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Abstract
Classical federated learning approaches yield significant performance degradation1

in the presence of Non-IID data distributions of participants. When the distribution2

of each local dataset is highly different from the global one, the local objective3

of each client will be inconsistent with the global optima which incur a drift in4

the local updates. This phenomenon highly impacts the performance of clients.5

This is while the primary incentive for clients to participate in federated learning is6

to obtain better personalized models. To address the above-mentioned issue, we7

present a new algorithm, FLIS, which groups the clients population in clusters with8

jointly trainable data distributions by leveraging the inference similarity of clients’9

models. This framework captures settings where different groups of users have10

their own objectives (learning tasks) but by aggregating their data with others in11

the same cluster (same learning task) to perform more efficient and personalized12

federated learning. We present experimental results to demonstrate the benefits of13

FLIS over the state-of-the-art benchmarks on CIFAR-100/10, SVHN, and FMNIST14

datasets.15

1 Introduction16

Federated learning (FL) is a recently proposed distributed training framework that enables distributed17

users to collaboratively train a shared model under orchestration of a central server without18

compromising the data privacy of users [1]. While brings us great potential, FL faces challenges in19

practical settings. For example, due to the statistical heterogeneity (Non-IIDness) of the distribution20

of the distributed data, learning a single deep learning model on the server as in [2, 3, 4] lacks21

flexibility and personalization and yield poor performance [5, 6, 7]. Due to the Non-IIDness, it turns22

out that some of participants gain no benefit by participating in FL since the global shared model23

is less accurate than the local models that they can train on their own [8, 9]. This is while one of24

the main incentives for clients to participate in FL is to improve their personal model performance.25

Specially, for those clients who have enough private data, there is not much benefit to participate in26

FL [7]. Personalized FL under data heterogeneity was also realized via performing clustering [10, 11].27

Clustered-FL addresses this problem by grouping clients into separate clusters based on either28

geometric properties of the FL loss surface [11] or based on weights of models or model update29

comparisons at the server side [12].30

Motivated by the above-mentioned, it is therefore, natural to ask the question: How can one31

benefit the most from FL when each participant has a varying amount of data coming from distinct32

distributions that is a black box to others? This is the canonical question that we will answer in this33

paper. In the current paper, we propose a clustered federated learning algorithm where the clients are34

partitioned into different clusters depending upon their data distributions. Our goal is to group the35

clients with similar data distributions in the same cluster without having access to their private data36

and then train models for every cluster of users. The main idea of our algorithm is a strategy that37

alternates between estimating the cluster identities and maximizing the inference similarity at the38

server side. Our main contributions can be summarized as follows.39
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• We propose the idea of inference similarity as a way for the central server to identify cluster40

ID of clients that have similar data distributions without requiring any access to the private41

data of clients. This way, clients in the same cluster can benefit from each other’s training42

without the corruptive influence of clients with unrelated data distributions.43

• Our algorithm can constitute joint and disjoint clusters and does not require the number44

of clusters to be known apriori. Further, it is effective both in Non-IID and IID regimes.45

In contrast, prior clustered FL works [10, 11] considers a pre-defined number of clusters46

(models) on the server and assign a hard membership ID to the clients. In such settings, the47

proposed method could perform poorly for many of the clients under pathological highly48

skewed Non-IID data which requires more number of clusters, and slightly skewed Non-IID49

data which requires fewer clusters since we cannot know how many unique data distributions50

the client’s datasets are drawn from.51

• We perform extensive experimental studies to evaluate FLIS and verify its performance for52

Non-IID FL. In particular, we demonstrate that the proposed approach can significantly53

outperform the existing state-of-the-art (SOTA) global model FL benchmarks by up to54

∼ 40%, and the SOTA personalized FL baselines by up to ∼ 30%.55

2 Federated Learning with Clustering56

Figure 1: A toy example showing the overview of FLIS algorithm. (a) The server sends the initial global model
to the clients at round 1. The clients update the received model using their local data and send back their updated
models to the server. (b) The server captures the inference results on its own small dataset. Then according
to the similarity of the inference results, the clients are clustered. In this example, clients 1 and 2, and 3 are
yielding more similar inference results compared to client 4. (c) The server uses inference similarity results to
constitute the adjacency matrix and identify their cluster IDs via hard thresholding or hierarchical clustering and
does model averaging within each cluster.

Algorithm 1: The FLIS (DC) framework
Require: Number of available clients N , sampling rate R ∈ (0, 1], Data on the server DServer , clustering

threshold β
Init: Initialize the server model with θ0g

1 Def FLIS_DT:
2 for each round t = 0, 1, 2, . . . do
3 n← max(R×N, 1)
4 St ← {k1, . . . , kn} random set of n clients
5 for each client k ∈ St in parallel do
6 if t = 0 then
7 download θ0g from the server and start training, i.e. θtk,j∗t = θ0g
8 else
9 download clusters θtg,jt , jt = 1, . . . , Tt from the server and select the best cluster

according to θtk,j∗t = argmin Lk(D
test
k ; θtg,jt)

10 θt+1
k,j∗t
← ClientUpdate(Ck; θ

t
k,j∗t

) // SGD training

11 {Cjt+1}
Tt+1

jt+1=1 = ISC(DServer, {θt+1
k,j∗t
}k=1,...,n) // dynamically clustering clients

via inference similarity
12 θt+1

g,jt+1
=

∑
k∈Cjt+1

|Dk|θt+1
k,j∗t

/
∑

k∈Cjt+1
|Dk|
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2.1 Overview of FLIS Algorithm57

In this section, we provide details of our algorithm. We name this algorithm Federated Learning by58

Inference Similarity (FLIS). FLIS is able to form both joint dynamic clusters with soft membership59

ID, named as FLIS (DC) and disjoint hierarchically formed clusters with hard membership ID,60

named as FLIS (HC). The overview of FLIS (DC) which forms joint clusters is sketched in Figure 161

and presented in Algorithm 1, and 2. The overview of FLIS (HC) which forms disjoint clusters62

is presented in Algorithm 3. The first round of the algorithm starts with a random initial model63

parameters θg. In the t-th iteration of FLIS, the central server samples a random subset of clients64

St ⊆ [N ] (N is the total number of clients), and broadcasts the current model parameters {θtg,ji}
T
i=165

to the clients in St. We recall that the local objective Lk is typically defined by the empirical loss over66

local data. Each client then estimates its cluster identity via finding the model parameter that yields67

minimum loss on its test data, i.e., θtk,j∗t = argminj Lk(D
server
k ; θtg,jt). Then the clients perform68

T steps of stochastic gradient descent (SGD) updates, get the updated model, and send their model69

parameters, {θt+1
k }∥St∥

k=1 , to the server. After receiving the model parameters from all the participating70

clients, the server then leverages inference similarity as a way to form dynamic clusters of clients that71

have similar data distributions. Finally, the server collects all the parameters from clients who are in72

the same cluster and averages the model parameters of each cluster.73

Algorithm 2: Inference Similarity Clustering (ISC)
Require: Data on the server DServer , β
Return: The formed clusters {Cj}

1 Function ISC(DServer , {θt+1
k,j∗t
}k=1,...,n):

2 Bk = Fk(D
Server; θt+1

k,j∗t
) // Fk is the function defined over the client model

3 Ai,j =
||Bi⊙Bj ||F

||Bi||F ||Bj ||F
; i, j = 1, . . . , n // Server constructs the adjacency matrix

4 Ãi,j = Γ(Ai,j) = Sign(Ai,j − β) // Server applies hard thresholding and does joint
clustering

5 Return {Cjt+1}
Tt+1

jt+1=1

Algorithm 3: The FLIS (HC) framework
Require: Number of available clients N , sampling rate R ∈ (0, 1], Data on the server DServer , clustering

threshold β
Init: Initialize the server model with θ0g

1 Def FLIS_HC:
2 for each round t = 0, 1, 2, . . . do
3 if t = 1 then
4 All clients receive the initial server model θ0g , perform local update and send back the updated

models to the server.
5 A← server forms A based on Ai,j defined in Subsection B.
6 {C1, ..., Cj} = HC(A, β) // performing hierarchical clustering to obtain

the clusters
7 θ0g,j ← θ0g // initializing all clusters with θ0g
8 else
9 n← max(R×N, 1)

10 St ← {k1, . . . , kn} random set of n clients

11 for each client k ∈ St in parallel do
12 Each client k receives its cluster model from the server θtg,jk , j = 1, . . . , T

13 θt+1
k,jk
← ClientUpdate(Ck; θ

t
k,jk

) // SGD training

14 θt+1
g,j =

∑
k∈Cj

|Dk|θt+1
k,jk

/
∑

k∈Cj
|Dk|

2.2 Clustering Clients74

Herein, we are aiming to find the clients with similar data distributions without requiring any prior75

knowledge about the data distributions. In doing so, we assume that the server has some real or76

synthetic data on its own 1. The server then performs inference on each client model and obtain77

1The number of auxiliary samples used for forming the clusters at the server is 2500.
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Table 1: Test accuracy comparison across different datasets for Non-IID label skew (20%), and (30%).
Algorithm FMNIST CIFAR-10 CIFAR-100 SVHN

Non-IID label skew (20%)

SOLO 95.92± 0.57 79.22± 1.67 32.28± 0.23 79.72± 1.37
FedAvg 77.3± 4.9 49.8± 3.3 53.73± 0.50 80.2± 0.8
FedProx 74.9± 2.6 50.7± 1.7 54.35± 0.84 79.3± 0.9
FedNova 70.4± 5.1 46.5± 3.5 53.61± 0.42 75.4± 4.8
Scafold 42.8± 28.7 49.1± 1.7 54.15± 0.42 62.7± 11.6
LG 96.80± 0.51 86.31± 0.82 45.98± 0.34 92.61± 0.45
PerFedAvg 95.95± 1.15 85.46± 0.56 60.19± 0.15 93.32± 2.05
IFCA 97.15± 0.01 87.99± 0.15 71.84± 0.23 95.42± 0.06
CFL 77.93± 2.19 51.11± 1.01 40.29± 2.23 73.62± 1.76
FLIS (DC) 97.64± 0.38 89.47± 0.92 73.91± 0.29 95.65± 0.17
FLIS (HC) 97.45± 0.08 89.35± 0.46 73.20± 0.31 95.48± 0.21

Non-IID label skew (30%)

SOLO 93.93± 0.10 65± 0.65 22.95± 0.81 68.70± 3.13
FedAvg 80.7± 1.9 58.3± 1.2 54.73± 0.41 82.0± 0.7
FedProx 82.5± 1.9 57.1± 1.2 53.31± 0.48 82.1± 1.0
FedNova 78.9± 3.0 54.4± 1.1 54.62± 0.91 80.5± 1.2
Scafold 77.7± 3.8 57.8± 1.4 54.90± 0.42 77.2± 2.0
LG 94.21± 0.40 76.58± 0.16 35.91± 0.20 87.69± 0.77
PerFedAvg 92.87± 2.67 77.67± 0.19 56.42± 0.41 91.25± 1.47
IFCA 95.22± 0.03 80.95± 0.29 67.39± 0.27 93.02± 0.15
CFL 78.44± 0.23 52.57± 3.09 35.23± 2.72 73.97± 4.77
FLIS (DC) 95.95± 0.51 82.25± 1.12 68.36± 0.12 93.08± 0.22
FLIS (HC) 95.35± 0.16 82.17± 0.22 67.51± 0.23 93.10± 0.20

a M̃ × Ñ matrix, Bk = Fk(D
server; θtk,j∗t ), k = 1, ..., ∥St∥, where Ñ , and M̃ are the number78

of final neurons of the last fully connected layer (classification layer), and the number of data on79

the server, respectively. Note that, the columns of Bk can be one-hot or soft labels. Using Bk,80

the server constructs an adjacency matrix as Ai,j =
||Bi⊙Bj ||F

||Bi||F ||Bj ||F , where i, j = 1, ..., ∥St∥, and ⊙81

stands for Hadamard product. Having the adjacency matrix Ai,j , as mentioned earlier, depending on82

whether forming joint clusters are of interest or the disjoint ones, we propose two different clustering83

approaches. For FLIS (DC) that constructing joint clusters on the server is of interest, we define a84

hard thresholding operator Γ which is applied on Ai,j and yields Ãi,j = Γ(Ai,j) = Sign(Ai,j − β),85

with β being a threshold value. Now, making use of Ãi,j , the server can form joint clusters of interest86

by putting indices of the positive entries in each row of Ãi,j in the same cluster as is shown in the toy87

example in Fig 1. In FLIS (DC), in each round 10 clusters is formed which is equal to the number88

of participant clients in each round. For FLIS (HC), having Ãi,j in hand, the server can group the89

clients by employing hierarchical clustering (HC) [13] as presented in Algorithm 3 ). It is noteworthy90

that in FLIS (HC) the number of formed clusters are fixed and depends upon the distance threshold91

of HC which is a hyperparameter.92

3 Experiments93

3.1 Experimental Settings94

Datasets and Models. We conduct experiments on CIFAR-10, CIFAR-100, SVHN, and Fashion95

MNIST (FMNIST) datasets. For each dataset we considered three different federated heterogeneity96

settings as in [14]: Non-IID label skew (20%), Non-IID label skew (30%), and Non-IID Dir(0.1). We97

used Lenet-5 architecture for CIFAR-10, SVHN, and FMNIST datasets, and ResNet-9 architecture98

for CIFAR-100 dataset.99

Baselines. To show the effectiveness of the proposed method, we compare the results of our100

algorithm against SOTA personalized FL methods i.e., LG-FedAvg [15], Per-FedAvg [5], IFCA [10],101

CFL [11], as well as methods targeting to learn a single global model i.e., FedAvg [2], FedProx [16],102

FedNova [4], and SCAFFOLD [3]. We also compare our results with another baseline named SOLO,103

where each client trains a model on its own local data without taking part in FL. Our code is available104

at https://github.com/anonresearcher1/alg-novel-flis.105

Performance Comparison. Table 1, and 2, show the average final top-1 test accuracy of all106

clients for all the SOTA algorithms under Non-IID label skew (20%), Non-IID label (30%), and107

Non-IID Dir(0.1) setups, respectively. In these tables we report the results of the two proposed108
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Table 2: Test accuracy comparison for Non-IID Dir(0.1).
Algorithm FMNIST CIFAR-10 CIFAR-100

SOLO 69.71± 0.99 41.68± 2.84 16.83± 0.51
FedAvg 82.91± 0.83 38.22± 3.28 44.52± 0.42
FedProx 84.04± 0.53 42.29± 0.95 45.52± 0.72
FedNova 84.50± 0.66 40.25± 1.46 46.52± 1.34
Scafold 10.0± 0.0 10.0± 0.0 43.73± 0.89
LG 74.96± 1.41 49.65± 0.37 23.59± 0.26
PerFedAvg 80.29± 2.00 53.58± 1.57 33.94± 0.41
IFCA 85.01± 0.30 51.16± 0.49 47.67± 0.28
CFL 74.13± 0.94 42.30± 0.25 31.42± 1.50
FLIS (DC) 86.5± 0.76 60.33± 2.30 53.85± 0.56
FLIS (HC) 85.21± 0.18 51.18± 0.21 49.10± 0.19

clustering approaches i.e., FLIS (DC) (presented in Algorithm 1) as well as FLIS (HC) (presented109

in Algorithm 3). Under Non-IID settings, SOLO with zero communications cost demonstrates110

much better accuracy than all the global FL baselines including FedAvg, Fedprox, FedNova, and111

SCAFFOLD. On the other hand, each client itself may not have enough data and thus we need to112

better exploit the similarity among the users by clustering. This further explains the benefits of113

personalization and clustering in Non-IID settings. Comparing different FL approaches, we can114

see that FLIS (DC) consistently yields the best accuracy results among all tasks. It can outperform115

FedAvg by up to ∼ 40%.116

It is apparent from table 2 for Non-IID Dir(0.1) that LG-FedAvg and Per-FedAvg perform even117

worse than FedAvg. The performance of CFL benchmark is close to that of FedAvg in most cases,118

and even worse. IFCA (with two clusters, C=2) obtained the closest results to FLIS , but FLIS119

consistently beats IFCA especially in Non-IID Dir(0.1) by a large margin. FLIS shows superior120

learning performance over the SOTA on more challenging tasks. For instance, FLIS, is noticeably121

better than IFCA for CIFAR-10 which is a harder task compared to FMNIST and SVHN by up to122

∼ 10% in Non-IID Dir(0.1). As a final note, we also studied the impact of constructing disjoint123

clusters. HC by extracting disjoint clusters, seems to be slightly deteriorating the performance of124

FLIS, even though it still remains to be on par with the best performing baselines.125

126 3.2 Communication Efficiency127

3.2.1 What is the Required Communication Cost/Round to Reach a Target Test Accuracy?128

We additionally compare the SOTA baselines in terms of the number of communication129

round/Communication cost that is required to reach a specific target accuracy. Table 3 reports130

the required number of communication round and communication cost to reach the designated target131

test accuracies for Non-IID label skew (20%) and Non-IID label skew (30%), respectively. As is132

observed from the table, in all scenarios, FLIS has the minimum communication round. For instance,133

37 number of rounds are sufficient for FLIS to achieve the target accuracy of 50% for Non-IID134

label skew (20%) in CIFAR-100, whereas some other baselines, e.g. Per-FedAvg requires ∼ 4×135

more communication rounds and global model FL baselines are the most expensive ones in general.136

IFCA requires the closest number of rounds compared to FLIS to reach the target test accuracies in137

general. We attribute this to the fact that by grouping the clients with similar data distributions in the138

same clusters, the setting tends to mimic the IID setting, which means faster convergence in fewer139

communication round. Note that “−−” means the baseline was not able to reach the target accuracy.140

This characteristics of FLIS (HC) is desirable in practice as it helps to reduce the communication141

overhead in FL systems in two ways: first, it converges fast and second, rather than communicating142

all clusters (models) with the clients, the server will receive the cluster ID from each client and then143

only send the corresponding cluster to each client.144

3.3 Impact of Hyper-parameter Changes145

Herein, we study the impact of a few important hyper-parameters on the performance of FLIS as in146

the following.147

The influence of the inference similarity threshold β. We investigate the effect of the inference148

similarity threshold β on the final test accuracy. Fig. 2 visualizes the accuracy performance behavior149

of FLIS under different values of β, as well as the local epochs for several datasets for Non-IID150

(20%). We vary β from 0 to 1. The parameter β controls the similarity of the data distribution of151

clients within a cluster. Therefore, β achieves a trade-off between a purely local and global model152
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Figure 2: Evaluating FLIS (DC)’s accuracy performance versus the inference similarity threshold β, and number
of local epoch for Non-IID label skew (20%) on CIFAR-10, FMNIST, and SVHN datasets. FLIS (DC) benefits
from larger numbers of local training epochs.
Table 3: Comparing different FL approaches for Non-IID (20%) in terms of the required number of
communication rounds, and for Non-IID (30%) in terms of the required communication cost in Mb to reach
target top-1 average local test accuracy: communication round/communication cost.

Algorithm FMNIST CIFAR-
10

CIFAR-100 SVHN

Target 80% 70% 50% 75%

FedAvg 200/79.36 −−/−− 130/4237.37 150/71.43
FedProx 200/71.43 −−/−− 115/4237.37 200/71.43
FedNova −− /−− −−/−− 120/3601.98 150/79.36
Scafold −− /−− −−/−− 82/3305.11 −−/−−
LG 13/1.26 33/2.11 −− /−− 16/1.76
PerFedAvg 19/7.54 60/23.81 110/6356.06 39/18.65
IFCA 14/11.30 25/16.66 40/3495.19 17/10.71
CFL −− /−− −−/−− −− /−− −−/−−
FLIS (HC) 12/7.53 24/10.31 37/1991.60 15/8.73

and provides a trade-off between generalization and distribution heterogeneity. To delineate, when153

β = 0, FLIS groups all the clients into 1 cluster and the scenario reduces to FedAvg baseline. This is154

the reason for the significant accuracy drop at β = 0 as it is also evident from figure 2, by increasing155

β, FLIS becomes more strict in grouping the clients. It means FLIS only groups the clients with156

more amount of label/feature overlap into a cluster leading to a more personalized FL. The optimal157

performance for CIFAR-10, SVHN, and FMNIST are achieved at β = 0.3, β = 0.3, and β = 0.5,158

respectively. Finally, when β is 1, the scenario almost reduces to SOLO baseline where each client159

receives the model from the server and lonely trains it on it own local data. It is noteworthy that160

Non-IID (30%) has the same behavior, which was not depicted here due to space limitations.161

Benefit of more local updates. The benefits of FLIS can be further pronounced by increasing the162

number of local epochs. The results are shown in Figure 2. As can be seen, when the number of163

local epoch is 1, the clients’ local updates are very small. Therefore, the training will be slow and164

the accuracy becomes lower compared to the bigger number of local epochs given a fixed number of165

communication rounds. Also, when the clients have not been trained enough, their inference results166

at server side would be erroneous which further causes less accurate clustering. Figure. 2, shows167

the performance of FLIS is coupled with local training epochs specially on more challenging tasks.168

In contrast, it was shown in [14] when the number of local epochs is too large, the accuracy of all169

non-personalized models drop which is due to severe-side averaged models drift form the clients’170

local models [4].171
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