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Abstract
Mechanistic interpretability methods aim to iden-
tify the algorithm a neural network implements,
but it is difficult to validate such methods when
the true algorithm is unknown. This work presents
INTERPBENCH, a collection of semi-synthetic yet
realistic transformers with known circuits for eval-
uating these techniques. We train these neural net-
works using a stricter version of Interchange In-
tervention Training (IIT) which we call Strict IIT
(SIIT). Like the original, SIIT trains neural net-
works by aligning their internal computation with
a desired high-level causal model, but it also pre-
vents non-circuit nodes from affecting the model’s
output. We evaluate SIIT on sparse transformers
produced by the Tracr tool and find that SIIT mod-
els maintain Tracr’s original circuit while being
more realistic. SIIT can also train transformers
with larger circuits, like Indirect Object Identifi-
cation (IOI). Finally, we use our benchmark to
evaluate existing circuit discovery techniques.

1. Introduction
The field of mechanistic interpretability (MI) aims to
reverse-engineer the algorithm implemented by a neural
network (Elhage et al., 2021). The current MI paradigm
holds that the neural network (NN) represents concepts as
features, which may have their dedicated subspace (Olah
et al., 2020a; Bushnaq et al., 2024) or be in superposition
with other features (Olah et al., 2020b; Elhage et al., 2022;
Engels et al., 2024). The NN arrives at its output by compos-
ing many circuits, which are subcomponents that implement
particular functions on the features (Olah et al., 2020b; Cam-
marata et al., 2021; Geiger et al., 2023a). To date, the field
has been very successful at reverse-engineering toy models
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on simple tasks (Nanda et al., 2023; Zhong et al., 2023; Chan
et al., 2022; Chughtai et al., 2023; Brinkmann et al., 2024).
For larger models, researchers have discovered circuits that
perform clearly defined subtasks (Wang et al., 2023; Hanna
et al., 2024; Heimersheim & Janiak; Lieberum et al., 2023).

How confident can we be that the NNs implement the
claimed circuits? The central piece of evidence for many
circuit papers is causal consistency: if we intervene on
the network’s internal activations, does the circuit correctly
predict changes in the output? There are several compet-
ing formalizations of consistency (Chan et al., 2022; Wang
et al., 2023; Geiger et al., 2023a; Jenner et al., 2023) and
many ways to ablate NNs, each yielding different results
(Sanh & Rush, 2021; Conmy et al., 2023; Zhang & Nanda,
2023). This problem is especially dire for automatic cir-
cuit discovery methods, which search for subgraphs with
the highest consistency (Geiger et al., 2023b; Wu et al.,
2023) or faithfulness (Conmy et al., 2023; Syed et al., 2023)
measurements1.

These results would be on much firmer ground if we had
an agreed-upon protocol for thoroughly checking a hypoth-
esized circuit. To declare a candidate protocol valid, we
need to check whether, in practice, it correctly distinguishes
true circuits from false circuits. Unfortunately, we do not
know the true circuits of the models we are interested in,
so we cannot validate any protocol. Previous work has
sidestepped this in two ways. One method is to rely on
qualitative evidence (Chan et al., 2022; Olsson et al., 2022),
perhaps provided by human-curated circuits (Conmy et al.,
2023; Syed et al., 2023), which is expensive and possibly
unreliable.

The second way to obtain neural networks with known cir-
cuits is to construct them. Tracr (Lindner et al., 2023) is
a tool for compiling RASP programs (Weiss et al., 2021)
into standard decoder-only transformers. By construction, it
outputs a model which implements the specified algorithm,
making it suitable for evaluating MI methods. Unfortunately,
Tracr-generated transformers are quite different from those

1Faithfulness is a weaker form of consistency: if we ablate
every part of the NN that is not part of the circuit, does the NN
still perform the task? (Wang et al., 2023; Chan et al., 2022)

1



Tracr 
Transformers

ground truth available 
unrealistic weights & activations

AUROC=1

MLP 0

Attn 0.0 Attn 0.1 Attn 0.2

101

SIIT 
Transformers

ground truth available 
realistic weights & activations

AUROC=0.73

0.025 -0.050.036

MLP 0

Attn 0.0 Attn 0.1 Attn 0.2

Natural 
Transformers

ground truth unavailable 
realistic weights & activations

AUROC=??

-0.050.0360.025

MLP 0

Attn 0.0 Attn 0.1 Attn 0.2

Figure 1: SIIT transformers implement a known ground-truth circuit, but their weights and activations are similar to the
ones in naturally trained transformers, letting us measure, in a realistic setting, how accurate circuit discovery methods are at
finding the true circuit.

trained using gradient descent: most of their weights and ac-
tivations are zero, none of their features are in superposition,
and they use only a small portion of their activations for
the task at hand. Figure 2 shows how different the weights
of a Tracr-generated transformer are from those of a trans-
former trained with gradient descent. This poses a very
concrete threat to the validity of any evaluation that uses
Tracr-generated transformers as subjects: we cannot tune
the inductive biases of circuit evaluation algorithms with
such unrealistic neural networks.

1.1. Contributions

In this work, we present INTERPBENCH, a collection of 17
semi-synthetic yet realistic transformers with known circuits
for evaluating mechanistic interpretability techniques. We
collected 16 Tracr circuits plus 1 circuit from the literature
(Indirect Object Identification (Wang et al., 2023)), and
trained new transformers to implement these circuits using
Strict Interchange Intervention Training (SIIT).

SIIT is an extension of Interchange Intervention Training
(IIT) (Geiger et al., 2022). Under IIT, we predefine which
subcomponents of a low-level computational graph (the
transformer to train) map to nodes of a high-level graph (the
circuit). During training, we apply the same interchange
interventions (Geiger et al., 2021; Chan et al., 2022) to both
the low- and high-level models, and incentivize them to
behave similarly with the loss.

Our extension, SIIT, improves upon IIT by also interven-
ing on subcomponents of the low-level model that do not
correspond to any high-level component. This prevents the
low-level model from using them to compute the output, en-
suring the high-level model correctly represents the circuit
the NN implements.

We make INTERPBENCH models and the SIIT code used to
train them all publicly available.2

In summary, the contributions of this article are:

• We present INTERPBENCH, a benchmark of 17 realistic
semi-synthetic transformers with known circuits for
evaluating mechanistic interpretability techniques.

• We introduce Strict Interchange Intervention Training
(SIIT), an extension of IIT which also trains nodes not
in the high-level graph. Using systematic ablations,
we validate that SIIT correctly generates transformers
with known circuits, even when IIT does not.

• We show that SIIT-generated transformers are realistic
enough to evaluate MI techniques on, by checking
whether circuit discovery methods behave similarly on
SIIT-generated and natural transformers.

• We demonstrate the benchmark’s usefulness by eval-
uating five circuit discovery techniques: Automatic
Circuit DisCovery (ACDC, Conmy et al., 2023), Sub-
network Probing (SP, Sanh & Rush, 2021) on nodes
and edges, Edge Attribution Patching (EAP, Syed et al.,
2023), and EAP with integrated gradients (EAP-ig,
Marks et al., 2024). On INTERPBENCH, the results
conclusively favor ACDC over Node SP, showing that
there is enough statistical evidence (p-value ≈ 0.0004)
to tell them apart, whereas the picture in Conmy et al.
(2023) was much less clear. Interestingly, the results
also show that EAP with integrated gradients is a strong

2Code: https://github.com/FlyingPumba/circuits-
benchmark (MIT license). Trained networks & labels:
https://huggingface.co/cybershiptrooper/InterpBench (CC-BY
license).
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Figure 2: A histogram of the weights for the MLP output matrix in Layer 0 of a Tracr, SIIT and “natural” transformer, i.e.
trained by gradient descent to do supervised learning. All these transformers implement the frac_prevs task (Lindner
et al., 2023). The weight distribution of a SIIT-trained transformer is much closer to the natural than the Tracr transformer.
Yet, we know the ground-truth algorithm that the SIIT transformer implements.

contender against ACDC. Regular EAP on the other
hand performs poorly, which is understandable given
the issues that have been raised about it (Kramár et al.,
2024).

2. Related work
Linearly compressed Tracr models. Lindner et al. (2023)
compress the residual stream of their Tracr-generated trans-
formers using a linear autoencoder, to make them more real-
istic. However, this approach does not change the model’s
structure, and components that are completely zero remain
in the final model.

Features in mechanistic interpretability. While this
work focuses on circuits, the current MI paradigm also
studies features: hypothesized natural variables that the NN
algorithm operates on. The most popular hypothesis is that
features are most of the time inactive, and many features
are in superposition in a smaller linear subspace (Elhage
et al., 2022; Scherlis et al., 2022). This inspired sparse au-
toencoders (SAEs) as the most popular feature extraction
method (Cunningham et al., 2023; Bricken et al., 2023; Tem-
pleton et al., 2024; Rajamanoharan et al., 2024; Braun et al.,
2024). SAEs produce many features which are qualitatively
human-interpretable and are mostly able to reconstruct the
residual stream, but this does not imply that they are natural
features for the NN . Indeed, some features seem to be cir-
cular and do not fit in the superposition paradigm (Engels
et al., 2024). Nevertheless circuits on SAE features can be
faithful and causally relevant (Marks et al., 2024).

A benchmark which pairs NNs with their known circuits is
also a good way to test feature discovery algorithms (like
SAEs): the algorithms should naturally recover the values

of computational nodes of the true circuit. Conversely, ex-
amining how SIIT-trained models represent their circuits’
concepts could help us understand how natural NNs rep-
resent features. This article omits the comparison because
its models only perform one task, and thus have too few
features to show superposition.

Other mechanistic interpretability benchmarks.
RAVEL (Huang et al., 2024) is a dataset of prompts con-
taining named entities with different attributes that can be
independently varied. Its purpose is to develop and evaluate
methods which can causally isolate the representations of
these attributes in the NN. ORION (Variengien & Winsor,
2023) is a collection of retrieval tasks intended to let
MI researchers investigate how large language models
(LLMs) follow instructions. FIND (Schwettmann et al.,
2023) is a dataset and evaluation protocol for tools which
automatically describe model neurons or other components
(Bills et al., 2023; Shaham et al., 2024). The test subject
must accurately describe a function, based on interactively
querying input-output pairs from it.

We see INTERPBENCH as complementary to ORION and
RAVEL, and slightly overlapping with FIND. INTERP-
BENCH is very general in scope: its purpose is to evaluate
any interpretability methods which discover or evaluate cir-
cuits or features. However, it is not suitable for evaluating
natural language descriptions of functions like FIND is, and
its NNs are about as simple as FIND functions.

3. Strict Interchange Intervention Training
An interchange intervention (Geiger et al., 2020; 2021), or
resample ablation (Jenner et al., 2023), returns the output of
the model on a base input when some of its internal activa-
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Algorithm 1 Pseudocode for Strict Interchange Intervention
Training (SIIT).

Input: High-level and low-level modelsMH andML

with variables VH and VL, an alignment Π that maps a
V H ∈ VH to a VL ⊂ VL, low-level model parameters
θL, learning rate ℓ, training dataset D
while not converged or we have training budget do

for b, s ∈ D ×D do
// Calculate IIT loss
V H ∼ VH // Sample a high-level variable
VL = Π(V H) // Aligned low-level variables
with no grads:

oH = INTINV(MH , b, s, V H)
oL = INTINV(ML, b, s,VL)
LIIT = LOSS(oH , oL) ∗WeightIIT
θL ← θL − ℓ∇θLLIIT

// Calculate Strictness loss
V L ∼ {V L /∈ Π(V H), ∀ V H ∈ VH} // Sample a
non-aligned low-level variable
oL = INTINV(ML, b, s, V L)
ob = The correct output for input b
LSIIT = LOSS(ob, oL) ∗WeightSIIT

θL ← θL − ℓ∇θLLSIIT

// Calculate Behavior loss
o∅ =ML(b)
Lbehavior = LOSS(ob, o∅) ∗Weightbehavior
θL ← θL − ℓ∇θLLbehavior

end for
end while

tions have been replaced with activations that correspond
to a source input. Formally, an interchange intervention
INTINV(M, base, source, V ) takes a model M, an input
base, an input source, and a variable V (i.e., a node in the
computational graph of the model), and returns the output of
the modelM for the input base, except that the activations
of V are set to the value they would have if the input were
source. This same definition can be extended to intervene
on a set of variables V, where the activations of all variables
in V are replaced. Geiger et al. (2022) define Interchange
Intervention loss as:∑

b,s∈dataset

LOSS
(
INTINV(MH , b, s, V H),

INTINV(ML, b, s,Π(V H))
) (1)

whereMH is the high-level model, ML is the low-level
model, V H is a high-level variable, Π(V H) is the set of
low-level variables that are aligned with (mapped to) V H ,
and LOSS is some loss function, such as cross-entropy or
mean squared error. We use the notationM(base) to denote
the output of the modelM when run without interventions
on input base.

3x 0x+1

x+1

Output

Input

3x+2

Output

Low-level
model

High-level
model

Input

mapped to

Figure 3: Example of a low-level model that has a perfect
accuracy, with aligned low-level nodes (in yellow) that are
causally consistent with the high-level model, but has non-
aligned nodes (in grey) that affect the output.

The main shortcoming of the above definition is that, by
sampling only high-level variables V H and intervening on
the low-level variables that are aligned with it (i.e., Π(V H)),
IIT never intervenes on low-level nodes that are not aligned
with any node in the high-level model. This can lead to
scenarios in which the nodes that are not intervened during
training end up performing non-trivial computations that
affect the low-level model’s output, even when the nodes
that are aligned with the high-level model are correctly
implemented and causally consistent.

As an example, suppose that we have a high-level model
MH such that MH(x) = 3x + 2, and we want to train
a low-level model ML that has three nodes, only one of
which is part of the circuit. If we train this low-level model
using IIT, we may end up with a scenario like the one de-
picted in Figure 3. In this example, even though the low-
level model has perfect accuracy and the aligned nodes are
causally consistent, the non-aligned nodes still affect the
output in a non-trivial way. This shows some of the issues
that arise when using IIT: aligned low-level nodes may not
completely contain the expected high-level computation,
and non-aligned low-level nodes may contain part of the
high-level computation.

To correct this shortcoming, we propose an extension to
IIT called Strict Interchange Intervention Training (SIIT).
Its pseudocode is shown in Algorithm 1. The main differ-
ence between IIT and SIIT is that, in SIIT, we also sample
low-level variables that are not aligned with any high-level
variable. This allows us to penalize the low-level model for
modifying the output when intervened on these non-aligned
variables. We implement this modification as a new loss
function (Strictness loss) that is included in the training loop
of SIIT. Formally:∑

b,s∈dataset

LOSS
(
yb, INTINV(ML, b, s, V L)

)
(2)
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Figure 4: Circuit for Indirect Object Identification task in INTERPBENCH. This circuit is a simplified version of the one
manually discovered by Wang et al. (2023). The Duplicate token head outputs the first position of duplicated tokens, if there
is any; otherwise it outputs −1. The S-Inhibition head copies the token from the previous position and outputs it to the
Name mover head, which increases the logits of all names except the ones that are inhibited.

where yb is the correct output for input b and V L is a low-
level variable that is not aligned with any high-level variable
V H . In other words, this loss incentivizes the low-level
model to avoid performing non-trivial computations for this
task on low-level components that are not aligned with any
high-level variable. This makes the non-aligned compo-
nents constant for the inputs in the task distribution, but
not necessarily for the ones outside of it. Notice however
that under the Strictness loss the non-aligned components
can still contribute to the output in a constant way, as long
as they do not change the output when intervened on. The
extent of this effect is analyzed in Appendix A.

As proposed by Geiger et al. (2022), we also include in
Algorithm 1 a behavior loss that ensures the model is not
overfitting to the IIT and Strictness losses. The behavior
loss is calculated by running the low-level model without
intervening on any components and comparing the output
to the correct output.

4. INTERPBENCH

INTERPBENCH is composed of 16 semi-synthetic transform-
ers generated by applying SIIT to Tracr-generated transform-
ers and their corresponding circuits, plus a semi-synthetic
transformer trained on GPT-2 and a simplified version of
its IOI circuit (Wang et al., 2023). This benchmark can be
freely accessed and downloaded from HuggingFace (see
Appendix C). We generated the 16 RASP programs using
few-shot prompts on GPT-4.

The architecture for the SIIT-generated transformers was
made more realistic (compared to the original Tracr ones)
by increasing the number of attention heads up to 4 (usually
only 1 or 2 in Tracr-generated transformers), which lets us
define some heads as not part of the circuit, and by halving
the internal dimension of attention heads. The residual
stream size on the new transformers is calculated as dhead ×
nheads, and the MLP size is calculated as dmodel × 4.

Using IIT’s terminology, the Tracr-generated transformers
are the high-level models, the SIIT-generated transformers
are the low-level ones, and the variables are attention heads

and MLPs (i.e., the nodes in the transformer’s computational
graph). Each layer in the high-level model is mapped to
the same layer in the low-level model. High-level attention
heads are mapped to randomly selected low-level attention
heads in the same layer. High-level MLPs are mapped to
low-level MLPs in the same layer.

We train all SIIT models by using the Algorithm 1 as
described in Section 3, fixing the WeightSIIT to values
between 0.4 and 10, depending on the task. Both the
WeightIIT and Weightbehavior are set to 1. We use Adam
as the optimizer for all models, with a fixed learning
rate of 0.001, batch size of 512, and Beta coefficients of
(0.9, 0.999). All models are trained until they reach 100%
Interchange Intervention Accuracy (IIA) and 100% Strict
Interchange Intervention Accuracy (SIIA) on the validation
dataset. IIA, as defined by Geiger et al. (2023b), measures
the percentage of times that the low-level model has the
same output as the high-level model when both are inter-
vened on the same aligned variables. The Strict version of
this metric measures the percentage of times that the low-
level model’s output remains unchanged when intervened
on non-aligned variables.

The training dataset is composed of 20k-120k randomly
sampled inputs, depending on each task. The validation
dataset is randomly sampled to achieve 20% of the training
dataset size. The expected output is generated by running
the Tracr-generated transformer on each input sequence.
The specific loss function to compare the outputs depends
on the task: cross-entropy for Tracr categorical tasks, and
mean squared error for Tracr regression tasks.

To show that SIIT can also be used to train transformers
with non-RASP circuits coded manually, INTERPBENCH
includes a transformer trained on a simplified version of
the IOI task and the circuit hypothesized by Wang et al.
(2023), shown in Figure 4. We train a semi-synthetic trans-
former with 6 layers and 4 heads per layer, dmodel = 64, and
dhead = 16. Each high-level node in the simplified IOI cir-
cuit is mapped to an entire layer in the low-level model. We
train this transformer using the same algorithm and hyperpa-
rameters as for the Tracr-generated transformers, but with a
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different loss function. We apply the IIT and SIIT losses to
the last token of the output sequence, and the cross-entropy
loss to all other tokens. The final loss is a weighted average
of these losses, with the IIT and SIIT losses upweighted by
a factor of 10. All the hyperparemeters remained the same
during the experiments.

The semi-synthetic transformers included in INTERPBENCH
were trained on a single NVIDIA RTX A6000 GPU. The
training time varied depending on the task and the complex-
ity of the circuit but was usually around 1 to 8 hours.

Appendix C explains how to download INTERPBENCH and
the license under which it is released. Appendix D contains
a detailed description of the tasks included in the benchmark,
and Appendix E provides instructions on how to use it.

5. Evaluation
In order to investigate the effectiveness of SIIT and the use-
fulness of the proposed benchmark, we conducted an evalu-
ation to answer the following research questions (RQs):

RQ1 (IIT): Do the transformers trained using IIT correctly
implement the desired circuits?

RQ2 (SIIT): Do the transformers trained using SIIT cor-
rectly implement the desired circuits?

RQ3 (Realism): Are the transformers trained using SIIT
realistic?

RQ4 (Benchmark): Are the transformers trained using SIIT
useful for benchmarking mechanistic interpretability tech-
niques?

5.1. Results

RQ1 & RQ2. In this evaluation we compare the semi-
synthetic transformers trained using IIT and SIIT. Unless
specified, the SIIT models are taken from InterpBench (Sec-
tion 4). We use the same setup for IIT models, except that
we set the WeightSIIT to 0.

To understand if a trained low-level model correctly imple-
ments a circuit we need to check that (1) the low-level model
has the same output as the high-level model when interven-
ing on aligned variables, and that (2) the non-circuit nodes
do not affect the output. As we mentioned in Section 4, all
low-level models in our experiments are trained to achieve
100% IIA on the validation sets, which ensures that the first
condition is always met.

We answer the second condition by measuring the node ef-
fect and normalised KL divergence after intervening on each
node in the model. Node effect measures the percentage
of times that the low-level model changes its output when
intervened on a specific node. As mentioned before, a node

that is not part of the circuit should not affect the output of
the model and thus should have a low node effect. Formally,
for a node V in a modelM, and a pair of inputs (xb, xs)
with corresponding labels (yb, ys), we define the node effect
as follows:

effectV (xb, xs, yb) = 1 [INTINV(M, xb, xs, V ) ̸= yb] ,

where 1[·] is the indicator function. The normalized KL
divergence is:

dV (xb, xs, yb) =

dKL(INTINV(M, xb, xs, V ), yb)− dKL(M(xb), yb)

dKL(M(xs), yb)− dKL(M(xb), yb)
.

If a semi-synthetic transformer correctly implements a
Tracr’s circuit, the effect of all aligned nodes will be similar
to their corresponding counterparts in the Tracr transformer.
For the normalized KL divergence, it is not always possible
to have a perfect match with the Tracr-generated transformer,
as Tracr does not minimize cross-entropy loss in categorical
programs but only fixes the weights so that they output the
expected labels. Still, we expect a clear separation between
nodes in and out of the circuit.

Figure 5 shows the node effect for nodes in and out of the
circuit for 7 randomly sampled tasks in the benchmark, av-
eraged over a test dataset. Each boxplot shows the analysis
for a Tracr, IIT or SIIT transformer on a different task. We
can see that the boxplots for IIT and Tracr are different, with
the IIT ones consistently having high node effect for nodes
that are not in the circuit (red boxplots). On the other hand,
the SIIT boxplots are more similar to the Tracr ones, with
low node effect for nodes that are not in the circuit, and high
node effect for nodes that are in the circuit.

Similarly, Figure 6 shows the average normalized KL di-
vergence for nodes in and out of the circuit for 5 randomly
sampled categorical tasks in the benchmark. Again, most
of the boxplots for IIT have high KL divergence for nodes
that are not in the circuit, while the SIIT boxplots have low
values for these nodes. We can see that even though the
SIIT transformer does not exactly match the Tracr behavior,
there is still a clear separation between nodes in the circuit
and those not in the circuit, which does not happen for the
IIT transformers. It is worth pointing out that the higher
error bar across cases for KL divergence is due to the fact
that we are optimizing over accuracy instead of matching
the expected distribution over labels.

Finally, Figure 7 shows a scatter plot comparing the average
node effect for nodes in and out of the circuit for IIT and
SIIT transformers for all tasks in the benchmark. We can
see that there are several nodes not in the circuit that have a
higher node effect for IIT than for SIIT.
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Figure 5: Average effect on accuracy for nodes in the circuit (green) and out of the circuit (red) for the models of 7 randomly
sampled tasks in the benchmark. Green boxplots display, for each task and model, the average proportion of model outputs
that change when intervening on nodes that belong to the circuit. Red boxplots display the same metric for nodes that are
not in the circuit. For all regression tasks, we deem an intervention to have an effect when the new scalar output differs by
0.05 or more from the original. We can see that for Tracr and SIIT models, nodes not in the circuit have much lower effects,
but that is not the case for IIT models.
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Figure 6: Normalized effect on KL divergence for nodes in the circuit (green) and out of the circuit (red) for the models
of 5 randomly sampled categorical tasks in the benchmark. Green boxplots display, for each task, the differences in KL
divergence before and after intervening on each node that belongs to the circuit. Red boxplots display the same metric for
each node that is not in the circuit. We can see that in Tracr and SIIT nodes are very well separated into in/out of the circuit
by their effect size, whereas that is not the case for IIT models.

RQ 1: IIT-generated transformers do not correctly
implement the desired circuits: nodes that are not in the

circuit affect the output.

RQ 2: SIIT-generated transformers correctly implement
the desired circuits: nodes in the circuit have a high effect
on the output, while nodes that are not in the circuit do

not affect the output.

Appendix A extends Figures 4-6 to all tasks in INTERP-
BENCH, for SIIT and the original circuit only. It also repeats
the experiments but with mean and zero ablations (Zhang
& Nanda, 2023). Other types of ablation are a robustness
check for INTERPBENCH, which was trained with inter-
change interventions. Under mean ablations, only nodes in

the circuit have an effect, but that is not the case under zero
ablations. This may indicate that INTERPBENCH circuits
are not entirely true, but also matches the widely held notion
that zero ablation is unreliable (Zhang & Nanda, 2023).

RQ3. To analyze the realism of the trained models, we run
ACDC (Conmy et al., 2023) on Tracr, SIIT, and “naturally”
trained transformers (i.e., using supervised learning). We
measure the accuracy of these models after mean-ablating
(Zhang & Nanda, 2023) all the nodes rejected by ACDC,
i.e. the ones that ACDC deems to not be in the circuit. This
lets us check whether SIIT and “natural” models behave
similarly from the point of view of circuit discovery tech-
niques. A model that is more realistic should have a score
similar to the transformers trained with supervised learning.
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Figure 7: Scatter plot comparing the effect for nodes in the
circuit (green) and not in the circuit (red) for IIT and SIIT
transformers for all tasks in the benchmark. The x and y
axes display the average node effect when resample ablating
on IIT and SIIT models, respectively. For each task, both
models have a one-one correspondence for their nodes. We
can see that some IIT nodes that are not in the circuit have
much higher effects than they should have.

Figure 8 displays the difference in correlation coefficients
when comparing the accuracy of the SIIT and Tracr models
to the “natural” models, showing that SIIT models have a
higher correlation with “natural” models than Tracr ones.

Another proxy for realism is: do the weights of “natural”
and SIIT models follow similar distributions? Figure 2
shows a histogram of the weights for the MLP output matrix
in Layer 0 of a Tracr, SIIT, and “natural” transformer. The
SIIT and “natural” weight distributions are very similar.

RQ 3: SIIT-generated transformers are more realistic than
Tracr ones, with behavior similar to the transformers

trained using supervised learning.

RQ4. To showcase the usefulness of the benchmark, we
run ACDC (Conmy et al., 2023), Subnetwork Probing
(SP) (Sanh & Rush, 2021), edgewise SP, Edge Attribution
Patching (EAP) (Syed et al., 2023), and EAP with integrated
gradients (Marks et al., 2024) on the SIIT transformers and
compare their performance. Edgewise SP is similar to reg-
ular SP, but instead of applying masks over all available
nodes, they are applied over all available edges. We com-
pute the Area Under the Curve (AUC) for the edge-level
ROC on these algorithms as a measure of their performance.

Figure 9 displays boxplots of the AUC ROCs, and Figure 10
shows the difference in AUC ROC for all circuit discovery
techniques against ACDC. For measuring statistical signif-
icance, we rely on the well-established Wilcoxon-Mann-
Whitney U-test and Vargha-Delaney A12 effect size (Arcuri
& Briand, 2014). From these tests we get that ACDC is
statistically different (p-value < 0.05) to all the other algo-
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Figure 8: Correlation coefficients between the accuracy
achieved by the SIIT and “natural” models, and the Tracr
and “natural” models, for 11 randomly selected cases, after
mean ablating the nodes rejected by ACDC over different
thresholds (see Appendix A). These coefficients are consis-
tently higher when comparing the SIIT and “natural” models
than when comparing the Tracr and “natural” models.
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Figure 9: Area under the curve for the ROCs of ACDC,
node SP and edge SP on INTERPBENCH. The boxplots for
ACDC show the best ROC AUC, obtained by varying the
threshold. The boxplots for SP and edgewise SP show the
ROC AUC obtained by varying the regularization coeffi-
cient, after running for 3000 epochs. EAP with integrated
gradients uses 10 samples.

rithms except EAP with integrated gradients, with an effect
size A12 ranging from 0.54 to 0.91.

Interestingly, previous evaluations of performance between
SP and ACDC on a small number of tasks, including Tracr
ones, did not show a significant difference between the
two – SP was about as good as ACDC, achieving very
similar ROC AUC across tasks when evaluated on manually
discovered circuits (Conmy et al., 2023). On the other
hand, results on INTERPBENCH clearly show that ACDC
outperforms SP on small models that perform algorithmic
tasks (p-value ≈ 0.0004 and large effect size Â12 ≈ 0.742).
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Figure 10: Difference in Edge AUC ROC for all circuit discovery techniques against ACDC, separated by benchmark model.

One important difference between ACDC and other tech-
niques is that this method uses causal interventions to find
out which edges are part of the circuit, while SP and EAP
rely on the gradients of the model. After manual inspection,
we found that the gradients of the SIIT models were very
small, possibly due to these models being trained up to 100%
IIA and 100% SIIA, which could explain why SP and regu-
lar EAP are not as effective as ACDC. This however does
not seem to negatively affect EAP with integrated gradients,
since the results show that this method is not statistically
different from ACDC (p-value ≥ 0.05), which means that
it is as good as ACDC for the tasks in the benchmark.

It is worth pointing out that there are still some cases where
ACDC is not the best technique, as can be seen in Figure 10.
Notably, in Case 33, ACDC is outperformed by all the other
techniques except EAP. We leave investigating why to future
work.

Finally, there is not enough statistical evidence to say EAP
with integrated gradients is different than edgewise SP
(p-value ≥ 0.05), which means that the later is a close
third to ACDC and EAP with integrated gradients. Ap-
pendix B contains further details on the statistical tests and
the evaluation of the circuit discovery techniques.

RQ 4: INTERPBENCH can be used to evaluate
mechanistic interpretability techniques, and has yielded
unexpected results: ACDC is significantly better than SP
and egewise SP, but statistically indistinguishable from

EAP with integrated gradients.

6. Conclusion
In this work, we presented INTERPBENCH, a collection
of 17 semi-synthetic transformers with known circuits for
evaluating mechanistic interpretability techniques. We in-
troduced Strict Interchange Intervention Training (SIIT), an
extension of IIT, and checked whether it correctly generates

transformers with known circuits. This evaluation showed
that SIIT is able to generate semi-synthetic transformers
that correctly implement Tracr-generated circuits, whereas
IIT fails to do so. Further, we measured the realism of the
SIIT transformers and found that they are comparable to
“natural” ones trained with supervised learning. Finally, we
showed that the benchmark can be used to evaluate exist-
ing mechanistic interpretability techniques, showing that
ACDC (Conmy et al., 2023) is substantially better at identi-
fying true circuits than node- and edge-based Subnetwork
Probing (Sanh & Rush, 2021), but statistically indistinguish-
able from Edge Attribution Patching with integrated gradi-
ents (Marks et al., 2024).

Limitations. INTERPBENCH has proven useful for evalu-
ating circuit discovery methods, but the models it contains,
while realistic for their size, are very small. They also
contain very little functionality: only one algorithmic cir-
cuit per model, as opposed to the many subtasks which
next-token prediction encompasses. Therefore, results on
INTERPBENCH may not accurately represent the results of
the larger models that the MI community is interested in.
As an example, we have not evaluated sparse autoencoders
in this paper, because we think that the small true number of
features and size of the SIIT models will make it impossible
to extract meaningful conclusions.

Future work. There are many ways to improve on this
benchmark. One is to train SIIT transformers at higher
granularities, like subspaces instead of heads, which would
allow us to evaluate circuit and feature discovery techniques
such as DAS (Geiger et al., 2023b) and Sparse Autoen-
coders (Cunningham et al., 2023). One could also make the
benchmark models more realistic by making each model
implement many circuits. This would also let us greatly
increase the number of models without manually imple-
menting more tasks.

9



Societal impacts. If successful, this line of work will ac-
celerate progress in mechanistic interpretability, by putting
its results in firmer ground. Better MI makes AIs more
predictable and controllable, which makes it easier to use
(and misuse) AI. However, it also introduces the possibility
of eliminating unintended biases and bugs in NNs, so we
believe the impact is overall good.
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A. Thorough evaluation of dataset models
We provide in Tables 1 to 3 an extended version of the data shown in Figure 5, for all SIIT models in the benchmark,
using interchange interventions, mean ablations and zero ablations, respectively. The main takeaway from the interchange
intervention and mean ablations is that nodes not in the circuit have zero or very close to zero effect, while nodes in the
circuit have a much higher effect. On the other hand, zero ablations indicate that there are nodes not in the circuit with
significant effects.

Table 4 shows the accuracy of the SIIT models after mean and zero ablating all the nodes that are not in the circuit. Some of
the cases in this table present a big drop in accuracy, specially the regression tasks, while the classification tasks are more
robust. This is expected since regression tasks are more sensitive with respect to the output logits, as we compare using an
absolute tolerance (atol) and do not use the argmax function that is used in classification tasks. We also note that using either
mean or zero ablations on many nodes at the same time can easily throw the model’s activations off-distribution, which is a
common issue also present in models found in the wild.

As a reference, we present in Figure 11 the variation of accuracy for case 3’s SIIT model, as a function of the absolute
tolerance (atol) value for comparing outputs. Most of the logits returned by the SIIT model are at a distance between 0.1
and 0.5 from the original outputs, which is why the accuracy is very low for atol values below 0.1, but quickly jumps to
28.9% at 0.1, and then to 84.1% at 0.25.

Furthermore, we also studied the relationship between each node’s average activation norm and the Pearson correlation
coefficient between the outputs of logit lens applied to that node and the model’s actual output. Although many nodes
are correlated, most of the ones not in the circuit with a high zero ablation effect have very low variances and norms.
For example Case 3 final layer attention hook 3, has an effect 0.42 and norm 1.51± 0.55. However, there are still some
nodes worth noting, such as the one for final layer’s MLP in Case 11, with effect 0.11 and normalised activation norm
1.33 ± 0.55. We leave further investigation of these nodes for future work, as its role is not very well understood at the
moment. Interactive plots for this analysis can be found online 3.

We present more detailed information on realism in Figure 12, where we plot the accuracy of the SIIT (trained to 100%
SIIA), Tracr and “natural” models for 3 randomly selected cases after mean ablating the nodes rejected by ACDC over
different thresholds. These plots show that the SIIT models have a closer behavior to the “natural” models than the Tracr
models, which is consistent with the results presented in Section 5. To normalise error from a larger number of edges, we
train “natural” and SIIT models with the same architecture of its corresponding Tracr model. We use an identity alignment
map to train SIIT models in this case. Figure 13 shows this same information in a more aggregated way, by plotting the
average accuracy of the circuit across ACDC thresholds for Tracr, SIIT, and “naturally” trained transformers on all tasks.

B. Evaluation of circuit discovery techniques
In this work we compare the performance of the following circuit discovery techniques: Automated Circuit DisCovery
(ACDC), Subnetwork Probing (SP), Edgewise SP, Edge Attribution Patching (EAP), and EAP using integrated gradients
(EAP-IG). ACDC traverses the transformer’s computational graph in reverse topological order, iteratively assigning scores
to edges and pruning them if their score falls below a certain threshold. EAP assigns scores to all edges at the same time
by leveraging gradients information, and again prunes edges below a certain threshold to form the final circuit. EAP-IG
uses integrated gradients to smooth out the approximation of gradients and improve the performance of EAP. SP learns,
via gradient descent, a mask for each node in the circuit to determine if it is part of the circuit or not, and encourages this
mask to be sparse by adding a sparseness term to the loss function. The strength of this sparse penalty is controlled by a
regularization hyperparameter. Edgewise SP is a variation of SP that learns a mask for each edge in the transformer model
instead of each node.

We use different metrics for each task in the benchmark, depending on whether it is a regression or classification task.
For ACDC, SP and Edgewise SP, we use the L2 distance for regression tasks and the Kullback-Leibler divergence for
classification tasks. For EAP and EAP-IG, we use the Mean Absolute Error (MAE) for regression tasks and the cross-entropy
loss for classification tasks.

Since each of these techniques can be configured to be more or less aggressive, i.e. to prune more or fewer nodes/edges, we

3https://wandb.ai/cybershiptrooper/siit_node_stats/reports/Pearson-Correlation-Plots--
Vmlldzo4Njg1MDgy
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Case WeightSIIT
Nodes in circuit Nodes not in circuit

Quartiles Range Quartiles Range

11 0.4 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
13 0.4 0.31 - 0.67 - 1.00 0.23 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
18 1.0 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.01
19 0.4 0.53 - 0.69 - 0.84 0.37 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
20 0.4 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
21 0.5 0.13 - 0.14 - 0.36 0.13 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.04
26 0.4 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
29 0.4 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
3 10.0 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.02 0.00 - 0.09
33 0.4 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
34 1.0 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
35 1.0 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
36 1.0 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
37 1.0 1.00 - 1.00 - 1.00 1.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.00
4 0.4 0.72 - 0.86 - 0.99 0.71 - 0.99 0.00 - 0.00 - 0.00 0.00 - 0.00
8 0.4 0.25 - 0.50 - 0.75 0.00 - 1.00 0.00 - 0.00 - 0.00 0.00 - 0.01
IOI 0.4 0.86 - 0.99 - 1.00 0.48 - 1.0 0.00 - 0.00 - 0.00 0.00 - 0.001

Table 1: Detailed boxplot values for the effect on accuracy of nodes in the circuit and nodes out of the circuit, for all the SIIT
models in the benchmark, measured using the node effect equation described in Section 5. We consider that the intervention
has changed the output for regression models when the new output differs by 0.05 or more, and for classification models
when the new output is simply different from the original output. We can see that nodes not in the circuit have zero or very
close to zero effect, while nodes in the circuit have a much higher effect.
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Figure 11: Variation of accuracy for case 3’s SIIT model, when mean ablating all the nodes that are not in the ground
truth circuit, and varying the absolute tolerance (atol) for deciding if an output has changed. For atol values below 0.1, the
accuracy is very low, close to zero, but it quickly jumps to 28.9% at 0.1. There is a rotund change between 0.1 and 0.25,
where the accuracy jumps to 84.1%, and finally, at 0.5, the accuracy reaches 98.9%. This means around 29% of the logits
returned by the SIIT model are at a distance closer than 0.1 from the original outputs, 85% are at a distance closer than 0.25,
and 99% are at a distance closer than 0.5.

compare their performance using the Area Under the Curve (AUC) of ROC curves. We compute the True Positive Rate
(TPR) and False Positive Rate (FPR) for the ROC curves by comparing the discovered circuits with the ground truth circuits,
which we have by construction in INTERPBENCH.

14



Case WeightSIIT
Nodes in circuit Nodes not in circuit

Quartiles Range Quartiles Range

11 0.4 0.54 - 0.55 - 0.56 0.53 - 0.56 0.00 - 0.00 - 0.00 0.00 - 0.00
13 0.4 0.18 - 0.34 - 0.50 0.14 - 0.51 0.00 - 0.00 - 0.00 0.00 - 0.00
18 1.0 0.45 - 0.46 - 0.46 0.45 - 0.47 0.00 - 0.00 - 0.00 0.00 - 0.01
19 0.4 0.27 - 0.31 - 0.35 0.24 - 0.39 0.00 - 0.00 - 0.00 0.00 - 0.00
20 0.4 0.22 - 0.22 - 0.22 0.22 - 0.22 0.00 - 0.00 - 0.00 0.00 - 0.00
21 0.5 0.13 - 0.14 - 0.19 0.11 - 0.31 0.00 - 0.00 - 0.00 0.00 - 0.04
26 0.4 0.57 - 0.57 - 0.57 0.57 - 0.57 0.00 - 0.00 - 0.00 0.00 - 0.00
29 0.4 0.79 - 0.79 - 0.79 0.79 - 0.79 0.00 - 0.00 - 0.00 0.00 - 0.00
3 10.0 0.74 - 0.76 - 0.78 0.71 - 0.80 0.00 - 0.00 - 0.00 0.00 - 0.09
33 0.4 0.56 - 0.56 - 0.56 0.56 - 0.56 0.00 - 0.00 - 0.00 0.00 - 0.00
34 1.0 0.45 - 0.45 - 0.45 0.45 - 0.45 0.00 - 0.00 - 0.00 0.00 - 0.00
35 1.0 0.79 - 0.79 - 0.79 0.79 - 0.79 0.00 - 0.00 - 0.00 0.00 - 0.00
36 1.0 0.31 - 0.31 - 0.31 0.31 - 0.31 0.00 - 0.00 - 0.00 0.00 - 0.00
37 1.0 0.76 - 0.76 - 0.76 0.76 - 0.76 0.00 - 0.00 - 0.00 0.00 - 0.00
4 0.4 0.61 - 0.67 - 0.74 0.61 - 0.76 0.00 - 0.00 - 0.00 0.00 - 0.00
8 0.4 0.20 - 0.39 - 0.59 0.00 - 0.79 0.00 - 0.00 - 0.00 0.00 - 0.01
IOI 0.4 0.59 - 0.79 - 0.94 0.38 - 0.99 0.00 - 0.00 - 0.00 0.00 - 0.00

Table 2: Detailed boxplot values for the effect on accuracy of nodes in the circuit and nodes out of the circuit, for all the
SIIT models in the benchmark, measured using mean ablations. The mean ablation technique differs from the interchange
ablation in that it replaces the activations of the target node with the mean activations for that node in the dataset. In other
words, it does not use a different input to replace the activations of the target node. Mean ablation is a robustness check for
the SIIT models in INTERPBENCH, which were trained with interchange ablations. We consider that the intervention has
changed the output for regression models when the new output differs by 0.05 or more, and for classification models when
the new output is simply different from the original output. We can see that nodes not in the circuit have zero or very close
to zero effect, while nodes in the circuit have a much higher effect.
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Figure 12: Accuracy of the SIIT, Tracr and “natural” models for 3 randomly selected cases after mean ablating the nodes
rejected by ACDC over different thresholds. On the left, we have only SIIT and “natural” models, and on the right, we have
only Tracr and “natural” models. The lines in this figure show that the SIIT models have a closer behavior to the “natural”
models than the Tracr ones.

In order for this comparison to be sound we need to be more specific on the granularity at which we perform the evaluation.
All of the techniques mentioned above work at the QKV granularity level, and thus they consider the outputs of the Q, K,
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Case WeightSIIT
Nodes in circuit Nodes not in circuit

Quartiles Range Quartiles Range

3 10110 0.782 - 0.844 - 0.906 0.720 - 0.968 0.000 - 0.000 - 0.000 0.000 - 0.428
4 510 0.874 - 0.934 - 0.977 0.821 - 0.978 0.169 - 0.750 - 0.960 0.000 - 1.000
8 510 0.346 - 0.346 - 0.346 0.346 - 0.346 0.000 - 0.000 - 0.000 0.000 - 0.000
11 510 0.781 - 0.783 - 0.786 0.779 - 0.788 0.000 - 0.000 - 0.000 0.000 - 0.113
13 510 0.245 - 0.471 - 0.705 0.174 - 0.799 0.000 - 0.000 - 0.000 0.000 - 0.000
18 1110 0.091 - 0.256 - 0.440 0.043 - 0.545 0.000 - 0.000 - 0.071 0.000 - 0.112
19 510 0.313 - 0.326 - 0.339 0.301 - 0.351 0.000 - 0.000 - 0.067 0.000 - 0.067
20 510 0.000 - 0.000 - 0.000 0.000 - 0.000 0.000 - 0.000 - 0.000 0.000 - 0.100
21 610 0.121 - 0.146 - 0.155 0.000 - 0.824 0.000 - 0.000 - 0.000 0.000 - 0.107
26 510 0.152 - 0.152 - 0.152 0.152 - 0.152 0.000 - 0.000 - 0.000 0.000 - 0.013
29 510 0.617 - 0.617 - 0.617 0.617 - 0.617 0.000 - 0.000 - 0.000 0.000 - 0.000
33 510 0.300 - 0.300 - 0.300 0.300 - 0.300 0.000 - 0.000 - 0.000 0.000 - 0.000
34 1110 0.436 - 0.436 - 0.436 0.436 - 0.436 0.000 - 0.000 - 0.000 0.000 - 0.000
35 1110 0.493 - 0.493 - 0.493 0.493 - 0.493 0.000 - 0.000 - 0.000 0.000 - 0.000
36 1110 0.290 - 0.290 - 0.290 0.290 - 0.290 0.000 - 0.000 - 0.000 0.000 - 0.000
37 1110 0.541 - 0.541 - 0.541 0.541 - 0.541 0.000 - 0.000 - 0.000 0.000 - 0.000

Table 3: Detailed boxplot values for the effect on accuracy of nodes in the circuit and nodes out of the circuit, for all the
SIIT models in the benchmark, measured using zero ablations. The zero ablation technique differs from the interchange
ablation in that it replaces the activations of the target node with zeros. Zero ablation is a robustness check for the SIIT
models in INTERPBENCH, which were trained with interchange ablations, although it is a more aggressive intervention and
can potentially throw off the distribution of the model’s activations. We consider that the intervention has changed the output
for regression models when the new output differs by 0.05 or more, and for classification models when the new output is
simply different from the original output. Unlike mean and resample ablations, where we see little to no effects from nodes
that are not in the circuit, significant effects can be seen when using zero ablations.

and V matrices in attention heads and the output of MLP components as nodes in the computational graph. On the other
hand, SIIT models are trained at the attention head level, without putting a constraint on the head subcomponents, which
means that the trained models can solve the required tasks via QK circuits, OV circuits, or a combination of both (Elhage
et al., 2021). Thus, during the evaluation of the circuit discovery techniques, we promote the QKV nodes to heads on both
the discovered circuits and the ground truth circuits. In other words, if for example the output of a Q matrix in an attention
head is part of the circuit, we consider the whole attention head to be part of it as well.

Additionally, when calculating the edge ROC curves for SP, we consider an edge to be part of the circuit if both of its nodes
are part of the circuit. This is a simplification, but it allows us to compare regular SP with the rest of the techniques, which
work at the edge level.

Table 5 shows all the p-values for the Wilcoxon-Mann-Whitney U-test on each pair of circuit discovery techniques, for the
comparison of the AUC of ROC curves. Table 6 shows the Vargha-Delaney Â12 effect size values for the same comparison.

C. Benchmark and license details
The code repository for our benchmark can be found here: https://github.com/FlyingPumba/circuits-
benchmark, and it is licensed under the MIT license. The trained models can be found here: https://huggingface.
co/cybershiptrooper/InterpBench, and they are licensed under CC-BY. The benchmark’s code is hosted on
GitHub and the trained models are hosted on HuggingFace. We will ensure that both are available for a long time. For that
purpose, we have minted DOIs for both the code repository and the trained models. The DOI for the code repository is
10.5281/zenodo.11518575 and the DOI for the trained models is 10.57967/hf/2451.

The intended use of this benchmark is to evaluate the effectiveness of mechanistic interpretability techniques. The training
and evaluation procedures can be found in our code repository and are described in Sections 4 and 5. The code repository
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Case Task type Mean ablation accuracy Zero ablation accuracy

3 Regression 0.0 0.131
4 Regression 0.525 0.248
8 Classification 0.632 0.634
11 Classification 0.967 0.887
13 Classification 0.959 0.943
18 Classification 0.949 0.913
19 Classification 0.829 0.527
20 Classification 1.0 0.995
21 Classification 0.889 0.544
26 Classification 0.641 0.641
29 Classification 0.741 0.891
33 Classification 0.913 0.9
34 Classification 0.805 0.784
35 Classification 0.915 0.989
36 Classification 1.0 1.0
37 Classification 0.837 0.548

Table 4: Accuracy of the SIIT models after mean and zero ablating all the nodes that are not in the ground truth circuit. We
consider that the ablation has changed the output for regression models when the new output differs by 0.05 or more, and for
classification models when the new output is simply different from the original output. We can see that there is a big drop in
accuracy for models performing regression tasks, while the models performing classification tasks are more robust. It is
worth noting that using both mean and zero ablations on many nodes at the same time can be a very aggressive intervention
and throw off the distribution of the model’s activations. We expect realistic models to face similar issues.

ACDC Node SP Edge SP EAP EAP-IG

ACDC - 0.000427 0.028417 0.000061 0.099481
Node SP - - 0.015503 0.000153 0.000979
Edge SP - - - 0.000031 0.307821
EAP - - - - 0.000648

Table 5: Wilcoxon-Mann-Whitney U-test p-values for the comparison of the AUC of ROC curves for the different circuit
discovery techniques. We use α = 0.05 as the significance level. The p-values below this level are marked in bold, which
means that we can reject the null hypothesis that the two techniques being compared have the same distribution of AUC
values. I.e., we can say that the AUC values are significantly different.

ACDC Node SP Edge SP EAP EAP-IG

ACDC - 0.742 0.541 0.91 0.555
Node SP - - 0.355 0.844 0.316
Edge SP - - - 0.887 0.486
EAP - - - - 0.111

Table 6: Vargha-Delaney Â12 effect size values for the comparison of the AUC of ROC curves for the different circuit
discovery techniques. The values are interpreted as follows: 0.56 < Â12 < 0.64 is considered small, 0.64 < Â12 < 0.71 is
considered medium, and Â12 > 0.71 is considered large.

also contains instructions on how to replicate the empirical results presented in this work. The benchmark we provide does
not contain any offensive content. We, the authors, bear all responsibility to withdraw our paper and data in case of violation
of licensing or privacy rights.

We provide several structured metadata files for our benchmark, all available in HuggingFace’s repository:
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Figure 13: Average accuracy of circuit across ACDC thresholds, for Tracr, SIIT, and “naturally” trained transformers on
all tasks. The scores in each boxplot show the accuracy of models after mean-ablating all the nodes that are not a part of
ACDC’s hypothesis, averaged across multiple thresholds, for each task. SIIT and Natural scores are clearly the most similar.

• A Croissant metadata record.

• A CSV file listing the metadata for all cases in the benchmark.

• A Parquet file listing the metadata for all cases in the benchmark.

• A JSON file listing the metadata for all cases in the benchmark.

D. Tasks in the benchmark
Table 7 displays all the tasks included in INTERPBENCH.

E. Benchmark usage
The trained models hosted on HuggingFace are organized in directories, each one corresponding to a case in the benchmark,
containing the following files:

• ll_model.pth: A serialized PyTorch state dictionary for the trained transformer model.

• ll_model_cfg.pkl: Pickle file containing the architecture config for the trained transformer model.

• meta.json: JSON file with hyperparameters used for training for the model.

• edges.pkl: Pickle file containing labels for the circuit, i.e., list of all the edges that are a part of the ground truth
circuit.

These models can be loaded using TransformerLens, a popular Python library for Mechanistic Interpretability on transform-
ers:

import pickle
from transformer_lens import HookedTransformer

cfg_dict = pickle.load(f"ll_model_cfg.pkl")
cfg = HookedTransformerConfig.from_dict(cfg_dict)

model = HookedTransformer(cfg)
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Case Tracr? Task type Description

11 Yes Classification Counts the number of words in a sequence based on their length.
13 Yes Classification Analyzes the trend (increasing, decreasing, constant) of numeric tokens.
18 Yes Classification Classify each token based on its frequency as ’rare’, ’common’, or

’frequent’.
19 Yes Classification Removes consecutive duplicate tokens from a sequence.
20 Yes Classification Detect spam messages based on appearance of spam keywords.
21 Yes Classification Extract unique tokens from a string.
26 Yes Classification Creates a cascading effect by repeating each token in sequence incre-

mentally.
29 Yes Classification Creates abbreviations for each token in the sequence.
3 Yes Regression Returns the fraction of ’x’ in the input up to the i-th position for all i.
33 Yes Classification Checks if each token’s length is odd or even.
34 Yes Classification Calculate the ratio of vowels to consonants in each word.
35 Yes Classification Alternates capitalization of each character in words.
36 Yes Classification Classifies each token as ’positive’, ’negative’, or ’neutral’ based on

emojis.
37 Yes Classification Reverses each word in the sequence except for specified exclusions.
4 Yes Regression Return fraction of previous open tokens minus the fraction of close

tokens.
8 Yes Classification Fills gaps between tokens with a specified filler.
IOI No Classification Indirect Object Identification.
IOI Next token No Classification Indirect Object Identification, trained also with next-token prediction.

Table 7: A description of the tasks included in INTERPBENCH.

weights = torch.load(f"ll_model.pth")
model.load_state_dict(weights)

More details of usage are provided in the GitHub repository.
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