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Abstract

Despite rapid adoption of autoregressive large001
language models, smaller text encoders still002
play an important role in text understanding003
tasks that require rich contextualized represen-004
tations. Negation is an important semantic func-005
tion that is still not properly captured by such006
methods, affecting many downstream applica-007
tions relying on text embeddings. We propose a008
strategy to improve negation robustness of text009
encoders, by distilling data from large language010
models using diverse patterns of negation and011
hedging. We adopt a standard contrastive learn-012
ing strategy to finetune a strong BERT-based013
model, and observe large improvement in nega-014
tion understanding capabilities while maintain-015
ing competitive performance on general bench-016
marks. In addition, we also show that our017
method can be adapted to LLMs, leading to im-018
proved performance on negation benchmarks.019

1 Introduction020

Modeling negation is an ongoing problem that text021

encoders still struggle with. For instance, embed-022

ding vectors of minimal negation pairs (I go to023

school vs. I do not go to school) have high cosine024

similarity (Ettinger, 2020; Anschütz et al., 2023),025

despite their contradictory meaning. This is due026

to the “distributional hypothesis” (Harris, 1954)027

underlying text embedding methods, which learn028

the representation of words based on surrounding029

context. While highly effective in general, result-030

ing models are insensitive to negation and related031

phenomena such as antonymy (Mrkšić et al., 2016).032

This can lead to semantic anomalies in downstream033

applications, e.g. when searching for products lack-034

ing certain properties (Merra et al., 2023) and for035

exclusion-type queries (Zhang et al., 2024). In a036

broader sense, negation is closely related to hedg-037

ing, used to expressed ambiguity, probability, or038

uncertainty rather than completely refute a premise039

like negation. Hedging is an even less explored040

MPNet H-MPNet

Global warming is a hoax. 0.81 0.39
There is not enough evi-
dence to claim that global
warming is real.

0.72 0.58

There is no doubt that
global warming is real.

0.78 0.85

Figure 1: Cosine similarities between the sentence
Global warming is real. and topically-similar sentences
conveying different levels of modality, as obtained by
MPNet, a strong sentence transformer, and HedgeMP-
Net (H-MPNet), our model finetuned on HedgeTriple.

topic in embedding research but is crucial to many 041

language understanding tasks. For instance, hedg- 042

ing is ubiquitous in scientific publications (Cromp- 043

ton, 1997; Pei and Jurgens, 2021), where precise 044

stipulation of the degree of certainty in hypotheses, 045

findings and conclusions (e.g., clear/weak/no evi- 046

dence for . . . ) is a critical component of scientific 047

discourse, but again is not generally captured well 048

in embedding vectors, as demonstrated in Figure 1. 049

Modern large language models (LLMs) are 050

highly effective across a wide range of tasks (Ope- 051

nAI Team, 2024; Gemini Team, 2024, inter alia). 052

Despite this, text encoders (e.g. BERT-based mod- 053

els) are still widely used for text understanding 054

tasks, as: (1) the autoregressive nature of LLMs 055

makes them sub-optimal for learning rich contex- 056

tual text representations (cf. conditioned on sur- 057

rounding contexts in bidirectional encoder models); 058

(2) for classification tasks with some amount of la- 059

beled data, smaller finetuned text encoder models 060

tend to perform better than LLMs; and (3) text en- 061

coders are a critical component of RAG systems, 062

where embedding vectors from text encoders are 063

used in the text retrieval stage to enhance robust- 064

ness and reduce hallucination (Lewis et al., 2020). 065

LLMs have the ability to reliably follow instruc- 066
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tions to generate fluent text outputs, which kick-067

started a line of research on synthetic data distilled068

from large LLMs to improve smaller, customized069

models (Eldan and Li, 2023; Wang et al., 2023). In070

this work, we explore the use of synthetic data to071

make text encoder models more robust to negation072

and hedging by further finetuning text embedding073

models on contrastive triples distilled from a LLM.074

Our contributions in this work are:075

• We propose a data synthesis method that is076

well-grounded in the linguistics literature on077

negation and hedging.078

• We show that finetuning a text encoder model079

on synthetic data can significantly improve its080

performance on negation benchmarks while081

preserving comparable performance on gen-082

eral benchmarks. Moreover, results with com-083

parable models show the importance of data084

diversity over quantity.085

• We adapt the method to decoder-only LLMs,086

showing improved negation understanding,087

with local degradation on benchmarks.088

2 Related work089

To obtain better text representations, a common090

and effective strategy is large-scale contrastive fine-091

tuning. Specific to improving negation understand-092

ing, two works are most relevant, both following093

the method of first creating minimal pairs which dif-094

fer only in negation cues, then finetuning a general-095

purpose text encoder to better differentiate between096

these pairs. Anschütz et al. (2023) employed a rule-097

based negator to add verbal negation, modifying the098

main clause of the sentences by leveraging part-of-099

speech information (or removing negation cues if100

they were found in the original). Instruction-tuned101

LLMs have also facilitated large-scale generation102

of synthetic data. Günther et al. (2023) used GPT-103

3.5 to negate sentence from NLI samples, with spe-104

cific direction to keep the pairs “syntactically very105

similar”, also resulting in verbal negation minimal106

pairs.107

Although not directly related to adding negation,108

Rezaei and Blanco (2024) also use GPT-3.5 to para-109

phrase negated samples in NLP benchmarks into110

affirmative versions, with the motivation that mod-111

els process affirmative texts better than negation.112

Jang et al. (2023) explore the abilities of LLMs113

to follow prompts containing negation, based on114

manual prompt modifications from a small subset115

of common benchmarks. To ensure coverage of116

diverse negation types, Truong et al. (2022b) man- 117

ually created a small testbed for a broad class of 118

different negation types. To our knowledge, our 119

work is the first to explore a taxonomy-based ap- 120

proach with the aim of generating negation and 121

hedging data at large-scale. 122

There has also been research on improving the 123

negation understanding of transformer models by 124

modifying the pre-training objective. Hosseini et al. 125

(2021) use unlikelihood training to penalize the 126

likelihood of tokens that are false in a negated sen- 127

tence. Truong et al. (2022a) add a new mask token 128

to explicitly mask the negation cue in sentences to 129

learn better representations. 130

Due to the prevalance of hedging in scientific 131

communication, it is mostly explored in the science 132

domain as an uncertainty detection task. The Bio- 133

Scope dataset (Vincze et al., 2008) includes nega- 134

tion and hedging annotations. Ghosal et al. (2022) 135

curate a large scale uncertainty detection dataset 136

from open-access reviews available in the open re- 137

view platform, containing the most unqiue hedge 138

cues. To model hedging, Pei and Jurgens (2021) 139

introduce a dataset containing sentence- and aspect- 140

level certainty in scientific findings. The work re- 141

veals that hedge words alone are not enough to 142

model certainty. For instance, “Further research is 143

necessary to understand whether this is a causal re- 144

lationship” contains 0 hedges but has a high level of 145

uncertainty. This motivates us to employ LLMs to 146

obtain more diverse patterns rather than a template- 147

based approach. 148

Our work builds on two core ideas from previous 149

work: (1) we use LLMs to create synthetic data, 150

but ground the generation step with clear linguistic 151

instructions; and (2) we adopt a simple contrastive 152

learning strategy to finetune a strong text encoder 153

using the generated data. Beyond achieving large 154

improvements on negation benchmarks, we demon- 155

strate that the strategy retains general capabilities. 156

3 Method 157

3.1 HedgeTriple dataset 158

To make the encoder more sensitive to negation 159

and hedging, we adopt contrastive learning. The 160

crucial part for any contrastive learning algorithm 161

is to collect positive and negative samples. As de- 162

tailed below, given an affirmative sentence (e.g. I 163

will go to school), we assume that a hedged variant 164

(e.g. I will probably go to school) is more similar 165

in meaning to the original than the negated text 166
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(e.g. I will not go to school). This relationship mo-167

tivates the use of contrastive learning, minimizing168

the distance between an affirmative anchor and its169

hedged variant, while maximizing the distance to170

the anchor’s negated variant in the latent space.171

3.1.1 Selecting anchor sentences172

We select 50K anchors from the negation triples173

dataset1 which was used to train Jina Embed-174

ding (Günther et al., 2023), a competitive BERT-175

based encoder model. The anchors are sourced176

from five common datasets used in training embed-177

dings — SNLI (Bowman et al., 2015), Multi-NLI178

(Williams et al., 2018), sentence-compression (Fil-179

ippova and Altun, 2013), Simple Wikipedia (Coster180

and Kauchak, 2011), and COCO Captions (Lin181

et al., 2014) — to ensure general representations182

across different text types. Most sentences are affir-183

mative and around 50% of the anchors have simple184

grammatical structures with less than 15 words185

while complex samples with multiple clauses (> 30186

words) account for around 10%.187

3.1.2 Synthesizing negation and hedging188

Negation For negation, we adopt the taxonomy189

of negation from Pullum and Huddleston (2002).190

It provides linguistic definitions along with a sam-191

ple of typical constructions corresponding to each192

category of negation. We made explicit how a193

sentence can be modified to exhibit each type of194

negation, to compensate for lack of LLM knowl-195

edge about some negation types. The chosen196

prompt, along with an example input text and197

LLM generated text,2 is as follows:198

Text: A yellow and black plane is
flying in the clouds and blue sky.

Negate the text. The types of
negation:

1. "verbal": verbal negation:
when the negation is grammatically
associated with the verb, the head
of the clause.
2. "absolute": Absolute negator:
no (including compounds nobody,
nothing, etc., and the independent
form none), neither, nor, never.
3. "affixal": Affixal negators:
un-, in-, non-, -less, etc.
4. "lexical": Lexical negation:
when the negation is added by

199

1https://hf.co/datasets/jinaai/
negation-dataset-v2

2We use GPT-3.5 for all prompts in Section 3.1.2.

substituting the main predicate of
the sentence with its antonym or
word carrying negative meaning.

Modified text:
1. "verbal": The yellow plane is
not flying in the clouds and blue
sky
2. "absolute": There is no
yellow and black plane flying in
the clouds and blue sky.
3. "affixal": The non-flying
plane is not in the clouds and
blue sky.
4. "lexical": The yellow plane
is grounded.

200

Hedging For hedging, we adopt the hedging tax- 201

onomy proposed by Crompton (1997) for scientific 202

findings, which classifies hedges based on their 203

part-of-speech. We simplify the taxonomy into two 204

categories: single-word cues (e.g. probably), and 205

multi-word cues (e.g. it is unclear if ). Even so, we 206

found that LLMs fall back to using specific cues 207

for each type, resulting in very limited diversity of 208

hedging in the generated texts. To address this, we 209

curated a list of cues (134 single-word cues and 210

45 multi-word cues) from the HedgePeer dataset 211

(Ghosal et al., 2022) and explicitly included a ran- 212

dom cue in the prompt for each call to the LLM 213

(full list in Appendix A). An example prompt with 214

input and output is as follows: 215

Text: A yellow and black plane is
flying in the clouds and blue sky.

Add hedging to the text. Two
types of hedging:
1. "word": single-word cue such
as reportedly
2. "phrase": multi-word cue such
as not entirely clear

Modified text:
1. "word": A yellow and black
plane is reportedly flying in the
clouds and blue sky.
2. "phrase": It’s not entirely
clear what’s happening, but a
yellow and black plane appears to
be flying in the clouds and blue
sky.

216

3.1.3 Constructing triples 217

We perform a post-processing step to filter out all 218

samples where the generated text is too different 219

from the anchor text (based on Levenshtein dis- 220

tance, with the upper threshold of 60, equivalent 221

to 10 words) and retain only minimal pairs. This 222

is an essential step to ensure that the triples are 223
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still topically similar. For instance, the pair {’an-224

chor’: ’Swiss bank UBS announced it would cut225

about 1,600 more jobs at its investment bank after226

it posted a 8.1 billion Swiss franc loss in the fourth227

quarter, missing forecasts.’, ’positive’: "Accord-228

ing to UBS’s announcement, the bank will likely229

specify cutting around 1,600 more jobs at its invest-230

ment bank."} is technically correct, but half of the231

main content of the anchor is omitted in the pos-232

itive sentence. In another instance, the pair does233

not maintain the contradiction relationship, such234

as {’anchor’: ’The Red Cross reported that 400235

were dead , but this was disputed by Mexican of-236

ficials .’, ’negative’: ’400 were not dead.’}. The237

final dataset consists of 31K anchors, each with238

4 negation and 2 hedging generated outputs. We239

construct triples for contrastive learning by treat-240

ing anchor–negation pairs as negative instances241

and anchor–hedging pairs as positive instances, re-242

sulting in 248K samples. We name this dataset243

HedgeTriple, and have made it publicly available244

at https://hf.co/ANONYMOUS.245

3.2 Contrastive triple finetuning246

Large-scale contrastive finetuning has been shown247

to be an effective strategy for improving general248

text representations (Reimers and Gurevych, 2019;249

Wang et al., 2022). The key idea works by mini-250

mizing the distance between an anchor and posi-251

tive samples, and maximizing the distance between252

an anchor and negative samples. We adopt the253

commonly-used Multiple Negative Ranking Loss254

(MNRL) (Henderson et al., 2017), which contrasts255

a positive sample against multiple negative samples.256

In its original form, MNRL only requires anchor–257

positive pairs and randomly samples positives from258

other instances which are considered as negatives.259

In our case, the negatives are generated explicitly,260

as defined above, to represent linguistic negation.261

The loss function is as follows:262

L = −
∑
q∈D

log

(
esim(q,p+)

esim(q,p+) +
∑

esim(q,p−)

)
(1)263

where q is the query or anchor drawn from dataset264

D, p+ and p− are the positive and negative sample265

corresponding to q, sim() is a similarity function266

(cosine similarity between CLS embeddings).267

To help the model learn to distinguish between268

closely-related but different text, we explicitly pro-269

vide hard negative samples which have high lexical270

overlap but contradictory meaning. As the aim of271

this paper is to demonstrate the applicability of the 272

generated triples, we did not extensively explore 273

other contrastive learning methods but hypothesize 274

that other contrastive losses would also work well. 275

4 Experiments 276

4.1 Baseline 277

Base model We evaluate several leading gen- 278

eral text encoders, namely: Sentence Transformer 279

(Reimers and Gurevych, 2019) and all-mpnet-base- 280

v23 (hereafter, MPNet). Our model is based on MP- 281

Net, which is a BERT-based model pretrained with 282

masked and permuted language modeling objec- 283

tives, which was further finetuned on 1B sentences 284

pairs for embedding tasks (NLI, text similarity). 285

Negation-aware model We evaluate two 286

negation-aware encoder models: (1) Jina,4 a 287

T5-based model finetuned on 50K triples focusing 288

on negation;5 and (2) NegMPNet,6 which is the 289

all-mpnet-base-v2 model further finetuned on 290

80K pairs of sentences curated from different 291

negation-focused datasets. 292

Our model We also base our method on the all- 293

mpnet-base-v2 model, which allows for a direct 294

comparsion. Our method works by finetuning the 295

MPNet model using the contrastive loss from Eq (1) 296

applied to our HedgeTriple dataset (see §3.1.2), 297

and name the resulting model HedgeMPNet. We 298

release the model at hf.co/ANONYMOUS. 299

4.2 Benchmarks 300

4.2.1 Negation-focused benchmarks 301

NevIR (Weller et al., 2024): an informa- 302

tion retrieval benchmark, based on CONDAQA 303

(Ravichander et al., 2022). Each sample consists 304

of a pair of contrasting queries, each with one rel- 305

evant document. The goal is to correctly rank the 306

two documents with respect to each query. We 307

report the Right Rank (RR) metric, which is the 308

percentage of time the models correctly produce 309

the correct rank for the pair of queries, with chance 310

performance of 25%, as for each data sample, the 311

model needs to correctly rank 2 queries. 312

3https://hf.co/sentence-transformers/
all-mpnet-base-v2

4https://hf.co/jinaai/
jina-embedding-l-en-v1

5This is the same dataset we use for selecting anchors.
6https://hf.co/tum-nlp/NegMPNet
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MPNet Jina NegMPNet HedgeMPNet

Negation benchmark
NevIR 8.10 14.61 18.08 40.56

ExcluIR 69.29 57.36 46.76 73.09
Cannot 34.91 30.62 69.44 55.68

M3-Counterfactual 16.20 41.91 51.29 47.34

Average 32.13 36.13 46.39 54.17

General benchmark
MTEB-Classification 65.07 67.76 70.83 69.74

MTEB-PairClassification 83.04 84.80 79.05 82.20
MTEB-Reranking 68.83 56.42 68.24 66.85
MTEB-Clustering 43.69 37.15 38.45 36.88

MTEB-Retrieval 43.10 44.81 36.12 35.75
MTEB-STS 80.28 80.96 77.58 77.49

MTEB-Summarization 27.49 29.58 27.49 30.98

Average (56 datasets) 58.79 57.38 56.82 57.14

Table 1: Results on negation and general benchmarks. The reported score for each task is the main metric to evaluate
that task; higher is better. bold and underline denotes the best and second-best scores respectively.

ExcluIR (Zhang et al., 2024): a benchmark fo-313

cusing on exclusion queries (e.g. Apart from Old314

& Kumar Go to White Castle, what other films has315

actor Errol Sitahal appeared in?). The dataset is a316

modified version of HotpotQA (Yang et al., 2018).317

We also use RR here, with chance performance of318

50% as each query is separately evaluated.319

Cannot (Anschütz et al., 2023): an MT evalu-320

ation dataset, where negation is a common cause321

of error. The dataset includes sentence pairs and322

their semantic similarity scores. We report Spear-323

man’s correlation ρ between our model predictions324

(cosine similarity) and the ground truth.325

M3-Counterfactual (Otmakhova et al., 2022):326

a subset of the M3 dataset, constructed by manu-327

ally corrupting statements in biomedical literature328

to evaluate model’s robustness in a counterfactual329

setting. The modification includes adding nega-330

tion to statements, changing statements into non-331

evidential sentences (There is no evidence that ...),332

or changing the modality (e.g. by adding hedging333

words such as might or intensifiers such as cer-334

tainly). We reformat the data into text-similarity-335

style task and assign original–negation pairs a score336

of −1, original–no evidence pairs a score of 0, and337

original–hedged pairs a score of 1. Similar to the338

Cannot dataset, we evaluate the models’ perfor-339

mance using Spearman’s correlation ρ against the340

cosine similarity estimates.341

4.2.2 General benchmarks342

Aside from negation benchmarks, we also evalu-343

ate the general capabilities of finetuned models on344

standard English benchmarks. Specifically, we use 345

the comprehensive general benchmark set of text 346

understanding tasks MTEB (Muennighoff et al., 347

2022), spanning 7 subtasks with 56 datasets. 348

5 Main findings 349

5.1 Negation and general benchmark results 350

As can be seen in Table 1, in general our model 351

(“HedgeMPNet”) outperforms all similar-sized text 352

embedding models on negation benchmarks, while 353

maintaining similar performance on general bench- 354

marks. On the negation side, we see large increases 355

on both NevIR and ExcluIR over both general (all- 356

mpnet-base-v2) and negation-focused models (Jina 357

and NegMPNet). Note that the high performance 358

of NegMPNet on Cannot is because it is in-domain 359

data for this model, in that the model was fine-tuned 360

on the training portion of the same dataset. Over 361

general benchmarks, we can observe increases on 362

classification and summarization tasks, and drops 363

on other tasks. One interesting pattern is the large 364

increase on sentiment classification datasets inside 365

MTEB-Classification, showing that this strategy is 366

especially helpful for sentiment-related tasks where 367

people tend to express opinions subjectively (us- 368

ing more hedging) and using terms associated with 369

negation to express negative sentiment. 370

We further conducted additional experiments 371

to ablate the impact of the HedgeTriple dataset. 372

To save time and resources, for subsequent abla- 373

tion experiments, we only evaluate on a subset 374

of MTEB that has been shown to correlate highly 375

with overall model performance, as introduced in 376
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Figure 2: Negation–general performance tradeoff when
finetuned on different dataset sizes, smoothed with mov-
ing average with window size 3

BehnamGhader et al. (2024).377

Balancing negation–general capability tradeoffs378

Catastrophic forgetting, where a model loses some379

of its original capabilities, is inevitable when mod-380

els are further finetuned to adapt to new tasks or do-381

mains. Thus, we experiment with finetuning using382

different data sizes ranging from 10K to 200K in-383

stances, to observe the impact of training data size.384

Results show that finetuning on more HedgeTriple385

samples leads to larger performance gains on nega-386

tion benchmarks at the cost of general capabilities.387

From Figure 2, we can see that performance on388

negation benchmarks is observed with as few as389

10K samples on HedgeTriple. The optimal point390

to balance out the tradeoff is around 150K training391

samples. We hypothesize that retention of gen-392

eral capabilities is thanks to exposure to hedging393

data, and conduct an ablation analysis with respect394

to data attribution, i.e. finetuning only with either395

hedging or negation data, to further investigate this.396

Data attribution We conducted an ablation study397

to evaluate the impact of each portion of the data:398

only using negation data (“Only negation”), only399

using hedged data (“Only hedging”), or both (Ta-400

ble 2). When only using negation data, we used401

the original positive sentences from the negation402

dataset which we sampled the anchors from; while403

for only hedged data, we used the original negative404

sentences. The results show (Figure 3) that combin-405

ing both data types leads to the best performance,406

and that negation data plays a more important role.407

Only using hedging data is not beneficial as all408

the benchmarks considered are more focused on409

negation, and do not have any explicit measure for410

hedging. However, finetuning on hedging data is411

beneficial in retaining general capabilities, with412

all-mpnet-base-v2 Only negation Only hedging Both

0

5
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Negation benchmarks

all-mpnet-base-v2 Only negation Only hedging Both
Model

4

3

2

1

0

De
lta

General benchmarks

Figure 3: Relative difference wrt. all-mpnet-base-v2
using different portions of data

high results on the MTEB-lite set, surpassing even 413

the base model without additional finetuning. 414

Data contamination We found no exact matches 415

between any of the negation benchmarks and Hed- 416

geTriple.7 N -gram analysis reveals that overlap 417

happens for less than 4% of the samples in all 418

datasets (noting all samples have a minimum length 419

of 5 words). Moreover, the overlap here happens 420

in the retrieval corpus, not on the query set. This is 421

standard in IR and is not considered data contami- 422

nation. Hence data leakage is negligible. 423

Diversity vs. quantity As detailed in Section 2, 424

both negation and finetuning using contrastive 425

learning to improve SBERT have been explored 426

in previous work. However, they only consider 427

the most straightforward types of negation: syn- 428

tactically adding not to the main verb either by 429

rules in CANNOT (Anschütz et al., 2023), or us- 430

ing GPT-3.5 in Jina Embedding (Günther et al., 431

2023). Instead, a main contribution of this work 432

is the adoption of linguistically-sound taxonomies 433

to create more diverse negation data. Our mod- 434

els finetuned on similar data sizes outperform both 435

NegMPNet (∼80K samples) and JinaAI Embed- 436

ding model (∼50K samples) on the negation bench- 437

marks. This shows that diversity in negation and 438

hedging patterns plays a bigger role than quantity. 439

7Defined as when a sample has a text field (query, doc,
text, etc.) that is included in HedgeTriple, or vice versa.
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MPNet Only negation Only hedging HedgeMPNet

Negation benchmark
NevIR 8.10 35.72 9.83 40.56

ExcluIR 69.29 76.10 64.83 73.09
Cannot 34.91 54.89 15.28 55.68

M3-Counterfactual 16.20 53.17 31.31 47.34

Average 32.13 55.57 29.98 54.17

General benchmark
MTEB-Classification-lite 64.56 65.24 63.9 66.30
MTEB-PairClassification 90.15 85.17 94.58 88.92

MTEB-Reranking 70.32 67.65 69.11 68.25
MTEB-Clustering 39.27 36.22 36.90 32.79

MTEB-Retrieval 48.46 30.88 48.79 34.61
MTEB-STS 84.87 78.36 83.58 79.07

MTEB-Summarization 27.49 30.77 30.17 30.98

Average (16 datasets) 60.73 56.33 61.00 57.27

Table 2: Ablation results on negation and general benchmarks. The reported score for each task is the main metric
to evaluate that task; higher is better. "Only negation" and "Only hedging" refer to the setting of finetuning MPNet
on only negation data and hedging data, respectively.

HedgeMPNet Llama-3-8B-Instruct Only negation Only hedging Llama-3-8B-Hedge

Negation benchmark
NevIR (0shot) 40.56 74.04 73.13 68.13 78.13

ExcluIR (0shot) 73.09 91.71 93.83 92.50 93.40
CANNOT (0shot) 55.68 44.16 63.99 53.22 60.89

M3-Counterfactual 47.34 56.05 68.59 69.64 76.27

Average 54.17 66.85 75.15 70.61 77.17

General benchmark
MMLU (5shot) N/A 65.68 63.59 63.65 63.03

HellaSwag (0shot) N/A 75.77 77.17 76.80 75.31
GSM8K (5shot, CoT) N/A 75.36 66.41 70.96 67.10

Average N/A 72.27 69.06 70.47 68.48

Table 3: LLM results on negation and general benchmarks in comparison with the best performing model from the
previous experiment. The reported score for each task is the task-specific main metric "Only negation" and "Only
hedging" refer to the setting of finetuning Llama-3-8B-Instruct on only negation data and hedging data, respectively.

5.2 Effect of HedgeTriple on LLMs440

We also look at the performance of a current-gen441

decoder-only LLM (Llama-3-8B-instruct) on nega-442

tion benchmarks, and whether finetuning it on Hed-443

geTriple can improve its handling of negation and444

hedging (Table 3). We treat the task as ranking be-445

tween two documents, with the following prompt:446

Document 1: doc 1
Document 2: doc 2
Query: q

Which document is more relevant to
the query? Please choose 1 or 2.
Answer:

447

For the CANNOT similarity task, we ask the448

model to score the sentence pairs:449

Determine the similarity between
the following two sentences (S1,
S2). The score should be ranging
from -1.0 to 1.0, and can be a
decimal.
S1: sentence 1
S2: sentence 2
Score:

450

Simply applying the LLM in a zero-shot man- 451

ner, we immediately see much higher performance 452

than HedgeMPNet on both NevIR and ExcluIR. 453

However, Llama-3-8B-instruct is several orders of 454

magnitude larger in parameter size, and much more 455

expensive to apply as a text encoder. Regardless, 456

there is active research on deriving text embeddings 457

from LLMs, such as via bidirectional text encoders 458

(BehnamGhader et al., 2024; Wang et al., 2024). 459

Next, we convert HedgeTriple into pairs to fine- 460
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Figure 4: HedgeMPNet compared with similar negation-
focused models finetuned on similar-sized datasets.

tune Llama-3-8B-Instruct with LoRA (Hu et al.,461

2022) (finetuning details in Appendix B). For in-462

stance, a triple is converted into two pairs:463

Sentence 1: A boy holding his
skateboard behind him and covering
his behind.
Sentence 2: The boy is sitting
comfortably without his skateboard
and with his behind exposed.
Do the two sentences have opposite
meaning? Yes or No.
Answer: Yes

Sentence 1: A boy holding his
skateboard behind him and covering
his behind.
Sentence 2: The boy, it seems,
held his skateboard behind him and
covered his behind.
Do the two sentences have opposite
meaning? Yes or No.
Answer: No

464

We observe further improvements in the fine-465

tuned model (Llama3-8B-Hedge) over the base466

version, showing that the HedgeTriple is also ben-467

eficial for current-gen LLMs. Despite there still468

being room for improvement, overall, LLMs ap-469

pear to be able to distinguish between negated and470

non-negated contexts quite well when evaluated in471

a pairwise setting. However, this finding may not472

generalize to other negation benchmarks, which473

LLMs still struggle with (Truong et al., 2023).474

In addition, we evaluate the general capabilities475

of the fine-tuned LLM on three common bench- 476

marks — MMLU (Hendrycks et al., 2021), Hel- 477

laSwag (Zellers et al., 2019), and GSM8K (Cobbe 478

et al., 2021) — to determine if the fine-tuning 479

has led to catastrophic forgetting. We use the de- 480

fault settings for each benchmark in lm-evaluation- 481

harness (Gao et al., 2023). Overall, we observe 482

comparable performance with and without fine- 483

tuning for MMLU and HellaSwag, but a drop 484

on GSM8K (which contains grade school math 485

problems). We also notice a degradation over the 486

MMLU subset related to mathematics (e.g. high 487

school/college/elementary mathematics, statistics). 488

This finding implies that that negation robustness 489

can negatively impact the arithmetic reasoning abil- 490

ities of models. We conducted an error analysis on 491

GSM8K and found that most of the errors are due 492

to wrong calculations—even though the equations 493

are correct—and the loss of quantitative common- 494

sense knowledge (see Appendix C for details). 495

We also performed ablation to see the impact of 496

negation and hedging data on the LLM’s capabili- 497

ties (Only negation and Only hedging in Table 3). 498

Similar to the encoder models experiments, we no- 499

tice a larger effect of negation data in improving 500

negation understanding capabilities, but combining 501

both negation and hedging leads to the best scores. 502

Over the general benchmarks, hedging data also 503

leads to best retention of general model capabilities. 504

Interestingly, combining both data types leads to 505

worse results compared with using either alone. 506

6 Conclusion 507

Negation and hedging are important phenomena 508

that have huge impact on language understanding 509

but are often overlooked when evaluating models’ 510

capabilities. In this work, we propose a strategy 511

to improve text embedding robustness to negation 512

and hedging based on contrastive finetuning on 513

synthetic data distilled from LLM. Our prompts 514

are carefully crafted with well-defined linguistic 515

taxonomies to ensure diversity in the negation and 516

hedging patterns. We conducted extensive experi- 517

ments and observed drastic improvements on nega- 518

tion benchmarks while retaining general capabili- 519

ties. Furthermore, finetuning an LLM on the gener- 520

ated triples is also beneficial in improving negation 521

understanding abilities, at the cost of a small degra- 522

dation in mathematical performance. 523
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7 Limitations524

Prompting For data generation, we iteratively525

update the prompts based on manually inspecting526

the output of LLMs until observing the desired527

behaviour. Employing automatic prompt optimiza-528

tion technique suchs as DSPy (Khattab et al., 2023)529

would result in better prompts but we decided not530

to explore this as the current results are satisfactory.531

Other languages As a starting point, we focused532

exclusively on English, but the same strategy can be533

readily adapted to other languages. Thus, we claim534

that the findings of this work are generalizable to a535

multilingual setting.536

Finetuning strategies In both contrastive fine-537

tuning of text encoders and LLM supervised fine-538

tuning, we experimented with a relatively simple539

and straightforward strategy and data format. For540

the LLM, finetuning using more diverse instruc-541

tions with a reasoning step would likely unlock542

more sophisticated negation reasoning abilities.543
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A List of hedge cues793

Single-word cues [’wish’, ’conjecture’, ’won-794

der’, ’implying’, ’unlikely’, ’likely’, ’slight’,795

’likelihood’, ’possibly’, ’sufficient’, ’question’,796

’whether’, ’believe’, ’wouldnt’, ’expect’, ’hint- 797

ing’, ’hope’, ’suspect’, ’if’, ’afraid’, ’neces- 798

sarily’, ’thinking’, ’expecting’, ’might’, ’appar- 799

ent’, ’felt’, ’apparently’, ’seem’, ’may’, ’cer- 800

tainly’, ’propose’, ’probable’, ’imply’, ’poten- 801

tially’, ’shouldnt’, ’nearly’, ’suggestive’, ’im- 802

pression’, ’clear’, ’can’, ’or’, ’hesitant’, ’prob- 803

ability’, ’specify’, ’hopefully’, ’clean’, ’sure’, 804

’ought’, ’wrong’, ’why/if’, ’argue’, ’somewhat’, 805

’unsure’, ’plausible’, ’doubtful’, ’must’, ’antic- 806

ipate’, ’uncertainty’, ’feel’, ’clearly’, ’either’, 807

’specifying’, ’appreciate’, ’appear’, ’indication’, 808

’couldnt’, ’hoping’, ’possibility’, ’cant’, ’suggest- 809

ing’, ’proposing’, ’notion’, ’presumably’, ’poten- 810

tial’, ’seemingly’, ’doubt’, ’uncertain’, ’probably’, 811

’assume’, ’undoubtedly’, ’assumption’, ’sense’, 812

’surely’, ’arguing’, ’cannot’, ’clearer’, ’should’, 813

’debatable’, ’indicating’, ’indicate’, ’strange’, 814

’speculate’, ’weird’, ’suggestion’, ’think’, ’sup- 815

pose’, ’arguably’, ’questionable’, ’would’, ’imag- 816

ine’, ’claim’, ’theoretically’, ’maybe’, ’sug- 817

gest’, ’presume’, ’idea’, ’like’, ’unclear’, ’im- 818

plication’, ’almost’, ’unknown’, ’possible’, ’ap- 819

pearence’, ’rather’, ’implicit’, ’puzzling’, ’sup- 820

posedly’, ’suspicion’, ’impossible’, ’wonder- 821

ing’, ’argument’, ’vague’, ’thought’, ’hypoth- 822

esize’, ’seeming’, ’could’, ’guessing’, ’tend’, 823

’say’, ’wether’, ’maynot’, ’slightly’, ’feeling’, ’as- 824

suming’] 825

Multi-word cues [’not very clear’, ’not surely’, 826

’cannot claim’, ’seeming like’, ’not clear’, ’on 827

the fence’, ’not so sure’, ’not very sure’, ’hard to 828

pin down exactly’, ’look like’, ’felt like’, ’not also 829

sure’, ’not really sure’, ’not totally sure’, ’can- 830

not imagine’, ’isnt clear’, ’not completely sure’, 831

’not exactly sure’, ’no idea’, ’not entirely clear’, 832

’could not figure out’, ’not at all sure’, ’wonder 833

if’, ’do not convincingly’, ’mostly clear’, ’feel 834

like’, ’cannot hope’, ’not 100 % sure’, ’sound 835

like’, ’not clearly’, ’not convincing’, ’not at all 836

clear’, ’not conclusive’, ’not quite sure’, ’not 837

entirely sure’, ’can not’, ’not totally clear’, ’not 838

all are clear’, ’somewhat unclear’, ’not even 839

sure’, ’very unclear’, ’seem like’, ’can imagine’, 840

’not certain’, ’not sure’] 841

B LLM finetuning details 842

C A closer look at the GSM8K output 843

We compare the CoT output of Llama-3-8B- 844

Instruct and our finetuned version, Llama-3-8B- 845
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Parameter Value

Epoch 20
Rank 16
Target mod-
ules

q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj,
down_proj

Alpha 16
Dropout 0
Bias None

Table 4: Caption

Hedge, to identify the reasons for the drop in arith-846

metic reasoning skills. We randomly sample a set847

of 100 samples where Llama-3-8B-Hedge get the848

answer wrong, and classify the error types into849

different categories and summarize the results in850

Table 5. From this analysis, we can see that the851

finetuned model regresses somewhat in calculation852

and commonsense knowledge. Another large num-853

ber of cases come from a bug in the evaluation854

toolkit rather than actual errors of the model. One855

interesting pattern is that model tends to do some856

inverted calculations, messing up the correct posi-857

tion of the two operands, affecting subtraction and858

division calculations. Although not very prevalent,859

we also notice a small portion of cases where the860

base model gets the correct answer despite incor-861

rect reasoning steps.862

12



Error type Description Llama-3-8B-Instruct Llama-3-8B-Hedge %

Wrong calcula-
tion

When the reasoning
step and the final equa-
tion to get the result
are correct, but the
calculated results are
wrong

... The total cost of the trip is $5000 +
$5000 + $5400 = $15400 ...

... The total cost of the trip is $5400 +
$10000 = $14000. ...

20

Fail to include
all information

When the logic of the
solution is correct but
miss one (or more) im-
portant steps, leading to
incorrect final results

The doll cost as much as 3 action figures,
so the doll costs 3 x $5 = $15. One red
car costs $4, so 5 red cars cost 5 x $4 =
$20. The total cost of all toys is $15 +
$20 + 3 x $5 = $15 + $20 + $15 = $50.

The doll cost as much as 3 action figures,
so the doll costs 3 x $5 = $15. One red
car costs $4, so the 5 red cars cost 5 x $4
= $20. The total cost of the toys is $15 +
$20 = $35

20

Wrong unit Error in parsing the final
answers

Violetta needs 5 crayons and each
crayon costs $2, so she needs 5*2 =
«5*2=10»10 dollars. She has $20 and
will spend $10, so she will get $20-$10
= «20-10=10»10 dollars in change

Violetta needs 5 crayons, and each
crayon costs $2. So she needs 5 * 2
= 10 dollars. She has $20, so she will
get $20 - $10 = $10 in change

19

Fail to reason
with multiplica-
tion

When the reasoning
fails to take into account
the quantitative com-
monsense knowledge
(e.g. a week has 7 days,
a cow has 4 legs)

Melissa has 8 + 5 + 3 + 12 =
«8+5+3+12=28»28 animals to groom
over the next week. Therefore, She will
groom 28 / 7 = «28/7=4»4 animals each
day.

She has 8 dogs, 5 cats, 3 birds, and 12
horses that need to be groomed. In total,
she has 8 + 5 + 3 + 12 = 28 animals that
need to be groomed. She will split the
grooming jobs evenly over the days,
so she will groom 28 animals each day
of the week

18

Invert calcula-
tion

When the model per-
form subtraction rather
addition or switch posi-
tions of the left and right
operands

On Thursday, the mechanic earned 6 *
60 =360 for truck tires and 4 * $40 =
$160 for car tires. So the total revenue
on Thursday was $360 + $160 = $520.
On Friday, the mechanic earned 12 *
$40 = $480 for car tires. So the total rev-
enue on Friday was $480. The mechanic
earned $520 on Thursday and $480 on
Friday. The difference is $520 - $480 =
$40.

On Thursday, the mechanic earned 6 *
$60 = $360 for truck tires and 4 * $40 =
$160 for car tires. So, the total revenue
on Thursday is $360 + $160 = $520.
On Friday, the mechanic earned 12 *
$40 = $480 for car tires. So, the total
revenue on Friday is $480.
The mechanic earned $480 - $520 = -
$40 more on the day with lower revenue.

10

Hallucination When the reasoning
chain is not coherent,
logical or relevant to the
question

Christina had 8 good days, 8 bad days,
and 8 neutral days. This is a total of 8 +
8 + 8 = «8+8+8=24»24 days. She also
had 3 more days, which are 1 good, 1
neutral, and 1 good. This is a total of
24 + 3 = «24+3=27»27 days. She had
30 days in total, so she has 30 - 27 =
«30-27=3»3 days left. Of these 3 days, 2
are good, so she has 2 good days left.

Christina had 12 good days in total.
The first 8 days were good, so that’s 8
good days. The next 3 days were good,
so that’s 3 good days. 12 - 8 - 3 = 1
good day left in the month.

5

Base model is
wrong

When ground truth is in-
correct, or when base
model gives correct an-
swers but the reasoning
chain is wrong,

The interest for the first month is 2%
of $100 = «2%*100=2»$2 The inter-
est for the second month is 2% of
$100 = «2%*100=2»$2 The interest
for the third month is 2% of $100 =
«2%*100=2»$2 The total interest is $2
+ $2 + $2 = «$2+$2+$2=6»$6 The total
amount Mandy should pay is $100 + $6
= «$100+$6=106»$106

After 1 month, Mandy owes Benedict
$100 + 2% of $100 = $100 + $2 = $102.
After 2 months, Mandy owes Benedict
$102 + 2% of $102 = $102 + $2.04 =
$104.04.
After 3 months, Mandy owes Benedict
$104.04 + 2% of $104.04 = $104.04 +
$2.0816 = $106.1216.
Mandy should give Benedict $106.1216.

4

Repetition When the model re-
peats one reasoning step
many times.

Let the cost of the lot be x. Then the
cost of the house is 3x. The total cost is
120,000, so x + 3x = 120,000. Combine
like terms: 4x = 120,000. Divide by 4:
x = 30,000. The cost of the house is 3x
= 3 * 30,000 = $90,000

The house cost three times as much as
the lot, so the house cost 3 x (the cost of
the lot) = 3 x (the cost of the house + the
cost of the lot - the cost of the house) =
3 x (the cost of the lot) = 3 x (the cost of
the house + the cost of the lot - the cost
of the house) = 3 x (the cost of the lot)
...

4

Table 5: Error analysis of the sample of 100 errors made by Llama-3-8B-Hedge on GSM8K.
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