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Abstract

Fine-tuning language models has become increasingly popular following the pro-1

liferation of open models and improvements in cost-effective parameter efficient2

fine-tuning. However, fine-tuning can influence model properties such as safety.3

We assess how fine-tuning can impact different open models’ propensity to output4

toxic content. We assess the impacts of fine-tuning Gemma, Llama, and Phi mod-5

els on toxicity through three experiments. We compare how toxicity is reduced6

by model developers during instruction-tuning. We show that small amounts of7

parameter-efficient fine-tuning on developer-tuned models via low-rank adaptation8

on a non-adversarial dataset can significantly alter these results across models.9

Finally, we highlight the impact of this in the wild, demonstrating how toxicity10

rates of models fine-tuned by community contributors can deviate in hard-to-predict11

ways.12

1 Introduction13

Following the breakthrough of transformers there has been an acceleration in research and applications14

of large language models (LLMs) (Vaswani et al., 2017). Models such as GPT-4, Claude 3 Opus,15

and Gemini 1.5 have emerged in ‘closed source’ environments to power user-facing applications16

including ChatGPT, Claude and Gemini App (Anthropic, 2023; Gemini Team et al., 2024; OpenAI et17

al., 2024). Alongside this rise has emerged another phenomenon: increasingly competitive, often18

smaller, open generative models, whose weights have been made available for download online.19

These open models are generally less capable at a wide-range of tasks compared with closed-sourced20

competitors, but widely accessible via platforms such as Hugging Face, and sufficiently compute-21

efficient to run locally using relatively small amounts of resources (Hugging Face, 2024). Open22

models have increased access to language models to a wider audience, being built upon by developers23

to create bespoke systems (Taraghi et al., 2024). Major AI developers have embraced open model24

developments with Google (Gemma), Meta (Llama-3), and Microsoft (Phi-3) releasing prominent25

open models indicating growing investment (Bilenko, 2024; Gemma Team et al., 2024; Meta, 2024).26

Open models have the benefit of enabling local fine-tuning, or adjusting model parameters to improve27

performance on specified domains or tasks. This has risen in popularity in order to improve model28

performance on specified tasks, for example, to improve multilingual capabilities, or to tailor a chatbot29

experience. Fine-tuning can be undertaken on all parameters of a model, or on smaller subsets of a30

model, via parameter-efficient fine-tuning (PEFT) techniques such as Low-Rank Adaptation (LoRA)31

(Hu et al., 2021). PEFT techniques enable faster, cheaper fine-tuning of models, often preferable32

for developers and users of models with limited compute budgets. LoRA has been shown to deliver33

surprisingly good performance across a range of natural language processing tasks, leading to its34

widespread popularity among the open model community (Fu et al., 2022; Zeng & Lee, 2024).35

Whilst fine-tuning can improve performance in targeted domains it may also impact other model36

behaviors in unexpected ways. One such property is model safety, or the propensity or capability of a37

model to output unsafe responses to queries, including issues such as generating code for cyberattacks38
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or creating instructions for developing malicious weapons (Weidinger et al., 2021). Model developers39

often describe their efforts to ensure deployment of safe models upon release, with safety and fairness40

referenced in release documentation for each of Gemma, Llama 3, Phi-3 and (Bilenko, 2024; Meta,41

2024b; Microsoft, 2024). However, prior work has demonstrated how model safety can be impacted42

by fine-tuning, even when the data being used for fine-tuning does not include any data related to43

safety (Lermen et al., 2023; Qi et al., 2023).44

This work contributes to prior literature on analyzing the impacts of fine-tuning by demonstrating the45

brittleness of toxicity mitigations in deployed open language models. In this paper we:46

1. Measure how instruction-tuning reduces toxic language generation by models.47

2. Track how these mitigations are inadvertently reversed via parameter efficient fine-tuning48

using non adversarial datasets.49

3. Demonstrate the impact of this in the real world by showing how different community-50

created variants of models can deviate in seemingly unpredictable ways in their propensity51

to generate toxic content.52

2 Related Work53

Fine-tuning models. Since transformer models have become more widely available to developers54

there has been an increase in interest in fine-tuning models, often on sets of instructions to demonstrate55

how the model should respond to different types of queries (known as “instruction-tuning”) (Ouyang56

et al., 2022; Zhang et al., 2024). Instruction-tuning has been shown to enable relatively small open57

models to achieve improved performance over base models on specified tasks, such as factuality58

(Tian et al., 2023). However, (Y. Wang et al., 2023) demonstrate that while instruction-tuning on59

specific datasets can promote specific skills, no one dataset provides optimal performance across all60

capabilities. The authors find that fine-tuning on datasets can degrade performance on benchmarks not61

represented within instruction-tuning datasets, likely due to “forgetting”. Prior works have explored62

the problems of forgetting, with Luo et al. finding that smaller models (ranging from 1 billion to 763

billion parameters in size) are more susceptible to forgetting compared with larger models (Luo et al.,64

2024; Zhao et al., 2024). However, LoRA fine-tuning has been shown to “forget less” information65

outside of the fine-tuning target domain, compared with full fine-tuning (Biderman et al., 2024).66

These results indicate fine-tuning can have unintended impacts on model properties, however LoRA67

fine-tuning may be less susceptible to the problem of forgetting.68

Safety & fine-tuning. Fine-tuning can be used to improve the safety performance of models.69

Documentation for Phi-3, Llama-3, and Gemma all describe how post-training mitigations such as70

fine-tuning improve safety performance (Bilenko, 2024; Gemma Team et al., 2024; Meta, 2024).71

However, prior experiments have shown how fine-tuning can impact safety properties of models.72

Small numbers of adversarial examples have been demonstrated to undo safety tuning in purportedly73

aligned language models (Lermen et al., 2023; Qi et al., 2023; Yang et al., 2023; Zhan et al., 2024).74

The ability to undo safety tuning has been demonstrated on models varying from small open models75

to large proprietary models which enable fine-tuning, such as GPT-4 (Qi et al., 2023; Zhan et al.,76

2024). Adversarial fine-tuning has been demonstrated to enable Personal Identifiable Information77

(PII) leakage and facilitate poisoning of models to manipulate model behavior (Sun et al., 2024; Wan78

et al., 2023).79

Studies have shown that the impacts to safety properties are not always intentional nor require80

the expense of full-parameter fine-tuning. (He et al., 2024; Kumar et al., 2024; Qi et al., 2023)81

demonstrate that fine-tuning on benign datasets can undo safety mitigations on models including82

Llama-2-7B and GPT-3.5. More efficient forms of fine-tuning, such as low-rank adaptation (LoRA),83

have also been demonstrated to enable adjustments to safety properties of models, despite only84

engaging with a subset of model parameters (Lermen et al., 2023; Liu et al., 2024). However, these85

experiments have often been conducted at small-scale and have not considered how fine-tuning86

impacts can manifest in downstream community-tuned models deployed by users.87

Toxicity & fine-tuning. One aspect of safety which has been subject to extensive analysis is the88

issue of toxicity, sometimes referred to as hateful or harmful language (Davidson et al., 2017). Toxic89

content generation might be abusive or hateful text outputted by a language model, which can occur90

when prompted with either harmless or directly harmful content. RealToxicityPrompts is a popular91
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repository of data relating to toxicity, which has been extensively used to study model toxicity92

(Gehman et al., 2020). Indeed, work has been conducted to compare the propensity of different93

language models to output toxic content (Cecchini et al., 2024; Nadeau et al., 2024). These types94

of toxicity assessments are not only carried about by academics, but each of the Gemma, Phi-3,95

and Llama 2 technical papers report information on toxicity rates across models, demonstrating its96

importance to model developers (Gemma Team et al., 2024; Microsoft, 2024; Touvron et al., 2023).97

Despite model creators reporting on toxicity metrics to demonstrate model safety and show how98

fine-tuning can improve toxicity metrics, there has been limited attention on how fine-tuning could99

adversely impact toxicity. This is particularly important due to the increasing ease at which fine-100

tuning can be conducted, and the growing popularity of platforms such as Hugging Face. This work101

seeks to fill this gap and explore how parameter efficient fine-tuning can, inadvertently, shift toxicity102

metrics across a wide range of models and community-tuned variants.103

3 Experiments104

3.1 Design105

Model Selection. To analyze the impact of fine-tuning on toxicity we first select a small number of106

high impact base models for experimentation. For compute-efficiency, and because many community107

developers similarly lack computational resources for large models, we select small models offered by108

three major labs, Google, Meta, and Microsoft, for analysis. For each lab we select two generations109

of models (e.g. Llama-2 and Llama-3) in order to explore potential changes over time. For each110

model we sought to analyze both the foundation model and the instruction-tuned, or chat-tuned,111

variant where available. Six models in total were analyzed: Phi-3-mini, Phi-3.5-mini, Llama-2-7B,112

Llama-3.1-8B, Gemma-2B, and Gemma-2-2B.113

For each instruction-tuned model we conducted additional fine-tuning using the Dolly dataset from114

Databricks, an open-source dataset of 15k instruction-following records across topics including115

question-answering, text generation and summarization (Conover et al., 2023). The dataset does116

not intentionally contain toxic content, and is intended to fine-tune models to improve instruction-117

following capabilities. We conducted LoRA fine-tuning via the Unsloth library, and tuned each model118

using a T4 GPU via Google Colab for 1 epoch, with prior work demonstrating the number of epochs119

does not appear to materially impact safety performance (Qi et al., 2023).120

Finally, for each instruction-tuned model we selected additional community-tuned variants uploaded121

to Hugging Face which were fine-tuned from the instruction-tuned checkpoint. To select these models,122

we searched for the instruction-tuned model within the Hugging Face model library, and sorted models123

by “Most Downloaded” (monthly), to assess models which were commonly used by other users.124

Many of the most popular models were quantizations of models, which were removed from analysis.125

We selected only models which were available using the Transformers library and analyzed two126

community-tuned models for each instruction-tuned variant. We observed that frequently the most127

popular models related to fine-tuning for improving multilingual capabilities or fine-tuning for128

uncensoring, otherwise known as “abliterating” - where fine-tuning aims to reduce refusal rates. This129

enabled us to assess a range of community-tuned models which might be expected to impact toxicity130

in different ways.131

The final models selected in aggregate were downloaded over 60,000 times in the month prior to132

analysis, highlighting the popularity and relevance of community-tuned models.133

Data. To assess toxicity we compiled a dataset of 2,400 prompts. The majority of the prompts derived134

from the RealToxicityPrompts dataset (Gehman et al., 2020). 1000 prompts of the 2.4k dataset were135

randomly sampled from the RealToxicityPrompts dataset, to assess how models respond to a range of136

toxic and non-toxic input prompts (Gehman et al., 2020). An additional 1000 prompts were selected137

based on scoring >0.75 for “severe toxicity” within the RealToxicityPrompts dataset. These prompts138

aimed to assess how robust models were to specific attacks seeking to elicit toxic outputs. The final139

400 prompts consisted of four 100 prompt datasets covering prompts targeting race, age, gender, and140

religion, taken from the Compositional Evaluation Benchmark (CEB) dataset, intended to analyze141

potential disparities in performance across specific topics (S. Wang et al., 2024).142

Metric. The roberta-hate-speech-dynabench-r4 model was used to determine toxicity of model143

generations (Vidgen et al., 2020). This model is the default toxicity metric provided by the Hugging144
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Face Evaluate library, and defines toxicity, or hate, as “abusive speech targeting specific group145

characteristics, such as ethnic origin, religion, gender, or sexual orientation”. The model rates each146

output from 0 (non-toxic) to 1 (toxic) and sets a default threshold of >0.5 for determining a toxic147

output.148

Comparisons. To assess the impact of fine-tuning on toxicity we conduct three experiments:149

1. Comparing base models with instruction-tuned variants. We analyze how model creators’150

fine-tuning impacts toxicity rates.151

2. Comparing instruction-tuned variants with Dolly-tuned variants. We compare how152

toxicity is impacted when instruction tuned variants are continually fine-tuned using a non-153

adversarial dataset (Dolly), using the parameter efficient fine-tuning low rank adaptation.154

3. Comparing instruction-tuned variants with community-tuned variants. We assess155

how toxicity is impacted in popularly used community-tuned variants of instruction-tuned156

models.157

For each experiment we set temperature to 0 for all model generations, to determine the most likely158

next token. For each generation we restricted model outputs to 50 tokens. All models were accessed159

via the Hugging Face Model Hub using the Transformers library. Experiments were run using Google160

Colab using a single L4 GPU. In total, we assessed 28 models, which are listed in full in Appendix A.161

Estimation. To determine whether there is a credible difference between the propensity of models162

to output toxic content, we conduct Bayesian estimation analysis (BEST) to compare the results of163

pairs of models. We undertake this analysis using the continuous toxicity score, (yij), provided by164

the toxicity metric, ranging from 0 to 1. We assume that the scores for each model j are sampled165

from a t-distribution:166

yij ∼ t(ν, µj , σj),

where ν is the degrees of freedom, µj is the mean toxicity score for model j, and σj is the scale167

parameter for model j. We then estimate the posterior distribution of the difference between group168

means (µ1 − µ2) using Bayesian inference and Markov Chain Monte Carlo (MCMC) methods. We169

use weakly informative priors for µ and σ, with a standard normal distribution applied for µ and a170

half-cauchy prior distribution with a beta of 10 in the case of σ (Gelman, 2006).171

We select bayesian analysis rather than traditional significance tests such as a chi-squared test or z-test172

for two reasons. Firstly, the nature of conducting evaluations on generative models means it can be173

trivial to achieve statistically significant but practically small differences in model outputs. Secondly,174

various scholars have highlighted the pitfalls of converging continuous data into dichotomous data for175

the purposes of significance analysis (Dawson & Weiss, 2012; Irwin & McClelland, 2003; Royston et176

al., 2006). As a result, we concluded that bayesian analysis was the most appropriate measurement to177

determine how credible the differences between the toxicity rates for different models were.178

3.2 Results179

3.2.1 Comparison 1: Base models vs. instruction-tuned variants180

We first seek to validate how fine-tuning (or “instruction-tuning) conducted by model creators181

reduces the propensity of models to generate toxic content. As Microsoft has not open-sourced182

non-instruction-tuned versions of Phi models, this assessment focuses on Llama and Gemma models.183

For each model we report the total toxicity rate (“Total”) which represents the proportion of total184

generations which received toxicity scores of >0.5 from our toxicity metric, and then the breakdown185

across each sub-dataset.186

Table 1 demonstrates that across all four models assessed the propensity of each model to output toxic187

content dropped following instruction-tuning. Gemma models both before and after tuning were less188

likely to generate toxic content vs. Llama-2-7B and Llama-3.1-8B. Notably, the Gemma-2-2B-IT189

model saw extremely low levels of toxic content, even when probed with highly adversarial content.190

Bayesian analysis showing comparisons between the base model and instruction-tuned checkpoints191

can be seen in Figure 1. For each model we see a credible difference between model pairs, with192
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Table 1: Toxicity rates for base models compared with instruction-tuned variants.

Family Model Total Severe Random Race Gender Age Religion

Llama-2-7B Llama-2-7B-hf 9.2% 15.2% 2.2% 11.0% 7.0% 12.0% 16.0%
Llama-2-7B-chat-hf 6.3% 7.8% 2.8% 12.0% 15.0% 9.0% 8.0%

Llama-3.1-8B Llama-3.1-8B 7.8% 14.0% 2.1% 9.0% 9.0% 4.0% 4.0%
Llama-3.1-8B-Instruct 4.1% 7.2% 1.0% 3.0% 4.0% 1.0% 9.0%

Gemma-2B Gemma-2B 5.0% 8.7% 1.3% 5.0% 4.0% 5.0% 5.0%
Gemma-2B-IT 1.1% 1.5% 0.5% 1.0% 1.0% 1.0% 3.0%

Gemma-2-2B Gemma-2-2B 6.6% 10.4% 1.5% 12.0% 9.0% 7.0% 11.0%
Gemma-2-2B-IT 0.6% 1.1% 0.2% 1.0% 0.0% 0.0% 1.0%

the positive direction signifying that the instruction-tuning led to credibly fewer toxic outputs. This193

conclusion aligns with model creator’s claims that active efforts are made to reduce toxicity (Gemma194

Team et al., 2024; Touvron et al., 2023).195

Figure 1: Bayesian analysis comparing base models with their respective instruction-tuned variants.
Gemma-2-2B signifies a comparison between Gemma-2-2B and Gemma-2-2B-IT.
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3.3 Comparison 2: Instruction-tuned vs. Dolly-tuned variants196

To determine the impact of additional fine-tuning on models, we subsequently conducted additional197

LoRA fine-tuning for each instruction-tuned model under analysis, using the Dolly dataset.198

Table 2 shows the impact of fine-tuning using the Dolly dataset. For each model family, except the199

Llama-2-7B models, total toxic outputs increase by at least 2.5 percentage points. This is particularly200

prominent within the “Severe” dataset, with Gemma models seeing the largest change. Gemma-2B-IT201

sees a 13.1 percentage point increase in toxic outputs on this dataset when fine-tuned with the Dolly202

dataset. This is particularly notable considering the Dolly dataset does not intentionally contain toxic203

content, meaning this substantial jump is apparently inadvertent. The Llama-2-7B-chat model sees204

the smallest deviations following Dolly-tuning (with toxicity decreasing by 0.1 percentage points),205

whilst starting from the highest baseline amongst the instruction-tuned models.206

Bayesian analysis for each of the comparisons can be seen in Figure 2, where each bar chart denotes207

comparison between the instruction-tuned checkpoint and the dolly-tuned checkpoint. For each208

model except the Llama-2-7B experiment, we see a credible difference between model pairs, with the209

negative direction signifying that the Dolly-tuning led to more toxic outputs. For Llama-2-7B we see210

a negligible difference with the error bar crossing zero, and therefore we cannot conclude that there is211

a credible difference between toxicity rates for the instruction-tuned and Dolly-tuned models.212
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Table 2: Toxic generations for instruction-tuned vs. Dolly-tuned variants

Family Model Total Severe Random Race Gender Age Religion

Llama-2-7B Llama-2-7B-chat-hf 6.3% 7.8% 2.8% 12% 15% 9% 8%
Llama-2-7B-chat-Dolly 5.8% 8% 2.5% 9% 12% 5% 9%

Llama-3.1-8B Llama-3.1-8B-Instruct 4.1% 7.2% 1% 3% 4% 1% 9%
Llama-3.1-8B-IT-Dolly 7.3% 11.9% 2.8% 6% 10% 5% 6%

Gemma-2B Gemma-2B-IT 1.1% 1.5% 0.5% 1% 1% 1% 3%
Gemma-2B-IT-Dolly 8.8% 14.6% 3.7% 8% 6% 5% 9%

Gemma-2-2B Gemma-2-2B-IT 0.6% 1.1% 0.2% 1% 0% 0% 1%
Gemma-2-2B-IT-Dolly 6.0% 10% 1.4% 10% 6% 4% 10%

Phi-3 Phi-3-mini-4k-instruct 3.5% 6.3% 0.8% 1% 5% 2% 5%
Phi-3-mini-4k-IT-Dolly 6.6% 10.5% 1.5% 9% 15% 4% 11%

Phi-3.5 Phi-3.5-mini-instruct 3.9% 6.8% 1.2% 1% 5% 3% 5%
Phi-3.5-mini-IT-Dolly 6.4% 11.1% 1.4% 8% 8% 6% 7%

Gemma-2-2B Gemma-2B Llama 3.1-8B Llama-2-7B Phi-3-mini Phi-3.5-mini
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Figure 2: Bayesian analysis comparing instruction-tuned models with dolly-tuned variants. Gemma-2-2B
signifies a comparison between Gemma-2-2B-IT and Gemma-2-2B-IT-Dolly.

3.4 Comparison 3: Instruction-tuned vs. community-tuned variants213

The final experiment conducted assessed whether this phenomenon could be seen in models fine-214

tuned by community developers on Hugging Face. We select models which have been additionally215

fine-tuned from instruction-tuned models, and compare results to the instruction-tuned model. Within216

this experiment we do not have complete visibility of the specific techniques used to fine-tune or the217

precise datasets which they were fine-tuned on.218

Table 3 shows how toxicity rates vary amongst community-tuned models. Notably, the toxicity219

changes observed were not necessarily intuitive. For example, the uncensored variant of Llama-2-7B220

saw unsurprisingly high rates of toxicity (10%), but a similarly intentioned model for Gemma-2-2B221

(gemma-2-2b-it-abliterated) did not see comparably high toxicity rates (0.8%). This could be due to222

different datasets being used to uncensor (or “abliterate”) models, however this is not clear based on223

the model documentation available.224

This experiment also included multiple models focused on multilingual generation, with fine-tuning225

data deriving from non-English languages. Figure 3 shows the bayesian analysis conducted for the226

overall toxicity rates for the Llama-3.1-8B variants, comparing the Chinese-Chat and SauerkrautLM-227

8b-Instruct (tuned to improve German capabilities) models with the instruction-tuned variant. In228

Figure 3 we see directionally different patterns between the comparisons, but as the error bars for229

each analysis intersect with 0 we cannot conclude that there is a credible difference between the230

overall toxicity rates between the two models.231
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Table 3: Instruction-tuned vs. popular community-tuned variants.
Family Model Total Severe Random Race Gender Age Religion

Llama-2-7B Llama-2-7B-chat-hf 6.3% 7.8% 2.8% 12.0% 15.0% 9.0% 8.0%
chat_uncensored 10.0% 15.9% 4.0% 10.0% 8.0% 7.0% 15.0%
chat-hf-guanaco 6.0% 10.5% 2.6% 3.0% 3.0% 2.0% 5.0%

Llama-3.1-8B Llama-3.1-8B-Instruct 4.1% 7.2% 1.0% 3.0% 4.0% 1.0% 9.0%
SauerkrautLM-8b-Instruct 4.0% 5.7% 1.8% 7.0% 4.0% 5.0% 5.0%
Chinese-Chat 5.5% 10.2% 1.6% 3.0% 2.0% 2.0% 8.0%

Gemma-2B Gemma-2B-IT 1.1% 1.5% 0.5% 1.0% 1.0% 1.0% 3.0%
customer-support 2.4% 3.7% 0.9% 3.0% 7.0% 0.0% 2.0%
SFT-D1_chosen-orca 6.7% 11.5% 1.9% 7.0% 5.0% 5.0% 9.0%

Gemma-2-2B Gemma-2-2B-IT 0.6% 1.1% 0.2% 1.0% 0.0% 0.0% 1.0%
abliterated 0.8% 1.2% 0.1% 1.0% 0.0% 0.0% 4.0%
EZO-Common-T2 0.4% 0.7% 0.1% 0.0% 1.0% 0.0% 0.0%

Phi-3 Phi-3-mini-4k-instruct 3.5% 6.3% 0.8% 1.0% 5.0% 2.0% 5.0%
Moxoff-Phi3Mini-ORPO 10.0% 17.9% 2.5% 13.0% 8.0% 5.0% 11.0%
alpaca-style 3.9% 6.5% 0.7% 10.0% 6.0% 1.0% 4.0%

Phi-3.5 Phi-3.5-mini-instruct 3.9% 6.8% 1.2% 1.0% 5.0% 3.0% 5.0%
Phi-3.5-mini-ITA 4.8% 8.1% 1.0% 4.0% 7.0% 5.0% 7.0%
Borea-Jp 3.6% 6.1% 0.9% 1.0% 4.0% 6.0% 5.0%
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Figure 3: Bayesian analysis comparing total
toxicity for two community-variants of

Llama-3.1-8B-Instruct, Chinese-Chat and
Sauerkraut-LM, with the instruction-tuned model
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Figure 4: Bayesian analysis comparing toxicity
rates from the severe toxicity dataset for two

community-variants of Llama-3.1-8B-Instruct,
Chinese-Chat and Sauerkraut-LM, with the

instruction-tuned model.

Figure 4 provides a different perspective, comparing the “severe toxicity” subset of data for the232

same models, where we see higher absolute differences between each variant. In this case, we see233

credible differences between both the Chinese-Chat and SauerkrautLM models compared with the234

Llama-3.1-8B-Instruct model. However, we see directional differences, with the German-focused235

fine-tuning from SauerkrautLM leading to fewer toxic outputs, whereas the Chinese-Chat model saw236

a greater number of toxic outputs.237

These results underline how fine-tuning can impact the propensity of models to output toxic content,238

however this is not easily predictable, especially for users of models who do not have full information239

about fine-tuning parameters and data.240

4 Discussion241

This work explored how fine-tuning can impact the propensity of models to output toxic content242

in prominent open language models. It demonstrated that AI labs fine-tuning base models lead243

to reductions in toxicity, suggesting labs are seeking to reduce toxic content, in line with their244

commitments to safety. We show that, despite this, these mitigations can easily and, crucially,245

inadvertently, be undone. This can be achieved by conducting a simple parameter efficient fine-tuning246

on non-toxic data, using Google Colab and a T4 GPU, and does not require an adversarial dataset247

designed to induce toxicity. The downstream impact of this can be seen in the results from the248
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community-tuned experiments, where fine-tuning which may intend to improve a specific capability249

such as a language, can lead to difficult to predict deviations in toxicity rates.250

As a result, users of fine-tuned models, and developers undertaking fine-tuning themselves, should not251

assume that prior toxicity performance will be reflected following tuning, even if a dataset does not252

contain harmful content. Instead, this work demonstrates the importance of establishing a culture of253

evaluation both before and after fine-tuning for pertinent safety issues. None of the community-tuned254

models assessed in this work disclosed safety evaluation data within the Hugging Face documentation255

for their work, meaning a user would not know how a model might respond to toxic or otherwise256

adversarial content. This suggests community developers could consider improving safety evaluation257

and documentation practices for fine-tuned models. Where evaluation results are not made available,258

users of fine-tuned models should conduct their own safety evaluations before use.259

5 Limitations and Future Work260

This work focused on popular models for fine-tuning within the open-source community, all of which261

are relatively small compared to state-of-the-art models. It would be valuable to further compare262

the impact across different sized models to identify possible variations. Similarly, we focused on263

LoRA-based fine-tuning, because of the popularity and effectiveness of this technique. However,264

further work could explore more fine-grained configurations and the impact of different fine-tuning265

techniques.266

With this phenomenon identified, and the impact of it demonstrated for the community, future work267

could focus on exploring the reasons for such safety changes in the model. This could be due to268

model forgetting, with the safety fine-tuning conducted by model creators being “forgotten” by the269

model with additional fine-tuning (Luo et al., 2024). If this were the case, future experiments might270

find that after fine-tuning on benign data models converge towards the underlying pre-training toxicity271

rate of the base model. Alternatively, the movements in toxicity could be motivated only by the model272

learning from the new data, being shifted by semantic patterns within the fine-tuning data. If this273

were the case, future experiments might find that continual fine-tuning leads to all models converging274

on a similar toxicity rate when fine-tuned on the same dataset. Additional experiments could further275

explore whether different types of fine-tuning, beyond LoRA do have different impacts on toxicity,276

and could further assess whether impacts vary across different sub-topics (e.g. race, religion, etc.),277

with larger datasets. Finally, an additional avenue that requires exploration is the impact of fine-tuning278

on broader responsibility issues, such as fairness and representation properties of models.279

6 Conclusion280

Fine-tuning models via repositories such as the Hugging Face Model Hub has become increasingly281

popular thanks to increasingly capable open models. This work has shown how fine-tuning can282

impact toxicity rates in hard-to-predict ways, across models from different AI labs. Model creators’283

efforts to reduce toxicity during the instruction-tuning process can easily and inadvertently be undone284

when models are further fine-tuned on non-adversarial datasets. This phenomenon can be seen in285

practice in popular models fine-tuned by community contributors, where models fine-tuned for issues286

like multilingual capabilities can see surprisingly variable toxicity rates. These results emphasize the287

need for model creators, community contributors, model users, and policy-makers to pay attention to288

the toxicity performance of fine-tuned models, even when fine-tuning does not target toxicity.289
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A Models assessed402

Monthly downloads are taken as of 23 September 2024. Models fine-tuned for the purposes of this paper are not403

provided download statistics.404

Family Model Total Toxic Downloads/m

Llama-2-7b meta-llama/Llama-2-7b-hf 9.3% 881,362
Llama-2-7b meta-llama/Llama-2-7b-chat-hf 6.3% 627,494
Llama-2-7b mlkro/llama-2-7b-chat-bnb-4bit-dolly-toxicity-study 5.8% N/A
Llama-2-7b The Travelling Engineer/llama2-7b-chat-hf-guanaco 6.0% 640
Llama-2-7b georgesung/llama2 7b chat uncensored 10.0% 1,257

Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B 7.8% 503,576
Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B-Instruct 4.1% 3,870,859
Llama-3.1-8B mlkro/Meta-Llama-3.1-8B-Instruct-bnb-4bit-toxicity-study 7.3% N/A
Llama-3.1-8B shenzhi-wang/Llama3.1-8B-Chinese-Chat 5.5% 41,263
Llama-3.1-8B VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct 4.0% 8,293

Phi-3-mini microsoft/Phi-3-mini-4k-instruct 3.5% 2,444,627
Phi-3-mini mlkro/Phi-3-mini-4k-instruct-bnb-4bit-dolly-toxicity-study 6.6% N/A
Phi-3-mini MoxoffSpA/Moxoff-Phi3Mini-ORPO 10% 3,082
Phi-3-mini Essacheez/Phi-3-mini-4k-instruct-finetune-classification-10k-alpaca-style 3.9% 16

Phi-3.5-mini-instruct microsoft/Phi-3.5-mini-instruct 3.9% 360,398
Phi-3.5-mini-instruct mlkro/Phi-3.5-mini-instruct-dolly-toxicity-study 6.4% N/A
Phi-3.5-mini-instruct anakin87/Phi-3.5-mini-ITA 4.8% 5,629
Phi-3.5-mini-instruct AXCXEPT/Borea-Phi-3.5-mini-Instruct-Jp 3.8% 424

gemma-2b google/gemma-2b 5.0% 404,007
gemma-2b google/gemma-2b-it 1.1% 119,039
gemma-2b mlkro/gemma-2b-it-bnb-4bit-dolly-toxicity-study 8.8% N/A
gemma-2b SongTonyLi/gemma-2b-it-SFT-D1 chosen-orca 6.7% 276
gemma-2b rootsec1/gemma-2B-it-customer-support 2.4% 64

gemma-2-2b google/gemma-2-2b 6.6% 330,898
gemma-2-2b google/gemma-2-2b-it 0.6% 364,325
gemma-2-2b mlkro/gemma-2-2b-it-bnb-4bit-dolly-toxicity-study 6.0% N/A
gemma-2-2b IlyaGusev/gemma-2-2b-it-abliterated 0.8% 1,187
gemma-2-2b AXCXEPT/EZO-Common-T2-2B-gemma-2-it 0.4% 1,813

405

B Data & Code406

The code used to conduct toxicity evaluations and fine-tune the models in this paper can be found at <code to be407

added following de-anonymization>.408

The data used to fine-tune models was created by Databricks and can be accessed via Hugging Face at:409

https://huggingface.co/datasets/databricks/databricks-dolly-15k410
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NeurIPS Paper Checklist411

1. Claims412

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s413

contributions and scope?414

Answer: [Yes]415

Justification: We claim that toxicity rates of open language models can be influenced by fine-tuning,416

and show this via three experiments which demonstrate different impacts.417

Guidelines:418

• The answer NA means that the abstract and introduction do not include the claims made in the419

paper.420

• The abstract and/or introduction should clearly state the claims made, including the contributions421

made in the paper and important assumptions and limitations. A No or NA answer to this422

question will not be perceived well by the reviewers.423

• The claims made should match theoretical and experimental results, and reflect how much the424

results can be expected to generalize to other settings.425

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not426

attained by the paper.427

2. Limitations428

Question: Does the paper discuss the limitations of the work performed by the authors?429

Answer: [Yes]430

Justification: See section "Limitations and Future Work" which describes the limitations of the project.431

3. Theory Assumptions and Proofs432

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete433

(and correct) proof?434

Answer: [NA]435

Justification: No theoretical results provided.436

4. Experimental Result Reproducibility437

Question: Does the paper fully disclose all the information needed to reproduce the main experimental438

results of the paper to the extent that it affects the main claims and/or conclusions of the paper439

(regardless of whether the code and data are provided or not)?440

Answer: [Yes]441

Justification: Description of experiments is provided in the "Experimental Set-Up" section, and code442

shared via GitHub repository.443

5. Open access to data and code444

Question: Does the paper provide open access to the data and code, with sufficient instructions to445

faithfully reproduce the main experimental results, as described in supplemental material?446

Answer: [Yes]447

Justification: Code is stored at https://github.com/WillHawkins3/finetuningtoxicity448

6. Experimental Setting/Details449

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,450

how they were chosen, type of optimizer, etc.) necessary to understand the results?451

Answer: [Yes]452

Justification: Information about fine-tuning parameters and evaluation information provided in "Exper-453

imental Set-Up" section.454

7. Experiment Statistical Significance455

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-456

tion about the statistical significance of the experiments?457

Answer: [Yes]458

Justification: We report Bayesian Estimation rather than conducting statistical significance tests, and459

provide a justification for this within the "Experimental Set-Up" section.460

8. Experiments Compute Resources461
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Question: For each experiment, does the paper provide sufficient information on the computer462

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?463

Answer: [Yes]464

Justification: We provide information about compute resources used for experiments with "Experimen-465

tal Set-Up" section.466

9. Code Of Ethics467

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code468

of Ethics https://neurips.cc/public/EthicsGuidelines?469

Answer: [Yes]470

Justification: This work does involve human subjects or participants, and complies with data require-471

ments. We hope that this work will have a positive societal impact through a stronger understanding of472

the impacts of fine-tuning on model safety.473

10. Broader Impacts474

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts475

of the work performed?476

Answer: [Yes]477

Justification: We discuss the impact of our findings on the open-model community, discussing how478

users should not rely on toxicity results for non-fine-tuned models when determining performance of a479

fine-tuned variant.480

11. Safeguards481

Question: Does the paper describe safeguards that have been put in place for responsible release of482

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or483

scraped datasets)?484

Answer: [NA] .485

Justification: We do not believe such risks exist for this paper.486

12. Licenses for existing assets487

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,488

properly credited and are the license and terms of use explicitly mentioned and properly respected?489

Answer: [Yes]490

Justification: Data sources and models are cited throughougt the paper.491

13. New Assets492

Question: Are new assets introduced in the paper well documented and is the documentation provided493

alongside the assets?494

Answer: [NA] .495

Justification: No new assets released.496

14. Crowdsourcing and Research with Human Subjects497

Question: For crowdsourcing experiments and research with human subjects, does the paper include498

the full text of instructions given to participants and screenshots, if applicable, as well as details about499

compensation (if any)?500

Answer: [NA] .501

Justification: Paper does not involve crowdsourcing nor research with human subjects.502

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects503

Question: Does the paper describe potential risks incurred by study participants, whether such504

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an505

equivalent approval/review based on the requirements of your country or institution) were obtained?506

Answer: [NA] .507

Justification: Paper does not involve crowdsourcing nor research with human subjects.508
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