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ABSTRACT

We introduce a hyperbolic neural network approach to pixel-level active learning
for semantic segmentation, and propose a novel geometric interpretation of the
hyperbolic geometry that arises bottom-up from the statistics of the data. In our
formulation the hyperbolic radius emerges as an estimator of the unexplained class
complexity, which encompasses the class intrinsic complexity and its scarcity in
the dataset. The unexplained class complexity serves as a metric indicating the
likelihood that acquiring a particular pixel would contribute to enhancing the data
information. We combine this quantity with prediction uncertainty to compute
an acquisition score that identifies the most informative pixels for oracle annota-
tion. Our proposed HALO (Hyperbolic Active Learning Optimization) sets a new
state-of-the-art in active learning for semantic segmentation under domain shift,
and surpasses the supervised domain adaptation performance while only using a
small portion of labels (i.e., 1%). We perform extensive experimental analysis
based on two established benchmarks, i.e. GTAV → Cityscapes and SYNTHIA
→ Cityscapes, and we additionally test on Cityscape → ACDC under adverse
weather conditions.

1 INTRODUCTION

Dense prediction tasks, such as semantic segmentation (SS), are important in applications such as
self-driving cars, manufacturing, and medicine. However, these tasks necessitate pixel-wise anno-
tations, which can incur substantial costs and time inefficiencies (Cordts et al., 2016). Previous
methods (Xie et al., 2022a; Vu et al., 2019; Shin et al., 2021b;a; Ning et al., 2021) have addressed
this labeling challenge via domain adaptation, capitalizing on large source datasets for pre-training
and domain-adapting with few target annotations (Ben-David et al., 2010). Most recently, active
domain adaptation (ADA) has emerged as an effective strategy, i.e. annotating only a small set of
target pixels in successive labelling rounds (Ning et al., 2021).

State-of-the-art (SoA) ADA relies on prediction uncertainty and pseudo-labels as the core strategy
for active learning (AL) data acquisition (Shin et al., 2021b; Wu et al., 2022; Xie et al., 2022a).
The current best performer (Xie et al., 2022a) introduces a region impurity score to prioritize the
annotation of pixels likely at the class boundaries as a data acquisition strategy. But the pixels at
the class boundaries are not necessarily the most informative and annotating only those degrades
performance, as we confirm with an oracular study. Here, we argue that the scarcity of labels for
certain class prototypical appearances and the intrinsic complexity of classes are better cues for an
AL data acquisition strategy.

We propose Hyperbolic Active Learning Optimization (HALO), the first hyperbolic framework for
AL, and a novel geometric interpretation of the hyperbolic radius. The SoA hyperbolic SS model
(Atigh et al., 2022) trains with class hierarchies, which they manually define. As a result, their hy-
perbolic radius represents the parent-to-child hierarchical relations in the Poincaré ball. We adopt
Atigh et al. (2022), but we find that hierarchies do not emerge naturally when they are not en-
forced at training time. E.g., in HALO road and building classes are closer to the center of the ball,
while person and rider have larger radii. This class arrangement also defies the interpretation of the
hyperbolic radius as a proxy for uncertainty, which emerged from metric learning hyperbolic stud-
ies (Ermolov et al., 2022; Franco et al., 2023), as road and building classes are not less uncertain.
So neither interpretation explains the learned radii in the case of hierarchy-free hyperbolic SS.
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Figure 1: Overview of HALO. Pixels are encoded into the hyperbolic Poincaré ball and classified
in the pseudo-label Ŷ . The hyperbolic radius of the pixel embeddings defines the new hyperbolic
score map R. The uncertainty map U is extracted as the entropy of the classification probabilities.
Combining R and U we define the data acquisition map A, which is used to query new labels Y .

We identify a novel interpretation of the hyperbolic geometry, wherein the hyperbolic radius serves
as a proxy for the unexplained class complexity. This concept encompasses two facets: the intrinsic
class complexity (for instance, a rider is more challenging to classify than the road), and the quantity
of class labels the model has been exposed to during training (the rider class has fewer labels than
road). Consider the HALO pipeline illustrated in Fig. 1 and the circular sector representing the
Poincaré ball, where pixels from various classes are mapped. HALO learns a manifold where the
distance of a class from the center is directly proportional to the unexplained class complexity. In
Sec. 4 we show how the hyperbolic radius emerges bottom-up from data statistics as a proxy for the
unexplained class complexity. Specifically, the radius correlates with the inherent complexity of the
class and the scarcity of labeled data for it. In HALO, this motivates us to use the radius to directly
acquire the most informative pixels during the active learning round.

We demonstrate the efficacy of our approach through extensive benchmarking on well-established
datasets for SS via ADA as GTAV → Cityscapes, SYNTHIA → Cityscapes, and additionally testing
on Cityscapes → ACDC under adverse weather conditions. HALO sets a new SoA on all the bench-
marks and it surpasses the supervised domain adaptation baseline. Our framework also introduces a
novel technique for enhancing the stability of hyperbolic training, which we refer to as Hyperbolic
Feature Reweighting (HFR), cf. Sec. 5. Our code will be released.

In summary, our contributions include: 1) Presenting a novel geometric interpretation of the hyper-
bolic radius as a proxy for the concept of unexplained class complexity; 2) Introducing hyperbolic
neural networks in AL and a novel pixel-based data acquisition score based on the hyperbolic radius;
3) Conducting a comprehensive analysis to validate both the concept and the algorithm while setting
a new state-of-the-art across all the considered ADA benchmarks for SS.

2 RELATED WORKS

Hyperbolic Representation Learning (HRL) Hyperbolic geometry has been extensively used
to capture embeddings of tree-like structures (Nickel & Kiela, 2017; Chami et al., 2020) with low
distortion Sala et al. (2018); Sarkar (2012). Since the seminal work of Ganea et al. (2018) on
Hyperbolic Neural Networks (HNN), approaches have successfully combined hyperbolic geometry
with model architectures ranging from convolutional (Shimizu et al., 2020) to attention-based (Gul-
cehre et al., 2018), including graph neural networks (Liu et al., 2019; Chami et al., 2019) and, most
recently, vision transformers (Ermolov et al., 2022). There are two leading interpretations of the
hyperbolic radius in hyperbolic space: as a measure of the prediction uncertainty (Chen et al., 2022;
Ermolov et al., 2022; Franco et al., 2023) or as the hierarchical parent-to-child relation (Nickel &
Kiela, 2017; Tifrea et al., 2018; Surı́s et al., 2021; Ermolov et al., 2022; Atigh et al., 2022). Our work
builds on the SoA hyperbolic semantic segmentation method of Atigh et al. (2022), which enforces
hierarchical labels and training objectives. However, when training hierarchy-free for ADA, as we
do, the hierarchical interpretation does not apply; nor is the uncertainty viewpoint applicable. To the
best of our knowledge, we are the first to propose a third interpretation for the HNNs connecting the
hyperbolic space density to the semantic class recognition difficulty.
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Active Learning (AL) The number of annotations required for dense tasks such as semantic
segmentation can be costly and time-consuming. Active learning balances the labeling efforts and
performance, selecting the most informative pixels in successive learning rounds. Strategies for ac-
tive learning are based on uncertainty sampling (Gal et al., 2017; Wang & Shang, 2014; Wang et al.,
2016), diversity sampling (Ash et al., 2019; Kirsch et al., 2019; Sener & Savarese, 2017; Wu et al.,
2021) or a combination of both (Sinha et al., 2019; Xie et al., 2022b; Prabhu et al., 2021; Xie et al.,
2022a). For the case of AL in semantic segmentation, EqualAL (Golestaneh & Kitani, 2020) incor-
porates the self-supervisory signal of self-consistency to mitigate the overfitting of scenarios with
limited labeled training data. Labor (Shin et al., 2021b) selects the most representative pixels within
the generation of an inconsistency mask. PixelPick (Shin et al., 2021a) prioritizes the identification
of specific pixels or regions over labeling the entire image. Mittal et al. (2023) explores the effect
of data distribution, semi-supervised learning, and labeling budgets. We are the first to leverage the
hyperbolic radius as a proxy for the most informative pixels to label next.

Active Domain Adaptation (ADA) Domain Adaptation (DA) involves learning from a source
data distribution and transferring that knowledge to a target dataset with a different distribution. Re-
cent advancements in DA for semantic segmentation have utilized unsupervised (UDA) (Hoffman
et al., 2018; Vu et al., 2019; Yang & Soatto, 2020; Liu et al., 2020; Mei et al., 2020; Liu et al.,
2021) and semi-supervised (SSDA) (French et al., 2017; Saito et al., 2019; Singh, 2021; Jiang et al.,
2020) learning techniques. However, challenges such as noise and label bias still pose limitations
on the performance of DA methods. Active Domain Adaptation (ADA) aims to reduce the disparity
between source and target domains by actively selecting informative data points from the target do-
main (Su et al., 2020; Fu et al., 2021; Singh et al., 2021; Shin et al., 2021b), which are subsequently
labeled by human annotators. In semantic segmentation, Ning et al. (2021) propose a multi-anchor
strategy to mitigate the distortion between the source and target distributions. The recent study
of Xie et al. (2022a) shows the advantages of region-based selection in terms of region impurity
and prediction uncertainty scores, compared to pixel-based approaches. By contrast, we show that
selecting just from contours limits performance, and that unexplained class complexity is a better
objective, as estimated by the hyperbolic radius.

3 BACKGROUND

We provide preliminaries on two techniques that HALO builds upon: Hyperbolic Image Segmenta-
tion (Atigh et al., 2022) and Active Domain Adaptation.

Hyperbolic Neural Networks We operate in the Poincaré ball hyperbolic space. We define it as
the pair (DN

c , gDc) where DN
c = {x ∈ RN : c∥x∥ < 1} is the manifold and gDc

x = (λc
x)

2gE is
the associated Riemannian metric, −c is the curvature, λc

x = 2
1−c∥x∥2 is the conformal factor and

gE = IN is the Euclidean metric tensor. Hyperbolic neural networks first extract a feature vector v
in Euclidean space, which is subsequently projected into the Poincaré ball via exponential map:

expcx(v) = x⊕c

(
v√
c∥v∥

tanh

(√
c
λc
x∥v∥
2

))
(1)

where x ∈ DN
c is the anchor and ⊕c is the Möbius hyperbolic addition. The latter is defined for two

hyperbolic vectors h,w as follows:

h⊕c w =
(1 + 2c⟨h,w⟩+ c∥w∥2)v + (1− c∥h∥2)w

1 + 2c⟨h,w⟩+ c2∥h∥2∥w∥2
(2)

We define the hyperbolic radius of the embedding h ∈ DN
c as the Poincaré distance (See Eq. A1 in

Appendix A.4) from the origin of the ball:

d(h, 0) =
2√
c
tanh−1

(√
c∥h∥

)
, (3)

We propose to use the hyperbolic radius of the pixel embeddings as a novel data acquisition strategy.
This is motivated by a novel geometric interpretation of the hyperbolic radius, which we support with
experimental evidence in this section.
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Figure 2: (left) Plot of average per-class radii of pixel embeddings Vs. class accuracies; (right) Plot
of per-class radii of pixel embeddings Vs. the percentage of per-class target pixels.

Hyperbolic Multinomial Logistic Regression (MLR) Following Ganea et al. (2018), to classify
an image feature zi ∈ RN we project it onto the Poincaré ball hi = expcx(zi) ∈ DN

c and classify
with a number of hyperplanes Hc

y (known as ”gyroplanes”) for each class y:

Hc
y = {hi ∈ DN

c , ⟨−py ⊕c hi, wy⟩}, (4)

where, py represents the gyroplane offset, and wy represents the orientation for class y. The distance
between a Poincaré ball embedding hi and the gyroplane Hc

y is given by:

d(hi, H
c
y) =

1√
c
sinh−1

(
2
√
c⟨−py ⊕c hi, wy⟩

(1− c∥ − py ⊕c hi∥2)∥wy∥

)
, (5)

Based on this distance, we define the likelihood as p(ŷi = y|hi) ∝ exp(ζy(hi)) where ζy(hi) =
λc
py
∥wy∥d(hi, H

c
y) is the logit for the y class.

ADA for Semantic Segmentation The task aims to transfer knowledge from a source labeled
dataset S = (Xs, Ys) to a target unlabeled dataset T = (Xt, Yt), where X represents an image
and Y the corresponding annotation map. Ys is given, Yt is initially the empty set ∅. Adhering
to the ADA protocol (Xie et al., 2022a; Wu et al., 2022; Shin et al., 2021b), target annotations are
incrementally added in rounds, subject to a predefined budget, upon querying an annotator. Each
pixel is assigned a priority score using a predefined acquisition map A. Labels are added to Ys in
each AL round by selecting pixels from A with higher scores, in accordance with the budget. The
entire architecture undergoes end-to-end training, with back-propagation incorporating estimates Ŷs

and Ŷt from the per-pixel cross-entropy loss L(Ŷs, Ŷt, Ys, Yt).

Setup The work by Atigh et al. (2022) stands as the first to showcase hyperbolic semantic seg-
mentation performance comparable to that of Euclidean networks. They proceed by mapping pixel
embeddings onto a hyperbolic space, where they classify by hyperbolic multinomial logistic re-
gression. We assume to have pre-trained the hyperbolic image segmenter of Atigh et al. (2022) on
the source dataset GTAV (Richter et al., 2016) and to have domain-adapted it to the target dataset
Cityscape (Cordts et al., 2016) with 5 rounds of AL, each adding 1% of the target labels. We assume
to have followed the HALO pipeline of Fig. 1, which we detail in Sec. 5. The following section
considers the radii of the hyperbolic pixel embeddings, for which statistics are computed on the
Cityscape validation set.

4 HYPERBOLIC RADIUS AND THE UNEXPLAINED CLASS COMPLEXITY

In Sec. 4.1 we interpret the emerging properties of hyperbolic radius, and we compare with the
interpretations in literature in Sec. 4.2.

4.1 EMERGING PROPERTIES OF THE HYPERBOLIC RADIUS

What does the hyperbolic radius represent? Fig. 2 (left) illustrates the correlation between the
per-class average hyperbolic radius and the relative class SS accuracy. They correlate negatively
with a significant ρ = −0.605. So classes with larger hyperbolic radii have lower performance and
are likely more difficult to recognize, more complex. E.g. road has large accuracy and small radius,
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Figure 3: (left) Evolution of correlations between the class average radius and semantic segmenta-
tion accuracy (orange), and between the class average radius and the per-class percentage of total
pixels (blue), at different budget levels during AL. (right) Plot of per-class accuracy against per-class
Riemannian variance. Refer to Sec. 4 for detailed explanations.

motocycle has lower accuracy and larger radius. Fig. 2 (right) shows the correlation between the
average class hyperbolic radius and the percentage of pixel labels for each class relative to the total
number of pixels in the dataset. The correlation is substantial (ρ = −0.899), so classes with larger
hyperbolic radii such as motocycle are rare in the target dataset, while at lower hyperbolic radii we
have more frequent classes such as road. We conclude that the hyperbolic radius indicates the diffi-
culty in recognizing a class, as a consequence of the class complexity and its label scarcity. Building
upon this evidence, in Sec. 5, we introduce a novel acquisition score based on the hyperbolic radius
to select pixels from classes that are inherently complex and rarer in the target dataset.

How does learning the hyperbolic manifold of the pixels embeddings proceed? Fig. 3 (left)
illustrates the evolution, during the active learning rounds, of the correlations between the per-class
average radius and two quantities: the classification accuracy (orange), and the percentage of pixels
belonging to the specified class in relation to the overall pixel count within the target dataset (blue).
During training, both the correlations of the radius Vs. accuracy and the radius Vs. % of total pixels
per class grow in module, confirming that the model progressively learns hyperbolic radii, indicative
of the recognition difficulty of the class, based on the inherent complexity and label scarcity. The
more HALO proceeds, the more the model is aware of what it does not know, i.e. HALO estimates
what pixels it considers complex, which makes the best acquisition strategy.

Novel geometric interpretation of the hyperbolic radius Fig. 3 (right) complements the find-
ings by plotting the class accuracies Vs. the Riemannian variance (see Appendix A.4) of radii for
each class. The latter generalizes the Euclidean variance, taking into consideration the increasing
Poincaré ball density at larger radii. The correlation between accuracy and Riemannian variance is
noteworthy (ρ = −0.811), indicating that challenging classes, like pole, exhibit lower accuracy and
larger Riemannian variance, occupying a greater volume in the space. Our conclusion is that the
model achieves classification in the hyperbolic space by positioning complex classes at larger radii,
leveraging the denser space and increased volume to effectively model them.

4.2 COMPARING INTERPRETATIONS OF THE HYPERBOLIC RADIUS

It emerges from our analysis that larger radii are assigned to classes that are more difficult to recog-
nize, for their inherent complexity and their label scarcity. Earlier work has explained the hyperbolic
radius in terms of uncertainty or hierarchies. Techniques from the former (Chen et al., 2022; Er-
molov et al., 2022; Franco et al., 2023) consider that the larger hyperbolic radii indicate more certain
and unambiguous samples. This is typical of hyperbolic metric learning-based approaches, whereby
the larger radius results in an exponentially larger matching penalty due to the employed Poincaré
distance (See Eq. A1 in Appendix A.4). We argue that this yields a self-normalizing learning ob-
jective, effectively making the radius proportional to the errors, as those techniques show. Methods
in favor of a hierarchical explanation (Nickel & Kiela, 2017; Tifrea et al., 2018; Surı́s et al., 2021;
Ermolov et al., 2022; Atigh et al., 2022) consider hierarchical datasets, labeling, and classification
objective functions. Hierarchies naturally align with the growing volume in the Poincaré ball, so
children nodes from different parents are mapped further from each other than from their parents.
Learning under hierarchical constraints results in leaf classes closer to the ball edge, and moving
between them passes via their parents at lower hyperbolic radii. Our hyperbolic SS model is derived
from Atigh et al. (2022) but it differs in the geometric meaning of the hyperbolic radii of pixel em-
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Figure 4: (a) Original image; (b) Radius map depicting the hyperbolic radii of pixel embeddings;
(c) Pixels (yellow) that have been selected for data acquisition. See Sec. 5 for details;
(d) HALO prediction; (e) Ground Truth annotations. Zoom in for the details.

beddings. Our novel interpretation may emerge due to the use of the hyperbolic multinomial logistic
regression objective without the enforced label hierarchies.

5 HYPERBOLIC ACTIVE LEARNING OPTIMIZATION (HALO)

This section outlines the HALO framework, which is founded on the novel interpretation of hyper-
bolic geometry. In Sec. 5.1 we review the HALO pipeline. In Sec. 5.2 we delve into the novel AL
acquisition strategy based on the hyperbolic radius. In Sec. 5.3 we present our proposition for fixing
the training instability of the hyperbolic framework.

5.1 HALO PIPELINE

Let us consider Fig. 1. During the training phase, we adhere to the hyperbolic semantic segmentation
methodology presented by Atigh et al. (2022). However, we diverge from manually injecting hierar-
chies, as our approach relies exclusively on learning from data. The hyperbolic neural network used
integrates an Euclidean Segmenter (e.g., DeepLabv3+), a hyperbolic projection layer (expmap), and
a hyperbolic multinomial logistic regression (HyperMLR) layer. During the forward pass, the seg-
menter produces a d-dimensional embedding in Euclidean space for each pixel. Subsequently, each
pixel embedding undergoes projection into the Poincaré ball via expmap. During the training phase,
the HyperMLR is employed for classification based on the target labels selected in previous rounds
of active learning.

At the conclusion of each training cycle, active learning is employed to identify the most informative
pixels for annotation. Utilizing pixel embeddings, we estimate the hyperbolic radius R (as detailed
in Sec. 4 and illustrated in Fig. 4b). Concurrently, predicted classification probabilities are used to
compute pixel uncertainties U , a technique inspired by prior works such as Paul et al. (2020); Shin
et al. (2021a); Wang & Shang (2014); Wang et al. (2016); Xie et al. (2022a). New labels are then
chosen based on a data acquisition score A (as depicted in Fig. 4c), calculated as the element-wise
product of R and U , and these labels are subsequently integrated into the training set. Note that the
new labels are both at the boundaries and within, in areas with the largest inaccuracies (compare
Fig. 4d and 4e). The rest of the ADA pipeline is as described in Sec. 3.

5.2 NOVEL DATA ACQUISITION STRATEGY

The acquisition score of each pixel in an image is formulated as the element-wise multiplication of
the hyperbolic radii R and the uncertainties U , i.e. A = R⊙U . The radius R(i,j) is computed as the
distance of the hyperbolic pixel embedding (i, j) from the center of the Poincaré ball (see Eq. 3):

R(i,j) = d(hi,j , 0) =
2√
c
tanh−1

(√
c∥hi,j∥

)
(6)

The uncertainty U (i,j) is estimated as the entropy of the classification probability array Pi,j,c asso-
ciated with the pixel (i, j) and the classes c ∈ {1, ..., C}:

U (i,j) = −
C∑

c=1

Pi,j,c logPi,j,c (7)

The acquisition score A serves as a surrogate indicator for the classification difficulty of each pixel
and determines which pixels are presented to the human annotator for labeling, to augment the target
label set Yt.
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Table 1: Comparison of mIoU results for different methods on the GTAV → Cityscapes task. Meth-
ods marked with ♯ are based on DeepLab-v3+ (Chen et al., 2018b), whereas all the others use
DeepLab-v2 (Chen et al., 2018a).
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Eucl. Source Only 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
Hyper. Source Only 62.4 18.7 66.8 17.4 13.8 29.2 30.4 7.4 83.2 23.8 78.2 56.1 30.3 70.6 25.0 17.8 0.3 27.6 27.0 36.1
Hyper. Source Only♯ 71.7 22.6 76.6 26.6 14.8 31.5 32.6 11.9 83.8 22.8 79.9 59.7 27.3 62.2 29.3 35.8 10.2 26.6 14.8 38.9

CBST (Zou et al., 2018) 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
MRKLD (Zou et al., 2019) 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
Seg-Uncertainty (Zheng & Yang, 2021) 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
TPLD (Shin et al., 2020) 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2
DPL-Dual (Cheng et al., 2021) 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
ProDA (Zhang et al., 2021) 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
WeakDA (point) (Paul et al., 2020) 94.0 62.7 86.3 36.5 32.8 38.4 44.9 51.0 86.1 43.4 87.7 66.4 36.5 87.9 44.1 58.8 23.2 35.6 55.9 56.4

LabOR (2.2%) (Shin et al., 2021b) 96.6 77.0 89.6 47.8 50.7 48.0 56.6 63.5 89.5 57.8 91.6 72.0 47.3 91.7 62.1 61.9 48.9 47.9 65.3 66.6
RIPU (2.2%) (Xie et al., 2022a) 96.5 74.1 89.7 53.1 51.0 43.8 53.4 62.2 90.0 57.6 92.6 73.0 53.0 92.8 73.8 78.5 62.0 55.6 70.0 69.6
HALO (2.2%) (ours) 97.5 79.9 90.2 55.6 51.5 45.3 56.2 66.2 90.2 58.6 92.8 73.3 53.5 92.6 76.9 76.2 64.2 55.2 70.1 70.8

AADA (5%)♯ (Su et al., 2020) 92.2 59.9 87.3 36.4 45.7 46.1 50.6 59.5 88.3 44.0 90.2 69.7 38.2 90.0 55.3 45.1 32.0 32.6 62.9 59.3
MADA (5%)♯ (Ning et al., 2021) 95.1 69.8 88.5 43.3 48.7 45.7 53.3 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9
D2ADA (5%)♯ (Wu et al., 2022) 97.0 77.8 90.0 46.0 55.0 52.7 58.7 65.8 90.4 58.9 92.1 75.7 54.4 92.3 69.0 78.0 68.5 59.1 72.3 71.3
RIPU (5%)♯ (Xie et al., 2022a) 97.0 77.3 90.4 54.6 53.2 47.7 55.9 64.1 90.2 59.2 93.2 75.0 54.8 92.7 73.0 79.7 68.9 55.5 70.3 71.2
HALO (5%)♯ (ours) 97.6 81.0 91.4 53.7 54.9 56.7 62.9 72.1 91.4 60.5 94.1 78.0 57.3 94.0 81.4 84.7 70.1 60.0 73.3 74.5
Eucl. Supervised DA 96.8 77.5 90.0 53.5 51.5 47.6 55.6 62.9 90.2 58.2 92.3 73.7 52.3 92.4 74.3 77.1 64.5 52.4 70.1 70.2
Hyper. Supervised DA 97.3 79.0 89.8 50.3 51.8 43.9 52.0 61.8 89.8 58.0 92.6 71.3 50.5 91.8 65.6 78.3 64.9 52.4 67.7 68.8
Eucl. Supervised DA ♯ 97.4 77.9 91.1 54.9 53.7 51.9 57.9 64.7 91.1 57.8 93.2 74.7 54.8 93.6 76.4 79.3 67.8 55.6 71.3 71.9
Hyper. Supervised DA ♯ 97.6 81.2 90.7 49.9 53.2 53.5 58.0 67.2 91.0 59.1 93.9 74.2 52.6 93.1 76.4 81.0 67.0 55.0 70.8 71.9

5.3 ROBUST HYPERBOLIC LEARNING WITH FEATURE REWEIGHTING

HNNs can be prone to stability issues during training because of the unique topology of the Poincaré
ball. More precisely, when embeddings approach the boundary, the occurrence of vanishing gradi-
ents can impede the learning process. Several solutions have been proposed in the literature to
address this problem (Guo et al., 2022; Franco et al., 2023; van Spengler et al., 2023). However,
these approaches often yield sub-optimal or comparable performances when compared to the Eu-
clidean counterpart. We introduce the Hyperbolic Feature Reweighting (HFR) module, designed to
enhance training stability by reweighting features, prior to their projection onto the Poincaré ball.
Given the feature map Z ∈ RH̃×W̃ generated as the output from the encoder, we compute the
weights as L = HRF(Z) ∈ RH̃×W̃ and use them to rescale each entry of the normalized feature
map, yielding Z̃ = Z

|Z| ⊙L, where |Z| =
∑H̃W̃

k=1 zij and ⊙ denotes the element-wise multiplication.
Intuitively, reweighting increases the robustness as it prevents embeddings from getting too close to
the boundaries, where the distances tend to infinity. Elsewhere, Guo et al. (2022) achieves robust-
ness by clipping the largest values of the radii, Franco et al. (2023) makes it by curriculum learning,
and van Spengler et al. (2023) needs to carefully initialize the hyperbolic network parameters. Our
proposed HFR module is end-to-end trained and it enables the model to dynamically adapt through
the various stages of training, endowing it with robustness.

6 RESULTS

In this section, we describe the benchmarks and training protocols; we perform a comparative eval-
uation against the SoA (Sec. 6.1); and we conduct ablation studies on the components, setups and
hyper-parameters of HALO (Sec. 6.2). The implementation follows Xie et al. (2022a) and it is
detailed in Appendix A.5.

Datasets The model has been pre-trained using synthetic cityscapes images from the GTAV
(Richter et al., 2016) and SYNTHIA (Ros et al., 2016) datasets. The GTAV dataset contains 24,966
high-resolution frames that are densely labeled and divided into 19 classes that are fully compatible
with the Cityscapes dataset. The SYNTHIA dataset includes a selection of 9,000 images with a
resolution of 1280 × 760 and 16 classes. For ADA training and evaluation we consider the real-
world urban street scenes from Cityscapes or ACDC as target datasets, both categorized into the
same 19 classes. The Cityscapes (Cordts et al., 2016) dataset consists of 2,975 training samples and
500 validation samples. These images are of high resolution, with dimensions of 2048× 1024. The
ACDC (Sakaridis et al., 2021) dataset comprises 4,006 images captured under adverse conditions
(i.e., fog, nighttime, rain, snow) to maximize the complexity and diversity of the scenes.
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Table 2: Comparison of mIoU results for different methods on the SYNTHIA → Cityscapes task.
Methods marked with ♯ are based on DeepLab-v3+ (Chen et al., 2018b), whereas all the others use
DeepLab-v2 (Chen et al., 2018a).
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mIoU mIoU*

Eucl. Source Only 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3
Hyper. Source Only 36.4 21.1 56.4 13.3 0.1 24.8 0.0 9.5 78.8 70.4 54.2 8.6 77.9 35.8 11.7 27.3 32.9 37.5
Hyper. Source Only♯ 60.5 27.4 75.2 13.3 0.3 31.4 0.0 23.2 79.3 68.1 57.8 18.7 61.3 27.3 10.3 23.5 36.1 41.0

CBST (Zou et al., 2018) 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
MRKLD (Zou et al., 2019) 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
DPL-Dual (Cheng et al., 2021) 87.5 45.7 82.8 13.3 0.6 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2
TPLD (Shin et al., 2020) 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5
Seg-Uncertainty (Zheng & Yang, 2021) 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
ProDA (Zhang et al., 2021) 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
WeakDA (point) (Paul et al., 2020) 94.9 63.2 85.0 27.3 24.2 34.9 37.3 50.8 84.4 88.2 60.6 36.3 86.4 43.2 36.5 61.3 57.2 63.7

RIPU (2.2%) (Xie et al., 2022a) 96.8 76.6 89.6 45.0 47.7 45.0 53.0 62.5 90.6 92.7 73.0 52.9 93.1 80.5 52.4 70.1 70.1 75.7
HALO (2.2%) (ours) 97.5 81.7 90.5 52.8 52.8 45.6 57.3 67.1 91.2 92.6 74.5 54.9 93.3 81.6 55.2 71.1 72.5 77.6

AADA (5%)♯ (Su et al., 2020) 91.3 57.6 86.9 37.6 48.3 45.0 50.4 58.5 88.2 90.3 69.4 37.9 89.9 44.5 32.8 62.5 61.9 66.2
MADA (5%)♯ (Ning et al., 2021) 96.5 74.6 88.8 45.9 43.8 46.7 52.4 60.5 89.7 92.2 74.1 51.2 90.9 60.3 52.4 69.4 68.1 73.3
D2ADA (5%)♯ (Wu et al., 2022) 96.7 76.8 90.3 48.7 51.1 54.2 58.3 68.0 90.4 93.4 77.4 56.4 92.5 77.5 58.9 73.3 72.7 77.7
RIPU (5%)♯ (Xie et al., 2022a) 97.0 78.9 89.9 47.2 50.7 48.5 55.2 63.9 91.1 93.0 74.4 54.1 92.9 79.9 55.3 71.0 71.4 76.7
HALO (5%)♯ (ours) 97.5 81.5 91.5 56.5 52.7 57.0 63.2 72.9 92.0 94.4 77.8 57.4 94.4 86.1 60.5 73.5 75.6 80.2
Eucl. Supervised DA 96.7 77.8 90.2 40.1 49.8 52.2 58.5 67.6 91.7 93.8 74.9 52.0 92.6 70.5 50.6 70.2 70.6 75.9
Hyper. Supervised DA 97.6 81.9 90.2 52.0 49.6 45.5 51.7 65.0 90.9 93.0 73.1 50.3 92.6 80.7 50.8 69.2 70.9 75.9
Eucl. Supervised DA♯ 97.5 81.4 90.9 48.5 51.3 53.6 59.4 68.1 91.7 93.4 75.6 51.9 93.2 75.6 52.0 71.2 72.2 77.1
Hyper. Supervised DA♯ 97.7 82.2 90.3 53.0 48.8 51.7 56.0 66.1 91.4 94.2 75.0 51.5 93.4 82.1 52.8 70.2 72.3 77.1

Table 3: Comparison of mIoU results for HALO (ours) and RIPU (Xie et al., 2022a) on the
Cityscapes → ACDC task. Methods marked with ♯ are based on DeepLab-v3+ (Chen et al., 2018b),
whereas all the others use DeepLab-v2 (Chen et al., 2018a).
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RIPU (2.2%) 91.4 69.5 83.8 52.7 41.6 52.8 66.4 54.2 85.1 47.5 94.7 54.5 21.8 85.5 58.7 58.8 76.9 41.4 45.9 62.3
HALO (2.2%) 92.6 71.3 84.5 51.3 43.1 53.5 67.2 57.6 85.1 49.5 94.5 57.2 28.6 84.1 53.3 76.0 66.9 44.1 41.4 63.2

RIPU (5%)♯ 92.7 72.5 84.7 53.1 44.8 56.7 69.1 58.9 85.9 46.9 95.3 57.2 24.3 84.5 61.4 59.4 79.0 36.9 43.6 63.5
HALO (5%)♯ 92.6 72.2 84.8 54.9 47.7 59.5 71.5 61.1 86.1 49.5 95.2 60.7 30.6 85.8 58.4 73.8 82.0 41.6 53.2 66.4

Training protocols The models undergo a source-only pre-training on either GTAV or SYN-
THIA synthetic datasets. To compare and evaluate the performance with other methods, two ADA
protocols are used: source-free and source+target. In the source-free protocol, only the Cityscapes
dataset is used, whereas in the source+target protocol, both source and target datasets are utilized.
In both protocols, our hyperbolic radius-based selection method is used to select pixels to be labeled
in five evenly spaced rounds during training, with either 2.2% or 5% of total pixels selected. Super-
vised DA models are trained for comparison purposes with active learning protocols. Our model is
additionally trained under adverse conditions, using Cityscapes and ACDC as the source and target
datasets respectively, in line with Hoyer et al. (2023) and Brüggemann et al. (2023).

Evaluation metrics To assess the effectiveness of the models, the mean Intersection-over-Union
(mIoU) metric is computed on the target validation set. For GTAV-Cityscapes and Cityscapes-
ACDC, the mIoU is calculated on the shared 19 classes, whereas for SYNTHIA-Cityscapes two
mIoU values are reported, one on the 13 common classes (mIoU*) and another on the 16 common
classes (mIoU).

6.1 COMPARISON WITH THE STATE-OF-THE-ART

In Table 1, we present the results of our method and the most recent ADA approaches on the GTAV
→ Cityscapes benchmark with the source+target protocol. HALO outperforms the current state-of-
the-art methods (RIPU Xie et al. (2022a), D2ADA Wu et al. (2022)) using both 2.2% (+1.2% mIoU)
and 5% (+3.3% mIoU) of labeled pixels, reaching 70.8% and 74.5%, respectively. Additionally,
our method is the first to surpass the supervised domain adaptation baseline (71.9%), even by a
significant margin (+2.6%). HALO achieves state-of-the-art also in the SYNTHIA → Cityscapes
case (cf. Table 2), where it improves by +2.4% and +4.2% using 2.2% and 5% of labels, reaching
performances of 72.5% and 75.6%, respectively. HALO also surpasses the current best Xie et al.
(2022a) by +3% in the source-free scenario, achieving performances close to the source+target with
5% budget (73.3% vs. 74.5%), as shown in Table 4. Due to the absence of other ADA studies on the
Cityscapes to ACDC adaptation, we trained RIPU (Xie et al., 2022a) as a baseline for comparison
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Table 4: HALO performance on the
source-free protocol compared with
previous UDA and ADA approaches.

Method Budget mIoU
URMA (S & Fleuret, 2021) - 45.1
LD (You et al., 2021) - 45.5
SFDA (Kundu et al., 2021) - 53.4

RIPU (Xie et al., 2022a) 2.2% 67.1
HALO (ours) 2.2% 70.1

HALO♯ (ours) 5% 73.3

Table 5: Ablation study conducted with the
Hyperbolic DeepLab-v3+ as backbone on the
source+target protocol with 5% budget. Perfor-
mance of entropy and hyperbolic radius scores in
isolation (a and b) and combined (c).

Ablative version mIoU
(a) Entropy only 63.2
(b) Hyperbolic Radius only 64.1
(c) Hyperbolic Radius ⊙ Entropy (HALO) 74.5

with our method. HALO demonstrates superiority over RIPU by +0.9% in the source+target setup
with a 2.2% budget, and by +2.9% with a 5% budget, reaffirming the effectiveness of our approach
on a novel dataset, as shown in Table 3. Certain classes may show unstable performance, attributed
to the dataset’s difficulty, requiring specialized methods (Brüggemann et al., 2023).

6.2 ABLATION STUDY

We conduct ablation studies on the selection criteria, region- and pixel-based acquisition scores,
labeling budget, reported next, and on the HFR, in the Appendix.

Selection criteria HALO demonstrates a substantial improvement of +10.4% compared to meth-
ods (a) and (b) in Table 5. More precisely, utilizing solely either the entropy (a) or the hyperbolic
radius (b) as acquisition scores yields comparable performance of 63.2% and 64.1%, respectively.
When these two metrics are combined, the final performance is notably improved to 74.5%.

Figure 5: Performance on GTAV →
Cityscapes with different budgets.

Region- Vs. Pixel-based criteria Unlike region impu-
rity in Xie et al. (2022a), the hyperbolic radius is a con-
tinuous quantity that can be computed for each pixel. We
conduct experiments comparing region- and pixel-based
acquisition scores. The results demonstrate a small dif-
ference between the two approaches (74.1% Vs. 74.5%).

Labeling budget We experiment with different label-
ing budgets, observing performance improvements as the
number of labeled pixels increases. However, beyond a
threshold of 5%, adding more labeled pixels leads to di-
minishing returns. We believe this may be explained by
data unbalance: taking all labels to domain adapt means
that most of them belong to a few classes, specifically
road, building and vegetation account for 77% of the la-
bels, which may hinder at successive training rounds due
to data redundancy. Detailed results are in Fig. 5.

Hyperbolic Feature Reweighting (HFR) HFR improves training stability and enhances per-
formance in the Hyperbolic model. Although the mIoU improvement is modest (+2%), the main
advantage is the training robustness, as the Hyperbolic model otherwise struggles to converge. HFR
does not benefit the Euclidean model and instead negatively impacts its performance. Additional
results in Appendix A.1

7 CONCLUSIONS

We have introduced the first hyperbolic neural network technique for active learning, which we
have extensively validated as the novel SoA on semantic segmentation under domain shift. We have
identified a novel geometric interpretation of the hyperbolic radius, distinct from the established hy-
perbolic uncertainty and hyperbolic hierarchy, and we have supported the finding with experimental
evidence. The novel concept of hyperbolic radius and its successful use as data acquisition strategy
in AL are a step forward in understanding hyperbolic neural networks.
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Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions, 2017.

Munan Ning, Donghuan Lu, Dong Wei, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, and
Yefeng Zheng. Multi-anchor active domain adaptation for semantic segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 9112–9122, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. 2019.

11



Under review as a conference paper at ICLR 2024

Sujoy Paul, Yi-Hsuan Tsai, Samuel Schulter, Amit K. Roy-Chowdhury, and Manmohan Chandraker.
Domain adaptive semantic segmentation using weak labels, 2020.

Viraj Prabhu, Arjun Chandrasekaran, Kate Saenko, and Judy Hoffman. Active domain adaptation
via clustering uncertainty-weighted embeddings. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8505–8514, 2021.

Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth
from computer games. In European Conference on Computer Vision (ECCV), volume 9906, pp.
102–118, 2016.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M. Lopez. The
synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Prabhu Teja S and François Fleuret. Uncertainty reduction for model adaptation in semantic seg-
mentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9608–9618, 2021.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised do-
main adaptation via minimax entropy. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019.

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. ACDC: The adverse conditions dataset with
correspondences for semantic driving scene understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
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APPENDIX

This appendix provides additional information and insights on the proposed Hyperbolic Active
Learning Optimization (HALO) for semantic segmentation under domain shift.

This supplementary material is structured as follows:

A.1: Additional Ablation Studies presents additional ablation studies on the embedding dimen-
sions and the proposed Hyperbolic Feature Reweighting (HFR) for Euclidean and hyper-
bolic backbones;

A.2 Limitations discusses current limitations and recommendations for further research;
A.3 Broader Impact regards future applications and the fostered progress in the field of Hyperbolic

Neural Networks;
A.4 Additional Hyperbolic Formulas reports additional employed hyperbolic formulas;
A.5 Implementation Details describes the training details adopted in the experiments;
A.6 Qualitative Results showcases representative qualitative results of HALO;
A.7 Data Acquisition Strategy: rounds of selections illustrates examples of pixel labeling selec-

tion and the priorities of the data acquisition strategy at each acquisition round;
A.8 Additional Comparison with baseline model illustrates a qualitative comparison of pixel ac-

quisition between HALO and baseline model and oracle experiment to prove the limitation
of boundary-only selection;

A.9 Additional Correlation Analyses presents three analyses on correlations on Cityscapes →
ACDC benchmark, data unbalancing when budget increases and the correlations with the
uncertainty score.

A.1 ADDITIONAL ABLATION STUDIES

Results of HFR Table A1 provides insights into the performance of hyperbolic and Euclidean
models with and without Hyperbolic Feature Reweighting (HFR). In the case of HALO, the perfor-
mance with and without HFR remains the same in the source-only setting. However, when applied
to the source+target ADA scenario, HFR leads to an improvement of 1.2%. It should be noted that
HFR also stabilizes the training of hyperbolic models. In fact, when not using HFR, training re-
quires a warm-up schedule and, still, it does not converge in approximately 20% of the runs. HFR
improves therefore performance for ADA and it is important for hyperbolic learning stability.

Table A1: HFR Performance Comparison: Evaluating the impact of Hyperbolic Feature
Reweighting (HFR) on hyperbolic and Euclidean models in source-only and source+target proto-
cols.

Encoder Protocol HFR mIoU (%)

DeepLab-v3+ source-only ✗ 36.3
DeepLab-v3+ source-only ✓ 22.7
Hyper DeepLab-v3+ source-only ✗ 39.0
Hyper DeepLab-v3+ source-only ✓ 38.9

HALO source+target ✗ 72.5
HALO source+target ✓ 74.5

A.2 LIMITATIONS

While we have presented experimental evidence supporting the need for a novel interpretation of
the hyperbolic radius, our work lacks a rigorous mathematical validation of the properties of the
hyperbolic radius within the given experimental setup. Future research should delve into this math-
ematical aspect to formalize and prove these properties.
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HALO’s reliance on a source model pretrained on synthetic data introduces challenges related to
large-scale simulation efforts and the need for effective synthetic-to-real domain adaptation. Ex-
ploring alternative strategies, such as self-supervised pre-training on real source datasets, could be a
promising research direction to mitigate these challenges.

Although Active Domain Adaptation significantly reduces labeling costs, the manual annotation of
individual pixels can be a time-consuming task. Further investigation into human-robot interaction
methodologies to streamline pixel annotation processes and expedite the annotation workflow is
needed.

A.3 BROADER IMPACT

Hyperbolic Neural Networks (HNN) have recently become mainstream, reaching state-of-the-art
across several tasks. Still, the theory and interpretation of HNN is diverse across tasks. Specifically,
the hyperbolic radius has been interpreted as a continuum hierarchical parent-to-child measure or
as an estimate of uncertainty. Our novel third way of interpreting the radius adds to the flourishing
framework of HNN, making a step forward.

A.4 ADDITIONAL HYPERBOLIC FORMULAS

Here we report established hyperbolic formulas which have used in the paper, but not shown due to
space constraints.

Poincaré Distance Given two hyperbolic vectors x, y ∈ DN
c , the Poincaré distance represents the

distance between them in the Poincaré ball and is defined as:

dPoin(x, y) =
2√
c
tanh−1(

√
c∥ − x⊕c y∥) (A1)

where ⊕c is the Möbius addition defined in Eq. 2 of the paper and c is the manifold curvature.

Riemannian Variance Given a set of hyperbolic vectors x1, ..., xM ∈ DN
c we define the Rieman-

nian variance between them as:

σ2 =
1

M

M∑
i=1

d2Poin(xi, µ) (A2)

where µ is the Fréchet mean, the hyperbolic vector that minimizes the Riemannian variance. µ
cannot be computed in closed form, but it may be approximated with a recursive algorithm Lou
et al. (2021).

A.5 IMPLEMENTATION DETAILS

For all experiments, the model is trained on 4 Tesla V100 GPUs using PyTorch Paszke et al. (2019)
and PyTorch Lightning with an effective batch-size of 8 samples (2 per GPU). The DeepLab-v3+
architecture is used with an Imagenet pre-trained ResNet-101 as the backbone. RiemannianSGD
optimizer with momentum of 0.9 and weight decay of 5 × 10−4 is used for all the trainings. The
base learning rates for the encoder and decode head are 1 × 10−3 and 1 × 10−2 respectively, and
they are decayed with a ”polynomial” schedule with power 0.5. The models are pre-trained for 15K
iterations and adapted for an additional 15K on the target set. As per Xie et al. (2022a), the source
images are resized to 1280× 720, while the target images are resized to 1280× 640.

A.6 QUALITATIVE RESULTS

In Fig. 8, we present visualizations of HALO’s predicted segmentation maps and the selected pixels.
In the first row, HALO prioritizes the selection of pixels that are not easily interpretable, as evident
in the fence or wall on the right side of the image. Notably, HALO does not limit itself to selecting
contours exclusively; it continues to acquire pixels within classes if they exhibit high unexplained
class complexity (determined by the hyperbolic radius). This behavior is also observed in rows 2,
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Figure 6: Ratio between the selected pixels for each class at each round and the total number of
pixels per class. Each color shows the ratio in the specific round. On the x-axis are reported the
classes with the relative mIoU (%) of HALO (cf. Table 1 of the main paper) ordered according to
they decreasing hyperbolic radius.

3, and 4 of Fig. 8. For classes with lower complexity, such as road and car, HALO acquires only
the contours. However, for more intricate classes like pole and signs, it also selects pixels within the
class.

In rows 5, 6, and 8, the images depict a crowded scene with numerous small objects from various
classes. Remarkably, the selection process directly targets the more complex classes (such as pole
and signs), providing an accurate classification of these. In row 7, we observe an example where the
most common classes (road, vegetation, building, sky) dominate the majority of the image. HALO,
guided by the concept of unexplained class complexity, efficiently allocates the label budget by
focusing on the more complex classes, rather than expending resources on these prevalent ones.
Refer to Sec. A.7 and Fig. 7 for a detailed overview of the selection prioritization during each active
learning round.

A.7 DATA ACQUISITION STRATEGY: ROUNDS OF SELECTIONS

In this section, we analyze how the model prioritizes the selection of the pixels during the different
rounds. In Fig. 6, we consider the ratio between the selected pixel at each round and the total
number of pixels for the considered class. Note how the model selects in the early stages from
the class with high intrinsic difficulty (e.g., rider, bicycle, pole). During the different rounds, the
selected pixels decrease because of the scarcity of pixels associated with these classes. On the other
hand, the classes with lower unexplained class complexity are less considered in the early stages and
the model selects from them in the intermediate rounds if the class has an intermediate complexity
(e.g., wall, fence, sidewalk) or in the last stages if the classes have low complexity (e.g., road or
building).

The qualitative samples of pixel selections in Fig. 7 corroborate this observation. In rounds 1 and
2, the model gives precedence to selecting pixels from classes exhibiting high ”unexplained class
complexity” (e.g., poles, sign, person, or rider). Subsequently, HALO shifts its focus to two distinct
objectives: i) acquiring contours from classes with lower complexity (e.g., road, car, or vegetation),
and ii) obtaining additional pixels from more complex classes (e.g., pole or wall). Notably, in rows
1, 2, 3, 5, and 6, HALO gives priority to selecting complete objects right from the initial round (as
seen with the sign). Another noteworthy instance is the acquisition of the bicycle in row 7. The
hyperbolic radius score enables the acquisition of contours that extend beyond the boundaries of
pseudo-label classes. In this case, we observe precise delineation of the internal portions of the
wheels.
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Figure 7: Qualitative analysis on the pixel selected by HALO at each round. Zoom in to see details.

A.8 ADDITIONAL COMPARISON WITH THE BASELINE MODEL

Qualitative Selection Comparison The top row of Fig. 9 depicts label acquisition using the
baseline RIPU method with budgets of 2.2% (left) and 5% (right). The bottom row illustrates visu-
alizations with our proposed HALO using the same budgets. Noteworthy observations include:

• By design, RIPU only concentrates on selecting boundaries between semantic parts (ref.
Fig. 9 top-left). However, since there are only a few (thin) boundary pixels, RIPU soon
exhausts the pixel selection request. Next, when a larger budget is available, RIPU simply
samples from the left side. The random selection still provides additional labels (ref. Fig.
9 top-right) and is a good baseline, cf. Table 3 of Xie et al. (2022a), although not as good
as HALO’s acquisition strategy.

• By contrast, HALO showcases pixel selection from both boundaries and internal regions
within semantic parts (ref. Fig. 9 bottom-left). Especially passing from 2.2% to 5% ac-
quisition budget, HALO considers thick boundaries, so also parts of objects close to the
boundaries, but also areas within objects, as it happens for wall, fence, pole, and sidewalk,
cf. the right image part in the bottom-right of Fig. 9.

Oracle Experiment with ground-truth boundaries We replace in RIPU (Xie et al., 2022a) the
pseudo-labels with ground-truth ones, so we test an active learning acquisition strategy solely based
on ground-truth boundary pixels. Although oracular, the experiment yields a performance drop of
1.4 mIoU (69.8 mIoU compared to RIPU’s 71.2 mIoU), which validates HALO’s label selection
approach from non-boundary regions.
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Figure 8: Qualitative Results Visualization for the GTAV → Cityscapes Task. The figure show-
cases different subfigures representing: the original image, HALO’s pixel selection, HALO’s pre-
diction, and the ground-truth label. Zoom in for the details.

A.9 ADDITIONAL CORRELATION ANALYSES

Correlation Analysis on Cityscapes → ACDC In addition to GTAV → Cityscapes, we report the
correlations for Cityscapes → ACDC. The new correlations (hyperbolic radius Vs. class accuracy,
hyperbolic radius Vs. percentage of target pixels) are (-0.759,-0.868). Compared to the case of
GTAV → Cityscapes, (-0.605,-0.899), we note a steep rise in the correlation between the average
per-class hyperbolic radius and the class accuracy. This is additional experimental evidence in favor
of the novel geometric interpretation of the hyperbolic radius as an estimator of unexplained class
complexity proposed in this paper.

Class Imbalance with Increasing Budget We present an additional experiment tracking the evo-
lution of class imbalance in the selected labels of the target dataset as the budget increases (refer to
Fig. 10). When we start the acquisition, namely after having selected only 0.1% of labels from the
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Figure 9: (top-row) Pixel selection with RIPU’s baseline; (bottom-row) Pixel selection with out
HALO; (left-column) Selection with budget 2.2%; (right-column) Selection with budget 5%. Zoom
in for the details.

Figure 10: Evolution of the variance (y axis) of selected pixel distributions with varying budget (x
axis).

target dataset, the variance is at a minimum, as HALO manages to identify and select labels from
each class, in equal proportions. Then the variance increases slowly until the budget reaches 5%.
This happens because the model manages to select pixels from each class, balancing the acquired
data selection. The variance has a steep increase at budgets of 10% and higher. This occurs because
the model has already selected most of the labels from the complex and scarce classes which it can
identify thanks to the hyperbolic radius and the entropic uncertainty (cf. Sec. 5.2). So, for budgets
of 10% or more, the model data acquisition strategy is influenced by the target dataset imbalance,
which shows in the steep increase of the variance of the number of selected labels per class. The
imbalance trend in label selection matches the performance variation in Fig. 5 of the paper. We
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conclude therefore that HALO’s label selection aids performance, beyond the fully-supervised se-
lection, until the model manages to successfully identify complex and scarce classes, and until they
are available in the target dataset.

Figure 11: (left) Plot of average per-class entropy Vs. class accuracies; (right) Plot of average per-
class entropy Vs. the percentage of per-class target pixels. Zoom in for the details.

Correlation Analysis with the Entropy Score We report the correlations between the uncer-
tainty (entropy of the classification probabilities) and the total number of pixels, and between the
uncertainty and the accuracy. We consider uncertainty because HALO inherits it from RIPU (Xie
et al., 2022a) and it complements it with the hyperbolic radius. In Fig. 11 we report the correlations
between the class accuracy and the average class uncertainty (-0.913), and the correlation between
the percentage of total pixels and the average class uncertainty (-0.596). The correlations of uncer-
tainty Vs. accuracy and the percentage of total pixels are effectively large and complementary to
those of the hyperbolic radius, which supports considering their combination, cf. Sec. 5.2.
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