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ABSTRACT

Physics-informed deep learning often faces optimization challenges due to the com-
plexity of solving partial differential equations (PDEs), which involve exploring
large solution spaces, require numerous iterations, and can lead to unstable training.
These challenges arise particularly from the ill-conditioning of the optimization
problem, caused by the differential terms in the loss function. To address these
issues, we propose learning a solver, i.e., solving PDEs using a physics-informed
iterative algorithm trained on data. Our method learns to condition a gradient
descent algorithm that automatically adapts to each PDE instance, significantly
accelerating and stabilizing the optimization process and enabling faster conver-
gence of physics-aware models. Furthermore, while traditional physics-informed
methods solve for a single PDE instance, our approach addresses parametric PDEs.
Specifically, our method integrates the physical loss gradient with the PDE pa-
rameters to solve over a distribution of PDE parameters, including coefficients,
initial conditions, or boundary conditions. We demonstrate the effectiveness of our
method through empirical experiments on multiple datasets, comparing training
and test-time optimization performance.

1 INTRODUCTION

Partial Differential Equations (PDEs) are ubiquitous as mathematical models of dynamical phenomena
in science and engineering. Solving PDEs is of crucial interest to researchers and engineers, leading
to a huge literature on this subject (Evans, 2010; Salsa, 2015). Traditional approaches to solving
PDEs such as finite difference, finite element analysis or spectral methods (Zienkiewicz et al.,
2005; LeVeque, 2007) often come with stability and convergence guarantees, but suffer from a high
computational cost. Improving numerical PDE solvers through faster and more accurate algorithms
remains an active research topic (Zienkiewicz et al., 2005).

PDE solvers usually rely on discretization and/or linearization of the problem through various
techniques, to simplify the computations. Iterative methods such as Jacobi, Gauss-Seidel, Conjugate
Gradient, and Krylov subspace methods can then be used to solve the resulting systems. Unfortunately,
many PDEs have an ill-conditioned nature and these iterative processes can demand extensive
computational resources. Preconditioning techniques are often essential to mitigate this, though they
require precise customization to the specific PDE problem, making the development of effective
solvers a significant research endeavor in itself. Yet, the computational demands, time, and expertise
required to develop these algorithms sometimes make them impractical or sub-optimal for specific
classes of problems. Instead of relying on hand-designed algorithms, researchers have investigated,
as an alternative, the use of machine learning for training iterative PDE solvers Hsieh et al. (2019); Li
et al. (2023a); Rudikov et al. (2024); Kopaničáková et al. (2023). These approaches usually parallel
the classical numerical methods by solving a linear system resulting from the discretization of a PDE,
for example, using finite differences or finite elements. A preconditioner is learned from data by
optimizing a residual loss computed w.r.t. a ground truth solution obtained with a PDE solver. This
preconditioner is used on top of a baseline iterative solver and aims at accelerating its convergence.
Examples of baselines solvers are the conjugate gradient (Li et al., 2023a; Rudikov et al., 2024) or
the Jacobi method Hsieh et al. (2019).

Another recent research direction investigates the use of neural networks for building surrogate
models in order to accelerate the computations traditionally handled by numerical techniques. These
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methods fall into two main categories: supervised and unsupervised. The supervised methodology
consists of first solving the PDE using numerical methods to generate input and target data and then
regressing the solution using neural networks in the hope that this surrogate could solve new instances
of the PDE. Many models, such as Neural Operators, lie within this class (Li et al., 2020; Raonić
et al., 2023; Bartolucci et al., 2023) and focus on learning the solution operator directly through
a single neural network pass. Unsupervised approaches, involve considering a neural network as
a solution of the PDE. The neural network parameters are found by minimizing the PDE residual
with gradient descent. Methods such as Physics-Informed Neural Networks (PINNs) (Raissi et al.,
2019), or DeepRitz (E & Yu, 2018) fall under this category. This family of methods is attractive as it
does not rely on any form of data, but only on information from the PDE residual. However, they
exhibit severe difficulties for training (Krishnapriyan et al., 2021; Ryck et al., 2023), often requiring
many optimization steps and sophisticated training schemes (Krishnapriyan et al., 2021; Rathore
et al., 2024). The ill-conditioned nature of PDEs residual loss appears again in this context, making
standard optimizers such as Adam inappropriate. A more detailed review of the existing literature is
described in appendix A.

In this work, we consider having access to the PDE as in unsupervised approaches and also to some
data for training our neural solver. Our objective is to solve the optimization issues mentioned above
by learning an iterative algorithm that solves the PDE from its residual, defined as in the PINNs
framework (see fig. 1). This neural solver is trained from data, either simulations or observations.
Different from the classical ML training problem which aims at learning the parameters of a statistical
model from examples, the problem we handle is learning to learn Andrychowicz et al. (2016),
i.e. learning an iterative algorithm that will allow us to solve a learning problem. When vanilla
PINNs handle a single PDE instance, requiring retraining for each new instance, we consider the
more complex setting of solving parametric PDEs, the parameters may include boundary or initial
conditions, forcing terms, and PDE coefficients. Each specific instance of the PDE, sampled from the
PDE parameter distribution, will then be considered as a training example. The objective is then to
learn a solver from a sample of the parametric PDE distribution in order to accelerate inference on
new instances of the equation. With respect to unsupervised approaches, our model implements an
improved optimization algorithm, tailored to the parametric PDE problem at hand instead of using
a hand-defined method such as stochastic gradient descent (SGD) or Adam. As will be seen in the
experimental section, this idea will prove extremely effective for the ill-posed problem of optimizing
PINNs objective, allowing convergence in a few steps. In the proposed methodology, the neural solver
will make use of gradient information computed by a baseline gradient method in order to accelerate
its convergence. In our instantiation, we will use SGD as our baseline algorithm, but the method
could be easily extended to other baselines. Our model deviates from the traditional preconditioning
methods by directly optimizing the non-linear PDE residual loss (Raissi et al., 2019) without going
through the discretization steps. Our contribution includes :

• Setting an optimization framework for learning to iteratively solve parametric PDEs from
physics-informed loss functions. We develop an instantiation of this idea using an SGD
baseline formulation. We detail the different components of the framework as well as
training and inference procedures.

• Evaluating this method on challenging PDEs for physics-informed method, including failure
cases of classical PINNs and showing that it solves the associated optimization issues and
accelerates the convergence.

• Extending the comparison to several parametric PDEs with varying parameters from 1d
static to 2d+time problems. We perform a comparison with baselines demonstrating a
significant acceleration of the convergence w.r.t. baselines.
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...

Figure 1: Optimization scheme of a physics-informed method with our framework.

2 MOTIVATION

Let us first motivate our objective with a simple example. Physics-informed neural networks (PINNs)
are a promising tool for optimizing neural networks in an unsupervised way to solve partial differential
equations (PDEs). However, these methods are notoriously difficult to train (Krishnapriyan et al.,
2021; Ryck et al., 2023). As an illustrative example of this challenge, let us solve the zero-boundary
Poisson equation in 1d on Ω = [−π, π]. Note that this section is intentionally informal, we provide
rigorous statements and proofs in Appendix B.

Poisson equation, 1d. The solution is given by u(x) = sin(kx).

u′′(x) = −k2 sin(kx),
u(−π) = 0, u(π) = 0. (1)

Physics-informed machine learning relies on an ansatz space of parametric functions, e.g. neural
networks uΘ : Ω 7→ R, minimizing the following loss in order to satisfy the constraints in equation 1:

LPDE = LRes + λLBC, LRes =

∫
Ω

|u′′Θ(x)− f(x)|2 dx,

LBC =
1

2

[
uΘ(−π)2 + uΘ(π)

2
]
.

As a simple example, consider the parametrization given by considering a linear combination of
Fourier features widely used (Tancik et al., 2020)1, uΘ(x) =

∑K
k=−K θkϕk(x), with ϕ0(x) = 1√

2π
,

ϕ−k(x) =
1√
π
cos(kx) and ϕk(x) = 1√

π
sin(kx) for 1 ≤ k ≤ K.

This simple but informative example yields a tractable gradient descent algorithm, as the associated
updates are linear in the parameters, governed by a matrix A and constant b:

Θl+1 = Θl − η∇LPDE(Θl)

= (I − ηA)Θl + b (2)

1Note that even though the ansatz is linear in Θ, it is not linear in x.
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with A whose condition number is κ(A) := λmax(A)/λmin(A) ≥ K4:

A =


04 0 · · · 0
0 14 · · · 0
...

...
. . .

...
0 0 · · · K4

+ λ


ϕ1(π)
ϕ2(π)

...
ϕK(π)

 [ϕ1(π) ϕ2(π) · · · ϕK(π)] . (3)

This implies that the condition number of A increases extremely rapidly in the ratio between the
highest and lowest frequency of the network. Given that the rate of convergence to the optimum
Θ∗ = Θ0 +A−1b can be bounded as

∥Θl −Θ∗∥2 ≤ (1− c/κ(A))
l ∥Θ0 −Θ∗∥2. (4)

The number of stepsN(ε) required to obtain an error of size at most ε, i.e., ∥Θl−Θ∗∥2 ≤ ε increases
linearly in the condition number, i.e. as the fourth power of the maximal frequency K:

N(ε) = O
(
κ(A) ln 1

ϵ

)
= O

(
K4 ln 1

ϵ

)
. (5)

We believe that this simple example clearly illustrates and highlights the fact that PINNs–even when
considering a linear basis, and when the PDE is linear–suffer heavily from ill-conditioning: if 500
steps are required in order to achieve a given error when K = 5, roughly speaking, 312 500 steps are
required for only K = 25.

Thus, our objective in the following will be to accelerate the convergence of such systems in this
context–as well as extend them to the non-linear setting. To do so, in the following section, we will
learn how to transform the optimization problem in such a way that the number of gradient descent
iterations is small. The resulting method can be seen as a standalone, iterative solver as it is not
only applicable to different PDEs but can handle a wide range of initial/boundary conditions and
parameters.

3 APPROACH

In order to optimize PDE-based losses, we propose to learn a physics-based optimizer that will fulfill
two objectives: (i) allowing a fast test-time optimization given a new PDE and (ii) solving without
retraining parametric PDEs, with varying PDE coefficients γ 2, forcing terms f , and initial/boundary
conditions g using the same model. We present the general framework below and propose an
instantiation that leverages a linear combination of basis functions as the ansatz.

3.1 PROBLEM STATEMENT

Let us consider the following family of boundary value problems parameterized by γ with domain Ω,
representing both space and time, with N a potentially nonlinear differential operator, B the boundary
operator, g the initial/boundary conditions, and source term f :

N (u; γ) = f in Ω, (6)
B(u) = g on ∂Ω. (7)

Note that different PDEs can be represented in this form, amounting to changing the parameters γ.
The goal here is to develop a generic algorithm that is able to solve the above problem, yielding an
approximate solution u given the PDE and different sets of inputs (γ, f, g).

For training, we assume access to a dataset of M problem instances, represented by the PDE
parameters (γi, fi, gi)Mi=1 and to associated target solution (ui)

M
i=1 given on a m point grid (xj)

m
j=1.

The solutions (ui)Mi=1 will be used to train the neural solver. At inference, for a new PDE instance,
only the PDE parameters are provided and we do not have access solution points (ui)Mi=1.

2Note that PDE coefficients can be functions, an example is the Darcy PDE in section 4.1
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3.2 METHODOLOGY

Physics-informed neural networks consider an ansatz uΘ parametrized by some finite-dimensional
Θ. The parameters Θ are iteratively updated by minimizing a criterion LPDE (e.g. the PDE residual),
which assesses how well the ansatz uΘ meets the conditions specified in equations 6 and 7. As
introduced for example for PINNs (Raissi et al., 2019) or Deep Galerkin method Sirignano &
Spiliopoulos (2018), we consider LPDE to be given by the strong formulation of the residual LRes,
plus a boundary discrepancy term LBC

3.

LPDE = LRes+λLBC, LRes =
∑
xj∈Ω

|N (uΘ; γ)(xj)−f(xj)|2, LBC =
∑

xj∈∂Ω

|B(uΘ)(xj)−g(xj)|2

(8)

As illustrated in section 2, performing gradient descent, or alternatives such as Adam and L-BFGS
on such a highly ill-conditioned loss LPDE leads to severe training difficulties (Krishnapriyan et al.,
2021). The key idea in our work is to improve baseline gradient descent algorithms with the neural
solver. More precisely starting from a baseline gradient algorithm, SGD in our instantiation, instead
of considering the classical update, we first transform the gradient using a neural network Fϱ with
parameters ϱ, depending on the values of the PDE parameters as well as on other inputs such as the
residual gradient provided by SGD: ∇ΘLPDE. The objective is to transform, through the neural solver
Fϱ, the ill-conditioned problem into a new, simpler problem that requires fewer steps in order to
achieve a given error.

Once the neural solver Fϱ has been learned, inference can be performed on any new PDE as follows
(see inference algorithm 1). Starting from an initial ansatz parameter Θ0, it is iteratively updated
by this solver. At iteration l, the steepest direction of the loss LPDE is first computed with autograd.
Then, the gradient is transformed, in a PDE parameter dependant way, with Fϱ:

Θl+1 = Θl − ηFϱ(∇ΘLPDE(Θl), γ, f, g) (9)

The objective is to iteratively refine the ansatz to closely approximate the true solution after a series
of L iterations, ideally small for efficiency.

This approach can be seen as learning the iterates in a PDE solver to achieve a low loss, similar to the
residual minimization methods in PDEs (Elman et al., 2014). By design, this solver is intended to be
applicable to different PDEs, as well as various sources, boundary conditions, and initial conditions.
This flexibility allows for a broad range of applications, making it a versatile tool in solving complex
PDEs with varying characteristics.

Designed as a parametric PDE solver, Fϱ
4 is trained from input target data from different sets of

PDE parameters, as outlined in section 3.1. Once trained, it will be used without retraining on new
instances of the PDE, i.e. with new values of the PDE parameters. The underlying hypothesis is
that even though the solutions may be different for different inputs and parameters, the solution
methodology remains relatively consistent. This consistency is expected to enhance the algorithm’s
ability to generalize across novel scenarios effectively.

3.3 TRAINING OF A PHYSICS-INFORMED SOLVER

Choice of Ansatz uΘ. A very common choice (Shen et al., 2011) is to consider a family
of basis functions Ψ(x) = {ψi(x)}Ni=1 and consider the ansatz to be given by its linear span
uΘ(x) =

∑N
i=0 θiψi(x). In the following, we consider this linear reconstruction, although our

formulation is generic in the sense that it can also accommodate nonlinear variants. 5

As indicated in eq. (10), the solver Fϱ will be trained from samples of the PDE parameter distribution
(γ, f, g) and from the associated samples of the solution u. We first describe below the inference step
aiming at iteratively update the parameters Θ of the solution function uΘ while Fϱ is hold fixed. We
then describe how the ϱ parameters of the solver are trained. Please refer to fig. 1.

3Note that other formulations of the loss may also be considered in a straightforward manner.
4In the following we use "solver" with Fϱ as a short-hand to designate our proposed method.
5Although in our preliminary results we have found this may further complicate training.

5
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Algorithm 1: Inference
Data: Θ0 ∈ Rn, PDE (γ, f, g)
Result: ΘL ∈ Rn

for l = 0...L-1 do
Θl+1 = Θl − ηFϱ(∇LPDE(Θl), γ, f, g)

end
return ΘL

Inference The inference step is performed at
fixed values of the solver parameters Fϱ. It con-
sists, for a given instance of the PDE with pa-
rameters (γi, fi, gi), in finding the best Θ with
a few steps of the solver using eq. (9). It is
illustrated in fig. 1 - grey box: starting from
initial parameters Θ0, we compute the Physi-
cal loss LPDE using the ansatz uΘ0 . The PDE
derivatives, in LPDE, can be computed by hand
or automatic differentiation depending on the application 6. Then, eq. (9) is used to update the
parameters Θ for a given number of steps L. The final solution is reconstructed using the linear
combination, uΘ(x) =

∑N
i=0 θiψi(x), introduced in section 3.2 with the computed coefficients ΘL.

Note that inference does not make use of the sampled target solutions (ui)Mi=1 computed on the grid
points(xj)mj=1.These targets are used exclusively for training the neural solver.

Algorithm 2: Training algorithm for learning
to optimize physics-informed losses.
Data: Θ0 ∈ Rn, PDE (γ, f, g), sample values

u(x)
Result: Fϱ

for e = 1... epochs do
for (PDE, x, u) in dataset do

Initialize Θ0

Estimate ΘL from Θ0, (γ, f, g) using
Algorithm 1

Reconstruct uΘL
(x)

Update the parameters ϱ of F with
gradient descent from the data loss in
Equation 10.

end
end
return Fϱ

Training the neural solver Training amounts
at learning the parameters of the solver Fϱ

and is performed with a training set of PDE
parameters and simulation data considered as
ground truth (γi, fi, gi, ui)

M
i=1, corresponding

to PDE instances (i.e. with different parameters
γ and/or forcing terms f and/or initial/boundary
conditions g). See fig. 1 - white box. The objec-
tive is to learn a solver Fϱ able, at inference, to
converge to a target solution in a small (2 to 5
in our experiments) number of steps. For that,
an optimizer (Adam in our experiments) is used
to update the Fϱ parameters. The training al-
gorithm makes use of the data associated to the
different PDE instances by sampling PDEs in
batches and running algorithm 1 on several PDE
instances. For each PDE instance, one starts
from an initial parameter value Θ0 and then per-
forms two optimisation steps (see algorithm 2):
(i) one consists in solving in the ansatz parame-
ters Θ using the neural solver using algorithm 1, leading to ΘL; the second one is the optimization
of the solver parameters ϱ. We train the outputs directly to match the associated ground truth
(ui(xj))

m
j=1 using the data loss:

LDATA = Eγ,f,g [||uΘL
− uγ,f,g||] . (10)

The expectation is computed on the distribution of the PDE parameters (γ, f, g). The solution u is
entirely determined by these parameters as indicated by the notation uγ,f,g. ||uΘL

− u|| denotes a
distance between the target (u(xj))mj=1 and the forecast (uΘL

(xj))
m
j=1 with m the trajectory size 7.

In practice, one samples a set of PDE instances (γi, fi, gi) and for each instance a corresponding
sample ui.

Theoretical analysis and relation to preconditioning Analyzing the behavior of the inference
algorithm is challenging due to the non linear nature of the solver. We however could get some
intuition using simplifying assumptions. We build on the ideas introduced in section 2. We only
sketch the main insights here and refer to appendix B for a proof and a more detailed analysis.

• Using a linearization of the neural solver, it can be shown that the solver performs as a
pre-conditioner on the linear system.

• Assuming that solution uL provided by the solver reaches the optimum u∗, and that the
training set is such that the learned parameter Θ vectors span the whole parameter space of
the model, then the convergence of the solver is guaranteed at an optimal rate.

6In our experiments, we computed the derivative by hand when possible since it fastens computations.
7To simplify the notation, we write m as the trajectory size. However, this framework can be used with

different grid sizes, as well as irregular grids. See Ablation in appendix E, table 13.

6
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• In practice, and as shown in the experiments, this suggests that the convergence rate is
improved w.r.t. the reference baseline gradient algorithm. In the experiments section, we
provide experimental comparisons with L-BFGS algorithm, which can be seen as a non
linear pre-conditioning technique Rathore et al. (2024).

4 EXPERIMENTS

We present the datasets used in the experiments in section 4.1, a comparison with selected baselines
in section 4.2 and a test-time comparison with different optimizers demonstrating the remarkable
effectiveness of the proposed method in section 4.3. Finally, we make a comparison on the training
and inference time section 4.4. Experimental details and additional experiments can be found in the
appendices: ablations are in appendix E and additional results and visualization in appendix F.

4.1 DATASETS

We consider several representative parametric equations for our evaluation. More details about the
data generation are presented in appendix C. Our objective is to learn a neural solver able to solve
quickly and accurately a new instance of a PDE, given its parametric form, and the values of the
parameters γ, forcing terms f and initial/boundary conditions g, i.e. (γ, f, g) 7→ u. Solving is
performed with a few iterations of the neural solver (algorithm 1). For that, one trains the neural
solver on a sample of the PDE parameter instances, see table 1 for the parameter distributions used
for each parametric PDE. Evaluation is performed on unseen sets of parameters within the same
PDE family.

Table 1: Parameters changed between each trajectory in the
considered datasets.

Dataset Parameters Distribution

Helmholtz
ω U [0.5, 50]
u0 N (0, 1)
v0 N (0, 1)

Poisson
Ai U [−100, 100]
u0 N (0, 1)
v0 N (0, 1)

NLRD ν U [1, 5]
ρ U [−5, 5]

Darcy a(x)
ψ#N (0, (−∆+ 9I)−2)

with ψ = 12 ∗ 1R+ + 3 ∗ 1R+

Heat

ν U [2× 10−3, 2× 10−2]
Jmax {1, 2, 3, 4, 5}
A U [0.5,−0.5]

Kx, Ky {1, 2, 3}
ϕ U [0, 2π]

Helmholtz: We generate a dataset
following the 1d static Helmholtz
equation u′′(x) + ω2u(x) = 0
with boundary conditions u(0) =
u0 and u′(0) = v0. We generate
1, 024 trajectories with varying ω,
u0 and v0 with a spatial resolu-
tion of 256. Poisson: We gener-
ate a dataset following the 1d static
Poisson equation with forcing term:
−u′′(x) = f(x) with u(0) = u0
and u′(0) = v0. The forcing term
f is a periodic function, f(x) =
π
K

∑K
i=1 aii

2r sin(πx), with K =
16 and r = −0.5. We gener-
ate 1, 000 trajectories with vary-
ing u0, v0 and f (through chang-
ing ai) with a spatial resolution of
64. Reaction-Diffusion: In Krish-
napriyan et al. (2021); Toloubidokhti
et al. (2024), the authors pro-
pose a non-linear reaction-diffusion
(NLRD). This PDE has been shown
to be a failure case for PINNs (Kr-
ishnapriyan et al., 2021). We generate 1, 000 trajectories by varying the parameters of the PDE: ν and
ρ (see table 1). Spatial resolution is 256 and temporal resolution is 100. The PDE is solved on [0, 1]2.
Darcy Flow: The 2d Darcy Flow dataset is taken from (Li et al., 2020) and commonly used in the
operator learning literature (Li et al., 2023b; Goswami et al., 2022). For this dataset, the forcing term
f is kept constant f = 1, and a(x) is a piece-wise constant diffusion coefficient taken from (Li et al.,
2020). We kept 1, 000 trajectories (on the 5, 000 available) with a spatial resolution is 64× 64. Heat:
The 2d+ t Heat equation is simulated as proposed in (Zhou & Farimani, 2024). For this dataset, the
parameter ν is sampled from U [2× 10−3, 2× 10−2] and initial conditions are a combination of sine
functions with varying number of terms, amplitude and phase. A summary of the datasets and the
varying parameters for each PDE are presented in table 1 and more details on the dataset are provided

7
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in appendix C. Experiments have been conducted on NVIDIA TITAN V (12 Go) for 1d datasets to
NVIDIA RTX A6000 GPU with 49Go for 1d + time or 2d datasets. For all datasets, 800 PDEs are
considered during training and 200 for testing. All metrics reported are evaluated on test samples (i.e.
PDEs not seen during training. Coefficient as well as initial and/or boundary condition can vary
from training).

4.2 COMPARISON WITH BASELINES

We performed comparisons with several baselines including fully data-driven supervised approaches
trained from a data-loss only, unsupervised methods relying only on a PDE loss, and hybrid techniques
trained from PDE + DATA loss. Networks size and training details are described in appendix D. In
this experiment, we considered training the models using the training sets (physical losses or MSE
when possible) unless stated otherwise.

Fully-supervised We train a standard MLP to learn the mapping (γ, f, g) 7→ Θ, using as loss
function LDATA = Eγ,f,g,u [||uΘL

− uγ,f,g,u||] with uΘ(x) =
∑N

i=0 θiψi(x), the ψi(.) being fixed
B-Spline basis functions (see appendix D). We denote this baseline as MLP+basis. Unsupervised We
compare our approach with unsupervised physics-informed models (Raissi et al., 2019). While the
initial version of PINNs solves only one PDE instance at a time and requires retraining for each new
instance, we developed here a parametric version of PINNs (PPINNs) where the PDE parameters are
fed to the network. A similar approach has been used by (Zhang et al., 2023). Finally, we used (Cho
et al., 2024)’s (P2INNs) method as physics-informed baseline for parametric PDEs. This model has
been designed to allow physics-informed methods to handle parametric PDEs. In addition to PINNs-
methods, we also compare our solver to the Physic-informed DeepONet (designed as PO-DeepONet
for Physics-Only DeepONet) (Wang et al., 2021), which is designed to learn an operator for function-
to-function mappings from physical losses and handles parametric PDEs. The mapping learned for
the two unsupervised baselines is (x, γ, f, g) 7→ uγ,f,g(x). In order to provide a fair comparison with
our optimization method, we fine-tuned the unsupervised baselines for each specific PDE instance for
a few steps (10 or 20). Comparison to pre-conditionning We compare our approach with vanilla
PINNs (Raissi et al., 2019), i.e. by fitting one PINN per PDE in the test set and averaging the final
errors. We optimize the PDE losses using L-BFGS (Liu & Nocedal, 1989) and refer to this baselines
as PINNs+L-BFGS. As discussed in (Rathore et al., 2024), L-BFGS can be considered as a non linear
preconditioning method for the linear Physics-Informed methods and fastens convergence. Finally,
we use the training strategy proposed by (Rathore et al., 2024) i.e. trained PINNs using successives
optimizer (Adam + L-BFGS). This baseline is denoted as PINNs-multi-opt. For these baselines, one
model is trained and evaluated for each PDE in the test set. We report the reader to appendix D
for more details on the training procedure. Hybrid Finally, we compare our proposed method with
neural operators, i.e., models trained to learn mappings (x, γ, f, g) 7→ u(x) using a combination
of physical and data loss: LDATA + LPDE. We use as baselines Physics-Informed Neural Operator
(PINO) (Li et al., 2023b) and Physics-Informed DeepONet (PI-DeepONet) (Goswami et al., 2022).
As already indicated, for a fair comparison, the Unsupervised and Hybrid baselines, are fine-tuned on
each specific PDE instance for a few steps (10 on all dataset except for Heat for which 20 steps are
made). Ours We represent the solution uΘ with a linear combination of B-Spline functions for Ψ
(Piegl & Tiller, 1996). This was motivated by the nature of B-Splines which allows to capture local
phenomena. However, other bases could be used such as Fourier, Wavelet or Chebychev Polynomials.
The neural solver Fϱ is composed of Fourier Layers (FNO) (Li et al., 2020) that allow us capturing
the range of frequencies present in the phenomenon. We refer the reader to appendix D for more
details about the construction of the B-Spline basis and the training hyper-parameters.

Results: Table 2 presents the comparison with the baselines. We recall that, the evaluation set is
composed of several PDE instances sampled from unseen PDE parameters (γ, f, g). The proposed
method is ranked first or second on all the evaluations. The most comparable baselines are the
unsupervised methods, since at inference they leverage only the PDE residual loss, as our method
does. Therefore our method should be primarily compared toe these baselines. Supervised and
hybrid methods both incorporate a data loss and make different assumptions while solving a different
optimization problem.

Table 2 clearly illustrates that unsupervised Physics-informed baselines all suffer from ill-conditioning
and do not capture the dynamics. Compared to these baselines, the proposed method improves at
least by one order of magnitude on all cases. PINNs baseline performs poorly on these datasets
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Table 2: Results of trained models - metrics in Relative MSE on test set. Best performances are
highlighted in bold, second best are underlined.

1d 1d+time 2d 2d+time

Baseline Helmholtz Poisson NLRD Darcy-Flow Heat
Supervised MLP + basis 4.66e-2 1.50e-1 2.85e-4 3.56e-2 6.00e-1

Unsupervised

PINNs+L-BFGS 9.86e-1 8.83e-1 6.13e-1 9.99e-1 9.56e-1
PINNS-multi-opt 8.47e-1 1.18e-1 7.57e-1 8.38e-1 6.10e-1

PPINNs 9.89e-1 4.30e-2 3.94e-1 8.47e-1 1.27e-1
P2INNs 9.90e-1 1.50e-1 5.69e-1 8,38e-1 1.78e-1

PO-DeepONet 9.83e-1 1.43e-1 4.10e-1 8.33e-1 4.43e-1

Hybrid PI-DeepONet 9.79e-1 1.20e-1 7.90e-2 2.76e-1 9.18e-1
PINO 9.99e-1 2.80e-3 4.21e-4 1.01e-1 9.09e-3

Neural Solver Ours 2.41e-2 5.56e-5 2.91e-4 1.87e-2 2.31e-3

because of the ill-conditioning nature of the PDE, requiring numerous optimization steps to achieve
accurate solutions (appendix D). This is observed on PINNs models for parametric PDEs (PPINNs
and P2INNs) as well as on PINNs fitted on one equation only (PINNs+L-BFGS and PINNs-multi-opt).
We observe that our neural solver has better convergence properties than other Physics-Informed
methods. At will be seen later it also converges much faster.

The supervised baseline performs well on all the PDEs except Poisson and Heat. The data loss used
for training this model is the mean square error which is well-behaved and does not suffer from
optimization problems as the PDE loss does. We note that our method reaches similar or better
performances on every dataset, while relying only on physical information at inference (algorithm 1)
and solving a more complex optimization problem.

The hybrid approaches, do not perform well despite taking benefits from the PDE+DATA loss and
from adaptation steps at test time. Again, the proposed method is often one order of magnitude
better than the hybrids except on NLRD, where it has comparable performances. This shows that the
combination of physics and data losses is also hard to optimize suffering from ill-conditioning.

4.3 OPTIMIZATION FOR SOLVING NEW EQUATIONS

The main motivation for our learned PDE solver is to accelerate the convergence to a solution, w.r.t.
predefined solvers, for a new equation. In order to assess this property, we compare the convergence
speed at test time inference with classical solvers, PINNs and pre-trained PINO as detailed below.
Results are presented in fig. 2 for the Poisson equation with performance averaged on 20 new instances
of the Poisson equation. This experiments is also performed on the other dataset and results are
provided in appendix F.

0 100 101 102 103 104

Optimization steps

10 4

10 3

10 2

10 1

100

101

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 2: Test-time optimization based on the physical residual
loss LPDE for new PDE on Poisson.

Baseline optimizers As for the
classical optimizer baselines, we
used SGD, Adam (Kingma &
Ba, 2015) and L-BFGS (Krish-
napriyan et al., 2021). These op-
timizers are used to learn the co-
efficient of the B-Spline basis ex-
pansion in the model uΘ(x) =∑N

i=0 θiψi(x). This provides a
direct comparison to our iterative
neural solver. PINNs - We also
compare to the standard PINNs
(Raissi et al., 2019), i.e. by fit-
ting one Neural Network (NN)
per equation. Note that this re-
quires full training from scratch
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for each new equation instance and this is considerably more computationally demanding than solving
directly the parametric setting. This baseline is similar to the Adam optimizer mentioned above,
except that the ansatz for this experience is a multilayer perceptron instead of a linear combination of
B-Spline basis. Hybrid pre-training strategies - Finally we compare against the hybrid PINO pre-
trained on a set of several parametric PDE instances and then fine-tuned on a new PDE instance using
only the PDE loss associated to this instance. Ours - We train our model as explained in algorithm 2
and show here the optimization process at test-time. In order to perform its optimization, our model
leverages the gradient of the physical loss and the PDE parameters (coefficients, initial/boundary
conditions). In this experiment, we use L = 5 steps for a better visualization (whereas, we used
L = 2 in table 2).

Result: fig. 2 compares the number of optimization steps required for the different methods. Our
neural solver converges very fast in only a few steps (5 here) to a good approximation of the solution,
while all the other methods require thousands of iterations - we stopped here at 10, 000 steps. The
classical optimizers (SGD, Adam, L-BFGS) do not converge for a new equation. The baseline PINNs
trained here from scratch on each new equation shows an erratic convergence behavior. Pretrained
PINO behaves better than the other baselines but still did not converged after 10, 000 steps. This
clearly demonstrates the potential of our learned solver to deal with physical losses w.r.t. alternative
pre-defined solvers.

4.4 COMPUTATIONAL TIME

An important aspect of solving PDEs is the computational time required for each solution. Methods
should find a trade-off between achieving high performance and maintaining reasonable computational
costs. In appendix E.3, we provide the training (table 16) and inference (table 17) times for our method
compared to various baselines. Our results show that while our method has comparable training and
inference times to other approaches, it demonstrates substantially better precision (table 2).

5 CONCLUSION

We have presented a learning based PDE solver that allows fast test-time optimization of physical
losses. Our method succeeds to considerably accelerate the optimization process for the complex
problem of minimizing physical losses, and is several orders of magnitude faster than classical
hand-defined optimization methods such as Adam or L-BFGS.

Limitations and Future Work The proposed method although efficient, could still be improved in
several ways leading to further exploration of this idea. First, the memory needed to train our iterative
algorithms can be more demanding than for usual ML model learning. Indeed, back-propagating
through the iterations adds complexity and this might become an issue on higher dimensional basis.
Second, we focused here on solution approximations expressed as a linear expansion in pre-defined
bases. More expressive representations such as neural networks could be investigated, although our
preliminary experiments have shown even more ill-conditioning, due to the compositional nature of
the neural network. More sophisticated training schemes, optimizers, or initializations could enhance
the performances of the optimization process. Future work will explore such directions to improve its
scalability and capabilities for broader application of the proposed method.

Ethics Statement Solving PDE is of crucial interest in many applications of science and engineering.
While we do not directly target such real-world applications in this paper, one should acknowledge that
solvers can be used in various ranges of scenarios including weather, climate, medical, aerodynamics,
industry and military applications.

Reproducibility Statement We will provide all elements that can be necessary to reproduce the
experiments. Hyper-parameters, baselines configurations and training details are shown in appendix D,
tables 4 and 5, and algorithms 1 and 2. The generation of the datasets are explained in appendix C
and tables 1 and 3 with the solver used or the source, as well as the parameter ranges considered
in the experiments. Finally, we provide a theoretical analysis of the model, under ideal scenario in
appendix B. Code will be released upon acceptance as well as scripts to generate data when needed.
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A DETAILED RELATED WORK

PDE solvers: Many tools for numerically solving PDEs have been developed for years. The
standard methods for PDE include Finite Differences (FD), Finite Volume (FV), Finite Element
Method (FEM), spectral and multigrid methods, and many others (S. H, 2012; Liu, 2009). While these
methods are widely used, they often suffer from a high computational cost for complex problems or
high-precision simulations. To address these challenges, integrating deep learning (DL) into solvers
has emerged as a promising approach. Current solutions include incorporating correction terms
into mathematical solvers to reduce numerical errors (Um et al., 2021). Some work such as Hsieh
et al. (2019); Li et al. (2023a); Rudikov et al. (2024); Kopaničáková et al. (2023) build a method
to directly enhance the convergence of numerical solvers through preconditioner learning. As an
example, Rudikov et al. (2024); Li et al. (2023a) uses a neural operator to approximate conditioner
for the flexible conjugate gradient method or Hsieh et al. (2019) for the Jacobi method. Another
example of preconditioner learning lies in Li et al. (2023a), where the author uses GNN to assess
symmetry and positive definiteness.

Unsupervised training: Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) have
been a pioneering work in the development of DL method for physics. In these models, the solution
is a neural network that is optimized using the residual loss of the PDE being solved. However,
this method suffers from several drawbacks. First, as formulated in Raissi et al. (2019), PINNs
can solve one instance of an equation at a time. Any small change in the parameters of the PDE
involves a full retraining of the network. Efforts such as Beltrán-Pulido et al. (2022); Zhang et al.
(2023); Cho et al. (2024) have attempted to address this limitation by introducing parametric versions
of PINNs capable of handling parametric equations, while Huang et al. (2022); Qin et al. (2022)
explores meta-learning approaches. Other approaches to improve PINNs generalization include
using neural operator (Wang et al., 2021), hyper-network (de Avila Belbute-Peres et al., 2021).
Moreover, PINNs have shown convergence difficulties: Krishnapriyan et al. (2021) show that PINNs’
losses have complex optimization landscapes, complicating training despite adequate neural network
expressiveness. Approaches like those detailed in Wang et al. (2022) adopt a Neural Tangent Kernel
(NTK) perspective to identify reasons for failure and suggest using adaptive weights during training to
enhance performance. Additionally, studies such as Ryck et al. (2023) demonstrate that PINNs suffer
from ill-conditioned losses, resulting in slow convergence of gradient descent algorithms. Recently,
(Rathore et al., 2024) show how training strategies can improve convergence of Physics-Informed
Neural Networks and show that specific optimizers such as L-BFGS acts as conditioner on the
physical losses.

Supervised training: In contrast to the unsupervised training of Physics-informed Neural Net-
works, purely data-driven models have demonstrated remarkable capabilities for PDE simulation
and forecasting. In most of the existing literature, the entire solver is replaced by a DL architecture
and focuses on directly computing the solution from a given input data. A widely studied setting is
operator learning which learns mappings between function spaces (Li et al., 2020; Kovachki et al.,
2023; Lu et al., 2021). This method is very efficient, with the downside of relying on quite large
quantities of data for training in order to ensure adequate generalization. Additionally, the neural
network does not have access to the PDE in itself, only indirectly through the data. To ensure
physical constraint in purely-data-driven training, hybrid models have been proposed. The latter
rely on both the available physical knowledge and some data. Some examples include the Aphinity
model (Yin et al., 2021) (where the authors have partial knowledge of the physics and learned the
remaining dynamics from data), Physics-informed Deep Operator Networks (PIDON) (Wang et al.,
2021; Goswami et al., 2022), Physics-informed Neural Operator (PINO) (Li et al., 2023b) (DeepONet
architecture (Lu et al., 2021) or Neural Operator models (Kovachki et al., 2023; Li et al., 2020)
respectively with a combination of data and physical losses).

Learning to solve : Improving the learning scheme and optimizers through data-driven training
has been studied since Li & Malik (2016) and Andrychowicz et al. (2016). These works propose
to learn the optimizer of neural networks, which are classically optimized through gradient-based
algorithms such as Adam. They focus on improving training strategies for neural networks, which do
not suffer from the optimization issues and ill-conditioning properties of physics-informed losses.
We refer the reader to the survey of Chen et al. (2021) for a complete overview. The closer work to
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ours is the very recent work of Bihlo (2024) in which the author asseses the capabilities of learned
optimizers for physics-informed neural networks. The main difference with our work relies on the
problem setting. Bihlo (2024) considers learning an optimizer on a single equation, and for different
neural networks initialization, while we focus on efficiently solving several instances of parametric
PDE with varying PDE parameters γ, f, g.

B THEORETICAL ANALYSIS OF OUR METHOD AND PINNS

Setting. We consider the following linear PDE:

Du(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(11)

where Ω ⊂ Rd is an open bounded domain, D is a linear differential operator, f(x) is a given function
in Ω and g(x) is a given function on the boundary ∂Ω.

B.1 THEORETICAL ANALYSIS OF PINNS

Our aim is to find an approximate solution uΘ(x), parameterized by Θ ∈ RN , Θ = {θi}Ni=1 that
minimizes the loss function:

LPDE(Θ) = LRes(Θ) + λLBC(Θ), (12)

where:

LRes(Θ) =
1

2

∫
Ω

(DuΘ(x)− f(x))
2
dx, LBC(Θ) =

1

2

∫
∂Ω

(uΘ(x)− g(x))
2
dx,

and λ > 0 is a regularization parameter balancing the PDE residual and boundary conditions.

We perform gradient descent updates with step size η. At step k > 0, updates write as:

Θk+1 = Θk − η∇ΘLPDE(Θk).

We establish the following theorem regarding the convergence rate of gradient descent.

Theorem 1 (Convergence rate of PINNs). Given a linear ansatz uΘ(x) =
∑N

i=1 θiϕi(x), the
number of steps N(ε) required to achieve an error ∥Θk −Θ∗∥2 ≤ ε satisfies:

N(ε) = O
(
κ(A) ln

(
1
ε

))
, (13)

where κ(A) is the condition number of the matrix A ∈ Rn×n defined by:

Ai,j =

∫
Ω

(Dϕi(x)) (Dϕj(x)) dx+ λ

∫
∂Ω

ϕi(x)ϕj(x)dx. (14)

Proof. Since uΘ(x) =
∑N

i=1 θiϕi(x), we have:

∂uΘ(x)

∂θi
= ϕi(x),

∂(DuΘ(x))
∂θi

= Dϕi(x).

The gradient of the residual loss is:

∇ΘLRes(Θ) =

∫
Ω

(DuΘ(x)− f(x))Dϕ(x) dx,
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where Dϕ(x) is the vector with components Dϕi(x). Similarly, the gradient of the boundary loss is:

∇ΘLBC(Θ) =

∫
∂Ω

(uΘ(x)− g(x))ϕ(x) dx,

where ϕ(x) is the vector of basis functions evaluated at x. Therefore, the total gradient is:

∇ΘLPDE(Θ) = AΘ− b,

where the (positive, semi-definite) matrix A and vector b are defined as:

Ai,j =

∫
Ω

(Dϕi(x)) (Dϕj(x)) dx+ λ

∫
∂Ω

ϕi(x)ϕj(x)dx,

bi =

∫
Ω

f(x)Dϕi(x) dx+ λ

∫
∂Ω

g(x)ϕi(x) dx.

(15)

Thus, the gradient descent update becomes:

Θk+1 = Θk − η(AΘk − b).

Subtracting Θ∗ (the optimal parameter vector satisfying AΘ∗ = b) from both sides:

Θk+1 −Θ∗ = Θk −Θ∗ − ηA(Θk −Θ∗).

Simplifying:
Θk+1 −Θ∗ = (Id − ηA)(Θk −Θ∗).

By recursively applying the update rule, we obtain:

Θk −Θ∗ = (Id − ηA)k(Θ0 −Θ∗).

Since A is symmetric positive definite, it has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn with λi > 0. To
ensure convergence, we require 0 < η < 2

λmax(A) . Choosing η = c
λmax(A) with 0 < c < 2, we have:

1− ηλi = 1− c
λi

λmax(A)
.

The spectral radius ρ of Id − ηA is:

ρ = max

{∣∣∣∣1− c
λmin(A)

λmax(A)

∣∣∣∣ , |1− c|
}

= max

{
1− c

κ(A)
, |1− c|

}
,

where κ(A) = λmax(A)
λmin(A) is the condition number of A. By choosing 0 < c < 1, we ensure |1− c| < 1,

and since κ(A) ≥ 1, we have 1− c
κ(A) < 1. Thus, the convergence factor is:

ρ = 1− c

κ(A)
.

Therefore:

∥Θk −Θ∗∥2 ≤
(
1− c

κ(A)

)k

∥Θ0 −Θ∗∥2.

To achieve ∥Θk −Θ∗∥2 ≤ ε, the number of iterations N(ε) satisfies:
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N(ε) ≥ ln (ε/∥Θ0 −Θ∗∥2)

ln
(
1− c

κ(A)

) .

Using the inequality ln(1− x) ≤ −x for 0 < x < 1, we get:

N(ε) ≤ κ(A)

c
ln

(
∥Θ0 −Θ∗∥2

ε

)
.

Thus:
N(ε) = O

(
κ(A) ln

(
1
ε

))
.

We have shown that for a linear ansatz uΘ(x) =
∑N

i=1 θiϕi(x), the convergence rate of gradient
descent depends linearly on the condition number κ(A) of the system matrix A. A large condition
number impedes convergence, requiring more iterations to achieve a desired accuracy ε.

B.2 THEORETICAL ANALYSIS OF OUR METHOD

In practice, we often work with multiple data points. For each data point, there is an associated
parameter vector Θ ∈ RN . We are interested in the iterative update where the gradient is transformed
by a neural network F :

Θl+1 = Θl − ηF (∇ΘLPDE(Θl)) , (16)

where Θl represents the parameter vector at iteration l. Recall that F is trained to minimize the loss
after L iteration steps for M data points:

LDATA =
1

m

M∑
k=1

∥∥∥uΘ(k)
L

− u∗k

∥∥∥2
2
, (17)

Theorem 2. (Convergence rate of our method). Given a linear ansatz uΘ(x) =
∑N

i=1 θiϕi(x),
assume F behaves like its linearization P = ∂F

∂v

∣∣
v=0

. The number of steps N ′(ε) required to achieve
an error ∥Θl −Θ∗∥2 ≤ ε satisfies:

N ′(ε) = O
(
κ(PA) ln

(
1
ε

))
, (18)

Moreover, if F minimizes LDATA this necessarily implies κ(PA) = 1 ≤ κ(A). Consequently, the
number of steps is effectively reduced, i.e., N ′(ε) ≪ N(ε).

Proof. Since F behaves like its linearization P , the gradient descent update becomes (refer to proof
of Theorem 1 for steps):

Θl+1 = Θl − ηP (AΘl − b).

Let Θ∗ be the optimal parameter vector minimizing LPDE. Then, the difference between the parameter
vector at iteration l and the optimal parameter vector is:

Θl+1 −Θ∗ = Θl −Θ∗ − ηPA(Θl −Θ∗) = (Id − ηPA)(Θl −Θ∗).

By recursively applying this update until the final step L, we obtain:

18
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ΘL −Θ∗ = (Id − ηPA)L(Θ0 −Θ∗).

Since we have multiple data points, each with its own parameter vector, we consider the concatenation
when necessary. Let’s introduce Ξl as the matrix whose columns are the parameter vectors:

ΞL = [Θ
(1)
L ,Θ

(2)
L , . . . ,Θ

(m)
L ].

Similarly, Ξ∗ contains the optimal parameter vectors for each data point. The update for all data
points can be written collectively:

ΞL − Ξ∗ = (Id − ηPA)L(Ξ0 − Ξ∗).

Since F minimizes LDATA, we have ΞL = Ξ∗, implying:

(Id − ηPA)L(Ξ0 − Ξ∗) = 0.

Given that the values of Ξ0 are iid and sampled randomly from a continuous distribution, because the
set of singular matrices has measure zero, the square matrix (Ξ0 − Ξ∗)(Ξ0 − Ξ∗)⊤ is full rank (i.e.,
invertible), with probability 1. Thus, the only way for the above equality to hold is if:

(Id − ηPA)L = 0.

This means Id − ηPA is nilpotent of index L. Consequently, all eigenvalues of Id − ηPA are zero,

implying that all eigenvalues of PA are equal to
1

η
, leading to κ(PA) = λmax(PA)/λmin(PA) = 1,

which is the optimal condition number. Referring to the convergence analysis in Theorem 1, we have:

N ′(ε) ≤ κ(PA)

c
ln

(
∥Ξ0 − Ξ∗∥2

ε

)
.

Which directly implies
N ′(ε) = O

(
κ(PA) ln

(
1
ε

))
, (19)

With κ(PA) = 1, this leads us to the desired result:

N ′(ε) = O
(
ln
(
1
ε

))
≪ O

(
κ(A) ln

(
1
ε

))
=: N(ϵ),

Thus, the number of iterations required is significantly reduced compared to the case without the
neural network preconditioner.

Discussion The convergence proofs for our method fundamentally rely on the assumption of
linearity in the underlying problems. It is important to note that the theoretical analysis does not
extend to non-linear cases. Consequently, for non-linear scenarios, the theory should be viewed
primarily as a tool for building intuition or providing motivation, rather than a definitive proof. This
is due to the lack of established methods for rigorously studying the non-linear regime, as no known
results currently address such cases.
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Under these conditions:

• This optimal condition number implies that convergence is not only guaranteed but also
optimal, requiring fewer iterations.

• Guaranteed Convergence: The method reliably achieves convergence to the optimal
solution due to the reduced condition number.

• Optimal Convergence Speed: With κ(PA) = 1, the neural network provides an enhanced
convergence rate, resulting in fewer required iterations compared to the original system
without the neural network.
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C DATASET DETAILS

For all datasets, we kept 800 samples for training and 200 as testing examples (except otherwise
stated in the experiments).

C.1 HELMHOLTZ

We generate a dataset following the 1d static Helmholtz equation eq. (20). For x ∈ [0, 1[,
u(x)′′ + ω2u(x) = 0,

u(0) = u0,

u′(0) = v0.

(20)

The solution can be analytically derived: u(x) = α cos(ωx+β), with β = arctan(−v0
ωu0

), α = u0

cos(β)

and directly computed from the PDE data. We generate 1, 024 trajectories for training and 256 for
testing with u0, v0 ∼ N (0, 1) and ω ∼ U(0.5, 50) and compute the solution on [0, 1] with a spatial
resolution of 256. For training, we keep 800 samples and use the complete dataset for the additional
experiments presented in figs. 12a and 12b. Moreover, we sub-sample the spatial resolution by 4 and
keep 64 points for training.

(a) (b)

Figure 3: Samples from the Helmholtz Dataset.

C.2 POISSON

We generate a dataset following the 1d static Poisson equation eq. (21) with forcing term. For
x ∈ [0, 1[, 

−u′′(x) = f(x),

u(0) = u0,

u′(0) = v0.

(21)

We chose f to be a non-linear forcing terms: f(x) = π
K

∑K
i=1 aii

2r sin(πx), with ai ∼
U(−100, 100), we usedK = 16, r = −0.5, and solve the equation using a backward finite difference
scheme. We generate 1, 000 trajectories with u0, v0 ∼ N (0, 1) and compute the solution on [0, 1]
with a spatial resolution of 64.

Reaction-Diffusion We use a non-linear reaction-diffusion used in (Krishnapriyan et al., 2021;
Toloubidokhti et al., 2024). This PDE has been shown to be a failure case for PINNs (Krishnapriyan
et al., 2021). The PDE states as follows:

∂u(t, x)

∂t
− ν

∂2u(t, x)

∂x2
− ρu(t, x)(1− u(t, x) = 0, (22)

u(0, x) = e−32(x−1/2)2 . (23)
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(a) (b)

Figure 4: Samples from the Poisson Dataset.

We generate 800 trajectories by varying ν in [1, 5] and ρ in [−5, 5]. Spatial resolution is 256 and
temporal resolution is 100, which we sub-sample by 4 for training, leading to a spatial resolution of
64× 25. The PDE is solved on [0, 1]2 as in (Toloubidokhti et al., 2024).

(a) (b)

Figure 5: Samples from the Reaction-Diffusion Dataset.

Reaction-Diffusion with initial conditions : To complexify the setting, we also change initial
condition of the problem (NLRDIC in the following). The initial condition express as follows:

u(x, 0) =

3∑
i=1

aie
− ( x−h/4

h )
2

4 . (24)

Where ai are randomly chosen in [0, 1] and h = 1 is the spatial resolution.
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(a) (b)

Figure 6: Samples from the Reaction-Diffusion Dataset with initial conditions changed.

C.3 DARCY FLOW

The 2d Darcy Flow dataset is taken from (Li et al., 2020) and commonly used in the operator learning
literature (Li et al., 2023b; Goswami et al., 2022).

−∇.(a(x)∇u(x)) = f(x) x ∈ (0, 1)2, (25)

u(x) = 0 x ∈ ∂(0, 1)2. (26)

For this dataset, the forcing term f is kept constant f = 1, and a(x) is a piece-wise constant diffusion
coefficient taken from (Li et al., 2020). We kept 1, 000 trajectories (on the 5, 000 available) with a
spatial resolution of 64× 64.

(a) (b)

Figure 7: Samples from the Darcy Dataset.

C.4 HEAT

As a proof that our method can handle 2d + time, we consider the dataset proposed by (Zhou &
Farimani, 2024).

∂u(x, y, t)

∂t
− ν∇2u(x, y, t) = 0, (27)

u(x, y, 0) =

J∑
j=1

Aj sin(
2πlxjx

L
+

2πlyjy

L
+ ϕi). (28)

Where L = 2, ν is randomly chosen between [2 × 10−3, 2 × 10−2], Aj in [−0.5, 0.5], lxj , lxy are
integers in {1, 2, 3} and ϕ is in [0, 2π]. As a difference with (Zhou & Farimani, 2024), we randomly
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chose J between 1 and Jmax = 5 to have more diversity in the represented frequencies in the data.
The PDE are sampled with spatial resolution 64 in x and y and temporal resolution 100. However,
during training these spatial resolution and subsampled by 4 and coordinates are re scaled between 0
and 1. As for other PDEs, we use 800 trajectories for training and 200 for testing.

(a) (b)

Figure 8: Samples from the Heat dataset.

C.5 ADDITIONAL DATASET: ADVECTION

The dataset is taken from (Takamoto et al., 2023).

∂u(t, x)

∂t
+ β

∂u(t, x)

∂x
= 0, x ∈ (0, 1), t ∈ (0, 2], (29)

u(0, x) = u0(x), x ∈ (0, 1). (30)

Where β is a constant advection speed, and the initial condition is u0(x) =
∑

ki=k1...kN
Ai sin(kix+

ϕi), with ki = 2πni

Lx
and ni are randomly selected in [1, 8]. The author used N = 2 for this PDE.

Moreover, Ai and ϕi are randomly selected in [0, 1] and (0, 2π) respectively. Finally, Lx is the size
of the domain (Takamoto et al., 2023).

The PDEBench’s Advection dataset is composed of several configurations of the parameter
β ({0.1, 0.2, 0.4, 0.7, 1, 2, 4, 7}), each of them is composed of 10, 000 trajectories with vary-
ing initial conditions. From these datasets, we sampled a total of 1, 000 trajectories for β ∈
{0.2, 0.4, 0.7, 1, 2, 4} (which gives about 130 trajectories for each β). This gives a dataset with
different initial conditions and parameters. Moreover, during training, we sub-sampled the trajectories
by 4, leading to a grid of resolution 25 for the t-coordinate and 256 for the x-coordinate.

(a) (b)

Figure 9: Samples from the Advections Dataset.
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C.6 SUMMARY OF PROBLEM SETTINGS CONSIDERED

A summary of the datasets and parameters changing between 2 trajectories are presented in table 3.

Table 3: Parameters changed between each trajectory in the considered datasets in the main part of
the paper as well as additional datasets (Advections and NLRDIC).

Dataset Changing PDE data Range / Generation

Helmholtz
ω [0.5, 50]
u0 N (0, 1)
v0 N (0, 1)

Poisson
Ai [−100, 100]
u0 N (0, 1)
v0 N (0, 1)

Reaction-diffusion ν [1, 5]
ρ [−5, 5]

Darcy a(x)
ψ#N (0, (−∆+ 9I)−2)

with ψ = 12 ∗ 1R+
+ 3 ∗ 1R+

Heat

ν [2× 10−3, 2× 10−2]
Jmax {1, 2, 3, 4, 5}
A [0.5,−0.5]

Kx, Ky {1, 2, 3}
ϕ [0, 2π]

Advection

β {0.2, 0.4, 0.7, 1, 2, 4}
Ai [0, 1]
ϕi [0, 2π]
ki {2kπ}8k=1

NLRDIC
ν [1, 5]
ρ [−5, 5]
ai [0, 1]
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D IMPLEMENTATION DETAILS

We add here more details about the implementation and experiments presented in section 4.

We implemented all experiments with PyTorch (Ansel et al., 2024). We estimate the computation
time needed for development and the different experiments to be approximately 300 days.

D.1 B-SPLINE BASIS

We chose to use a B-Spline basis to construct the solution. We manually build the spline and compute
its derivatives thanks to the formulation and algorithms proposed in (Piegl & Tiller, 1996). We used
Splines of degree d = 3 and constructed the Splines with 2 different configurations:

• Take N + d+ 1 equispaced nodes of multiplicity 1 from d
N to 1 + d

N . This gives a smooth
local basis with no discontinuities (see fig. 10a) represented by a shifted spline along the
x-axis (denoted as shifted in the following).

• Use N + 1 − d nodes of multiplicity 1 and 2 nodes of multiplicity d (typically on the
boundary nodes: 0 and 1). This means that nodes 0 and 1 are not differentiable (see fig. 10b).
We call this set-up equispaced.

(a) (b)

Figure 10: B-spline basis with N = 10 terms with shifted spline (Left) and higher multiplicity nodes
(Right). Dashed lines represent nodes position with color the darker, the higher the multiplicity.

Higer-dimension basis For 1d + time, 2d dataset and 2d + time we build a 2 (or 3) dimensional
B-spline basis, i.e., we treat the time coordinate as spatial ones. To build such bases, we compute the
Cartesian product between the 2 (or 3) 1d-bases, 1 per dimension. This means that for a 2d dataset,
for which we chose to use bases of size N1 and N2 for each coordinate, the resulting basis will have
N1 +N2 +N1 ∗N2 terms. This method makes the training more costly and several techniques to
improve its scalability could be used. For 3d datasets, the number of terms in the basis is cubic.

D.2 TRAINING DETAILS

In our experiments, neural networks are trained using the Adam optimizer. For network optimization,
we employ a smooth l1-loss for our solver while for other baselines, we use MSE loss and/or physical
losses. All models are trained for at least 1, 500 epochs on datasets composed of some sampling of γ
and/or f and/or g. If not stated otherwise, we train our proposed method for 750 epochs and baselines
for 1, 500 epochs. We use the Adam optimizer and an initial learning rate of 0.001. We use an
exponential learning rate scheduler that lowers the learning rate by 0.995 every epoch. Experiments
are conducted on NVIDIA TITAN V (12 Go) for 1d datasets and NVIDIA RTX A6000 GPU with
49Go for 1d + time, 2d datasets or 2d + time. We show on algorithm 3 a pseudo-code for training of
our proposed method.
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Algorithm 3: Training algorithm for learning to optimize physics-informed losses.
Data: θ0 ∈ Rn, PDE (γ, f, g)
for e = 1... epochs do

for (PDE, x, u) in dataset do
Initialize θ0
Estimate θL from (θ0, γ, f, g) using Algorithm 1
Reconstruct uθL(x)
Update the parameters ν of F with gradient descent from the data loss in Equation 10.

end
end

We make use of two nested components: the solver for providing the approximate solution to the
PDE and the optimizer that conditions the training of the solver. Both are using gradient descent but
with different inputs and objectives. The former optimizes the PDE loss (inner loop), while the latter
optimizes the gradient steps of the solver through conditioning (outer loop). Optimization of the two
components proceeds with an alternate optimization scheme. In particular, this implies that the map
Fϱ is kept fixed during the inner optimization process.

D.3 MODELS

We present here the training details for our model and the baseline. The results can be found on
table 2. In all our experiments, we use a GeLU (Hendrycks & Gimpel, 2016) activation function. The
details of the model architecture on each dataset are presented in table 4.

Hyperparameters for Helmholtz: For the baselines, we empirically searched hyperparameters to
allow the network to handle the high frequencies involved in the Helmholtz dataset. Unfortunately,
other network architectures did not improve the results. We proceed similarly for other datasets.

Training of PPINNs: For the Helmholtz dataset, we trained our model for 2000 epochs with a
plateau learning rate scheduler with patience of 400 epochs. For the Poisson dataset, we trained
our parametric PINN model for 5000 epochs with a cosine annealing scheduler with a maximum
number of iterations of 1000. For the Reaction-diffusion dataset, we consider an initial learning rate
of 0.0001 instead of 0.001. Finally, P2INNs is trained for 5, 000 epochs using the Adam optimizer
and an exponential scheduler with patience 50.

PINNs baselines (PINNs + L-BFGS and PINNs-multi-opt): The conditioning of the problem
highly depends on the parameters of the PDE and initial/boundary conditions. This can lead to
unstable training when optimizing PINNs, requiring specific parameters configuration for each PDEs.
To avoid an extensive research of the best training strategy, we found a configuration that allowed
a good fitting of most of the testing dataset. This means that in the values reported in table 2, we
removed trainings for which the losses exploded (only a few hard PDEs were removed, typically
between none to 20). This prevents us from extensive hyper-parameter tuning on each PDE. Please
note that this lower the reported relative MSE, thus advantaging the baseline. We detail in tables 5
and 6 the hyper-parameters for each dataset.

Basis configuration: For all datasets, we use Spline of degree 3, built with shifted nodes. We
change the number of terms in the basis depending on the problem considered. For the 1d-problem,
we use 32 terms. For the 2d-problem, 40 elements are in the basis of each dimension, except for
Reaction-Diffusion where the variable t has 20 terms. Moreover, during training, we use the projection
of the initial conditions and/or parameters and/or forcings terms function in the basis as input to the
networks. Finally, for experiments using the Heat dataset (i.e. 3d basis), we used 15 terms for the x
and y spatial coordinates and 10 terms for the t-coordintate.
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Table 4: Architecture details of our model and baselines

Model Architecture
Dataset

1d 1d + time 2d 2d + time

Helmholtz Poisson NLRD Darcy Heat

PINNs MLP depth 3 3 3 3 3
MLP width 256 256 256 256 256

PPINNs MLP depth 8 3 5 3 3
MLP width 64 256 256 256 256

PO-DeepONet

Branch Net depth 3 2 5 5 5
Branch Net width 256 256 256 256 256
Trunk Net depth 3 2 5 5 5
Trunk Net width 256 256 256 256 256

P2INNs

Enc params depth 4 4 4 4 4
Enc params width 256 256 256 256 256

Emb params 128 128 128 128 128
Enc coord depth 3 3 3 3 3
Enc coord width 256 256 256 256 256

Emb coord 128 128 128 128 128
Dec depth 6 6 6 6 6
Dec width 256 256 256 256 256
Activations GeLU GeLU GeLU GeLU GeLU

MLP + basis MLP depth 5 5 5 5 5
MLP width 256 256 1,024 1,024 1,024

PI-DeepONet

Branch Net depth 3 2 5 5 5
Branch Net width 256 256 256 256 5
Trunk Net depth 3 2 5 5 5
Trunk Net width 256 256 256 256 256

PINO

FNO depth 3 3 4 3 3
FNO width 64 64 64 64 64

FNO modes 1 16 16 10 20 7
FNO modes 2 - - 5 20 7
FNO modes 3 - - - - 5
FNO fc dim 64 64 64 64 64

Ours

FNO depth 3 3 3 3 3
FNO width 64 64 64 64 64

FNO modes 1 16 16 10 20 7
FNO modes 2 - - 5 20 7
FNO modes 3 - - - - 5
FNO fc dim 64 64 64 64 64

Table 5: Hyper parameters for PINNs+L-BFGS baseline.

Hyper-parameter
Dataset

1d 1d + time 2d 2d + time

Helmholtz Poisson NLRD Darcy Heat
epochs 1, 000 1, 000 1, 500 1, 500 1, 000

learning rate 1e-4 1e-5 1e-4 1e-3 1e-3
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Table 6: Hyper parameters for PINNs-multi-opt baseline.

Hyper-parameter
Dataset

1d 1d + time 2d 2d + time

Helmholtz Poisson NLRD Darcy Heat
epochs Adams 800 800 800 1, 200 1, 200

epochs L-BFGS 200 200 200 300 300
epochs total 1, 000 1, 000 1, 000 1, 500 1, 500

learning rate Adam 1e-4 1e-5 1e-4 1e-3 1e-3
learning rate L-BFGS 1 1 1e-3 1 1

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 ABLATION

We experimentally show some properties of our iterative method. These evaluations are made on a
test set composed of several instances of PDE with varying configurations (γ, f, g) that are unseen
during training. These experiments are performed on the Helmholtz equation which appeared as
one of the more complex to optimize in our evaluation. We used L = 5 in our method for a better
visualization, unless stated otherwise.

Error w.r.t the number of steps L On fig. 11, we show that having more optimizer steps allows
for a better generalization. However, we observed in our experiments that the generalization error
stabilizes or even increases after the proposed 5 steps. This limitation of the solver should be
investigated in future work in order to allow the model to make more iterations. Note that for this
experiment, we lowered batch size (and adapted learning rate accordingly) when the number of steps
increased (fig. 11).

Figure 11: Error on the test set (Helmholtz equation) w.r.t the number of iterations

Error w.r.t the number of training samples On figs. 12a and 12b, we show that compared to
other physics-informed baselines, our solver requires fewer data to learn to solve PDE. Note that on
this simple example, the MLP+basis baseline also performed well. However, as shown in table 2,
this is not the case for all the datasets. The contribution of the iterative procedure clearly appears
since with 2× less data, our models performs best than this baseline.

102 103

Number of training samples.

10 2

10 1

100

Re
lM

SE

Data requirement comparison.

Ours
MLP+basis
PINO
PI-DeepONet

(a)

102

Number of training samples.
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SE
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Ours
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(b)

Figure 12: Relative MSE on the test set w.r.t the number of training samples on Helmholtz (left) and
Darcy (right) datasets.
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Optimization with LPDE Table 7 shows that optimizing our network with physical loss greatly
complexifies training. Indeed, adding an ill-conditioned loss to the standard MSE makes training
ill-conditioned.

Table 7: How the physical loss complexify training and lowers performances. Metrics in Relative
MSE on the test set of Helmholtz equation.

Input Relative MSE

LPDE + LDATA 1.11
LDATA 2.19e-2

Iterative update & SGD-based update In table 8, we compare two optimizer configurations.
"Direct" means that the network directly predicts the parameters for the next step (i.e. Θk+1 =
Fϱ(∇LPDE(Θk), γ, f, g)), while "GD", corresponds to the update rule described before and using
SGD as the base algorithm Θk+1 = Θk − ηFϱ(∇LPDE(Θk), γ, f, g). The latter clearly outperforms
the direct approach and shows that leaning increments is more efficient than learning a direct mapping
between two updates. As shown in table 8 increasing the number of steps improves the performance
(shown here for 1 and 5 update steps). However the performance does not improve anymore after a
few steps (not shown here).

Table 8: Comparison of different optimizer configurations for solving the Helmholtz equation. Metrics
in Relative MSE on the test set.

Relative MSE

N-steps Direct GD

1-step 1.08e-1 8.5e-2
5-step 9.07e-2 2.19e-2

Optimization with different inner learning rates On table 9, we study the performance of our
proposed method with different inner learning rates η. As expected, a higher learning rate leads to
better performances since, the optimization is taking bigger steps.

Table 9: Ablation on the inner learning rate. Metrics in Relative MSE on the test set of Helmholtz
equation.

learning rate Relative MSE

0.01 7.32e-2
0.1 4.93e-2
1 2.19e-2

Quantifying the importance of input feature for the learned solver As indicated in eq. (9) the
inputs of our learned solver are (γ, f, g,∇LPDE(θL)). We performed experiments by removing either
γ or ∇LPDE(θl) from the input (For the Helmholtz equation, there is no forcing term f ). The BC g
are kept since they are part of the PDE specification and are required for ensuring the uniqueness
of the solution. This experiment (table 10) illustrates that conditioning on the PDE parameters γ is
indeed required to solve the parametric setting. Without γ, the solver has no hint on which instance
should be used. The addition of the gradient information, ∇, which is at the core of our method, is
also crucial for improving the convergence and validates our setting.
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Table 10: Effect of using the gradient as input w.r.t the PDE parameters. Metrics in Relative MSE on
the test set of Helmholtz equation.

Input Relative MSE

γ + g 3.75e-1
∇ + g 1.07e-1
∇ + γ + g 2.19e-2

We showed by a simple experiment that our model can handle non linear cases (see table 11). We
propose to model the solution u using a non-linear combination of the basis terms ϕi. The relation
between the ϕi is modeled using a simple NN with one hidden layer and a tanh activation function.
This experiment is performed on the Poisson PDE.

Table 11: Non linear combination of the basis. Relative MSE on the test set for our proposed method
and comparison with other non linear models and optimizers.

baselines Relative MSE

PINNs+L-BFGS 8.83e-1
PPINNs 4.30e-2

Ours 3.44e-3

Network architecture We show in table 12, an ablation on the NN type used, i.e. the layer type used
in our experiments: MLP, Residual Network (ResNet), FNO.We conducted this experiment on the
Helmholtz dataset.

Table 12: Ablation on different layer types. Metric on the test set of the Helmholtz equation.

Layer type Relative MSE

MLP 8.25e-1
ResNet 6.87e-1
FNO 2.41e-2

Irregular grids We show in table 13, an ablation on different type of grids: regular grid as presented
in table 2 and then compare with irregular grids. We created irregular grids by taking 75% of the
points in the original grid. We chose this sampling to keep a certain identification of the PDE from
the grid. The sampled grids are different between each trajectory both during the training and
testing phases. We conducted this experiment on the Helmholtz dataset. Finally, we show some
reconstruction example on figs. 13a and 13b.

Table 13: Comparison of the performances when training our solver using regular or irregular and
different grids for each PDE. Metrics on the test set.

Grid Relative MSE

regular 2.41e-2
irregular 3.38e-1

This experiment shows that our method is capable of handling irregular grids. We observe a decrease
in the performances (table 13) and on the reconstruction quality figs. 13a and 13b. However, we also
note that our method is still capable of reconstructing the dynamic of the PDE, where most of the
considered baselines failed to capture the oscillation in the PDE solution. Further fine tuning/encoding
of the coordinate could help improve this aspect.
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Figure 13: Comparison of the reconstruction of the solution when models are trained on regular (left)
and irregular grid (right).

Error with respect to PDE parameters We propose on fig. 14 the behavior of the reconstruction
of the MSE on unseen PDE with varying PDE parameters. We conducted this experiment on
the Helmholtz PDE and vary ω from −5 to 55 i.e. extrapolation of 10% beyond the parameters
distribution (and kept fixed boundary conditions).
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Figure 14: MSE comparison with PDE parameters ω of the Helmholtz dataset and extrapolation
outside of the training distribution.

We observe on fig. 14 that, as expected, solving PDE outside the training distribution is a very difficult
task for our model as well as for all baselines. The proposed method is the best performing inside
the training distribution (as already observed in table 2) and behaves similarly to fully supervise
method on Out-Of-Distribution (OOD) examples, while relying on physical information. Finally,
other baselines, involving physical only or hybrid training show no extrapolation capabilities on this
example and still predict a mean solution. An exception occurs for very low ω because for these
values, the solution has low frequencies.

E.2 STATISTICAL ANALYSIS

We provide a statistical analysis on some datasets and baselines. These experiments are conducted
using L = 5 (instead of L = 2 in table 2). For computational cost reasons, we did not make this
experiment on all datasets, but kept 2 datasets in 1d (table 14), 1 dataset in 1d+time and 1 dataset in
2d (table 15) so that several configurations and data sizes are represented.

These analysis show the robustness of our proposed method w.r.t. initial seed.
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Table 14: Results of trained models with error bars (std errors) on 1d datasets - metrics in Relative
MSE on test set. Best performances are highlighted in bold, second best are underlined.

1d

Baseline Helmholtz Poisson
Supervised MLP + basis 5.26e-2 ± 7.56e-3 1.58e-1 ± 7.98e-3

Unsupervised PPINNs 8.33e-1±5.61e-3 3.59e-2±2.11e-2
PO-DeepONet 9.84e-1±6.93e-4 1.79e-1±3.09e-2

PI-DeepONet 9.81e-1 ± 2.25e-3 1.25e-1 ±1.04e-2
Hybrid PINO 9.95e-1 ± 3.30e-3 3.27e-3 ± 1.38e-3

Ours 2.17e-2 ± 1.12e-3 4.07e-5 ± 2.65e-5

Table 15: Results of trained models with error bars (std errors) on 1d + time and 2d datasets - metrics
in Relative MSE on test set. Best performances are highlighted in bold, second best are underlined.

1d + time 2d

Baseline 1dnlrd Darcy-Flow
Supervised MLP + basis 2.83e-5 ± 6.83e-7 3.78e-2±2.09e-3

Unsupervised PPINNs 4.64e-1 ± 1.92e-2 9.99e-1±2.63e-2
PO-DeepONet 4.18e-1 ± 1.04e-2 8.32e-1±2.51e-4

PI-DeepONet 7.88e-2 ± 1.96e-4 2.72e-1 ± 4.44e-3
Hybrid PINO 8.00e-5 ± 1.00e-5 1.17e-1 ± 1.42e-2

Ours 2.61e-5 ± 2.53e-6 1.62e-2 ± 3.06e-4

E.3 COMPUTATIONAL COST

Finally, we detail here the training and inference times of our method as well as baselines.

As we can see on table 16, our model takes longer to train due to the iterative process occurring at
each epoch. However, note that this is training time; inference time is similar to other methods (see
table 17). We detail a justification for this additional training time compared to PINNs variants below:

• Comparison with vanilla PINNs: Consider the following experiment. Suppose we train a
classical PINN on a single instance of the Darcy PDE. Based on the training times shown in
table 16, using this method, we performed 1, 500 steps, which took 420 minutes for training
(please note that the performances were less accurate than our model’s performance). If we
wanted to train a PINNs on each PDE of out entire test dataset for 15000 epochs (sometimes
even more steps are required), this would take 4200 minutes or stated otherwise approximatly
3 days. Suppose now, that one wants to solve an additional equation. This will require an
average of 0.226 seconds (see table 17) with our method, while PINNs would require an
entirely new training session of approximately 20 minutes for 15, 000 steps. This makes our
method 5, 000 times faster than traditional PINNs for solving any new equation.

• Comparison with PINNs parametric variants: Now let us consider a parametric variant of
PINNs to handle multiple PDEs (PPINNs for parametric PINNs P2INNs for the model
proposed by (Cho et al., 2024)). In table 2, models was trained for 5, 000 epochs only. Let
us consider training it further as suggested for vanilla PINNs, until 15, 000 epochs. First,
this training would require approximately 19h30m. Then, the optimization problem is still
ill-conditioned, training further would probably not significantly improve the performance.
We can extend this reasoning to the P2INNs baseline, for which we observed similar
performances and behaviors.
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Table 16: Training time of the experiments shown in Table 2. of the paper on a NVIDIA TITAN RTX
(25 Go) GPU. d stands for days, h for hours, m for minutes.

Dataset Helmholtz Poisson 1dnlrd Darcy Heat

MLP + basis 30m 20m 1h10m 2h 4h45
PPINNs 15m 20m 4h15m 6h30m 1d2h
P2INNs 2h 3h 11h 1d7h 1d8h
PODON 10m 10m 3h30m 1d9h 22h
PIDON 10m 10m 3h30m 1d10h 22h
PINO 15m 10m 1h10m 45m 2h40
Ours 30m 30m 4h30 10h15 1d 13h

Table 17: Inference time averaged on the test set. All experiment are conducted on a single NVIDIA
RTX A6000 (48Go). We report the mean time computed on the test set to evaluate the baselines as
performed on Table 2 in the paper (i.e. with 10 test-time optimization steps when applicable and 20
steps on the Heat dataset). We consider as inference the solving of a PDE given its parameters and/or
initial/boundary conditions.

Dataset Helmholtz Poisson 1dnlrd Darcy Heat

MLP + basis 1.12e-2 1.18e-2 1.25e-2 1.19e-2 1.66e-2
PINNs+L-BFGS 274 136 369 126 234
PINNs-multi-opt 15.5 25.5 16.5 105 90

PPINNs 3.09e-1 2.03e-1 2.91e-1 3.22e-1 5.45e-1
P2INNs 2.84e-1 3.09e-1 6.76e-1 1.29 1.23
PODON 3.27e-1 2.71e-1 4.38e-1 6.32e-1 8.85e-1
PIDON 3.32e-1 2.96e-1 4.43e-1 6.35e-1 8.80e-1
PINO 3.14e-1 1.24e-1 5.19e-1 2.21e-1 8.08e-1
Ours 2.58e-1 2.16e-1 2.84e-1 2.26e-1 2.90e-1

E.4 ADDITIONAL DATASETS

We provide additional experiment on 2 new datasets: Non-linear Reaction-Diffusion in a more
complex setting and Advections. We refer the reader to appendix C for the details about the PDE
setting. These datasets were not included in the main part of the paper due to a lack of space in the
results table.

Table 18: Results of trained models on additional datasets - metrics in Relative MSE on test set. Best
performances are highlighted in bold, second best are underlined.

Baseline NLRDIC Advections
Supervised MLP + basis 9.88e-4 6.90e-2

Unsupervised PPINNs 3.71e-1 4.50e-1
PO-DeepONet 4.36e-1 5.65e-1

PI-DeepONet 5.39e-2 4.26e-1
Hybrid PINO 3.79e-3 6.51e-4

Ours 1.41e-3 5.39e-3

These additional dataset show cases where baselines are performing very well on the considered PDE.
For Advections, PINO reached very good performances. We believe that the Fourier layers used in
the model fits well to the phenomenon. Indeed, the solution is represented using a combination of
sine moving with time. This simple dynamics is easily captured using Fourier transformations. Our
B-Splines basis can be sub-optimal for this dataset. For the complexified version of NLRD, NLRDIC,
it is the supervised baseline that performs best. This dataset, does not present high frequencies, and
the MLP looks sufficiently expressive to find the coefficient in the basis. However, this baseline had
difficulties to reconstruct the higher frequencies in Advections. Even if our model does not perform
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best on these datasets, it is ranked second. We believe that these additional results show the robustness
of our method across different physical phenomena.

E.5 TRAINING BEHAVIOR

We show in this section the evolution of the MSE as the training progresses (see fig. 15).
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Evolution of MSE during training 
 on the train and test sets of the Helmholtz equation. 

MSE on the training set
MSE on the test set

Figure 15: MSE during training on the training and testing sets. Example shown on the Helmholtz
equation for results as presented in table 2.
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Figure 16: Reconstruction of the solution PDEs during training. Example drawn from the test set.

On fig. 15, we show the MSE evolution on both the train and test sets (evaluation every 50 epochs)
and on figs. 16a and 16b some reconstruction (from the test set), with respect to the training epochs .
The training set (800 PDEs trajectories) corresponds to PDEs used to update the network parameters,
while the test set (200 trajectories) are unseen PDEs for the network. This means that the model has
not been trained or optimized on these PDEs. The test set is composed of PDE with varying PDE
parameters (ω) and boundary conditions (u0, v0). This illustrates that the generalization performance
on new PDEs within the training distribution is rapidly achieved by the network.
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E.6 LOSS LANDSCAPES

In this section, we propose a visual representation (fig. 17) of the physical loss landscape.

Figure 17: Loss landscapes and optimization trajectories on an instance of the Helmholtz PDE. These
optimization trajectories are computed using SGD on the physical loss (left), the data loss (center)
and our method (right).

Figure 17 illustrates the behavior of our "learning to optimize" method. Each plot represents the
physical loss landscape around the solution of a given Helmholtz equation. For visualization, we
generate two random vectors in the solution space and plot a 2D slice of the loss function around the
minimum solution, following the technique described in (Garipov et al., 2018).

• Left Column: The figure show the gradient path (104 steps) obtained by directly optimizing
the physical loss, similar to the PINNs algorithm. This highlights the ill-conditioning of the
optimization problem.

• Center Column: This figure depicts a gradient-based optimization algorithm trained with
a mean squared error (MSE) data loss (100 steps), under the assumption that the solution
values are known at collocation points. While these quantities are not available in our case,
this visualization is included to illustrate the differences in convergence behavior between
physics-based and MSE-based loss functions when both are accessible.

• Right Column: These plots demonstrate the behavior of our algorithm. They show the effect
of our learned optimizer and the significant improvements achieved compared to a standard
gradient descent algorithm.
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F QUALITATIVE RESULTS

This section is dedicated to visualization of the results of our model, baselines and optimizers,
presented in section 4. For each PDE considered, we chose 2 samples in the test sets and compute
the solutions with our model and the different baselines. We provide visualization samples with
L = 5 i.e. results proposed in tables 14 and 15 to detail more precisely the evolution of the solution
at several steps of optimization. 3 datasets are shown with L = 2: Heat for computational reasons
(training with L = 5 is much more expensive when the dimension of the problem increases) and the 2
additional datasets trained only with L = 2 (Advections and NLRDIC). Then, we show the evolution
of the reconstruction of the solution with our method i.e. we plot the solution at each step of the
optimization (figs. 18a, 18b, 21a, 21b, 24a, 24b, 27a, 27b, 30a, 30b, 33a, 33b, 36a and 36b) and we
compare the final prediction with baselines’ (figs. 19a, 19b, 22a, 22b, 25a, 25b, 28a, 28b, 31a, 31b,
34a, 34b, 37a and 37b). Finally, we chose 20 (6 for Heat) PDEs and we reproduce fig. 2 for every
dataset. More precisely, we optimize one PINN per PDE using Adam, we fit our basis using several
optimizers (GD, ADAM, L-BFGS and our learned optimization process) and we fine-tune the learned
PINO for 10, 000 steps and visualize the evolution of the MSE (averaged at each step on the selected
PDE). These figures show the relevance of learning the optimizer when using physics-informed losses
(figs. 20, 23, 26, 29, 32, 35 and 38).
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Figure 18: Reconstruction of the solution using our optimizer on the Helmholtz dataset.
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Figure 19: Visual comparison of the solutions for the Helmholtz equation.
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Figure 20: Test-time optimization based on the physical residual loss LPDE on Helmholtz. Note that,
even though hardly visible on this figure, the optimization is running very slowly and the PINN
MSE (orange) decreases for the last steps. This dataset will probably need even more steps before
convergence.
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Figure 21: Reconstruction of the solution using our optimizer on the Poisson dataset.
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Figure 22: Visual comparison of the solutions for the Poisson equation.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0 100 101 102 103 104

Optimization steps

10 4

10 3

10 2

10 1

100

101
M

SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 23: Test-time optimization based on the physical residual loss LPDE on Poisson.
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Figure 24: Reconstruction of the solution using our optimizer on the Reaction-Diffusion dataset.
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Figure 25: Visual comparison of the solutions for the Reaction-Diffusion equation.
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Figure 26: Test-time optimization based on the physical residual loss LPDE on NLRD.
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Figure 27: Reconstruction of the solution using our optimizer on the Darcy dataset.
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Figure 28: Visual comparison of the solutions for the Darcy equation.
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Figure 29: Test-time optimization based on the physical residual loss LPDE on Darcy.
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Figure 30: Reconstruction of the solution using our optimizer on the Heat dataset.
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Figure 31: Visual comparison of the solutions for the Heat equation.
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Figure 32: Test-time optimization based on the physical residual loss LPDE on Heat. For computational
reasons, this experiment has been conducted on 1, 000 steps only.
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Figure 33: Reconstruction of the solution using our optimizer on the Advection dataset.
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Figure 34: Visual comparison of the solutions for the Advection equation.
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Figure 35: Test-time optimization based on the physical residual loss LPDE on Advection.
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F.7 NON-LINEAR REACTION-DIFFUSION WITH INITIAL CONDITIONS
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Figure 36: Reconstruction of the solution using our optimizer on the NLRDIC dataset.
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Figure 37: Visual comparison of the solutions for the NLRD with varying IC equation.
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Figure 38: Test-time optimization based on the physical residual loss LPDE on NLRD with varying IC.
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