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SR-LIVO: LiDAR-Inertial-Visual Odometry and
Mapping with Sweep Reconstruction

Zikang Yuan1, Jie Deng2, Ruiye Ming2, Fengtian Lang2 and Xin Yang2∗

Abstract—Existing LiDAR-inertial-visual odometry and map-
ping (LIV-OAM) systems mainly utilize the LiDAR-inertial
odometry (LIO) module for structure reconstruction and the
LiDAR-assisted visual-inertial odometry (VIO) module for color
rendering. However, the performance of existing LiDAR-assisted
VIO module doesn’t match the accuracy delivered by LIO
systems in the scenarios containing rich textures and geometric
structures (i.e., without failure mode for both camera and
LiDAR). This paper introduces SR-LIVO, an advanced and
novel LIV-OAM system employing sweep reconstruction to align
reconstructed sweeps with image timestamps. This allows the LIO
module to accurately determine states at all imaging moments,
enhancing pose accuracy and processing efficiency. Experimental
results on two public datasets demonstrate that: 1) our SR-
LIVO outperforms the existing state-of-the-art LIV-OAM systems
in both pose accuracy, rendering performance and runtime
efficiency; 2) In scenarios with rich textures and geometric
structures, the LIO framework can provide more accurate pose
than existing LiDAR-assisted VIO framework, and thus helps
rendering. We have released our source code to contribute to the
community development in this field.

Index Terms—SLAM, localization, sensor fusion.

I. INTRODUCTION

IN robotic applications like autonomous vehicles [4] and
drones [2], [3], cameras, 3D light detection and ranging

(LiDAR) and inertial measurement unit (IMU) are key sensors.
The integration of IMU measurements can provide motion
prior to ensure accurate and quick state estimation. While
LiDAR excels in capturing 3D structures, it lacks color infor-
mation which cameras compensate for. This synergy has led
to the rise of LiDAR-inertial-visual odometry and mapping
(LIV-OAM) as a leading method for accurate state estimation
and dense colored map reconstruction.

Existing state-of-the-art LIV-OAM systems [5], [6], [19]
mainly consist of a LIO module and a LiDAR-assisted VIO
module. The LIO module reconstructs 3D structures while
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Fig. 1. Illustration of (a) the raw sensor measurements from IMU, LiDAR
and camera, (b) the raw sensor measurements from IMU, camera and the
reconstructed LiDAR sweep data, where the end timestamp of reconstructed
sweep is aligned with the timestamp of captured image.

the LiDAR-assisted VIO module colors them. Both LIO and
LiDAR-assisted VIO modules perform state estimation. The
LIO module obtains the estimated state at the end timestamp
of a LiDAR sweep (e.g., tlj−1 and tlj in Fig. 1 (a)), and the
LiDAR-assisted VIO module solves the state at the timestamp
of each captured image (e.g., tci−1

and tci in Fig. 1 (a)).
The experimental results in our previous work [17] illustrate
that existing LO can achieve more accurate pose estimation
than LiDAR-assisted VO in scenarios where failure modes of
camera and LiDAR are not a factor. Given that the geometric
observations from LiDAR and the visual observations provided
by camera are much stronger than those from IMU, the inclu-
sion of an IMU does not alter the comparative performance
trend between LIO and LiDAR-assisted VIO systems.

In this paper, we propose SR-LIVO, a novel and advanced
LIV-OAM framework that enhances both accuracy and relia-
bility. We shift state estimation entirely to the LIO module,
known for its better precision. A key challenge brought by
this design is that: the timestamp of the captured images and
the end timestamp of LiDAR sweeps are often not aligned.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3389415

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 18,2024 at 07:20:05 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

Without the state of the image acquisition moment, we can
hardly use image data to render color for the restored 3D
structures. To address this issue, we highlight an additional
important function of sweep reconstruction [17], i.e., data
synchronization (e.g., tli−1

and tli in Fig. 1 (b)) with the
timestamp of captured images (e.g., tci−1

and tci in Fig. 1
(b)). In this way, the LIO module can directly estimate states
at image capture moments. Consequently, the vision module’s
role is simplified to optimizing camera-parameters (e.g., cam-
era intrinsics, extrinsics and time-offset) and completing the
color rendering task.

Experimental results on the public datasets NTU V IRAL
[8], R3Live [5] demonstrate the following key findings: 1)
Our system outperforms existing state-of-the-art LIV-OAM
systems in terms of the smaller absolute trajectory error (ATE)
than [5], [6] and higher Peak Signal-to-Noise Ratio (PSNR)
and Structure Similarity Index Measure (SSIM) than [5], and is
much more efficient than [5]; 2) In scenario with rich textures
and geometric structures, compared with existing LiDAR-
assisted VIO framework, the LIO framework can provide
more accurate pose on the testing dataset, which also helps
rendering. Meanwhile, the visualization results demonstrate
that our SR-LIVO can achieve comparable reconstruction
results to [5] on their self-collected dataset (i.e., R3Live), and
can achieve much superior results to [5] on the NTU V IRAL
dataset. We have released the source code of our system to
benefit the development of the community1.

To summarize, the main contributions of this work are
two folds: 1) We identify an important function of sweep
reconstruction, i.e., aligning LiDAR sweep and image times-
tamps; 2) We design a new LIV-OAM system based on
sweep reconstruction, where the vision module is no longer
needed to perform state estimation but only for coloring the
reconstructed map.

The rest of this paper is structured as follows. Sec. II reviews
the relevant literature. Sec. III provides preliminaries. Secs.
IV and V presents system overview and details, followed by
experimental evaluation in Sec. VI. Sec. VI concludes the
paper.

II. RELATED WORK

In recent years, various LiDAR-visual and LiDAR-inertial-
visual fusion frameworks have been proposed. V-LOAM [18]
is the first cascaded LIV-OAM framework that provides
motion priori for LiDAR odometry via a loosely coupled
VIO. [12] cascades a tightly-coupled stereo VIO, a LiDAR
odometry and a LiDAR-based loop closing module together.
Compared with [18] and [12], the vision module of DV-LOAM
[13] utilizes the direct method to perform pose estimation
and multi-frame joint optimization in turn to make the vision
module provide more accurate motion priori for the subsequent
LiDAR module. Lic-Fusion [20] combines the IMU measure-
ments, sparse visual features, LiDAR features with online spa-
tial and temporal calibration within the multi state constrained
Kalman filter (MSCKF) framework. To further enhance the

1https://github.com/ZikangYuan/sr livo

accuracy and the robustness of the LiDAR points registra-
tion, LIC-Fusion 2.0 [21] proposes a plane-feature tracking
algorithm across multiple LiDAR sweeps in a sliding-window
and refines the pose of sweep within the window. LVI-SAM
[11] integrates the data from camera, LiDAR and IMU into
a tightly-coupled graph-based optimization framework. The
vision and LiDAR module of LVI-SAM can run independently
when each other fails, or jointly when both visual and LiDAR
features are sufficient. R2Live [6] firstly proposes to run a LIO
module and a LiDAR-assisted VIO module in parallel, where
the LIO module provides geometric structure information for
the LiDAR-assisted VIO module. The back end utilizes the
visual landmarks to perform graph-based optimization. Based
on R2Live, R3Live [5] omits the graph-based optimization
module and adds a color rendering module for dense color
map reconstruction. Compared to R3Live, Fast-LIVO [19]
combines LiDAR, camera and IMU measurements into a
single error state iterated Kalman filter (ESIKF), which can be
updated by both LiDAR and visual observations. mVIL-Fusion
[14] proposes a three-staged cascading LIV-SLAM framework,
which consists of a LiDAR-assisted VIO module, a multi
sweep-to-sweep joint optimization module, a sweep-to-map
optimization module and a loop closing module. VILO-SLAM
[9] fuses 2D LiDAR residual factor, IMU residual factor
and visual reprojection residual factor into an optimization-
based framework. In [15], a weight function is designed
based on geometric structure and reflectivity to improve the
performance of solid-state LIO under severe linear acceleration
and angular velocity changes.

III. PRELIMINARY

A. Coordinate Systems

We denote (·)w, (·)l, (·)o and (·)c as a 3D point in the
world coordinate, the LiDAR coordinate, the IMU coordinate
and the camera coordinate respectively. The world coordinate
is coinciding with (·)o at the starting position.

We denote the IMU coordinate for taking the ith IMU
measurement at time ti as oi and the corresponding camera
coordinate at ti as ci. The transformation matrix (i.e., extrin-
sics) from ci to oi is denoted as Toi

ci ∈ SE(3), where Toi
ci

consists of a rotation matrix Roi
ci ∈ SO(3) and a translation

vector toici ∈ R3. Similarly, we can also obtain the extrinsics
form LiDAR to IMU, i.e., Toi

li
. For the datasets involved in

this work, we use the internal IMU of LiDAR, therefore, we
treat Toi

li
as absolutely accurate and do not require online

correction. For Toi
ci , we optimize it online because the camera

is a separate external sensor.

B. Distortion Correction

For each camera image, we utilized the offline-calibrated
distortion parameters to correct the image distortion. For Li-
DAR points, we utilize the IMU-integrated pose to compensate
the motion distortion.

IV. SYSTEM OVERVIEW

Fig. 2 illustrates the framework of our system which consists
of three main modules: a sweep reconstruction module, a
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Fig. 2. Overview of our SR-LIVO which consists of three main modules: a
sweep reconstruction module for timestamp alignment, a LIO module for
state estimation and structure restoring, and a vision module for camera-
parameters optimization and color rendering. The yellow rectangles indicate
the operations of our system that are different from that of existing state-of-
the-art frameworks.

LIO state estimation module and a vision module. The sweep
reconstruction module aligns the end timestamp of recon-
structed sweep with the timestamp of captured image. The
LIO module estimates the state of the hardware platform, and
restores the structure in real time. The vision module optimizes
the camera-parameters including camera intrinsics, extrinsics,
time-offset, and renders color to the restored structure map in
real time. For map management, we utilized the Hash voxel
map, which is the same as CT-ICP [1]. The implementation
details of various parts of the LIO module are exactly the
same as our previous work SR-LIO [16], therefore, we omit
the introduction of this module, and only introduce the details
of sweep reconstruction and our vision module in Sec. V. It is
necessary to emphasize that the state estimation of SR-LIVO
is completely done by the LIO module, and the vision module
focuses on camera-parameter optimization and rendering.

V. SYSTEM DETAILS

A. Sweep Reconstruction

In our previous work SDV-LOAM [17], we firstly propose
the sweep reconstruction idea, which increases the frequency
of LiDAR sweeps to the same frequency as camera images.
In this work, we point out another important function of this
idea: aligning the end timestamp of reconstructed sweep to
the timestamp of captured image. According to the frequency
of LiDAR sweeps and camera images, the processing method
is also different in practice. There are three specific cases as
following:

Fig. 3. Illustration of the sweep reconstruction method under three situations:
(a) The frequency of captured images is more than twice that of raw LiDAR
sweeps. (b) The frequency of captured images is less than twice but more
than that of raw LiDAR sweeps. (c) The frequency of captured images is less
than that of raw LiDAR sweeps.

The frequency of captured images is more than twice
that of raw LiDAR sweeps (as shown in Fig. 3 (a)). In
this case, we firstly down-sample the frequency of camera
images to twice the frequency of raw LiDAR sweeps. Then we
disassemble the raw LiDAR sweep (i.e., Sj−1 and Sj in Fig.
3 (a)) into continuous point cloud data stream, and recombine
the point cloud data stream with aligning the end timestamp
(e.g., tli in Fig. 3 (a)) of reconstructed sweep (i.e., Pi in
Fig. 3 (a)) to the timestamp of down-sampled captured image
(e.g., tci in Fig. 3 (a)). In this way, the number of LiDAR
points in reconstructed sweep is only half that in raw input
sweep. For spinning LiDAR, not only the number, but also the
horizontal distribution range is reduced from 360◦ to 180◦. If
the frequency of reconstructed sweeps is more than twice that
of raw sweeps, the number and horizontal distribution range of
points will decrease further, and eventually the LIO module

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3389415

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 18,2024 at 07:20:05 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

may fail to perform properly. Therefore, we need to down-
sample the frequency of camera images to at most twice the
frequency of raw LiDAR sweeps.

The frequency of captured images is less than twice but
more than that of raw LiDAR sweeps (as shown in Fig.
3 (b)). In this case, we directly disassemble the raw LiDAR
sweep (i.e., Sj−1 and Sj in Fig. 3 (b)) into continuous point
cloud data stream, and recombine the point cloud data stream
with aligning the end timestamp (e.g., tli in Fig. 3 (b)) of
reconstructed sweep (e.g., Pi in Fig. 3 (b)) to the timestamp
of captured image (e.g., tci in Fig. 3 (b)). In this way, the
point cloud number and the horizontal distribution range of
reconstructed sweeps are less than that of raw LiDAR sweeps,
but also enough to support the LIO module run properly.

The frequency of captured images is less than that of
raw LiDAR sweeps (as shown in Fig. 3 (c)). In this case,
we directly disassemble the raw LiDAR sweep (i.e., Sj−1, Sj ,
Sj+1 and Sj+2 in Fig. 3 (c)) into continuous point cloud data
stream, and recombine the point cloud data stream according
to the following two situations: 1) We assume the current
reconstructed sweep begins at tli but the end timestamp is not
yet determined. When the time interval from current moment
to tli reaches the time period of a raw LiDAR sweep and
there are no images around current moment, we set the current
moment as the end timestamp (e.g., tli+1

in Fig. 3 (c)) of this
reconstructed sweep (e.g., Pi+1 in Fig. 3 (c)). 2) We assume
the current reconstructed sweep begins at tli+1

but the end
timestamp is not yet determined. When the current moment
reaches the timestamp of captured image (e.g., tci+2 in Fig.
3 (c)) and there is a sufficient time interval from tci+2

to
tli+1

, we set the current moment as the end timestamp (e.g.,
tci+2

(tli+2
) in Fig. 3 (c)) of reconstructed sweep (e.g., Pi+2

in Fig. 3 (c)). Under the situation 2), not all synchronized
data includes image data (i.e., Pi−1 and Pi+1 in Fig. 3 (c)).
For synchronized data without camera images, we just utilize
the LIO module to estimate state without the vision module
running. For synchronized data with both point cloud and
image data, the LIO module and the vision module execute in
turn.

B. Vision Module

1) Recent Point Extraction: Similar as R3Live [5], firstly
we record all recently visited voxels {V1, V2, · · · , Vm} when
performing structure map update. Then, we select the newest
added point from each visited voxel Vi, to obtain the recent
point set Pr = {p1,p2, · · · ,pm}.

2) Camera-Parameters Optimization: Different from exist-
ing state-of-the-art frameworks (e.g., R3Live and Fast-LIVO),
we have estimated the state at the timestamp (e.g., tk) of
captured images (e.g., ck) in the LIO module. Therefore, we
no longer need to solve state (i.e., pose, velocity and IMU
bias) in the vision module, but only need to utilize the image
data to optimize some camera-parameters:

xk =
[
tokck ,R

ok
ck
, tokck , ϕk

]T
(1)

where tokck is the time-offset between IMU and camera while
LiDAR is assumed to be synced with the IMU already. Rok

ck

and tokck are the extrinsics between camera and IMU. ϕk =

[fxk
, fyk

, cxk
, cyk

]
T are the camera intrinsics, where (fxk

, fyk
)

denote the camera focal length, (cxk
, cyk

) denote the offsets
of the principal point from the top-left corner of the image
plane.

To balance the effects of previous estimates and the current
image observation on camera-parameters, we utilize an ESIKF
to optimize the camera-parameters xk, where the error state
δxk is defined as:

δxk =
[
δtokck , δR

ok
ck
, δtokck , δϕk

]T
(2)

For the state prediction, the error state δxk and covariance Pk

is propagated as:
δxk = 0

Pk = Pk−1

(3)

For the state update, the minimizing PnP projection error and
the minimizing photometric error are used to update δx in
turn.

The minimizing PnP projection error. Assuming that
we have tracked n map points Pt = {p1,p2, · · · ,pn}, and
their projection on image ck−1 is

{
ρ1k−1

,ρ2k−1
, · · · ,ρnk−1

}
,

we leverage the Lucas-Kanade optical flow to find out their
locations in the current image ck:

{
ρ1k

,ρ2k
, · · · ,ρnk

}
. Pt is

the set of 3D landmarks which correspond to 2D pixels of last
image frame, where the 2D pixels are tracked from previous
image frames or newly selected evenly from the projection of
dense map at regular intervals on last image. For the exemplar
point pi ∈ Pt, we calculate the re-projection error by:

pck
i =

(
Rw

ok
·Rok

ck

)T · pw
i −RokT

ck
· tokck −

(
Rw

ok
·Rok

ck

)T · twok
rpi = ρik

− π (pck,
i ,xk)

(4)
where π (pck,

i ,xk) is computed as below:

π (pck
i ,xk) =

[
fxk

·
[pck

i ]x
[pck

i ]z
+ cxk

, fyk
·
[pck

i ]y
[pck

i ]z
+ cyk

]T

+
tokck

∆tk−1,k

(
ρik

− ρik−1

)
(5)

where ∆tk−1,k is the time interval between the last image ck−1

and the current image ck. In Eq. 5, the first item is the pin-hole
projection function and the second one is the online-temporal
correction factor [10]. We can express the observation matrix
h as:

h =
[
rp1T , rp2T , · · · , rp

T
n

]T
(6)

The corresponding Jacobian matrix of observation constraint
H is calculated as:

H =
[
HT

1 ,H
T
2 , · · · ,HT

n

]T
Hi =

[
∂rpi

∂t
ok
ck

T ∂rpi

∂R
ok
ck

T ∂rpi

∂t
ok
ck

T ∂rpi

∂ϕk

T
]T

(7)

The minimizing photometric error. For the exemplar point
pi ∈ Pr, if pi has been rendered the color intensity γi, we
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firstly project pw
i to (·)ck by Eq. 4 and 5, and then calculate

the photometric error by:

rpi = γi − I (π (pck
i ,xk)) (8)

where I(·) represents the color intensity of image pixel. The
observation matrix and the corresponding Jacobin matrix have
the similar formula as Eq. 6-7.

For each image ck, we firstly utilize the minimizing PnP
projection error to update the ESIKF, and then utilize the
minimizing photometric error to update the ESIKF. We only
optimize camera-parameters of ck, while the state of ck has
been solved in our LIO module.

3) Rendering: After the camera-parameters have been op-
timized, we perform the rendering function to update the
color of map points. To ensure the density of colored point
cloud map, we not only render points in the recent point
set Pr, but also render all points in recently visited voxels
{V1, V2, · · · , Vm}. The rendering function we utilize is the
same as R3Live [5].

VI. EXPERIMENTS

We evaluate our system on the drone-collected dataset
NTU V IRAL [8] and the handheld device-collected dataset
R3Live [5]. The sensors used in NTU V IRAL dataset
are the left camera, the horizontal 16-channel OS1 gen14

LiDAR and its internal IMU, while the high-accuracy
laser tracking methods are employed to provide position
ground truth. The sensors used in R3Live dataset are
the camera, the LiVOX AVAI LiDAR and its internal
IMU, while no position ground truth data are provided.
We utilize all sequences of NTU V IRAL [8] and 6
sequences (i.e., r3live 01: hku campus seq 00, r3live 02:
hku campus seq 01, r3live 03: hku campus seq 02,
r3live 04: hku park 00, r3live 05: hku park 01
and r3live 06: hkust campus seq 02) of R3Live for
evaluation. A consumer-level computer equipped with an
Intel Core i7-11700 and 32 GB RAM is used for all
experiments.

For our testing on the R3Live dataset, we selectively
utilize only 6 sequences due to specific considerations. Some
of the excluded sequences feature degenerate scenarios that
compromise the performance of LIO, making them suitable for
our evaluation. The development of SR-LIVO is grounded in
our belief that the existing LIO framework can provide more
accurate pose than current LiDAR-assisted VIO frameworks
in scenarios without degeneration affecting both camera and
LiDAR. Therefore, sequences that exhibit failure modes for
LiDAR were intentionally omitted from our testing regimen.
Additionally, we exclude certain sequences on account of their
length, which resulted in the creation of a global colored map
that surpassed the 32GB RAM capacity of our testing device,
rendering them impractical for our testing purposes.

A. Comparison of the State-of-the-Arts

We compare our system with two state-of-the-art LIV-
OAM systems, i.e., R3Live [5] and Fast-LIVO [19], on
NTU V IRAL dataset [8] and R3Live dataset [5]. For the

TABLE I
RMSE OF ATE ON NTU V IRAL DATASET (UNIT: M)

R3Live [5] Fast-LIVO [19] Ours
eee 01 1.69 0.28 0.21
eee 02 × 0.18 0.23
eee 03 0.64 0.26 0.22
nya 01 0.63 0.34 0.18
nya 02 0.35 0.29 0.19
nya 03 0.23 0.29 0.20
sbs 01 0.40 0.73 0.12
sbs 02 0.27 0.25 0.22
sbs 03 0.21 0.24 0.21

Denotations: ”×” means the system drifts halfway through the
corresponding sequence.

TABLE II
RENDERING COMPARISON WITH R3LIVE

PSNR ↑ SSIM ↑
R3Live Ours R3Live Ours

r3live 01 16.76 18.02 0.73 0.79
r3live 02 17.31 17.73 0.76 0.78
r3live 03 14.75 16.15 0.69 0.76
r3live 04 15.55 15.91 0.72 0.73
r3live 05 15.48 16.04 0.71 0.72
r3live 06 14.28 15.22 0.68 0.73
eee 01 12.11 18.92 0.37 0.82
eee 02 × 20.83 × 0.85
eee 03 17.34 22.84 0.51 0.82
nya 01 14.07 19.80 0.49 0.84
nya 02 13.50 17.75 0.68 0.86
nya 03 15.53 18.42 0.79 0.88
sbs 01 15.87 20.28 0.60 0.83
sbs 02 17.42 22.45 0.52 0.79
sbs 03 15.56 21.83 0.51 0.79

Denotations: ”↑” means the higher value is better, and ”×” means
the system drifts halfway through the corresponding sequence.

NTU V IRAL dataset, we utilize the universal evaluation
metrics - absolute translational error (ATE) as the evaluation
metrics. The R3Live dataset does not provide the position
groundtruth, so we only evaluate ATE on NTU V IRAL
dataset. For a fair comparison, we obtain the results of above
systems based on the source code provided by the authors.

Results in Table I demonstrate that our system outperforms
R3Live and Fast-LIVO for almost all sequences in terms of
smaller ATE. ”×” means the system drifts halfway through the
run, where our SR-LIVO has better robustness than R3Live on
NTU V IRAL dataset.

In addition, we also compare the rendering effects of R3Live
and our SR-LIVO. Following Nerf [7], we conduct our eval-
uation by first projecting the colorized map onto each image.
We then calculate two metrics, i.e., Peak Signal-to-Noise Ratio
(PSNR) and Structure Similarity Index Measure (SSIM), using
the colors of map points and corresponding projected pixels
to assess rendering effectiveness. A higher PSNR indicates
better quality, while a SSIM value close to 1 (with 1 being
the maximum) signifies a more accurate rendering. Results in
Table II show that our SR-LIVO can achieve higher PSNR and
SSIM than R3Live on all testing sequences, demonstrating the
better rendering performance of our system.
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TABLE III
RMSE OF ATE COMPARISON ON LIDAR-ASSISTED VIO MODULE AND

LIO MODULE (UNIT: M)

R3Live R3Live
(V)

Fast-
LIVO

Fast-
LIVO(V) Ours Ours(V)

eee 01 1.69 1.71 0.28 0.30 0.21 0.24
eee 02 × × 0.18 0.26 0.23 0.23
eee 03 0.64 0.81 0.26 0.27 0.22 0.27
nya 01 0.63 0.63 0.33 0.33 0.18 0.19
nya 02 0.35 0.41 0.29 0.30 0.19 0.20
nya 03 0.23 0.32 0.22 0.29 0.20 0.24
sbs 01 0.40 0.70 0.73 0.42 0.12 0.38
sbs 02 0.27 0.33 0.25 0.31 0.22 0.22
sbs 03 0.21 0.23 0.24 0.27 0.21 0.22

Denotations: ”×” means the system drifts halfway through the corre-
sponding sequence.

TABLE IV
RENDERING EFFECT WITH POSE FROM LIDAR-ASSISTED VIO AND LIO

MODULE

PSNR ↑ SSIM ↑
Ours(V) Ours Ours(V) Ours

r3live 01 16.05 18.02 0.71 0.79
r3live 02 15.95 17.73 0.71 0.78
r3live 03 14.36 16.15 0.68 0.76
r3live 04 14.45 15.91 0.63 0.73
r3live 05 15.18 16.04 0.70 0.72
r3live 06 13.69 15.22 0.64 0.73
eee 01 15.07 18.92 0.64 0.82
eee 02 16.99 20.83 0.71 0.85
eee 03 18.13 22.84 0.63 0.82
nya 01 16.27 19.80 0.70 0.84
nya 02 14.25 17.75 0.74 0.86
nya 03 14.63 18.42 0.75 0.88
sbs 01 16.72 20.28 0.69 0.83
sbs 02 18.93 22.45 0.63 0.79
sbs 03 17.90 21.83 0.64 0.79

Denotations: ”↑” means the higher value is better.

B. Comparison of LIO module and LiDAR-assisted VIO mod-
ule

Our system is designed based on the logic that: the state
estimation performance of existing LIO is more accurate than
that of LiDAR assisted VIO on scenario without failure modes
of camera and LiDAR. Therefore, we provide quantitative data
in this section to prove that our logical base is correct. We
compare the ATE results of the LiDAR-assisted VIO module
with the LiDAR module on R3Live, Fast-LIVO and our SR-
LIVO. Our proposed SR-LIVO does not include the LiDAR-
assisted VIO module, and we implement a LiDAR-assisted
VIO module modeled similar as R3Live to complete this
ablation study.

The results in Table III demonstrate that the accuracy of LIO
modules is superior to that of LiDAR-assisted VIO modules,
whether the framework is based on R3Live, Fast-LIVO or
our SR-LIVO on NTU V IRAL dataset. In addition, we
also compare the rendering performance of our SR-LIVO and
ours(V), where SR-LIVO(i.e., ”ours” in Table III) utilizes the
pose estimates from the LIO module, and ours(V) utilizes the
pose estimates from the implemented LiDAR-assisted VIO
module for rendering. Results in Table IV show that our SR-
LIVO can achieve higher PSNR and SSIM than ours(V) on all

TABLE V
RENDERING EFFECT WITH/WITHOUT CAMERA-PARAMETER

OPTIMIZATION

PSNR ↑ SSIM ↑
don’t optimize optimize don’t optimize optimize

r3live 01 17.19 18.02 0.75 0.79
r3live 02 17.39 17.73 0.76 0.78
r3live 03 15.35 16.15 0.71 0.76
r3live 04 15.50 15.91 0.70 0.73
r3live 05 15.83 16.04 0.71 0.72
r3live 06 14.94 15.22 0.70 0.73
eee 01 18.73 18.92 0.81 0.82
eee 02 20.60 20.83 0.84 0.85
eee 03 22.74 22.84 0.81 0.82
nya 01 19.14 19.80 0.80 0.84
nya 02 17.54 17.75 0.84 0.86
nya 03 18.09 18.42 0.87 0.88
sbs 01 19.86 20.28 0.81 0.83
sbs 02 22.09 22.45 0.77 0.79
sbs 03 21.61 21.83 0.77 0.79

Denotations: ”↑” means the higher value is better.

TABLE VI
TIME CONSUMPTION PER SWEEP (UNIT: MS)

Vision LiDAR Total
R3Live Ours R3Live Ours R3Live Ours

r3live 01 38.90 20.86 17.51 9.67 50.57 30.53
r3live 02 33.80 19.95 24.23 10.83 49.95 30.78
r3live 03 37.16 21.51 18.16 9.55 49.27 31.06
r3live 04 43.25 20.33 19.33 10.54 56.14 30.87
r3live 05 40.23 19.64 20.95 11.78 54.20 31.42
r3live 06 38.82 20.80 27.92 13.08 57.43 33.88
eee 01 5.23 5.43 38.66 11.15 31.02 16.58
eee 02 × 5.41 30.04 9.69 24.60 15.10
eee 03 5.00 6.93 27.43 10.00 23.29 16.93
nya 01 6.58 6.02 19.62 7.94 19.67 13.96
nya 02 6.49 8.68 20.07 7.81 19.87 16.49
nya 03 6.98 7.22 20.04 8.02 20.34 15.24
sbs 01 5.10 5.69 24.30 8.97 21.31 14.66
sbs 02 5.52 5.48 26.74 9.31 23.36 14.79
sbs 03 5.26 5.11 26.47 10.24 22.92 15.35

Denotations: ”×” means the system drifts halfway through the corre-
sponding sequence.

testing sequences. This result demonstrates that the proposed
sweep reconstruction with time alignment can greatly improve
the rendering performance by allowing the system to provide
a more accurate pose at the exact moments of image capture.

C. Ablation Study of Camera-Parameter Optimization

In our system, pose estimation and map reconstruction tasks
are conducted by the LIO module, and the camera-parameter
optimization module’s impact is exclusive to the rendering
performance. In this section, we evaluate the effectiveness
of the camera-parameter optimization module by comparing
the PSNR and SSIM value of SR-LIVO with and without
the optimization of camera-parameters. Results in Table V
demonstrate that optimizing camera-parameters can further
improve the rendering performance slightly. Given that the
offline-calibrated camera-parameters from the NTU V IRAL
and R3Live datasets are already generally precise, the online
optimization of camera-parameters does not yield substantial
improvements in the rendering metrics.
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Fig. 4. The curve of time consumption as the frame ID changes on sequence
r3live 01. R3Live cannot ensure the real-time performance for a considerable
amount of time, while our SR-LIVO can run in real time stably.

Fig. 5. Our SR-LIVO is able to reconstruct a dense, 3D, RGB-colored point
cloud map, which is comparable to the reconstruction result of R3Live (Fig.
1 in [5]).

D. Time Consumption

We evaluate the runtime breakdown (unit: ms) of our
system and R3Live for all testing sequences. In general, the
whole system framework consists of the vision module and
the LiDAR module. For each sequence, we test the time
consumption of the above two modules, and the total time
for handling a sweep. Results in Table VI show that our
system takes 30∼34ms to handle a sweep on R3Live dataset
and 14∼17ms to handle a sweep on NTU V IRAL dataset,
while R3Live takes 49∼58ms to handle a sweep on R3Live
dataset and 10∼31ms to handle a sweep on NTU V IRAL
dataset. That means our system can run around 1.6X faster
than R3Live.

E. Real-Time Performance Evaluation

We take r3live 01 as the exemplar sequence, and plot
the curve of time consumption as the frame ID changes.
Fig. 4 demonstrates that R3Live cannot ensure the real-time
performance for a considerable amount of time, while our SR-
LIVO can run in real time stably.

F. Visualization for Map

Fig. 5 shows the ability of our SR-LIVO to reconstruct a
dense, 3D, RGB-colored point cloud map on the exemplar

Fig. 6. (a) and (b) are the reconstructed grayscale map on eee 01 by R3Live
and SR-LIVO respectively, while our system achieves significantly better
reconstruction result.

sequence (e.g., r3live 01), which is comparable to the recon-
struction result of R3Live (Fig. 1 in [5]). Under the premise
that the visualization result is equal, our method can run stably
in real time while R3Live cannot, demonstrating the strength
of our approach.

The camera images of NTU V IRAL dataset are grayscale
images, leading to the grayscale map. Fig. 6 compares the
visualizations of our reconstructed grayscale map with R3Live
on the exemplar sequence (e.g., eee 01) of NTU V IRAL
dataset, on which our system achieves significantly better
reconstruction result.

VII. CONCLUSION

This paper proposes a novel LIV-OAM system, named SR-
LIVO, which adapts the sweep reconstruction method to align
the end timestamp of reconstructed sweep to the timestamp of
captured image. Thus, the state of all image-captured moments
can be solved by the LIO module, which is more accurate
than existing LiDAR-assisted VIO on scenarios without failure
modes of camera and LiDAR. In SR-LIVO, we utilize an
ESIKF to solve state in LIO module, and utilize an ESIKF
to optimize camera-parameters in vision module respectively
for optimal state estimation and colored point cloud map
reconstruction.
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Our system achieves state-of-the-art pose accuracy on two
public datasets, and achieves much lower time consumption
than R3Live while keeping the reconstruction result compara-
ble or better. Future work includes adding loop closing module
to this framework.
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