level as well
 433 may have a positive effect on the model. To this end, we propose NSR-gvs, a method grounded in



434 Figure 3: Overview of NSR-gvs’s inference pro-
 435 cedure. We first sampled subtrees from the candidate
 436 pool, then supplied them to the model together
 437 with numerical data. Then, the generated prediction
 438 is numerically verified and the self-verification
 439 feedback is used to update the candidate pool. This
 440 procedure is performed repeatedly to generate bet-
 441 ter predictions over time.

432 the following intuition: expressions that fit the same numerical data well are likely to share common
 433 substructures.

434 We first trained a slightly modified version of the NeSymReS model, where the model takes subtrees
 435 as prompts and generates expressions that incorporate them. We achieved this by extracting subtrees
 436 from the ground-truth expressions and feeding them to the model together with numerical data during
 437 training. Figure 3 illustrates the inference procedure of NSR-gvs. We generated multiple predictions
 438 iteratively by augmenting the model with varying prompts. For each iteration, we first sampled
 439 subtrees from a pool of candidate subtrees, which were extracted from high-performing expressions
 440 in previous predictions. To maintain output diversity, we also occasionally sampled subtrees from a
 441 random distribution. We then provided the sampled subtrees to the pre-trained model as prompts,
 442 along with the numerical data. After the model generates a prediction, it is automatically verified
 443 according to the fitting accuracy on the test data. Finally, the pool of candidate subtrees are updated
 444 based on the results of self-verification. This method can be formulated within the framework of
 445 reinforcement learning, and we provide a more detailed explanation in Appendix. B.

446 We conducted experiments in this section using 30 iteration loops per expression, with the beam size
 447 $b = 5$ for generating each prediction. In addition, we experimented with a method that combines
 448 NSR-gvs with TPSR; in this approach, each prediction is produced via MCTS-based decoding instead
 449 of simple beam search.

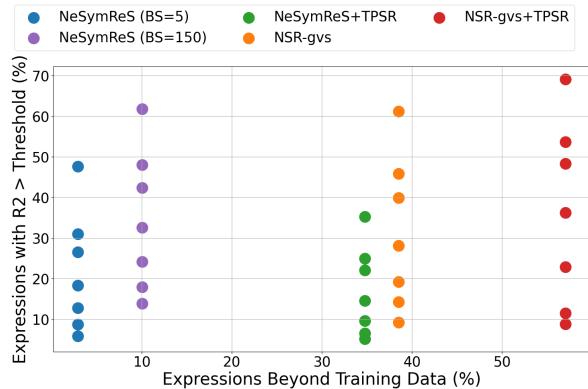
451 6.2 RESULTS

452 We evaluated the impact of each test-
 453 time strategy on reproduction bias
 454 and numerical accuracy in a experimental
 455 setting. The experimental
 456 setup closely follows that described
 457 in Section 5.1. We trained a NeSym-
 458 ReS model and a prompt-augmented
 459 model for NSR-gvs with the same
 460 training dataset for the same number
 461 of epochs. We evaluated the strategies
 462 using the `not_included` dataset,
 463 where we used the R^2 metric to evaluate
 464 numerical accuracy, and the number
 465 of novel expressions to evaluate
 466 reproduction bias.

467 Figure 4 shows how the test-time
 468 strategies perform under the simplified
 469 setting. In terms of the ability
 470 to generate novel expressions,
 471 TPSR, NSR-gvs, and their combi-
 472 nation demonstrate strong performance.
 473 These results imply that strategies in-
 474 volving the provision of additional
 475 information during inference (TPSR
 476 and NSR-gvs) are more effective in reducing reproduction bias. However, the result shows that high
 477 novelty in generated expressions does not necessarily imply high numerical accuracy. In some cases,
 478 acquiring the ability to generate novel expressions leads to a decrease in numerical accuracy (TPSR),
 479 whereas some strategies can improve numerical accuracy despite high reproduction bias (large beam
 480 size).

481 6.3 DISCUSSION

482 The experimental results show that while methods such as TPSR, which mitigate reproduction bias,
 483 can lead to a drop in numerical accuracy, decoding with large beam size improves numerical accuracy
 484 despite retaining a high level of reproduction bias. In this subsection, we discuss possible reasons
 485 why such phenomena occur.



486 Figure 4: Evaluation of test-time strategies on the
 487 `not_included` dataset. The x-axis represents the per-
 488 centage of expressions generated that were not included in
 489 the training data. The y-axis shows the proportion of expres-
 490 sions that exceeded the R^2 thresholds of 0.5, 0.9, 0.95, 0.99,
 491 0.999, 0.9999 and 0.99999, respectively.

486 Given that the additional information in TPSR and NSR-gvs is derived from self-verification, it
 487 should in theory offer better alternatives beyond the model’s own logits, and is expected to assist
 488 in generating better expressions. Despite providing such useful information, the methods often
 489 under-perform in terms of numerical accuracy compared to the simple strategy of increasing beam
 490 size. This suggests that the Transformer struggles to leverage the additional information effectively,
 491 and in some cases, it might even be negatively impacted by it. For example, when the Transformer
 492 encounters an unfamiliar prefix within an partially constructed expression, it may become confused
 493 and could complete the expression with suboptimal tokens.

494 We therefore argue that providing additional information at test time in a way that is easy for the
 495 Transformer to leverage is important for developing a truly generalizable NSR approach. Viewed
 496 in this way, the use of subtrees at inference, as in the proposed method NSR-gvs, can be seen as a
 497 potentially valuable approach, since it contributes to mitigating reproduction bias and improving
 498 numerical accuracy.

499

500 7 CONCLUSION

501

502 In this work, we identified a major drawback of standard NSR models both theoretically and
 503 empirically. Our theoretical analysis shows that Transformers are incapable of generating expressions
 504 in a compositional way, while taking numerical data into account. We then examined the strategies
 505 that Transformers actually employ to generate expressions, and the results suggest that they mostly
 506 generate expressions copied from the training data, highly limiting the search space. We then
 507 demonstrate that incorporating additional information to the model during test-time can reduce
 508 reproduction bias. However, we also show that mitigating reproduction bias does not necessarily
 509 lead to higher numerical accuracy. The main limitation of this work is the absence of a method that
 510 simultaneously mitigates reproduction bias and improves numerical accuracy to a significant extent.
 511 In future work, we aim to build on the findings of this study to design symbolic regression methods
 512 with improved generalizability.

513

514 REFERENCES

515 Ismail Alaoui Abdellaoui and Siamak Mehrkanoon. Symbolic regression for scientific discovery:
 516 an application to wind speed forecasting. In *2021 IEEE Symposium Series on Computational
 517 Intelligence (SSCI)*, pp. 01–08. IEEE, 2021.

518 Sanjeev Arora and Boaz Barak. *Computational complexity: a modern approach*. Cambridge University
 519 Press, 2009.

520 Tommaso Bendinelli, Luca Biggio, and Pierre-Alexandre Kamienny. Controllable neural symbolic
 521 regression. *arXiv preprint arXiv:2304.10336*, 2023.

522 Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
 523 Neural symbolic regression that scales. In *International Conference on Machine Learning*, pp.
 524 936–945. PMLR, 2021.

525 Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda. Operon c++ an efficient genetic
 526 programming framework for symbolic regression. In *Proceedings of the 2020 Genetic and
 527 Evolutionary Computation Conference Companion*, pp. 1562–1570, 2020.

528 Samuel R Buss. The boolean formula value problem is in alogtime. In *Proceedings of the nineteenth
 529 annual ACM symposium on Theory of computing*, pp. 123–131, 1987.

530 Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. *jl.
 531 arXiv preprint arXiv:2305.01582*, 2023.

532 Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
 533 the mystery behind chain of thought: a theoretical perspective. *Advances in Neural Information
 534 Processing Systems*, 36:70757–70798, 2023.

535 Roger Fletcher. *Practical methods of optimization*. John Wiley & Sons, 2000.

540 Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
 541 regression with a learned concept library. *Advances in Neural Information Processing Systems*,
 542 37:44678–44709, 2024.

543 Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
 544 end symbolic regression with transformers. *Advances in Neural Information Processing Systems*,
 545 35:10269–10281, 2022.

546 John R Koza. Genetic programming as a means for programming computers by natural selection.
 547 *Statistics and computing*, 4:87–112, 1994.

548 William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrício Olivetti de França, Marco Virgolin,
 549 Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression methods
 550 and their relative performance. *arXiv preprint arXiv:2107.14351*, 2021.

551 Florian Lalande, Yoshitomo Matsubara, Naoya Chiba, Tatsunori Taniai, Ryo Igarashi, and Yoshitaka
 552 Ushiku. A transformer model for symbolic regression towards scientific discovery. *arXiv preprint*
 553 *arXiv:2312.04070*, 2023.

554 Guillaume Lample and François Charton. Deep learning for symbolic mathematics. *arXiv preprint*
 555 *arXiv:1912.01412*, 2019.

556 Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena,
 557 Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for deep
 558 symbolic regression. *Advances in Neural Information Processing Systems*, 35:33985–33998,
 559 2022.

560 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiolek, Seungjin Choi, and Yee Whye Teh. Set trans-
 561 former: A framework for attention-based permutation-invariant neural networks. In *International*
 562 *conference on machine learning*, pp. 3744–3753. PMLR, 2019.

563 Yanjie Li, Weijun Li, Lina Yu, Min Wu, Jingyi Liu, Wenqiang Li, Meilan Hao, Shu Wei, and Yusong
 564 Deng. Generative pre-trained transformer for symbolic regression base in-context reinforcement
 565 learning. *arXiv preprint arXiv:2404.06330*, 2024.

566 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 567 *arXiv:1711.05101*, 2017.

568 Matteo Merler, Katsiaryna Haitsiukevich, Nicola Dainese, and Pekka Marttinen. In-context sym-
 569 bolic regression: Leveraging large language models for function discovery. *arXiv preprint*
 570 *arXiv:2404.19094*, 2024.

571 William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. *Advances*
 572 *in neural information processing systems*, 36:52453–52463, 2023a.

573 William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
 574 transformers. *Transactions of the Association for Computational Linguistics*, 11:531–545, 2023b.

575 T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
 576 Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
 577 seeding. *arXiv preprint arXiv:2111.00053*, 2021.

578 Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
 579 Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
 580 risk-seeking policy gradients. *arXiv preprint arXiv:1912.04871*, 2019.

581 Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. *science*,
 582 324(5923):81–85, 2009.

583 Samiha Sharlin and Tyler R Josephson. In context learning and reasoning for symbolic regression
 584 with large language models. *arXiv preprint arXiv:2410.17448*, 2024.

585 Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based
 586 planning for symbolic regression. *Advances in Neural Information Processing Systems*, 36:45907–
 587 45919, 2023.

594 Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits. [arXiv](#)
 595 [arXiv preprint arXiv:2308.03212](#), 2023.

596

597 Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
 598 governing equations via monte carlo tree search. [arXiv preprint arXiv:2205.13134](#), 2022.

599

600 Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
 601 [Advances in neural information processing systems](#), 27, 2014.

602

603 Wassim Tenachi, Rodrigo Ibata, and Foivos I Diakogiannis. Deep symbolic regression for physics
 604 guided by units constraints: toward the automated discovery of physical laws. [arXiv preprint](#)
 605 [arXiv:2303.03192](#), 2023.

606

607 Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
 608 regression. [Science Advances](#), 6(16):eaay2631, 2020.

609

610 Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
 611 Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. [Advances in](#)
 612 [Neural Information Processing Systems](#), 33:4860–4871, 2020.

613

614 Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
 615 former model for symbolic regression. [arXiv preprint arXiv:2106.14131](#), 2021.

616

617 Martin Vastl, Jonáš Kulhánek, Jiří Kubalík, Erik Derner, and Robert Babuška. Symformer: End-to-end
 618 symbolic regression using transformer-based architecture. [IEEE Access](#), 2024.

619

620 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 621 Kaiser, and Illia Polosukhin. Attention is all you need. [Advances in neural information processing](#)
 622 [systems](#), 30, 2017.

623

624 Marco Virgolin and Solon P Pissis. Symbolic regression is np-hard. [arXiv preprint arXiv:2207.01018](#),
 625 2022.

626

627 Marco Virgolin, Tanja Alderliesten, and Peter AN Bosman. Linear scaling with and within semantic
 628 backpropagation-based genetic programming for symbolic regression. In [Proceedings of the](#)
 629 [genetic and evolutionary computation conference](#), pp. 1084–1092, 2019.

630

631 Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science.
 632 [MRS Communications](#), 9(3):793–805, 2019.

633

634

635 Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In [The Twelfth](#)
 636 [International Conference on Learning Representations](#), 2024.

637

638 Hengzhe Zhang, Qi Chen, Wolfgang Banzhaf, Mengjie Zhang, et al. Rag-sr: Retrieval-augmented
 639 generation for neural symbolic regression. In [The Thirteenth International Conference on Learning](#)
 640 [Representations](#), 2025.

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

Table 2: Operators used in NeSymReS

Arity	Operators
Unary	$\text{pow2}, \text{pow3}, \text{pow4}, \text{pow5}$ $\text{sqrt}, \text{log}, \text{exp}$ $\text{sin}, \text{cos}, \text{asin}$
Binary	$\text{add}, \text{sub}, \text{mul}, \text{div}$

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Table 3: Hyperparameters in NeSymReS’s dataset generation

Name	Explanation	Value
d	Dimension for input variables	5
n	Number of input points	Sampled from $\mathcal{U}(1, 1000)$
\mathcal{D}_{mul}	Distribution over multiplicative constants	Sampled from $\mathcal{LU}(0.05, 10)$
\mathcal{D}_{add}	Distribution over additive constants	Sampled from $\mathcal{U}(-10, 10)$
$\{x_{\min,j}\}_{j=1}^d$	Lower bound for sampling input variable	Sampled from $\mathcal{U}(-10, 9)$
$\{x_{\max,j}\}_{j=1}^d$	Upper bound for sampling input variable	Sampled from $\mathcal{U}(x_{\min,j} + 1, 10)$

A DETAILS FOR NESYMRES

In this section, we present a detailed explanation for the study of NeSymReS that could not be fully explained in Section 3. We discuss the details of the dataset generation process, the model architecture, and the training procedure.

Generating the dataset. In the first step for generating the expression e^* , the unary-binary tree structure T is generated randomly within the limits of a maximum depth of 6. In the third step, the total number of constants added to the expression is also limited to a maximum of 6. The binary and unary operators $\mathcal{O}_{\text{bin}} \cup \mathcal{O}_{\text{un}}$ are shown in Table 2. Other hyperparameters are specified in Table 3, where \mathcal{LU} denotes the log-uniform distribution.

Model architecture. The NeSymReS model consists of two architectural components: the numerical encoder enc_{num} and a decoder dec . The numerical encoder processes the numerical data \mathcal{D} , represented as a tensor of shape (b, n, d) , where b denotes the batch size, n the number of input points, and d the sum of dependent and independent variables. First, an embedding layer converts the numerical data into a higher dimensional tensor \mathcal{D}' of shape (b, n, h) . This tensor is then processed by a 5-layer set-transformer (Lee et al., 2019) encoder that outputs a new tensor Z_{num} of shape (b, s, h) , where s denotes the number of embedding vectors produced by the encoder. The resulting tensor Z_{num} is subsequently passed to the decoder dec , a five-layer standard Transformer decoder that auto-regressively generates the corresponding expression token by token. We set $b = 200$, $h = 512$, and $s = 32$ for our experiments.

Details for training. During training, cross-entropy loss is used as the objective function, and teacher forcing (Sutskever et al., 2014) is applied during next-token prediction. The AdamW (Loshchilov & Hutter, 2017) optimizer is employed with an initial learning rate of 10^{-4} . After 4000 steps, the learning rate is adjusted proportionally to the inverse square root of the number of steps taken.

B DETAILS FOR TEST-TIME STRATEGIES

This section is devoted to supplementing the details that were not fully covered in Section 6. We first supplement our explanation of TPSR, followed by a detailed formulation of NSR-gvs.

702 B.1 TPSR
703

704 We detail the exact procedure for computing the reward in TPSR. As explained in Section 6, the
705 reward is mainly calculated based on the generated expression’s numerical accuracy, with additional
706 consideration given to its complexity. In TPSR, a hyperparameter λ controls the balance between
707 fitting accuracy and complexity. Given a set of n data points $\{\mathbf{x}_i, y_i\}_{i=1}^n$, and a candidate prediction
708 \tilde{f} , the reward $r(\tilde{f}(\cdot) | \mathbf{x}, \mathbf{y})$ is calculated as follows:

$$710 \quad r(\tilde{f}(\cdot) | \mathbf{x}, \mathbf{y}) = \frac{1}{1 + \text{NMSE}(\mathbf{y}, \tilde{f}(\mathbf{x}))} + \lambda \exp \left(-\frac{|\text{seq}(\tilde{f})|}{L} \right),$$

713 where seq is the serialization mapping introduced in Section 3, L denotes the the model’s maximum
714 sequence length, and NMSE represents the normalized mean square loss. In our work, we always set
715 λ to 0.01, which is the default value in the original study of TPSR.

716 B.2 NSR-gvs
717

718 As described in Section 6, NSR-gvs is a method that iteratively improves its predictions by providing
719 expression subtrees as prompts to the model and receiving feedback through verification. In this
720 section, we formulate the training and inference procedures of NSR-gvs within the framework of
721 reinforcement learning.

722 B.2.1 TRAINING
723

724 We first introduce a prompt-conditioned symbolic regressor S'_θ defined by parameters θ , that maps a
725 numerical dataset \mathcal{D} and an auxiliary prompt sequence \mathbf{p} to a symbolic expression $\hat{e} = S'_\theta(\mathcal{D}, \mathbf{p})$.
726 Learning aims to align \hat{e} with the ground-truth expression e^* underlying \mathcal{D} . Among the elements of
727 the synthetic training tuple $(e^*, \mathcal{D}, \mathbf{p})$, the generation of e^* and \mathcal{D} is the same as explained in Section
728 3. Here we specify how prompt sequences are constructed.

729 We first define $\text{extract} : \mathcal{E} \longrightarrow \mathcal{P}(\mathcal{E})$ as a stochastic mapping, which assigns to each symbolic
730 expression $e \in \mathcal{E}$ a probability distribution over the subtrees of e . The space $\mathcal{P}(\mathcal{E})$ denotes the power
731 set of expressions.

732 Using this stochastic mapping, we first obtain N subtrees $\{e'_i \mid e'_i \sim \text{extract}(e^*), i = 1, 2, \dots, N\}$
733 from the ground-truth expression e^* . Then, each of the subtrees are converted to token sequences
734 $\{\mathbf{t}_i \mid \mathbf{t}_i = \text{seq}(e'_i), i = 1, 2, \dots, N\}$ using the serialization map seq . Given an expression e^* , we
735 construct the prompt:

$$736 \quad \mathbf{p} = (\tau_{\text{start}}, \mathbf{t}_1, \tau_{\text{end}}, \tau_{\text{start}}, \mathbf{t}_2, \tau_{\text{end}}, \dots, \tau_{\text{start}}, \mathbf{t}_N, \tau_{\text{end}}),$$

737 where tokens τ_{start} and τ_{end} are partition tokens representing the beginning and end of each subtree
738 representation.

739 Similar to the formulation in Section 3, the predictive distribution $q'_\theta(\cdot \mid (\mathbf{p}, \mathbf{s}_{<j}), \mathcal{D})$ is realized by
740 an encoder-decoder Transformer parametrized by θ . In NSR-gvs, however, the decoder is conditioned
741 on $(\mathbf{p}, \mathbf{s}_{<j})$, which is the concatenation of the prompt \mathbf{p} and previously emitted prefix $\mathbf{s}_{<j}$.

742 B.2.2 INFERENCE
743

744 During inference, we guide the symbolic regressor S'_θ by prompting it with expression subtrees,
745 which are obtained by a self-verification process. We formalize the inference-time mechanism of
746 NSR-gvs within the framework of a Markov Decision Process (MDP). The core components of the
747 MDP are defined as follows:

748 **State space \mathcal{S} and action space \mathcal{A} .** The state at time t is denoted by $s_t \in \mathcal{S}$. The state is defined as
749 $s_t = \{(e'_i, z_i, c_i) \mid i = 1, 2, \dots, n_t\}$, which is a n_t -sized set comprising tuples of subtrees $e'_i \in \mathcal{E}$, its
750 corresponding verification scores $z_i \in \mathbb{R}$, and its appearance count $c_i \in \mathbb{N}$. Therefore, the state space
751 can be represented as $\mathcal{S} = \mathcal{P}(\mathcal{E} \times \mathbb{R} \times \mathbb{N})$. The action $a_t \in \mathcal{A}$ is a prompt sequence described in the
752 previous subsection. The action space is represented as $\mathcal{A} = (\Gamma \cup \{\tau_{\text{start}}, \tau_{\text{end}}\})^*$.

756

757

Table 4: Hyperparameters in NSR-gvs

758

Name	Explanation	Value
k	Size of high-scored subtree set E'_{topk}	39
k_{rand}	Size of randomly sampled subtree set E'_{rand}	9
z_{thres}	Threshold value for high-scored subtrees	0.213
l_{max}	Maximum length of a subtree's representation	9
l_t	Total length of the subtrees' representation	Sampled from $\mathcal{U}(0, \lfloor 15.58 + 0.42t \rfloor)$

764

765

Policy $\pi(a_t | s_t)$. We define a stochastic policy to sample an action a_t from the current state s_t . An action is sampled following the procedure below.

766

767

First, we deterministically select a set of subtrees E'_{topk} , consisting of the top k subtrees with the highest verification scores in state s_t , as follows:

768

769

$$E'_{\text{topk}} = \{e'_i \mid (e'_i, z_i, c_i) \in s_{\text{topk}}, i = 1, 2, \dots, k\}, \quad \text{where } s_{\text{topk}} = \underset{s \subseteq s_t, |s|=k}{\text{argmax}} \sum_{(e', z, c) \in s} z.$$

770

771

Subsequently, we filter out subtrees whose corresponding score z is smaller than a threshold value z_{thres} . The purpose of this operation is to prioritize exploration over exploitation when the quality of obtained subtrees are poor.

772

773

Next, we construct a set E'_{rand} by extracting k_{rand} subtrees from expressions sampled from the expression generator $p_{\mathcal{E}}$:

774

775

$$E'_{\text{rand}} = \{e'_i \mid e'_i \sim \text{extract}(e), e \sim p_{\mathcal{E}}, i = 1, 2, \dots, k_{\text{rand}}\}.$$

776

777

Finally, we uniformly sample a set of subtrees from the merged set $E'_{\text{topk}} \cup E'_{\text{rand}}$ and convert them to tokens in the same way as during training time, resulting in a prompt sequence a_t . During sampling, we filter out subtrees whose token representation is longer than l_{max} , and we sample subtrees until the total length of the subtrees' token representation exceeds the limit l_t .

778

779

By sampling from both the self-verification-based set E'_{topk} and the randomly obtained set E'_{rand} , the policy enables both exploration and exploitation. The hyperparameters k , k_{rand} , z_{thres} , l_{max} , and l_t characterize the policy.

780

781

Reward function $R(a_t, s_t)$ and **transition probability** $T(s_{t+1} | a_t, s_t)$. After an action a_t is sampled, it is provided to the prompt-conditioned symbolic regressor S'_{θ} together with numerical data \mathcal{D} . We compute the reward based on the numerical accuracy of the prediction $\hat{e} = S'_{\theta}(\mathcal{D}, a_t)$.

782

783

Let $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ be a metric to evaluate the difference between two vectors (in practice, we use the R^2 value described in Section 5). When $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, the reward is computed as:

784

785

$$R(a_t, s_t) = \mathcal{L}(\mathbf{y}, \hat{e}(\mathbf{x})).$$

786

787

Finally, we define the transition probability $T(s_{t+1} | a_t, s_t)$, determined by the following process. We denote by \hat{E}' the set comprising all subtree expressions of \hat{e} . For each subtree \hat{e}' in \hat{E}' , we update s_t so that the verification score of each subtree matches the average reward of all expressions that included the subtree, as described below.

788

789

1. If $\forall (e', z, c) \in s_t, \hat{e}' \neq e'$ holds, add the tuple $(\hat{e}', R(a_t, s_t), 1)$ to s_t .

790

791

2. If $\exists (e', z, c) \in s_t, \hat{e}' = e'$ holds, replace the tuple (\hat{e}', z, c) with $(\hat{e}', \frac{cz + R(a_t, s_t)}{c + 1}, c + 1)$.

792

793

The updated state serves as the state s_{t+1} at the next timestep $t + 1$.

794

795

The overall algorithm during inference-time is detailed in 1. For the hyperparameters that characterize the policy, we use the values shown in Table 4, which were tuned via Bayesian optimization on 5 randomly generated expressions. The function $\lfloor \cdot \rfloor$ indicates the floor function, which rounds down the input to its nearest integer.

810
811
812
813
814
815
816
817

Algorithm 1 Inference-time Algorithm

```

818
819 function VERIFY( $e, \mathcal{D}$ )
820      $(X, y) \leftarrow \mathcal{D}$ 
821      $\hat{y} \leftarrow e(X)$ 
822     Compute  $R^2$  score between  $y$  and  $\hat{y}$ 
823     return  $R^2$ 
824
825 function UPDATE( $e, s_t, R^2$ )
826      $E'_p \leftarrow$  Partial expressions extracted from  $e$ 
827      $s_{t+1} \leftarrow []$ 
828     for  $(e_p, z, c)$  in  $s_t$  do
829         if  $e_p \in E'_p$  then
830              $z \leftarrow \frac{cz + R^2}{c + 1}$ 
831              $c \leftarrow c + 1$ 
832         Append  $(e_p, z, c)$  to  $s_{t+1}$ 
833     return  $s_{t+1}$ 
834
835
836 procedure NSR-GVS-INFERENCE( $\mathcal{D}$ )
837      $s_1 \leftarrow []$ 
838      $e_{\text{best}} \leftarrow \text{None}$ 
839      $R^2_{\text{best}} \leftarrow -\infty$ 
840     for  $t \leftarrow 1$  to  $T$  do
841         if  $t = 1$  then
842              $a_t \leftarrow []$ 
843         else
844              $E'_{\text{topk}} \leftarrow$  Top  $k$  expressions in  $s_t$  with high score
845             Filter out expressions in  $E'_{\text{topk}}$  whose corresponding score  $z < z_{\text{thres}}$ 
846              $E'_{\text{rand}} \leftarrow$  Randomly sampled partial expressions
847              $E'_{\text{merged}} \leftarrow E'_{\text{topk}} \cup E'_{\text{rand}}$ 
848              $a_t \leftarrow$  Uniformly sampled subset from  $E'_{\text{merged}}$ , converted to tokens
849              $s \leftarrow \text{Transformer}(\mathcal{D}, a_t)$ 
850             Convert sequence  $s$  to expression  $e$ 
851              $R^2 \leftarrow \text{Verify}(e, \mathcal{D})$ 
852              $s_{t+1} \leftarrow \text{Update}(e, s_t, R^2)$ 
853             if  $R^2 > R^2_{\text{best}}$  then
854                  $e_{\text{best}} \leftarrow e$ 
855                  $R^2_{\text{best}} \leftarrow R^2$ 
856     return  $e_{\text{best}}$ 
857
858
859
860
861
862
863
```

864 **C DETAILS FOR EXPERIMENTS, IMPLEMENTATION, AND USE OF LLMs**
865866 In this section, we describe the details for the experiments conducted in Section 5, 6, and D. We
867 also provide details regarding our implementation and the computational resources used in our
868 experiments.
869870 We provide the model with 100 data points in all experiments. We selected the range of the data
871 support as follows: for the AI Feynman dataset, we used the support defined by the dataset itself. For
872 all other datasets, we sampled the support range using the same procedure as used when generating
873 the training data. For error bars, we report the standard deviation across three different random seeds.
874 For the method combining NSR-gvs and TPSR, however, we conducted experiments with only a
875 single seed due to the long inference time. Our implementation for data generation, model training,
876 and related components is based on the original implementation of NSRwH¹. For the transformer4sr
877 and TPSR experiments, we used the official implementation provided by the authors^{2, 3}. For both
878 implementations, we used the version of the implementation that was available on May 15, 2025. We
879 trained and tested the model on a single NVIDIA A100 GPU. Training requires approximately 24
880 hours either for 1000 epochs on a dataset with 100,000 expressions or for 10 epochs on a dataset
881 with 10 million expressions. The time required to generate a single expression at test time is less than
882 one minute when using only NeSymReS or NSRwH, approximately 3 to 10 minutes with TPSR or
883 NSR-gvs, and around 2 to 5 hours when combining TPSR with NSR-gvs.
884885 We used large language models (LLMs) to aid writing and coding, where we mainly used Gemini 2.5
886 Flash and GPT-5 to generate code and check on errors in writing.
887888 **D ADDITIONAL EXPERIMENTS**
889890 **D.1 VARYING THE TRAINING DATASET SIZE IN TRANSFORMER4SR**
891892 In Section 5, we tested whether reproduction bias occurs in the practical setting of transformer4sr.
893 Although the dataset size that we tested on was fairly large (1.5M expressions), there is a possibility
894 that further scaling the dataset size alone can mitigate reproduction bias. We therefore construct
895 multiple training datasets with varying size to examine how reproduction bias trends as the dataset
896 size increases. We construct datasets with the size ranging from 100K to 1.5M and present the result
897 in Figure 5. The result shows that increasing the training dataset size does mitigate reproduction bias
898 at the start, but not necessarily after a certain limit to the training dataset size.
899900 **D.2 NUMERICAL ACCURACY IN PRACTICAL SETTINGS**
901902 We additionally evaluate and compare the numerical performance of the test-time strategies under
903 conditions that better reflect practical applications. A total of 10 million expressions were used to
904 construct the training dataset, employing all operators described in Section A without any restriction
905 on operator types. We trained both a NeSymReS model and a prompt-augmented model on this
906 dataset for 10 epochs. For the test datasets, we prepared the following two sets:
907908

- 909 • **AI-Feynman**. This dataset consists of 91 equations with up to five independent variables,
910 extracted from the AIFeynman database (Udrescu & Tegmark, 2020). It is commonly used
911 in various studies to assess the performance of symbolic regression methods.
912
- 913 • **only_five_variables_nc**. This dataset consists of expressions containing exactly
914 five independent variables, making it a challenging dataset. The “nc” designation indicates
915 that the expressions do not include constants, which simplifies the problems slightly; how-
916 ever, it remains more difficult than the first dataset. The dataset was constructed by sampling
917 expressions from p_E , filtering for expressions that include exactly five variables, and finally
918 deleting its constants. This dataset is derived from the study of NSRwH (Bendinelli et al.,
919 2023), and we use the first 100 expressions for evaluation.
920

921 ¹<https://github.com/SymposiumOrganization/ControllableNeuralSymbolicRegression>922 ²<https://github.com/omron-sinicx/transformer4sr>923 ³<https://github.com/deep-symbolic-mathematics/TPSR>

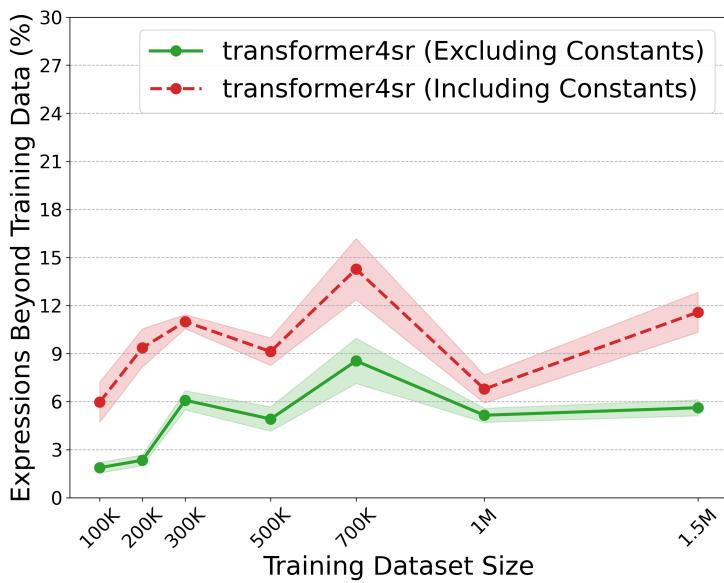


Figure 5: Reproduction bias in transformer4sr with varying training dataset sizes. While small training dataset sizes (100K, 200K) exhibit stronger reproduction bias, scaling the training dataset size does not necessarily mitigate reproduction bias after a certain limit.

- **black-box.** We also evaluated on numerical data collected from the real world, whose ground-truth expressions do not exist. We extracted 35 expressions from the black-box dataset in SR-Bench (La Cava et al., 2021) whose number of independent variables are five or less. The data are often noisy and may be sampled from a range different from the numerical data that the models were trained on, making the task challenging for the test-time computation methods.

Figure 6 demonstrates how the different test-time strategies perform under more practical settings. TPSR relatively performs slightly better than in the controlled setting; however, the general pattern of numerical accuracy remains consistent. These results demonstrate that, even in practical settings, test-time strategies that mitigate reproduction bias do not always result in better performance.

The result for the **black-box** dataset is shown in Figure 7. Consistent with the results above, NSR-gvs improves performance, and combining it with TPSR leads to further gains. This result shows how NSR-gvs can improve performance robustly even on noisy datasets with the range of numerical data different from training time. TPSR also improves performance to a certain extent in this case.

D.3 TRADE-OFF BETWEEN PERFORMANCE AND COMPUTATIONAL COST

The results in Section 6 show how the relationship between reproduction bias and numerical accuracy differ between various test-time strategies. However, test-time strategies also differ in terms of the computational cost required to generate an expression. In this section, we aim to better understand each test-time strategy by analyzing the trade-off between performance and the computational cost of expression generation. We also varied the beam size during decoding for NeSymReS, TPSR, and NSR-gvs for a more comprehensive analysis. We tested under the controlled setting described in Section 5, using the `not_included` dataset as the test dataset.

To measure the computational cost, we followed the approach of Shojaee et al. (2023) and used the number of candidate expressions generated by the model during the generation of a single equation. For example, this value corresponds to the beam size in NeSymReS, the number of total rollouts multiplied by beam size in TPSR, and the number of iteration loops multiplied by beam size in NSR-gvs.

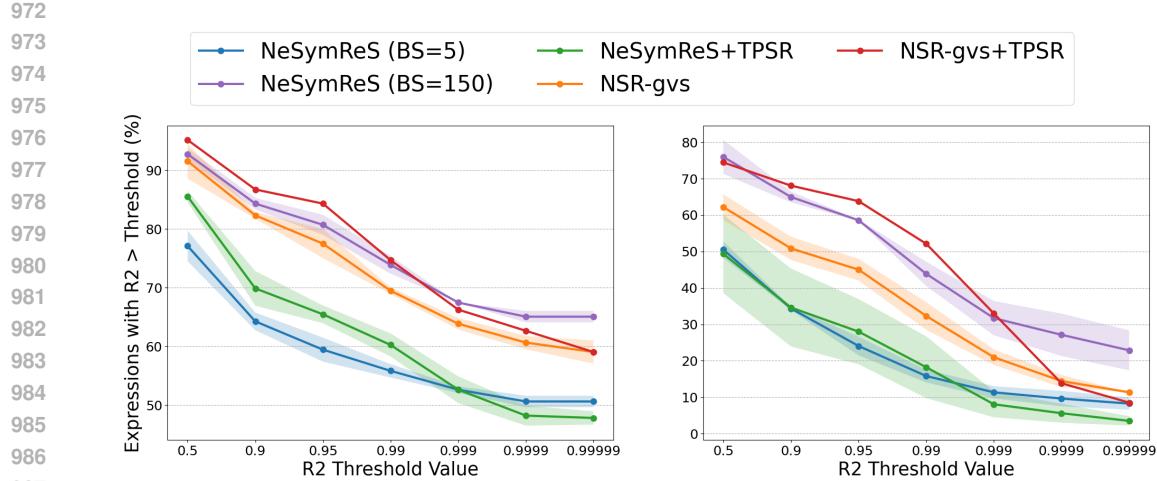


Figure 6: Comparison of test-time strategies under practical settings. The figure on the left shows the performance on the AI-Feynman dataset, and the figure on the right presents results on the only_five_variables_nc dataset.

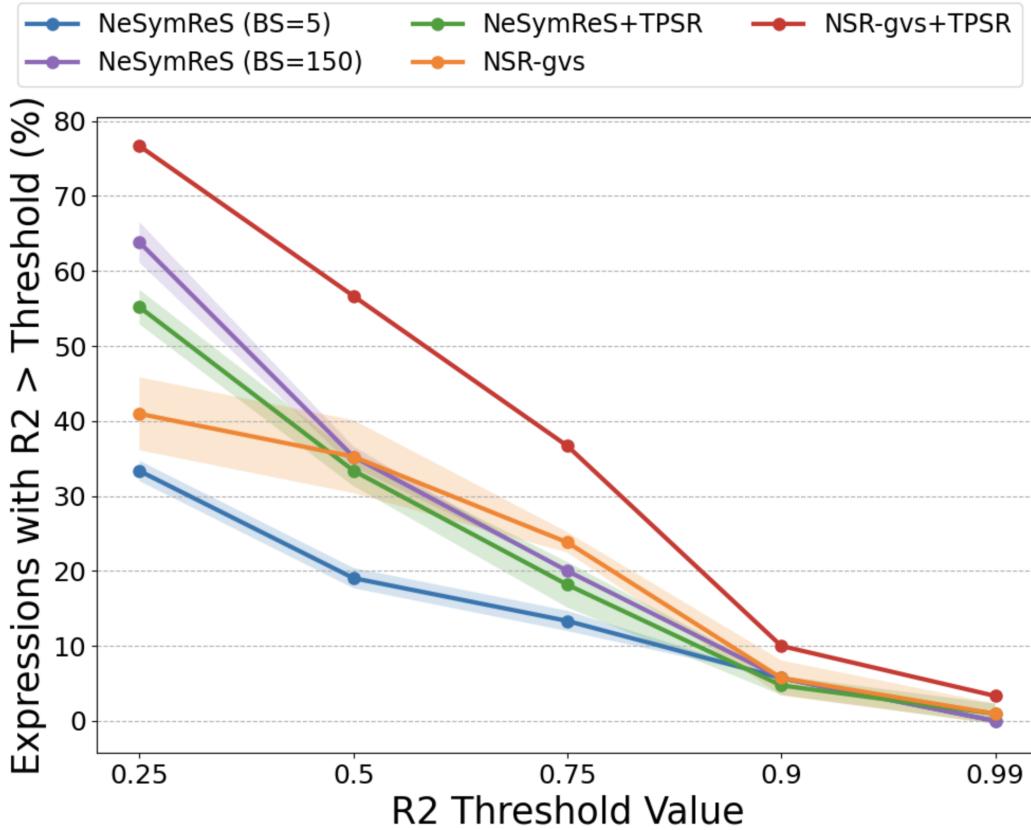


Figure 7: Comparison of test-time strategies under practical settings. The figure shows the performance on the 35 expressions with less than five independent variables extracted from the black-box dataset in SR-Bench.

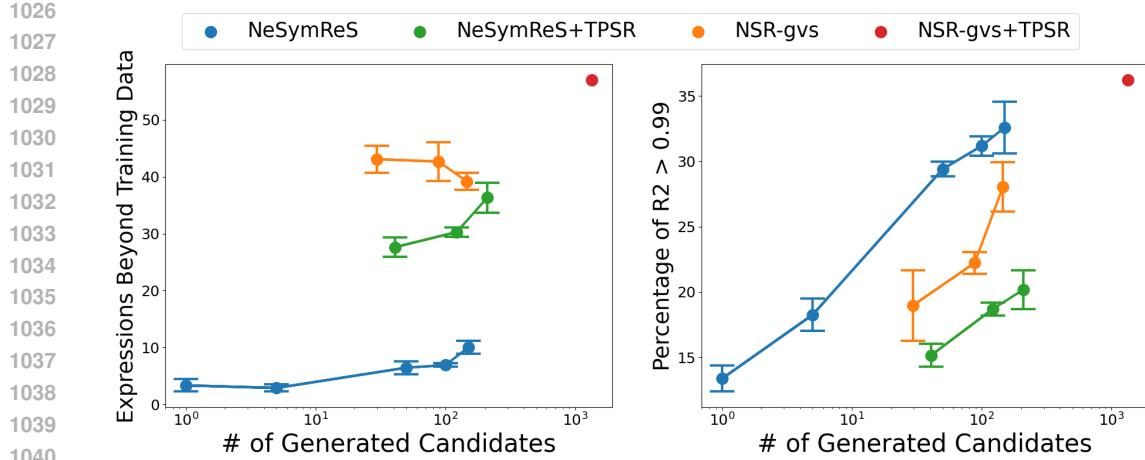


Figure 8: Trade-off between performance and computational cost for different test-time strategies. We varied the beam sizes for each model as follows: $\{1, 5, 50, 100, 150\}$ for NeSymReS, and $\{1, 3, 5\}$ for both NeSymReS+TPSR and NSR-gvs. For NSR-gvs+TPSR, we only experimented with beam size set to 1. The left figure shows the trade-off between the ability to generate expressions and computational cost, while the right figure shows the trade-off between numerical accuracy and computational cost.

We present the results in Figure 8. It can be observed that, unlike NeSymReS—where larger beam size yields only limited reduction in reproduction bias—TPSR and NSR-gvs achieve notable reductions in reproduction bias at comparable computational costs. However, in terms of numerical accuracy, simply increasing the beam size in NeSymReS yields better performance than using NSR-gvs or TPSR at a comparable computational cost. The results support the conclusion in Section 6 that the reduction of reproduction bias is only weakly correlated with numerical accuracy.

D.4 CAN NSRWH ALSO MITIGATE REPRODUCTION BIAS?

When researchers in fields of natural sciences or engineering model their experimental data, they often make use of prior knowledge. For example, scientists may anticipate a symmetry between variables or predict that a particular operator appears in the mathematical laws describing the data. NSRWH (Bendinelli et al., 2023) is a method that enables incorporating such prior knowledge into the NeSymReS model. The types of prior knowledge provided to the model include the following:

- **Complexity.** The complexity of an expression is defined by the number of tokens used in the expression’s token sequence. The model is provided with the complexity of the ground-truth expression.
- **Symmetry.** The presence or absence of symmetry among the input variables is provided to the model.
- **Positives.** Subtrees appearing in the ground-truth expression are provided to the model. Additionally, the value of constants appearing in the ground-truth expression may also be provided.
- **Negatives.** Subtrees that do not appear in the ground-truth expression are provided to the model.

In NSRWH, prior knowledge is encoded by an additional symbolical encoder enc_{sym} . The output of the symbolical encoder is summed together with the output of NeSymReS’s numerical encoder and is fed to the decoder.

While prior knowledge is required beforehand to use NSRWH, it is a method that provides the model with additional information during inference, similar to TPSR and NSR-gvs. In this section, we test

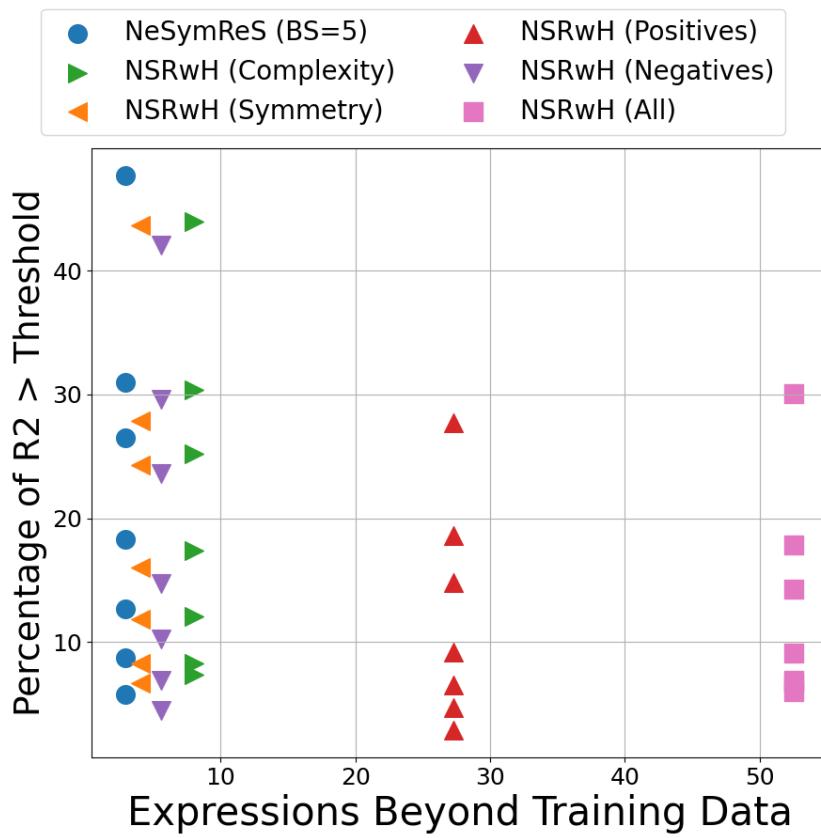


Figure 9: Evaluation of NSRwH on the `not_included` dataset. The x-axis represents the percentage of expressions generated that were not included in the training data. The y-axis shows the proportion of expressions that exceeded the R^2 thresholds of 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999 and 0.99999, respectively.

1134
 1135 Table 5: Breakdown of generated expressions by novelty and high accuracy ($R^2 > 0.99$) across
 1136 test-time strategies

Test-time Strategy	Novel, $R^2 > 0.99$	Novel, $R^2 \leq 0.99$	Not Novel, $R^2 > 0.99$	Not Novel, $R^2 \leq 0.99$
NeSymReS (BS=1)	0.45	2.89	12.92	83.74
NeSymReS (BS=5)	0.67	2.23	17.59	79.52
NeSymReS (BS=50)	4.23	2.23	25.17	68.38
NeSymReS (BS=100)	4.45	2.45	26.72	66.37
NeSymReS (BS=150)	6.25	3.79	26.33	63.62
NeSymReS + TPSR (BS=1)	0.45	27.17	14.70	57.69
NeSymReS + TPSR (BS=3)	0.67	29.62	18.04	51.67
NeSymReS + TPSR (BS=5)	2.02	34.31	18.16	45.51
NSR-gvs (BS=1)	4.91	38.18	14.05	42.86
NSR-gvs (BS=3)	6.67	36.00	15.56	41.78
NSR-gvs (BS=5)	8.68	30.51	19.38	41.43
NSR-gvs + TPSR (BS=1)	12.75	44.30	23.46	19.46
NSRwH (Complexity, BS=5)	2.23	5.80	15.18	76.78
NSRwH (Symmetry, BS=5)	1.11	2.90	14.93	81.06
NSRwH (Positives, BS=5)	2.46	24.83	6.71	66.00
NSRwH (Negatives, BS=5)	0.89	4.68	13.81	80.62
NSRwH (All, BS=5)	4.90	47.66	4.23	43.21

1157
 1158 whether NSRwH can mitigate reproduction bias when prior knowledge is provided. We obtained
 1159 a NSRwH model by finetuning the NeSymReS model that we trained in Section 5. We froze the
 1160 numerical encoder of the NeSymReS model, attached a symbolical encoder, and finetuned the model
 1161 for 250 epochs. We used the same training dataset as in Section 5 consisting of 100,000 expressions;
 1162 however, during fine-tuning, prior knowledge was extracted from the ground-truth expressions and
 1163 fed into the symbolic encoder. At test time, we evaluated the NSRwH model under settings where
 1164 each type of prior knowledge is provided individually, as well as under a setting where all types of
 1165 prior knowledge are provided simultaneously. We follow the default settings of NSRwH to determine
 1166 the amount of prior knowledge provided during test-time, and we used the `not_included` dataset
 1167 as the test dataset. We set the beam size to 5 and compare the results with those of NeSymReS, which
 1168 is also configured with a beam size of 5.

1169 Figure 9 shows the results for this experiment. While providing complexity, symmetry, or absent
 1170 subtrees mitigates reproduction bias only to a limited extent, providing appearing subtrees or providing
 1171 all properties significantly mitigates reproduction bias. However, we also observe that the numerical
 1172 accuracy of NSRwH decreases when provided with appearing subtrees or with all properties. This
 1173 indicates a limitation of NSRwH when dealing with data not included in the training set. The results
 1174 also show that not all kinds of additional data are effective for mitigating reproduction bias.
 1175

1176 D.5 DO NOVEL EXPRESSIONS CONTRIBUTE TO IMPROVEMENTS IN NUMERICAL ACCURACY?

1177
 1178 In Section 6, we saw that providing additional information to the model during inference can lead
 1179 to generation of novel expressions. However, we also demonstrated that mitigating reproduction
 1180 bias does not necessarily lead to better numerical accuracy. In this section, we analyzed how much
 1181 the novel expressions generated under each test-time strategy (including NSRwH) contribute to
 1182 improvements in numerical accuracy, and present the corresponding results in Table 5. “Novel”
 1183 indicates that the generated expression does not appear in the training data, while “Not Novel” means
 1184 it does. The values indicate the percentage of expressions that satisfy each condition.

1185 The results show that for test-time strategies that are capable of mitigating reproduction bias (strategies
 1186 shown in bold), a large proportion of generated novel expressions do not perform well in terms of
 1187 numerical accuracy. Especially for TPSR, hardly any of the novel expressions exhibit high numerical
 1188 accuracy. This indicates the difficulty of generating appropriate expressions from an expanded search

space. However, for strategies using NSR-gvs, novel expressions contribute to high accuracy to some extent, showing that additional information can be beneficial for both mitigating reproduction bias and improving numerical accuracy in some occasions.

D.6 FURTHER RESULTS ON THE BASELINE DATASET

As described in Section 5, the empirical results show that the `baseline` dataset is a much more easier dataset compared to the `not_included` dataset with naive inference. In this section, we present the results concerning the numerical accuracy for various test-time strategies on the `baseline` dataset. We also test with NSRwH as well as the test-time strategies described in Section 6.

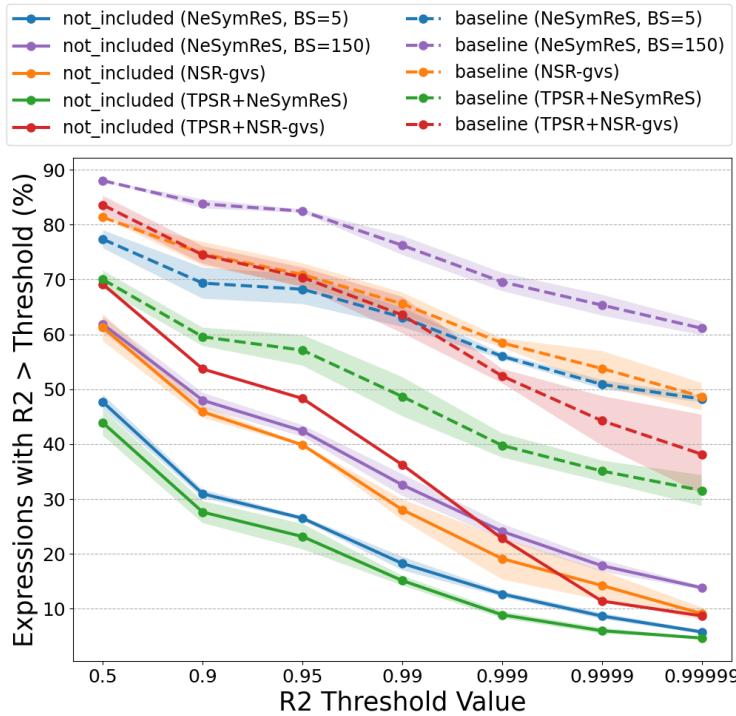


Figure 10: The y-axis shows the proportion of expressions that exceeded the R^2 thresholds of 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999 and 0.99999, respectively.

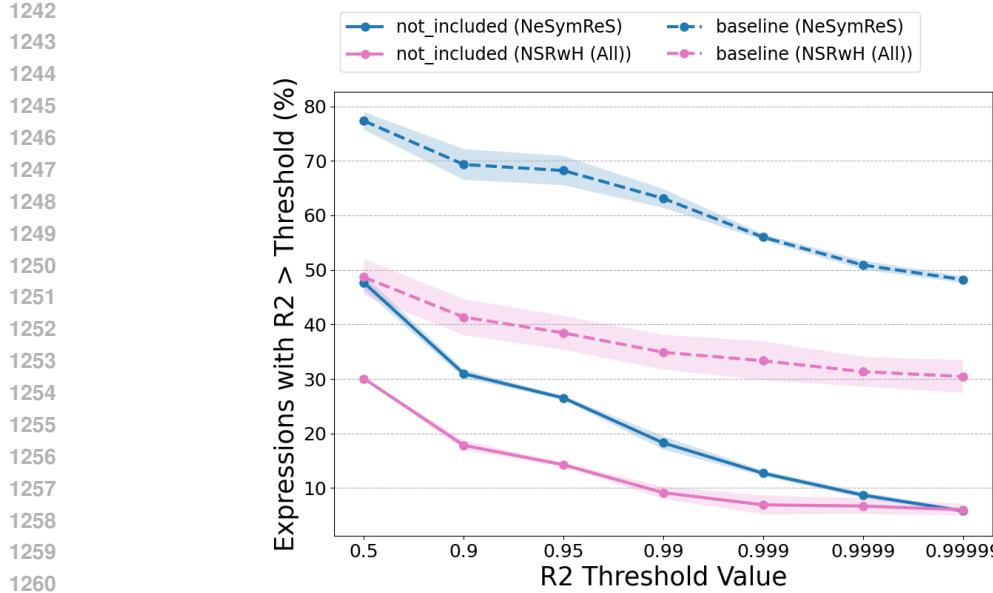


Figure 11: The y-axis shows the proportion of expressions that exceeded the R^2 thresholds of 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999 and 0.99999, respectively.

E THEORETICAL BACKGROUND AND PROOF

In this section, we provide background knowledge, detailed settings, and a complete proof for the theoretical result presented in Section 5.

E.1 PRELIMINARY

We first provide a brief overview of relevant circuit complexity classes. We then define the class of log-precision Transformers and introduce its simulation guarantees. We also present a formal definition of the Boolean formula value problem, which we use in our proof.

E.1.1 CIRCUIT COMPLEXITY CLASSES

We offer an explanation to several fundamental circuit complexity classes that are used in our theoretical analysis. Particularly, we discuss the complexity classes AC^0 , TC^0 and NC^1 . The relationship between these three classes can be summarized as follows:

$$AC^0 \subsetneq TC^0 \subset NC^1.$$

Whether TC^0 is a proper subset of NC^1 is an open question, but it is widely believed that this is the case. For a more detailed and comprehensive introduction, we recommend reference to (Arora & Barak, 2009).

Circuit class AC^0 . The class AC^0 consists of Boolean circuits of constant depth and polynomial size whose gates have unbounded fan-in and are restricted to the basis $\{\text{AND}, \text{OR}, \text{NOT}\}$. Intuitively, AC^0 captures extremely shallow parallel computation.

Circuit class TC^0 . The class TC^0 is an extension of AC^0 , where a gate called the majority gate can be additionally used. A majority gate has unbounded fan-in and outputs false when half or more of the inputs are false, and true otherwise. Other definitions are the same as AC^0 .

1296 **Circuit class NC^1 .** Circuits in NC^1 are polynomial sized with the depth logarithmic to the input
 1297 size. They comprise of {AND, OR, NOT} gates with constant fan-in. The class NC^1 contains several
 1298 well-known problems such as the parity check on a bit string.
 1299

1300 **E.1.2 LOG-PRECISION TRANSFORMERS**
 1301

1302 We assume bounded-depth log-precision Transformers throughout the theoretical analysis. We first
 1303 model the parametrized Transformer TF_θ as a next-token prediction function;
 1304

$$\text{TF}_\theta : \Gamma^m \times \mathbb{R}^{(d+1) \times n} \longrightarrow \Gamma, \quad (2)$$

1306 i.e. the Transformer receives a length- m prefix along with a numerical dataset \mathcal{D} and outputs a single
 1307 token $u \in \Gamma$.
 1308

1309 **Definition 2** ((D, d)-bounded log-precision Transformer). *Let k be the input length. A (D, d) -
 1310 bounded log-precision Transformer is an encoder–decoder model that satisfies*

- 1311 1. *constant depth $D = O(1)$,*
- 1312 2. *hidden size $d \leq Q(k)$ for a fixed polynomial Q ,*
- 1313 3. *the values at all layers, as well as the outputs of all key intermediate operations in it
 1314 (attention, activation, arithmetic operators, etc.), are represented using $O(\log k)$ bits.*

1316 For specific definitions of operations that enable approximation in $O(\log k)$ bits, please refer to
 1317 Section 4 and Appendix A of Merrill & Sabharwal (2023b). We introduce the simulation guarantees
 1318 for bounded-depth log-precision Transformers as follows.
 1319

1320 **Lemma 1** (Circuit simulation (Merrill & Sabharwal, 2023b, Cor. 2.1)). *Any (D, d) -bounded log-
 1321 precision Transformer can be simulated by a family of TC^0 circuits of size $\text{poly}(k)$ and constant
 1322 depth with respect to k .*

1323 **E.1.3 THE BOOLEAN FORMULA VALUE PROBLEM**
 1324

1325 Following the definition by Buss (1987), we introduce the definition of the Boolean formula value
 1326 problem as follows.
 1327

1328 **Definition 3** (Boolean formula value problem). *Let $\Lambda = \{0, 1, \wedge, \vee, \neg, (,)\}$ be the alphabet. A
 1329 Boolean formula is a string defined recursively as follows:*

- 1330 1. *0 and 1 are Boolean formulae;*
- 1331 2. *If \mathbf{t}_1 and \mathbf{t}_2 are two Boolean formulae, then $(\neg \mathbf{t}_1)$, $(\mathbf{t}_1 \wedge \mathbf{t}_2)$, $(\mathbf{t}_1 \vee \mathbf{t}_2)$ are also Boolean
 1332 formulae.*

1334 When given a boolean formula \mathbf{t} , the goal of the Boolean formula value problem is to compute
 1335 whether the evaluation result $\text{eval}(\mathbf{t})$ of a given Boolean formula is 0 or 1.
 1336

1337 **E.2 MAIN THEOREM**
 1338

1339 Prior to proving the main theorem, we state the following Lemma from Feng et al. (2023). The
 1340 detailed proof of this Lemma can be found in the same paper. The Lemma states that TC^0 circuits
 1341 are capable of identifying the indexes of paired brackets in a string.
 1342

1343 **Lemma 2** (Bracket parsing (Feng et al., 2023, Lem. D.3)). *Consider any string $\mathbf{t} = t_1 t_2 \cdots t_n$ of
 1344 length n containing brackets ‘(’, ‘)’, and other characters, and all brackets in \mathbf{t} are paired. Let \mathbf{g} be
 1345 a boolean function taking \mathbf{t} as input and output n pairs of integers defined as follows:*

$$1346 \mathbf{g}_i(\mathbf{t}) = \begin{cases} (-1, j) & \text{if } t_i \text{ is a left bracket and } t_i, t_j \text{ are paired.} \\ 1347 (j, -1) & \text{if } t_i \text{ is a right bracket and } t_i, t_j \text{ are paired.} \\ 1348 (j, k) & \text{if } t_i \text{ is not a bracket, and } t_j, t_k \text{ are the nearest paired brackets containing } t_i. \end{cases}$$

1349 Then \mathbf{g} can be implemented by the TC^0 circuits.

1350 We now proceed to prove the main theorem of our theoretical analysis.
 1351

1352 **Theorem 2** (Bounded log-precision Transformer lower bound). *Assume $\text{TC}^0 \neq \text{NC}^1$. For any integer
 1353 D and any polynomial Q , there exists a problem size m such that no (D, d) -bounded log-precision
 1354 Transformer with $d \leq Q(m)$ can solve $\text{LastTokenPrediction}(m)$.*

1355
 1356 *Proof.* Fix D and Q and suppose, for contradiction, that for some sufficiently large m there exists
 1357 an (D, d) -bounded log-precision Transformer TF_θ with $d \leq Q(m)$ that solves the problem of
 1358 $\text{LastTokenPrediction}(m)$.
 1359

1360 **Step 1 (simulation).** By Lemma 1, TF_θ can be simulated by a TC^0 circuit family of size $\text{poly}(m)$.
 1361 Hence, under our assumption, $\text{LastTokenPrediction}(m) \in \text{TC}^0$.
 1362

1363 **Step 2 (TC^0 construction).** We show that there exists a TC^0 circuit that can translate any instance
 1364 of a Boolean formula value problem to an instance of the last-token prediction problem.
 1365

1366 Let \mathbf{t} be a boolean formula. There exists a TC^0 circuit that performs:
 1367

1. Translation of \mathbf{t} to a \vee -free Boolean formula \mathbf{t}' .
2. Conversion of \mathbf{t}' to its prefix notation \mathbf{t}'_{pre} .
3. Conversion of \mathbf{t}'_{pre} to a token sequence $\mathbf{s} \in \Gamma^*$ by the following procedure:
 - (a) replace 0 with $\{\times, x_1, x_2\}$ and 1 with $\{-, x_1, x_2\}$;
 - (b) replace \wedge with \times ;
 - (c) replace \neg with $\{-, -, x_1, x_2\}$.
4. Local edits:
 - (a) prepend $+$ to \mathbf{s} to form the incomplete token sequence $\tilde{\mathbf{s}}$;
 - (b) set $n = 2$, and attach the data points $(x_{1,1}, x_{2,1}, y_1) = (1, 0, 1)$ and $(x_{1,2}, x_{2,2}, y_2) = (0, -1, 0)$ to the input numerical data \mathcal{D} ;
 - (c) define the metric as the mean squared error: $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$

1384 To perform the first step, for all \vee in \mathbf{t} , we must replace the nearest left bracket containing \vee with
 1385 $\neg(\neg$ and also replace \vee with $\wedge\neg$. By using the results of Lemma 2, it follows that this operation
 1386 can be performed by a circuit within TC^0 complexity. The second step can be implemented by AC^0
 1387 circuits, according to Buss (1987, Cor. 11). Since the third and fourth steps only involve replacing
 1388 and extending obtained sequences, these steps can also be implemented by AC^0 circuits.
 1389

1390 **Step 3 (soundness of the reduction).** When $\text{eval}(\mathbf{t}) = 0$, the losses $\mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, u)}(\mathbf{x}))$ for each leaf
 1391 token $u \in \{x_1, x_2, C\}$ can be computed as follows:
 1392

$$\begin{cases} \mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, x_1)}(\mathbf{x})) = \frac{1}{2} \sum_{i=1}^2 (y_i - x_{1,i})^2 = \frac{1}{2}(0^2 + 0^2) = 0, \\ \mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, x_2)}(\mathbf{x})) = \frac{1}{2} \sum_{i=1}^2 (y_i - x_{2,i})^2 = \frac{1}{2}(1^2 + 1^2) = 1, \\ \mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, C)}(\mathbf{x})) = \underset{c \in \mathcal{C}}{\text{argmin}} \frac{1}{2} \sum_{i=1}^2 (y_i - c)^2 = \underset{c \in \mathcal{C}}{\text{argmin}} \frac{1}{2}((1-c)^2 + (-c)^2) \geq \frac{1}{4}, \end{cases}$$

1402 where \mathcal{C} is the interval from which numeric constants are drawn, and $e_{\mathbf{s}} = \text{expr}(\mathbf{s}, \mathcal{D})$ is the mapping
 1403 function defined in Section 5. When $\text{eval}(\mathbf{t}) = 1$, the losses $\mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, u)}(\mathbf{x}))$ can be computed as

1404 follows:

$$\begin{cases}
 \mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, x_1)}(\mathbf{x})) = \frac{1}{2} \sum_{i=1}^2 (y_i - (1 + x_{1,i}))^2 = \frac{1}{2}((-1)^2 + (-1)^2) = 1, \\
 \mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, x_2)}(\mathbf{x})) = \frac{1}{2} \sum_{i=1}^2 (y_i - (1 + x_{2,i}))^2 = \frac{1}{2}(0^2 + 0^2) = 0, \\
 \mathcal{L}(\mathbf{y}, e_{(\tilde{\mathbf{s}}, C)}(\mathbf{x})) = \operatorname{argmin}_{c \in \mathcal{C}} \frac{1}{2} \sum_{i=1}^2 (y_i - (1 + c))^2 = \operatorname{argmin}_{c \in \mathcal{C}} \frac{1}{2}((-c)^2 + (-1 - c)^2) \geq \frac{1}{4},
 \end{cases}$$

1415 Consequently, when $\operatorname{eval}(\mathbf{t}) = 0$, the result for the corresponding last-token prediction problem is
1416 $u^* = x_1$, while when $\operatorname{eval}(\mathbf{t}) = 1$, the result is $u^* = x_2$. Hence the mapping introduced in Step 2 is
1417 a valid TC^0 many-one reduction from the Boolean formula value problem to the last-token prediction
1418 problem.

1419 **Step 4 (contradiction).** The Boolean formula value problem is NC^1 -complete under AC^0 reductions
1420 (Buss, 1987, Thm. 9). Hence Step 2 and Step 3 indicate that $\text{LastTokenPrediction}(m) \notin \text{TC}^0$,
1421 contradicting Step 1 and the assumed strict inclusion $\text{TC}^0 \subsetneq \text{NC}^1$. Therefore, such a Transformer
1422 cannot exist. \square

1424 E.3 PAC APPROXIMATION VIA ITERATED SELF-VERIFICATION

1426 We further present theoretical analysis regarding the performance of the proposed method, NSR-gvs.

1427 **Assumption 1.** *We make the following assumptions.*

1429 1. **Hypothesis class.** Fix a maximum depth D_0 and a grid spaced in $\varepsilon/2$ on $[-1, 1]$.

$$1431 \mathcal{U} := \{e : \operatorname{depth}(e) \leq D_0\}, \quad U := |\mathcal{U}| \leq \operatorname{poly}(n),$$

$$1432 \text{ where } n := |\mathcal{D}|.$$

1434 2. **Data.** $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ with $y_i \in [-1, 1]$ and $e^* = \arg \min_{e \in \mathcal{U}} \operatorname{MSE}(e; \mathcal{D})$.

1435 3. **Transformer.** A depth- L log-precision Transformer T (L constant).

1437 4. **Exact oracle.** A routine \mathcal{M} returns $\operatorname{MSE}(e; \mathcal{D})$ for any e .

1439 5. **Hit rate.** If every subtree of e^* is present in the prompt, T outputs e^* with probability at
1440 least $\beta \in (0, 1]$.

1441 6. **Dictionary growth.** Each round appends at least one uniformly random unseen subtree to
1442 the prompt (chosen without replacement; if fewer than r remain, insert all).

1443 **Theorem 3 (informal).** Let the algorithm cycle long enough for its prompt to have seen every possible
1444 sub-expression; then keep running a few more rounds. With very high probability, it returns a formula
1445 whose error is no worse than an optimally chosen tree by more than a tiny tolerance, and it has
1446 queried the oracle only a moderate, logarithmically growing number of times.

1447 **Theorem 4 (PAC guarantee).** Run the loop

$$1448 e_t \leftarrow T(\operatorname{prompt}); \quad R_t \leftarrow \mathcal{M}(e_t); \quad \operatorname{prompt} += \operatorname{sub-trees}(e_t)$$

1450 for a **burn-in** $B = \lceil \frac{U}{r} \ln(2^{D_0}/(\delta/2)) \rceil$ rounds, followed by $R = \lceil \frac{\ln(2/\delta)}{\beta} \rceil$ additional rounds, and
1451 return the best-so-far expression e_{best} .

1452 Then, Under Assumption 1, for any $\varepsilon, \delta \in (0, 1)$,

$$1454 \Pr \left[\operatorname{MSE}(e_{\text{best}}, \mathcal{D}) \leq \operatorname{MSE}(e^*, \mathcal{D}) + \varepsilon \right] \geq 1 - \delta, \quad \# \text{oracle calls} = \mathcal{O}(U \ln(1/\delta)).$$

1456 **Proof.** **(i) Burn-in.** There are $K \leq 2^{D_0}$ distinct sub-trees of e^* . Drawing $r \geq 1$ uniform sub-trees per
1457 round, the probability a fixed sub-tree is never drawn in B rounds is $(1 - \frac{r}{U})^B \leq e^{-rB/U} \leq \delta/(2K)$.

1458 A union bound over all K sub-trees implies that, after B rounds, the prompt contains every sub-tree
 1459 of e^* with probability at least $1 - \delta/2$.
 1460

1461 **(ii) Post burn-in success.** Condition on the burn-in success event. By assumption (3) each subsequent
 1462 round now hits e^* with probability at least β , regardless of possible prompt changes. Therefore

$$1463 \Pr[\text{miss in all } R \text{ rounds}] \leq (1 - \beta)^R \leq e^{-\beta R} \leq \delta/2,$$

1464 for $R = \lceil \ln(2/\delta)/\beta \rceil$.
 1465

1466 **(iii) Union bound.** Total failure probability $\leq \delta/2 + \delta/2 = \delta$.
 1467

1468 **(iv) Quality of e_{best} .** Whenever e^* appears, the exact oracle certifies its MSE; the algorithm stores
 1469 it permanently. Hence on the complement of failure the returned expression meets the stated error
 1470 bound.

1471 **(v) Oracle calls.** At most one full-expression evaluation per round, so the algorithm issues $B + R =$
 1472 $\mathcal{O}(U \ln(1/\delta))$ oracle calls.
 1473

1474 \square
 1475

1476 F ADDITIONAL RELATED WORK

1477 In this section, we describe symbolic regression methods other than NSR. Specifically, we provide
 1478 explanation for methods that use GP, brute-force algorithms, and reinforcement learning.
 1479

1480 The GP framework is a traditional and widely used framework for solving symbolic regression.
 1481 The GP algorithm is a method based on evolutionary computation; initially, several mathematical
 1482 expressions are formed randomly, and subsequently the expressions are “evolved” by operations such
 1483 as recombining two expressions, mutating an expression, and eliminating inappropriate expressions
 1484 (Burlacu et al., 2020; Schmidt & Lipson, 2009; Virgolin et al., 2019; Cranmer, 2023).
 1485

1486 An example of using brute-force algorithms for symbolic regression is AI Feynman (Udrescu &
 1487 Tegmark, 2020; Udrescu et al., 2020). In AI Feynman, neural networks were used to identify
 1488 properties such as symmetry and separability within given numerical data. These properties were then
 1489 used to recursively simplify the problem, ultimately reducing it to a form amenable to brute-force
 1490 solutions.
 1491

1492 Petersen et al. (2019) proposed Deep Symbolic Regression (DSR), a method that uses reinforcement
 1493 learning to tackle symbolic regression. In this approach, the authors used a recurrent neural network
 1494 (RNN) to generate equations as token sequences, with the parameters that govern the selection of the
 1495 token learned through reinforcement learning. Studies such as Symbolic Physics Learner (Sun et al.,
 1496 2022) and Reinforcement Symbolic Regression Machine (Xu et al., 2024) also use reinforcement
 1497 learning, where Monte Carlo Tree Search (MCTS) is applied to discover expressions.
 1498

1499 Some studies combine several approaches for symbolic regression. For example, neural-guided
 1500 genetic programming (Mundhenk et al., 2021) integrates DSR and genetic programming (GP), while
 1501 the Unified DSR Framework (Landajuela et al., 2022) combines GP, AI Feynman, DSR, linear models,
 1502 and NSR.
 1503

1504 G DISCUSSION CONCERNING THE DEFINITION OF REPRODUCTION BIAS

1505 Throughout the paper, we have defined and measured reproduction bias based on whether the training
 1506 dataset contains an expression that is structurally equivalent to the generated one. However, one may
 1507 argue that we should define and measure reproduction based on functional equivalence; there are
 1508 many expressions that are structurally different but functionally equivalent (e.g., $x_1(x_1 + x_2)$ and
 1509 $x_1^2 + x_1 x_2$), and that such expressions should also be considered as equivalent expressions. This
 1510 section organizes the premises of our discussion and shows that defining reproduction bias using
 1511 structural equivalence does not alter any of the paper’s central claims.

1512 In the context of defining reproduction bias, the situation in which functional equivalence becomes
 1513 an issue—following the example above—is the case where $x_1(x_1 + x_2)$ is present in the training

1512 set, and for numerical data generated from an unrelated ground truth (for example, $x_1^2 + x_2^2$), the
 1513 model produces $x_1^2 + x_1x_2$. (We consider an unrelated ground truth because the space of all possible
 1514 expressions is far larger than the training data, so it is highly unlikely that the ground truth in the test
 1515 data appears in the training set.) Under the current definition, such an output is classified as novel.

1516 Whether such an output should be regarded as a novel expression (a success under our definition of
 1517 reproduction bias) or as a non-novel expression (a failure under the definition) is not entirely clear-cut.
 1518 Since the token sequence $x_1^2 + x_1x_2$ does not appear in the training data, the model must have
 1519 generated it through some process other than copying from the training set. In this sense, the output
 1520 can be considered novel. We refer to reproduction bias defined from this perspective as *structural*
 1521 *reproduction bias*. On the other hand, from the user’s perspective, the insight provided by the output
 1522 $x_1^2 + x_1x_2$ regarding the numerical data is nearly indistinguishable from the insight provided by
 1523 the output $x_1(x_1 + x_2)$. Therefore, one might argue that $x_1^2 + x_1x_2$ should also be regarded as
 1524 non-novel, just like $x_1(x_1 + x_2)$. We refer to reproduction bias defined from this standpoint as
 1525 *functional reproduction bias*.

1526 In this paper, we define reproduction bias from the perspective of structural reproduction bias (this is
 1527 because structural reproduction bias is easier to measure in terms of computational cost). However,
 1528 even if we were to redefine reproduction bias from the perspective of functional reproduction bias,
 1529 the claims of this paper would remain unaffected. This is because every expression regarded as
 1530 novel under the definition of functional reproduction bias is already also regarded as novel under the
 1531 definition of structural reproduction bias. Since the central claim of the paper is that the proportion of
 1532 expressions classified as novel is small for naive NSR methods, adopting the definition of functional
 1533 reproduction bias would only further reduce that proportion, without altering the direction of the
 1534 conclusions.

1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565