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ABSTRACT

In-context learning, which allows large language models to perform diverse tasks
with a few demonstrations, is found to have imbalanced per-class prediction accu-
racy on multi-class text classification. Although notable output correction meth-
ods have been developed to tackle the issue and simultaneously improve down-
stream prediction accuracy, they may fail to answer the core interpretability chal-
lenges: why and which certain classes need corrections, and more importantly, a
tailored correction for per-sample, per-class’s probability. To address such inter-
pretability gaps, we first find that the imbalance arises from certain classes consis-
tently receiving high ICL output probabilities, whereas others receiving lower or
mixed ranges, so the former is more frequently chosen, resulting in higher accu-
racy; more crucially, we find that these ranges have significantly varying degrees
of influence on the accuracy bias, highlighting the need for precise, interpretable
probability corrections by range. Motivated by this, we propose FuRud, a Fuzzy
Rule Optimization based Debiasing method, that (1) detects which classes need
corrections, and (2) for each correction-needed class, detects its probability ranges
and applies asymmetric amplifications or reductions to correct them interpretably.
Notably, across seven benchmark datasets, FuRud reduces the pairwise class ac-
curacy bias (COBias) by more than half (56%), while achieving a relative increase
of 21% in accuracy, outperforming state-of-the-art debiasing methods. Moreover,
FuRud can optimize a downstream task in a few-shot manner, with as few as 10
optimization examples. Furthermore, FuRud can work for prompt formats that
lead to highly skewed predictions. For example, FuRud greatly improves ICL
outputs which use letter options, with 44% relative accuracy increase and 54%
relative COBias reduction.

1 INTRODUCTION

The classification outputs by in-context learning (ICL) are described as biased when they exhibit
imbalanced per-class prediction accuracy. Addressing such imbalances while improving overall
accuracy is seen as a category of debiasing. Concretely, the skewness in the output space can be al-
leviated by targeted corrections on output logits or probabilities, with or without explicitly modeling
the per-class accuracy differences, i.e., COBias (Lin & You, 2024). However, while effective, prior
methods could lack straightforward explanations on why and which certain classes need corrections.
What’s more challenging is to have a tailored per-sample, per-class correction.

A direct cause of COBias is that ICL tends to assign specific ranges of output probabilities to each
class. When some classes always receive high probabilities for any input example, others may
have lower or mixed probability ranges. The consequence is that latter classes are less frequently
predicted than the former, resulting in consistently lower accuracies and calling for probability cor-
rections. In addition, among all examples of a class A, the subset of examples whose in-context
learned probability of answer A is relatively low often receive a lower test accuracy, compared to
the subset whose class A probability is higher, suggesting that different probability ranges within a
class need different corrections.

Taking these overlooked aspects into account, a correction should be tailored for each class and
for each sample. To achieve this, a helpful correction should be able to asymmetrically amplify
or reduce different ranges of a class’s probabilities. In this paper, we address the pressing need for
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enhanced understandings in how biased ICL predictions happen, and propose two research questions
about a main concern, yet a potential direction, in interpretable ICL output corrections.

RQ1: What is the interpretability challenge in correcting in-context learned representations?
Given an N -class classification dataset, let us denote its m-th example’s input prompt and label as
(xm, ym), where xm consists of a task instruction, few-shot demonstrative examples, and the input
example’s question. The LLM in-context learns the class probabilities pm = (pm1, . . . , pmN ) (nor-
malized over the N classes), and the prediction ŷm is argmaxi pmi. The probabilities pm may need
corrections given the debiasing objective of reducing COBias. Therefore, our task is to correct cer-
tain dimensions of pm towards reducing COBias and improving overall accuracy. The interpretabil-
ity challenges raised in this process can be specified as (1), detecting which classes need corrections,
and (2), for each correction-needed class, applying range-specific amplifications/reductions.

RQ2: How can we improve interpretability with fuzzy rules? We leverage membership functions
from the field of fuzzy rule based systems for debiasing. For backgrounds, a membership function
is a curve that defines a mapping from a crisp input value to a fuzzy value between 0 and 1 (Zadeh,
1965). Based on this, given class probabilities as input attributes, membership functions transform
the probabilities to fuzzy values, which could be viewed as corrected probabilities under certain
debiasing optimization objectives.

The key intuition here is that a membership function can asymmetrically amplify or reduce different
ranges of inputs. Therefore, a fuzzy rule based debiaser for class probability pmi can be written as
fAi

(pmi), where Ai is a fuzzy set for class i, and its membership function fAi
maps the probability

to a corrected p′mi := fAi
(pmi). Then p′

m consists of corrected per-class probabilities.

Alternatively, the debiaser can be viewed as a single rule:

If class 1 is A1 and ... and class N is AN︸ ︷︷ ︸
Antecedent

then predict argmaxj fAj
(pmj)︸ ︷︷ ︸

Consequent

(1)

Our goal is to optimize the rule, i.e., select fuzzy sets/membership functions for every class in the
antecedent, towards mitigating COBias and improving overall prediction accuracy. Specially, we
include a Don’t Change membership function that will keep a class unchanged, suggesting that
the LLM in-context learns an accurate probability for the class. When a correction is needed, the
membership function detects the probability range that a class’s probability belongs to, and updates
it with the returned function value. The problem becomes jointly selecting a set of membership
functions for each class towards improving multi-objectives based on COBias and accuracy.

To this end, we propose a Fuzzy Rule Optimization based Debiasing method, FuRud, which demon-
strate via extensive experiments (Section 4) and discussions (Section 5) that it achieves good im-
provements over accuracy and COBias while providing sample-level interpretability.

In a nutshell, FuRud uses an optimization set of samples for membership function selection. The
optimization set’s questions are prompted in 1-shot manner, and probabilities are measured across
answer classes for each question. These probabilities and ground-truth answers across all questions
are aggregated in the multi-objective model, to jointly learn an optimal membership function for
each class. At inference, a test example’s class probabilities are obtained similarly. Then we apply
the learned membership functions to perform tailored corrections at each class’s probability in the
given test sample. An overview of FuRud is shown in Figure 1, illustrating desired corrections and
performance improvements.

To highlight, the membership functions learned by FuRud enable sample-level interpretability. Fu-
Rud enables us to know whether the LLM in-context learns an accurate probability for a class within
a given sample. This is achieved by learning a correction function (membership function) for each
class, towards the multi-objectives of reducing COBias and enhancing accuracy. If the Don’t Change
function is learned for a class, it means the LLM in-context learns an accurate probability for the
class; otherwise, a tailored correction is performed by the membership function. The source code
will be released upon paper publication. In summary, our messages are:

• We propose an interpretable fuzzy rule optimization based debiasing method (FuRud), to
account for both inter-class surface biases and intra-class range-wise influences.
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• We formulate a multi-objective programming model to jointly optimize a set of triangu-
lar membership functions for each class. The functions are human-readable, which can
asymmetrically correct probabilities of different ranges that are misrepresented.

• Across seven benchmarks, FuRud demonstrates its effectiveness for improved overall accu-
racy, reduced per-class accuracy imbalance, and enhanced interpretability. For example, it
improves ICL accuracy by a relative increase of 21% and reduces COBias by a relative de-
crease of 56%; it achieves higher accuracy (avg. accuracy reaching 72.0%) and competitive
COBias (avg. COBias dropping to 17.8%) over state-of-the-art debiasing methods.

Figure 1: An overview of how FuRud optimizes and transforms each class of a dataset with inter-
pretability; the input to FuRud model is the N -dimensional probability vectors of the optimization
set of a dataset, and the output is membership functions selected for each class; the selected func-
tions are directly plugged in to test examples at inference. This is for illustration purposes only,
actual range changes and improvements vary across datasets.

2 RELATED WORK

Language Model Bias Mitigation. At the heart of debiasing is detecting biased patterns that arise
in a large language model (LLM)’s outputs. Prior work has found various prediction biases in ICL,
and address the biased patterns by methods of contextual prompt engineering and output adjustment
(Brown et al., 2020; Schick et al., 2021; Zhao et al., 2021). Particularly, on classification tasks, re-
searchers have found that LLMs’ outputs are sensitive to ICL formatting, such as prompt templates,
demonstrations, and verbalizers (Min et al., 2022; Holtzman et al., 2021; Schick & Schütze, 2021);
besides, LLMs tend to output common tokens in the pre-training data (Zhao et al., 2021). These bias
factors lead to majority label bias (Zhao et al., 2021), COBias (pairwise class accuracy differences)
(Lin & You, 2024), etc, causing imbalanced per-class accuracies, and researchers address these bi-
ases by making output distribution calibrations (Zhao et al., 2021; Fei et al., 2023; Zhou et al., 2024),
or by class probability re-weighting (Lin & You, 2024). For example, Zhao et al. (2021) calibrate
the output distribution with content-free/dummy test prompts. Zhou et al. (2024) calibrate the output
distribution in a test-time manner, estimating a contextual correction term of each class on a batch of
test examples; the proposed Batch Calibration (BC) method outperforms previous calibration meth-
ods (Zhao et al., 2021; Fei et al., 2023) on a range of text classification tasks. Lin & You (2024)
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re-weights output probabilities by a set of class-specific weight coefficients; the proposed Debiasing
as Nonlinear Integer Programming method (DNIP) achieves much lower COBias with higher accu-
racy than the ICL baseline. Though these debiasing methods effectively adjust ICL outputs, they
do not emphasize interpretable bias handling. For example, a calibration method may not explicitly
explain why a class needs corrections, or users may not fathom how a re-weighting method performs
the exact corrections a class need.

Fuzzy Rule Techniques for Interpretable Machine Learning. Interpretable machine learning
often needs a human-readable subset of features to generate the target (Jethani et al., 2021; Carvalho
et al., 2019). Fuzzy rules are intrinsically interpretable and are widely studied for interpretable
machine learning (Vernon et al., 2024; Vilone & Longo, 2020; Ishibuchi & Nojima, 2007). In
classical fuzzy rule classification systems, input attributes are assigned to fuzzy sets to generate
rules for pattern classification (Ishibuchi et al., 1999; 2005; Nojima & Ishibuchi, 2016; Rudziński,
2016; Gorzałczany & Rudziński, 2017). A fuzzy classification system thus contains multiple human-
readable rules, which can be as simple as “1. If attribute Bare Nuclei is Small then consequent class
Benign.2....3. If attribute Uniformity of Cell Size is not Small then consequent class Malignant.”
(Gorzałczany & Rudziński, 2017). Here, Small and not Small are fuzzy sets, with corresponding
membership functions. Membership functions provide the core interpretability of the fuzzy systems.
In this work, we extend fuzzy membership functions to help with debiasing.

3 FURUD: FUZZY RULE OPTIMIZATION BASED DEBIASING

The core idea is to handle the imbalanced per-class accuracy issue with fuzzy membership functions.
In the fuzzy rule setting, for N classes, each class selects a fuzzy set Ai, or equivalently, a mem-
bership function fAi

, from a family of K fixed fuzzy sets. We let F = {f1, ..., fk, ..., fK} denote
the family of membership functions. The membership function selection problem can be solved
using combinatorial optimization. To this end, we introduce FuRud, a Fuzzy Rule Optimization
Based debiasing method. The FuRud optimization is performed on a set of labeled examples, and
the selected membership functions are directly applied to transform test-time class probabilities.

Figure 2: The family of membership functions.

Membership Functions. We first introduce the
triangular membership functions to select from.
Triangular membership functions are popular
for fuzzy rule-based classification (Ishibuchi
et al., 2005). The main benefits of triangu-
lar functions are: the speed of changes is eas-
ily controlled by the slope, and the linearity
is computationally efficient and easy to under-
stand. Since we do not know an appropriate
fuzzy partition for each class in downstream
datasets, we simultaneously employ four fuzzy
partitions, resulting in membership functions of
different granularities.

Figure 2 shows 19 triangular membership func-
tions of four fuzzy partitions, including the
Don’t Change membership function - the iden-
tity function (slope=1). Other than Don’t
Change, each membership function represents

a sharp or smooth transformation of the input variable. Details of the functions are discussed in
Appendix A. The general form of a triangular membership function fk(·) can be written as:

fk(pmi; ak, bk, ck) =



0, if pmi ≤ ak
pmi − ak
bk − ak

, ak ≤ pmi ≤ bk

ck − pmi

ck − bk
, bk ≤ pmi ≤ ck

0, otherwise

(2)
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where ak, bk, ck are the left endpoint, the input value where the peak is reached, and the right
endpoint of fk. For example, for f11, the ak, bk, ck values are 0.125, 0.25, 0.375 respectively.

Then, we compute the updated probability p′mi by:

p′mi =


pmi, if

∑N
i=1 p

′
mi = 0∑

k

fk(pmi)1(κi = k), otherwise (3)

where κi is the integer selection variable for class i. 1(·) evaluates to 1 if the condition inside is
satisfied, otherwise 0. Furthermore, in case p′mi = 0 for all classes, we reset each to be its original
probability in pm. Therefore, ŷm = argmaxi p

′
mi.

Multi-Objective Programming and Energy Function. Let κ = (κ1, . . . , κN ) be the integer selec-
tion variables for classes 1, ..., N , where κi is chosen from the given set of membership functions,
and κi = k means fk is chosen. Our goal is to learn κ that improve ICL classifications under two
main evaluation metrics, accuracy and COBias (Lin & You, 2024). To this end, we adopt multi-
objective programming for simultaneous better accuracy and lower COBias.

The first objective is to improve overall accuracy:

maxZAcc =
1

|SOpt|
∑

m∈SOpt 1{ŷm = ym} (4)

where SOpt is the indices of examples used for optimization.

Furthermore, we balance the class accuracy difference by explicitly modeling COBias, which ac-
counts for an overall difference between pairwise per-class accuracies. Minimizing COBias helps
address low-accuracy classes from ICL outputs. Therefore, the second objective is:

minZCOBias =
1

NC2

∑N−1

i=1

N∑
j=i+1

∣∣Acci − Accj
∣∣ (5)

where NC2 = N(N − 1)/2, Acci is the accuracy score for optimization examples in class i.

To further handle extreme cases of low class accuracies, we penalize classes that fail to reach an
accuracy threshold, and minimize the loss between the threshold and per-class accuracy (cut off at
0). The third objective is:

minZExtreme =
∑N

i=1
max{0, λ− Acci} (6)

where λ is a fixed threshold value.

The above objective functions are a mix of minimization and maximization, and the resulted multi-
objective programming model requires integer variables. Each of them alone corresponds to an
integer programming problem, which is NP-complete (Garey & Johnson, 1979). Classic solutions
for integer programming use operational research techniques, such as Branch-and-Bound, often used
for linear integer programming problems. It could be difficult for such methods to handle nonlinear
integer programming models which contain non-differentiable functions. Consequently, a series of
metaheuristic algorithms have emerged, such as Simulated Annealing (SA), and each metaheuristic
has their own strengths and limitations. We use one of the metaheuristics, SA, to tackle the proposed
mathematical model. The SA implementation follows (Lin & You, 2024). Since it is difficult to
solve each one as an individual optimization problem and force an optimal solution, our strategy is
instead to compute a weighted sum of 1−ZAcc, ZCOBias, ZExtreme as a single energy function E to be
optimized using SA. Hence, the multi-objectives are combined into a total minimization objective:

min
κ

E(κ;λ,p′) (7)

where E(κ;λ,p′) = ω +
∑

h∈SObj γhZh, SObj is the names of the penalty functions correspond-
ing to the individual objectives, and ω, γhs are penalty parameters. Therefore, the SA algorithm
optimizes on E to obtain an optimal set of membership functions.

In summary, the class corrections aim at reducing COBias and improving accuracy. Each equation
from 4 to 6 exactly targets one of these two goals. In detail, Eq. 4 targets maximizing overall
accuracy, Eq. 6 targets minimizing COBias, and Eq. 6 targets maximizing per-class accuracy, which
enforces it to meet a threshold; Eq. 7 combines the three objectives as a multi-objective function.
Details on how Eq. 7 is optimized are described in experimental setups (Section 4.1).
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Evaluation Tasks and Evaluation Metrics. The proposed method is evaluated on a diverse range of
text classification datasets, including AGNews (Zhang et al., 2015), a 4-class news topic classifica-
tion; DBpedia (Auer et al., 2007), a 14-class ontology classification dataset derived from Wikipedia;
SST-5 (Socher et al., 2013), a 5-class sentiment classification dataset; TREC (Voorhees & Tice,
2000; Li & Roth, 2002), a 6-class question classification dataset; RTE (Dagan et al., 2006), a bi-
nary entailment recognition dataset; and two biomedical domain-specific datasets, including DDI
(Segura-Bedmar et al., 2013), a 5-class drug-drug interaction relation extraction dataset; PubMedQA
(Jin et al., 2019), a 3-class biomedical question answering dataset. Each evaluation dataset is split
into optimization/development/test sets. We follow (Lin & You, 2024) to preprocess the datasets.
Evaluation metrics are accuracy and COBias.

FuRud Setups. The 19 triangular membership functions in Figure 2 form the base of selections for
FuRud. To obtain the per-class probabilities from ICL, we prompt Llama-2-13B (13B parameters)
in 1-shot manner. The output softmax probabilities normalized over all classes are used as attributes.
The energy function we used in the experiments is a special form of Equation 7 with ω = 1, γAcc =
−1, γCOBias = α, γExtreme = β. In other words, the final multi-objective optimization function is
minκZ = 1 − ZAcc + αZCOBias + βZExtreme, where we learn κi for class i = 1, . . . , N on an
optimization set of samples, which is the full or a subset of training set. Each κi is selected from
the given set of membership functions, and κi = k means membership function fk is selected.
At inference time, for a test sample, let p = (p1, . . . , pi, . . . , pN ) be its in-context learned output
class probabilities, then these probabilities are transformed by their learned membership functions,
according to Eq. 3. The corrected prediction is ŷ = argmaxi fκi(pi).

The above model Z is optimized using the SA metaheuristic. The core step of SA is to sample a
new solution κ = (κ1, . . . , κN ), e.g., (16, . . . , 8), and evaluate it on Z. If Z is smaller, the algo-
rithm accepts the new solution; otherwise, it accepts the new solution with an acceptance probability
exp(−∆Z/T ), where T is the temperature at the step.The values of α, β are tuned on the develop-
ment set. Since we do not know an estimate for the expected threshold value λ in downstream tasks,
we set it to 0.5 for simplicity. Prompting is done on a 80G A100 GPU. The simulated annealing
algorithm executes on an AMD EPYC 7742 CPU with execution time in minutes.

We compare FuRud with the ICL baseline and two state-of-the-art ICL debiasing methods, including
DNIP (Lin & You, 2024) and BC (Zhou et al., 2024). For fair comparisons, for each dataset, we
prompt with three different 1-shot demonstrations and obtain three sets of initial probabilities. The
demonstration is randomly sampled from optimization examples. The average test accuracy and
COBias over the three runs are reported.

4.2 MAIN RESULTS

Acc. ↑ COBias ↓
Method

ICL BC DNIP FuRud ICL BC DNIP FuRud

AGNews 79.97.0 82.55.0 87.90.7 85.73.4 28.316.1 23.112.1 6.30.6 6.91.6

DBpedia 88.61.7 89.11.5 93.40.6 92.20.4 16.23.7 15.43.3 7.70.6 9.20.6

SST-5 44.94.3 47.62.3 48.31.9 48.83.8 53.15.0 49.810.7 18.710.1 22.28.4

TREC 68.510.8 72.94.4 77.12.0 77.33.9 35.96.5 31.95.1 14.21.3 18.51.4

RTE 71.52.2 76.10.6 74.30.8 74.51.8 43.47.0 16.41.9 4.33.3 7.15.0

DDI 7.20.9 14.42.5 40.46.0 69.36.3 45.65.9 32.67.6 7.53.2 36.84.6

PubMedaQA 55.12.9 55.51.3 63.114.0 55.95.4 61.21.9 26.23.2 41.129.6 24.08.4

Avg. 59.4 62.6 69.2 72.0 40.5 27.9 14.3 17.8

Table 1: Test accuracy and COBias (%); average scores over three runs are reported. FuRud outper-
forms previous methods in accuracy, and is on par with DNIP in COBias.
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Table 1 shows the test accuracy and COBias of ICL, BC, DNIP, and FuRuD. Comparing FuRud
to the ICL baseline, the average relative accuracy increase is 21%, and the average relative CO-
Bias reduction is 56%. The average test accuracy of FuRud over seven benchmarks is 72%, which
outperforms the accuracy of BC and DNIP; the average test COBias of FuRud is 17.8%, which is
comparable to DNIP with obtains the lowest COBias (14.3% ) among the methods compared. It is
noted that FuRud uses the full optimization set to make a fair comparison to DNIP. However, FuRud
can also work in a few-shot optimization manner, as discussed in Section 5.2. On top of that, FuRud
provides enhanced interpretability, as visualized in the following section.

4.3 INTERPRETABILITY ANALYSIS

Figure 3: Class probability changes before and after applying FuRud. There was a stark accuracy
difference of 37% for RTE’s True and False before FuRud, manifesting the model (ICL)’s tendency
to assign higher probabilities to True. FuRud addresses this accuracy bias by amplifying the medium
range of False and simultaneously reducing the relatively high range of True.

Figure 4: Zooming in on transformations applied to class Business from AGNews, whose accuracy
increases from 80% (ICL) to 86%. The special case returns the original class probability of an
example when transformed probabilities sum to 0 (Eq. 3).
We visualize the class-wise probability changes before and after applying FuRud in Figure 3. AG-
News and RTE are taken as examples (other datasets’ results are similar). The run with seed 1 out of
all three runs is used for illustrating the membership functions. For both AGNews and RTE, around
half of the classes have an increased/kept accuracy. More importantly, on both datasets, the worst-
performing class by ICL significantly improves. In details, the relatively low to medium probability
ranges of the worst-performing class gets amplified, whereas the relatively high probability ranges
of other classes gets slightly reduced. This shows FuRud’s effective amplifications or reductions in
the most correction-needed probability ranges of a class.
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To further see this, Figure 4 illustrates the detailed transformation of different probability ranges
of class Business of AGNews. For the 1,204 test examples with label Business, we divide their
ICL output probabilities at the position of class Business into 5 different ranges, from [0.0, 0.2] to
[0.8, 1.0]. The top row shows that examples in the first two ranges, or [0.0, 0.4], have relatively low
accuracies (0 and 9%). These probabilities need corrections most, which are effectively transformed
by the membership function f11, selected by FuRud for class Business. The red color highlights
activated parts for the transformations, resulting in new probability ranges of the examples and
improved accuracies (9% and 66%). This further demonstrates the improved interpretability and
higher accuracy obtained by FuRud, especially for a less performing class.

5 DISCUSSION

5.1 FURUD GREATLY IMPROVES HIGHLY SKEWED LETTER BASED ICL OUTPUTS, BY 44%
RELATIVE ACCURACY INCREASE AND 54% RELATIVE COBIAS REDUCTION

Method Acc. COBias
ICL (letter) 36.913.6 47.215.6

FuRud (letter) 53.110.5 21.68.2

Table 2: Test Scores (%) of FuRud
on Letter Based ICL Outputs, averaged
over the seven datasets.

In this section, we show the effectiveness of FuRud un-
der a different set of prompt output choices - the letter
options, which could lead to more serious shallow match-
ing issue than label token options. When letter options are
used in a prompt, a model is expected to output a single
letter choice of “A”, “B”, etc. mapping to a class label.
Output choices significantly contribute to prompt sensi-
tivity. In fact, LLMs have been shown to have a tendency
to select a certain letter option regardless of the content,
where for instance a model could over-predict the letter
“A” (Bentham et al., 2024), suggesting moderate to high COBias. This surface pattern matching
issue of letter options is also obvious on the datasets we evaluated, which could even lead to over
90% accuracy in the biased class and much lower accuracy in some other classes. For example, on
AGNews, the model is biased to predict “B” (class label: Sports), leading to an average of 99%
accuracy in Sports and 12% accuracy in Business over three runs.

We apply FuRud to the highly distorted letter based ICL outputs. Table 2 shows the test accuracy
and COBias for ICL and FuRud, averaged over seven benchmark datasets, where FuRud improves
accuracy by an relative 44% and achieves a significant COBias reduction of a relative 54% over ICL.
Besides the tabled results, on the aforementioned AGNews dataset, overall test accuracy improves
to 66% from 45%, and COBias reduces to 10% from 54%. The per-class accuracy changes from
ICL to FuRud are: World, 40% → 69%; Sports, 99% → 70%; Business, 12% → 66%; Technology,
27% → 59%. These results demonstrate the effectiveness of FuRud on debiasing highly skewed
ICL outputs, suggesting that FuRud can debias no matter how poor or perfect the input prompt is.

5.2 FEW-SHOT OPTIMIZATION

Figure 5: Few-shot optimization.

FuRud can optimize a downstream task
with as few as 10 examples. Figure 5
shows test accuracy and COBias of Fu-
Rud (in mint green color) when used in
a few-shot optimization manner, starting
with 10 few-shot examples and growing to
100 and 500 examples. TREC and SST-
5 are shown to illustrate that FuRud can
achieve an average of 9% accuracy im-
provements with 18% COBias reduction
over the ICL baseline at 10 few-shot opti-
mization examples. At 10 examples, Fu-
Rud obtains a 11% and 6% relative in-
crease in accuracy over the ICL baseline
on TREC and SST-5 respectively, at the same time, it reduces COBias by a relative 20% and 16%
on each dataset. The accruacy and COBias performances gradually improve as the number of exam-
ples increases to 500. Compared to existing methods, FuRud outperforms BC in few-shot scenarios,
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and performs better than (TREC) or on par (SST-5) with DNIP while being interpretable. Similar
findings apply to the other five datasets, as shown in Appendix B.

5.3 EFFECT OF MEMBERSHIP FUNCTION GRANULARITIES

Figure 6: Accuracy-COBias trade-
off with 5 combinations of fuzzy
partitions.

We experiment with different combinations of the four fuzzy
partitions in Figure 2, in addition to the main results using all
partitions. The partitions are characterized by different rates
of change, i.e., different absolute values of slopes of the ris-
ing/falling edges. A larger slope indicates more granularities.
The slopes for the top left, top right, bottom left, and bot-
tom right partitions are ±1,±2,±4,±8 respectively. Specif-
ically, the bottom right partition has the Don’t Change func-
tion y = x and its symmetric function y = 1− x, which will
be referred to as the DC partition. Since the Don’t Change
function plays a vital role in keeping some classes unchanged,
we experiment with five combinations, including DC , and
DC with each partition of slope ±2,±4,±8. The accuracy
and COBias scores of five combinations are shown in Figure
6. The average score of seven datasets are reported, and for each dataset, the average accuracy and
COBias over three runs is taken. COBias reduces with higher granularities and accuracy slightly
decreases. DC can reach 74% accuracy, being 15% higher than ICL accuracy, but the improvement
is mainly from DDI, suggesting that DC alone is not enough to transform the biased probabilities.
The optimal accuracy and COBias is achieved with mixed partitions.

In addition, the Don’t Change fuction is essentially needed in debiasing. We perform an ablation
analysis with the partition ±8 only, and find that, while achieving similar accuracies, its COBias is
6% higher than using DC with partition ±8. Moreover, for example, 4 out of 14 classes on DBpedia
are optimized with Don’t Change, suggesting that keeping certain classes unchanged is necessary for
jointly optimizing overall accuracy and COBias. This demonstrates that a dedicated Don’t Change
function is needed in the multi-objective optimization.

In summary, higher membership function granularities are good for COBias reduction. However,
although it is tempting to include as many membership functions as possible to reduce COBias, there
is the accuracy-COBias tradeoff. Too many membership functions may not further boost accuracy
and could induce more computational costs.

5.4 MORE DISCUSSIONS

FuRud’s Performances on More LLMs. For more LLMs of varied sizes and families, FuRud
consistently improves both overall accuracy and COBias, showcased by the additional experimental
results on Llama-2-7B and GPT-2-XL in Appendix C.

FuRud’s Performances under More ICL Demonstration Selection Strategies. To further see
how demonstrations in the prompt affect performances, we additionally prompt Llama-2-13B with
an additional demonstration selection strategy, k-shot prompting, where k is the number of classes;
a demonstrative example from each class is randomly selected from the optimization set, and these
examples are cascaded as a demonstrative example. FuRud significantly improves accuracy and
COBias in this setting, as detailed in Appendix D.

Computational Costs. As for computational costs, the computational time of FuRud optimization
is in the scale of minutes, from several minutes to around 30 minutes, depending on the dataset
(e.g., number of classes, optimization set sizes, etc). For DNIP, the computational time is similarly
in the scale of minutes. For the calibration method Batch Calibration (BC), it applies an analytical
calculation on all samples’ ICL probabilities, introducing small computational overhead.

Interpretability compared: DNIP and FuRud. The DNIP method shows good debiasing perfor-
mances, but it applies indiscriminate reduction (or relative amplification) to the probabilities, making
it difficult to capture the varying degrees of influence of different probability ranges to the accuracy
bias, potentially limiting its interpretability. The use of fuzzy membership functions overcomes this
issue, and this is a main innovation of our paper.

9
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Can we use the traditional fuzzy rule based systems for debiasing? That would require maintain-
ing multiple candidate rules like ”Rq: If the probability of class 1 is Aq1 and ... and the probability of
class N is AqN , then predict Yq ,” where Yq is the consequent/target class. Training such rules is com-
putationally expensive, and inference time for a winning rule grows with the number of candidates.
Additionally, calculating the product of membership values could cause issues such as overflow,
and achieving high accuracy might demand an overwhelming number of rules, making the system
inefficient. In contrast, FuRud eliminates the need for learning multiple rules, as its transformations
could implicitly capture many rules found in traditional fuzzy classification systems.

We have a different motivation from traditional post-hoc corrections. Some may argue that en-
suring equitable accuracies across all classes is a well-studied problem in standard machine learning
classifiers. It is worth emphasizing that the per-class prediction accuracy imbalance should be treated
within their particular context. The accuracy bias in ICL outputs stems from completely different
causes than the unequal class accuracies observed in potentially overfitted traditional classifiers,
where the former is rooted in prompts and the LLMs, and the latter arises from class imbalance of
supervised training data. That’s why our method is particularly applied to ICL’s output token class
probabilities, pinpointing specific patterns and applying precise, targeted corrections.

6 CONCLUSION AND FUTURE WORK

In this work, we present a fuzzy rule optimization based debiasing method to enhance ICL output
class representations with interpretability. FuRud learns a per-class correction function, i.e., a mem-
bership function, which decides if and how a class’s probability needs correction for each sample.
If correction is needed, the corrected class probability will be tailored by the membership function,
which is a main innovation of this paper. On a diverse set of text classification benchmarks, Fu-
Rud greatly improves the average test accuracy and test COBias over ICL, by a relative increase
of 21% and a relative reduction of 56%, outperforming state-of-the-art methods. Moreover, Fu-
Rud can work for prompt formats that may lead to highly skewed predictions, e.g., letter options.
Furthermore, FuRud can optimize a downstream task with as few as 10 optimization examples.

In the future, more versatile rules can be explored, and we may also examine the tradeoff between the
accuracy and rule complexity. Simpler rules are easier to understand, but the transformations may
fail to catch the intricate interactions between class predictions. More complex rules may have better
modeling capabilities, but they are harder to read. In addition, this work focuses on evaluating text
classification, and we will extend interpretable ICL debiasing to more language tasks, modalities,
and model architectures.
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A DETAILS ON MEMBERSHIP FUNCTIONS

Table 3 lists the details about the membership functions used in this work.

Function Parameters Name Short Form Meaning

f1 0, 0, 0.5 Low-2 L-2
Low-range transformation,
smooth change with slope −2, peak at 0

f2 0, 0.5, 1 Medium-2 M-2
Medium-range transformation,
smooth change with slope ±2, peak at 0.5

f3 0.5, 1, 1 High-2 H-2
High-range transformation,
smooth change with slope 2, peak at 1

f4 0, 0, 0.25 Low-4 L-4
Low-range transformation,
sharp change with slope −4, peak at 0

f5 0, 0.25, 0.5 Medium Low-4 ML-4
Low-to-medium-range transformation,
sharp change with slope ±4, peak at 0.25

f6 0.25, 0.5, 0.75 Medium-4 M-4
Medium-range transformation,
sharp change with slope ±4, peak at 0.5

f7 0.5, 0.75, 1 Medium High-4 MH-4
Medium-to-high-range transformation,
sharp change with slope ±4, peak at 0.75

f8 0.75, 1, 1 High-4 H-4
High-range transformation,
sharp change with slope 4, peak at 1

f9 0, 0, 0.125 Very Very Low-8 VVL-8
Very-very-low-range transformation,
very sharp change with slope −8, peak at 0

f10 0, 0.125, 0.25 Very Low-8 VL-8
Very-low-range transformation,
very sharp change with slope ±8, peak at 0.125

f11 0.125, 0.25, 0.375 Low-8 L-8
Low-range transformation,
very sharp change with slope ±8, peak at 0.25

f12 0.25, 0.375, 0.5 Medium Low-8 ML-8
Low-to-medium-range transformation,
very sharp change with slope ±8, peak at 0.375

f13 0.375, 0.5, 0.625 Medium-8 M-8
Medium-range transformation,
very sharp change with slope ±8, peak at 0.5

f14 0.5, 0.625, 0.75 Medium High-8 MH-8
Medium-to-high-range transformation,
very sharp change with slope ±8, peak at 0.625

f15 0.625, 0.75, 0.875 High-8 H-8
High-range transformation,
very sharp change with slope ±8, peak at 0.75

f16 0.75, 0.875, 1 Very High-8 VH-8
Very-high-range transformation,
very sharp change with slope ±8, peak at 0.875

f17 0.875, 1, 1 Very Very High-8 VVH-8
Very-very-high-range transformation,
very sharp change with slope 8, peak at 1

f18 0, 0, 1 Full-1 F-1
Full-range transformation,
very smooth change with slope −1, peak at 0

f19 0, 1, 1 Don’t Change Don’t Change Identity function

Table 3: Names, parameters (a, b, c), short forms, and meanings for membership functions.

B ADDITIONAL FEW-SHOT OPTIMIZATION RESULTS

Figure 7 shows additional few-shot optimization results. In a few-shot optimization manner, FuRud
achieves better or comparable results than DNIP, and better results than BC and the ICL baseline,
while providing enhanced interpretability.

Figure 7: Additional few-shot optimization results.
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Model Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedQA Avg.

Llama-2-7B

ICL Acc 86.42.5 88.92.0 42.111.1 66.76.6 66.34.3 6.70.4 40.36.7 56.8
COBias 14.06.5 13.52.1 55.61.5 33.210.0 61.610.5 41.41.7 40.916.1 37.2

FuRud Acc 88.50.5 91.50.5 49.50.7 73.13.9 72.71.0 54.46.4 55.77.6 69.3

COBias 7.42.5 8.40.6 24.01.2 14.11.9 4.22.7 16.95.0 21.816.6 13.8

GPT2-XL

ICL Acc 52.15.4 31.89.9 34.913.7 27.410.5 55.41.9 14.54.4 55.20.0 38.8
COBias 35.511.5 40.03.6 48.75.4 45.68.7 82.424.5 40.75.9 59.412.6 50.3

FuRud Acc 69.00.5 67.711.8 43.43.1 41.72.7 51.23.7 53.217.0 48.40.3 53.5

COBias 7.42.9 23.06.5 25.41.4 30.27.0 8.93.6 23.16.5 17.64.6 19.4

Table 4: Test accuracy and COBias Comparisons on more LLMs.

C FURUD’S PERFORMANCES ON MORE LLMS

We ran experiments of FuRud on two additional models, Llama-2-7B and GPT2-XL. Results are
shown in Table 4. For example, on Llama-2-7B, FuRud improves accuracy by a relative 22%, and
reduces COBias by a relative 63% over ICL baselines, demonstrating that FuRud gains consistent
performance improvements on various models. Indeed, our current evaluations are focused on rela-
tively small LLMs, but our approach can also work for larger models, as long as class probabilities
are available and the imbalanced per-class accuracy issue exists.

D FURUD’S PERFORMANCES UNDER MORE ICL DEMONSTRATION
SELECTION STRATEGIES

Demonstration
Selection

Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedQA Avg.

k-shot, ICL Acc 83.51.5 95.21.2 50.32.3 67.012.7 75.00.8 9.71.0 52.35.3 61.9
COBias 14.95.1 7.02.2 36.37.2 38.25.1 22.513.2 39.73.5 20.94.2 25.6

k-shot, FuRud Acc 88.10.6 96.60.4 54.31.3 77.96.0 75.94.6 62.32.1 59.25.9 73.5

COBias 7.72.5 4.40.7 13.84.1 11.63.3 5.01.4 27.02.2 21.38.7 13.0

Table 5: Test accuracy and COBias under the k-shot demonstration selection strategy.

We additionally prompt Llama-2-13B with the following demonstration selection strategy: k-shot
prompting, where k is the number of classes. A demonstrative example from each class is randomly
selected from the optimization set and represented in the prompt. FuRud significantly improves
accuracy and COBias over ICL baselines, as shown in Table 5.

Compared to the 1-shot strategy (Table 1), the k-shot strategy provides a different starting point
for FuRud. For example, the average ICL accuracy by k-shot (61.9%) is slightly larger than that
obtained by 1-shot (59.4%), and average COBias (25.6%) is smaller than 1-shot (40.5%). FuRud
boosts average accuracy to 73.5% and reduces COBias to 13.0%. In conclusion, different exam-
ple selection strategies provide different starting points for FuRud to optimize, on which FuRud
consistently improve.
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