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ABSTRACT

Large language models (LLMs) have achieved impressive results in many general-
purpose domains, but their performance on specific tasks can still be improved
through finetuning. Parameter-efficient finetuning (PEFT) aims to tailor an LLM
to one or more tasks through a small amount of trainable parameters, requiring re-
duced computational resources. On the one hand, techniques like low-rank adap-
tation (LoRA) provide the required parameter efficiency with adapters of low, and
fixed, rank, which also limits their flexibility. On the other hand, Mixture of ex-
perts (MoEs) enhance the flexibility of a model at the cost of an increased param-
eter count and computational budget. The combination of the two approaches,
parameter-efficient MoEfication, has shown promise in addressing the issues of
both. In this work, we propose two methods that improve the rank-efficiency of
PEFT adapters, increasing the flexibility and reducing the number of parameters
involved in MoEfication. First, SharedLoRA retains the additive nature of LoRA
by using a two-tier structure of adapters, thereby increasing the effective rank
of the adapter while also reducing its size. Second, OperA replaces additive
with quantum-inspired multiplicative interactions to further drive rank effi-
ciency upwards and number of parameters downwards. We show that both tech-
niques match or surpass the state-of-the-art (SoTA) in its commonly used setup on
6 open-source frontier LLMs and 7 tasks, while using notably fewer parameters.
Moreover, we also find that OperA is optimal given the same parameter budget
for 5 out of 6 models considered, always using fewer parameters than the baseline.
Finally, we provide evidence for the superior performance of our methods by an-
alyzing the effective rank of the adapters. Here, our SharedLoRA nearly doubles
the rank of the SoTA solution, while our OperA’s rank is more than two orders of
magnitude greater.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities (OpenAI, 2025; 2024;
Qwen AI, 2025a; Meta AI, 2024) when generalizing to novel tasks, making them the models of
choice for a variety of domains (Wang et al., 2024; Liu et al., 2024a; 2023). This success is in part
due to the vast datasets with which LLMs are pretrained, granting them general knowledge that is
then applied to each specific task. Nonetheless, it has been shown that LLMs can be further special-
ized (or finetuned) to improve performance in under-represented, and often especially challenging,
scenarios (Hu et al., 2022; Parthasarathy et al., 2024). This finetuning process is performed closer to
the end application, where data and computational resources are more scarce than in the pretraining
phase.

Nonetheless, full finetuning of an LLM still requires massive resources (Xia et al., 2024b) and is
unfeasible in many use-cases. Parameter-efficient finetuning (PEFT) has emerged as an effective
solution that dramatically reduces the computational costs associated with finetuning LLMs (Han
et al., 2024; Hu et al., 2022; Liu et al., 2024b). One of the most successful PEFT paradigms,
low-rank adaptation (LoRA; Hu et al. 2022), leverages low-rank approximations to adapt specific
subspaces of the full weight matrices, often recovering or even surpassing the performance of its
full-rank counterparts. The effectiveness of LoRA is likely a testament to the low-ranked nature of
task-specific subspaces in neural networks at large. This hypothesis is corroborated by the relatively
poorer performance of LoRA when applied to multiple tasks (Feng et al., 2024; Xia et al., 2024a),
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Figure 1: Rank-efficient Mixture of experts. a. Regular LoRA MoEfication uses one low-rank
adapter per expert. b. The experts of SharedLoRA are built by additively combining shared basis
LoRAs with expert-specific LoRAs of the same rank. The SharedLoRA rank is therefore the sum of
the two ranks. b. The experts of OperA are instead built through multiplicative combination of 4D
cores, obtained by Matrix product operator (MPO) decomposition.

which can no longer be comfortably represented in low-rank subspaces, but instead require larger
solutions.

At the same time, Mixture of experts (MoEs; Shazeer et al. 2017; Fedus et al. 2022) has been widely
adopted in recent LLM architectures as a technique to improve performance across tasks without
increasing the active parameter count (Jiang et al., 2024; IBM, 2024; DeepSeek-AI, 2025). MoEs
leverage multiple linear models (aptly called experts) that process tokens in parallel, offering an
attractive factorization of extremely large spaces into more manageable chunks. By instantiating a
large number of experts, but only activating few of them for each token, LLMs can be internally
specialized without significantly increasing computational costs. However, MoEs still suffer from
increased memory requirements, as all experts need to be kept in memory even when not in use.

Finally, LoRAs and MoEs can be combined to obtain a PEFT approach that is parameter-efficient,
memory-efficient, and is highly flexible (Tian et al., 2024; Li et al., 2024; Zeng et al., 2025). In par-
ticular, each expert is represented as a low-rank linear model, while maintaining the same gating and
routing structure of regular MoEs (see Figure 1a), which have already been shown to be sufficiently
powerful. Taken individually, each expert can only operate on a restricted subspace, and is therefore
susceptible to the same weakness as LoRAs. However, the combination of multiple experts raises
the flexibility of the overall model, thereby increasing performance.

We propose here two techniques that both increase the effective rank (Roy & Vetterli, 2007) of the
parameter-efficient MoE layer without increasing its parameter count. Indeed, while the matrix
rank might not be an adequate measure of the actual size of the subspace spanned by an adapter due
to both practical and numerical reasons, the effective rank provides a more robust measure of the
dimensionality of a matrix. First, we introduce SharedLoRA (see Figure 1b). SharedLoRA acts on
the rank of the mixture itself, factorizing each expert into two tiers of adapters: (a) specific and (b)
grouped. The specific adapters are entirely analogous to conventional low-rank adapters, with one
adapter per desired expert. The grouped adapters instead form shareable bases that get added to the
specific adapters to increase variety. The combination of specific and grouped adapters results in a
reduction in the LoRA rank of each adapter, but in an increase in the rank of each expert.

The second technique we introduce does away with fixed-(and low-)rank adapters altogether by
leveraging multiplicative interactions instead of additive ones. To do so, we borrow Matrix product
operators (MPOs; Pirvu et al. 2010; Schollwöck 2011; Orús 2014) from the quantum physics liter-
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ature to obtain OperA (see Figure 1c). MPOs provide an efficient multiplicative decomposition of
arbitrary matrices (originally, Hamiltonians) into core and auxiliary 4D tensors. By choosing the
MPO configuration carefully, we can concentrate most of the weights onto the core tensor and leave
it fixed, while learning the leaner auxiliary tensors during training.

We evaluate SharedLoRA and OperA on a comprehensive set of 7 tasks, including ARC (Clark
et al., 2018), PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov et al., 2018), BoolQ (Clark et al.,
2019), HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi et al., 2021), comparing them
with MixLoRA (Li et al., 2024), the current openly available state-of-the-art (SoTA) technique for
LoRA MoEfication. We test all approaches on multiple models of different sizes and from different
sources to ensure the consistency of our evaluation, including Llama3, Llama3.1, Llama3.2 (Meta
AI, 2024), Phi4 (Abdin et al., 2024), and Qwen2.5 (Qwen AI, 2025b). We find that our techniques
achieve equal or superior results to SoTA techniques like MixLoRA (Li et al., 2024) and notably
increase the effective rank as well, all while reducing the required number of parameters by 38%
(SharedLoRA) and 62% (OperA) on average. Moreover, OperA achieves higher accuracy on 5 out
of 6 models when given the same parameter budget.

2 RELATED WORKS

Parameter-efficient finetuning (PEFT). Modern open-weights frontier LLMs can reach tens of
billions to hundreds of billions of parameters. Fully finetuning such models for downstream tasks
can prove unfeasible in most situations, where parameter-efficient finetuning (PEFT) becomes a ne-
cessity. The most popular approach to PEFT for LLMs is LoRA (Hu et al., 2022), which leverages
low-rank matrices to finetune a low-dimensional subspace of the original weights to improve per-
formance while reducing the required number of parameters. Further gains on parameter efficiency
have been obtained by weight sharing (VeRA; Kopiczko et al. 2024), weight tying (Tied-LoRA; Ren-
duchintala et al. 2024), quantization (QLoRA; Dettmers et al. 2023), and other techniques (Yang
et al., 2025; Hayou et al., 2025). The downstream performance of LoRA has also been improved
upon, especially through normalization (DoRA; Liu et al. 2024b).

Mixture of experts (MoEs). MoEs (Shazeer et al., 2017; Fedus et al., 2022) allow LLMs to ef-
ficiently scale the number of parameters without proportionally scaling their compute budgets. In
particular, MoEs are part of the conditional computing paradigm, where subsets of the full model are
activated in an input-dependent manner. There are multiple variants of MoEs, especially depending
on the routing (Fedus et al., 2022; Ruiz et al., 2021; Yue et al., 2025) and the gating mechanism (Li
et al., 2023; Puigcerver et al., 2024). Recent works (DeepSeek-AI, 2025; Qwen AI, 2025a) have
also shown that very large mixtures with few experts active at a time show remarkable performance
across a wide variety of tasks.

Parameter-efficient MoEfication. The combination of PEFT with MoEs has recently started
gaining traction (Dou et al., 2024; Tian et al., 2024; Li et al., 2024; Zeng et al., 2025), to address the
limitations of both approaches. Most parameter-efficient MoEfication techniques (Luo et al., 2024;
Gao et al., 2024) replace all linear layers with MoEs. Even greater efficiency is achieved by split-
ting the LoRA adapters into heads (Tian et al., 2024), driving further factorization. MixLoRA (Li
et al., 2024) selectively replaces the QKV matrices in the attention layers with simple LoRAs, while
fusing the MLP layers with parameter-efficient MoEs. More recently, S’MoRE (Zeng et al., 2025)
proposes hierarchical mixtures with structured graphs. We adopt the architecture of MixLoRA, as
it has been shown to be highly effective, and aim to improve the rank efficiency of each adapter.
Moreover, in contrast to S’MoRE, our methods (specifically, SharedLoRA) do not introduce graph
overheads, but make use of a simpler two-tier structure while obtaining SoTA performance.

Multiplicative adapters. Multiplicative adapters for PEFT have seen some adoption, for exam-
ple with Kronecker-Product (Yu et al., 2025). We explore here Matrix product operators (MPOs),
a particularly effective multiplicative decomposition from quantum physics (Pirvu et al., 2010;
Schollwöck, 2011; Orús, 2014). MPOs have been used for compressing linear layers (Gao et al.,
2020) and as a direct alternative to LoRAs (Liu et al., 2021). More similar to this line of work,
MPOE (Gao et al., 2022) also propose an MPO-based approach to parameter-efficient MoEfication.
MPOE decompose the weights using MPO, and then finetune both the auxiliary and the core (only
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in some steps) tensors. Each expert is then recovered by contracting the shared core tensor with
the specific auxiliary tensors. The key differences between MPOE and our OperA lie in both the
construction of the experts and the routing mechanism. In particular, OperA does not train the core
tensor, making it much more parameter-efficient. Moreover, OperA keeps the residual path as the
shared expert, and fuses the adapters with the weights.

3 BACKGROUND

Low-rank adaptation (LoRA). LoRA is based on low-rank approximations of a matrix. In par-
ticular, given a pretrained weight W ∈ RM×N , LoRA consists of two matrices A ∈ RM×r and
B ∈ Rr×N , with r ≪ M,N being the LoRA rank. Crucially, while the LoRA rank places an upper
bound on the dimensionality of the adapter, the actual subspace spanned by the adapter might be
notably smaller. We explore this effect in detail through the use of the effective rank in Section 5.4.

Next, the product AB ∈ RM×N results in a shape-compatible matrix with W that only requires a
fraction of its parameters to store, producing considerable space savings. This comes to cost of the
rank of AB, which is limited to r, and therefore to its flexibility. The final weight matrix becomes
then

W ′ = W +AB (1)

Mixture of experts (MoEs). MoEs are an architectural design that increases the flexibility and
expressivity of LLMs, while maintaining a constrained increase in the number of parameters. Ex-
perts are matrices E1, ..., En ∈ RM×N that independently operate on a given input vector x ∈ RM ,
factorizing a large representation space into multiple additive components. The most popular imple-
mentation of MoEs uses a noisy top-k routing mechanism that selects k out of n experts for each x,
resulting in considerable computational savings at the cost of memory. Specifically, given a router
R

y =

n∑
i

R(x)iEi(x) (2)

with

R(x)i =

{
ri if expert i has been selected
0 otherwise

(3)

and
∑n

i ri = 1 are the routing weights, usually enforced via a softmax operation.

Matrix product operators (MPO). MPOs, in the setup used in this work, form a multiplicative
representation of an arbitrary matrix W ∈ RM×N into 4D tensors (or cores) with a specific config-
uration. Specifically,

W = L1, L2, ..., LnCR1, R2, ..., Rn (4)
with Li, i ≤ n being the left auxiliary cores, C being the center core, and Ri, i ≤ n being the right
auxiliary cores. The left and right auxiliary cores are analogous; we will refer to them simply as
auxiliary cores from now on. Therefore, specifying a decomposition with n left (or right) auxiliary
cores results in a total of 2n + 1 tensors. Each tensor has shape Rdin,r,c,dout , with r, c being the
physical row resp. column legs and din, dout being the bond dimensions. The specification of r and
c for each core represents the main hyperparameter choice of the MPO system, as we do not restrict
the bond dimensions here (while it is more typical in quantum physics applications; Cui et al. 2015).
Finally, a straightforward tensor contraction of all cores recovers the original matrix.

4 RANK-EFFICIENT FINETUNING TECHNIQUES

We now present the main contributions of this work, SharedLoRA and OperA. We build both with
the aim of increasing the effective rank, first by improving additive adapters with SharedLoRA,
and then enhancing these adapters with multiplicative interactions with OperA. The two techniques
mainly tackle the building of the experts or adapters to obtain greater rank efficiency at lower pa-
rameters, while we reuse the SoTA combination of LoRA MoEs with LLMs for PEFT found in
MixLoRA (see Appendix B.4 for an ablation of MixLoRA’s fusion). In particular, we replace the
MLP layers with our MoE adapters and use standard LoRAs for the attention layers.
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4.1 SHAREDLORA: TWO-TIER ADDITIVE ADAPTERS

SharedLoRA uses a combination of two tiers of low-rank adapters to obtain experts with a higher
effective rank without impacting the parameter count. Given a weight matrix W and n desired
experts, we first initialize n first-tier (or specific) adapters As

i , B
s
i , i ≤ n of rank r. Next, we

initialize g second-tier (or group) adapters Ab
i , B

b
i , i ≤ g, with g a divisor of n such that n = g×m.

We then assign the first group adapters Ab
1, B

b
1 to the first m experts, the second group adapters to

the second m experts, and so on. Next, each expert Ei is defined as

Ei = As
iB

s
i +Ab

i/mBb
i/m (5)

Together with its noisy top-k router, the input (x)-dependent SharedLoRA layer becomes

W ′ = W +

n∑
i

R(x)i(A
s
iB

s
i +Ab

i/mBb
i/m) (6)

as is usual in MoEs.

Each Ei has a maximum rank of 2r, for a total number of parameters of (n+ g)× (M +N)× r. In
contrast, flat (non-tiered) LoRA MoEs require 2×n× (M +N)× r parameters to achieve the same
maximum rank. The two-tier structure results in a 2n

n+g > 1 (for g < n) reduction of parameters at
the same rank.

4.2 OPERA: QUANTUM-INSPIRED MULTIPLICATIVE ADAPTERS

OperA leverages multiplicative interactions, which are fundamental to the functioning of deep neu-
ral networks (Jayakumar et al., 2020). These interactions are described by MPO, and help OperA
achieve an even greater effective rank with lower parameter count compared to SoTA additive
adapters. In contrast to LoRA, OperA does not use randomly-initialized fixed-rank adapters, but
builds arbitrarily ranked adapters directly from the original weight matrix W . The first step of
OperA is to obtain the MPO representation of W using tensor-train singular value decomposition
(TT-SVD; Oseledets 2011). Without loss of generality, consider the case of a decomposition into
three cores

W = LCR (7)
Given n desired experts, we define the multiplicative adapters Li, Ri, i ≤ n by initializing them to
equal L,R. Next, each expert Ei becomes

Ei = LiCRi (8)

with C fixed. Finally, given the same router R as before the input (x)-dependent OperA layer
becomes

W ′ =
1

2
W +

n∑
i

R(x)i
1

2
Ei (9)

with the constant 1/2 necessary to achieve equality at the beginning of training, analogous to setting
the B matrix to 0 in LoRA.

The key to the parameter-efficiency of OperA is to concentrate most of the parameters into C, which
is not trainable. We remark that the main hyperparameters of TT-SVD consist in the sizes of the
physical legs r, c of the MPO system. In particular, we set row legs r1, r2, r3 (with r1×r2×r3 = M )
and column legs c1, c2, c3 (with c1 × c2 × c3 = N ). With these parameters set, we can now fully
describe the shapes of the MPO:

• L ∈ R1×r1×c1×d1

• C ∈ Rd1×r2×c2×d2

• R ∈ Rd2×r3×c3×1

The bond dimensions d1, d2 are an effect of TT-SVD and cannot be directly controlled, except by
cutting the least-relevant singular values, which would result in a lossy reconstruction of W as in
regular SVD. Therefore, we can simply choose r2 ≫ ri̸=2 and c2 ≫ ci ̸=2 to obtain the desired
effect.
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The multiplicative adapters Li, Ri do not direct limit the rank of the expert, allowing the system
to exhibit greater variety and flexibility. Nonetheless, the greater parameter efficiency comes at a
computational cost, as each expert is now full-rank and must be obtained from a tensor contraction
at every step. Therefore, OperA can be seen as a compute-bound but memory-efficient alternative
to LoRA adapters, which is highly beneficial for common GPU implementations where compute is
abundant and memory bandwidth is often the principal bottleneck.

5 RESULTS

Here we report the results of our evaluation, including all relevant ablations for the different param-
eters of both SharedLoRA and OperA.

5.1 EXPERIMENTAL SETUP

Models. We compare MixLoRA, SharedLoRA, and OperA on a variety of models to ensure
the consistency of our performance results. From Meta, we test: Llama3-8B, Llama3.1-8B, and
Llama3.2-3B. From Qwen, we test: Qwen2.5-3B, and Qwen2.5-7B. Finally, from Microsoft we test
Phi4-14B. This choice of 6 models covers a representative range of sizes (from 3B to 14B parame-
ters) and of model origins.

Tasks. We evaluate our work on multiple datasets and tasks with varying size and complexity. For
each dataset, we first finetune each adapter on the training split, and then evaluate the accuracy on
the testing split. The task ensemble consists of question-and-answer tasks (ARC-e, ARC-c, PIQA,
OpenBookQA), classification tasks (BoolQ), and completion tasks (HellaSwag, WinoGrande). All
tasks are evaluated on accuracy.

MoEs. For all experiments, we use 8 total experts with 2 active experts per token. Following best
practices, we use noisy top-k routing with an auxiliary router balancing loss.

LoRA. For both LoRA based approaches, MixLoRA and SharedLoRA, the rank of the adapters
is the main hyperparameter. For MixLoRA, the rank is set to either 16 (original, see Section 5.2) or
12 (optimal, see Appendix B.1). For SharedLoRA, we match and surpass the parameter efficiency
of MixLoRA with ranks of either 12 or 8.

MPO. MPOs, as used in this work, do not have rank. We instead focus on the sizes of the physical
legs to achieve the desired parameter efficiency. The sizes are specific to each model, and can be
found in Appendix A. In OperA, we also use simple LoRA for the QKV matrices in the attention
components, and fix the rank to 6 to give enough flexibility for adaptation without contributing a
large amount of parameters. Therefore, most of the finetuning is left to the multiplicative adapters.

Environment. All experiments are performed on Nvidia A100 80GB using PyTorch 2.6 and the
MoE-PEFT (Li et al., 2024) codebase. All models are trained using mixed fp32 and bf16.

5.2 BASELINE

We replicate the setup of MixLoRA to obtain comparable results with the current SoTA, and follow
the original hyperparameter selection which found rank 16 to be optimal. In Table 1 we show
that SharedLoRA equals or surpasses the baseline with a smaller rank (12 vs 16), leading to 7.1%
average parameter savings. At the same time, OperA at SoTA accuracy achieves on average a 36%
space saving across all tested models. Overall, SharedLoRA and OperA surpass the baseline on all
the models tested, with notable parameter efficiency gains (see Appendix A for the configuration of
each adapter).

5.3 FIXED PARAMETER BUDGET

We have demonstrated that SharedLoRA and OperA are competitive with the SoTA while requiring
notably less parameters. At the same time, in Appendix B.1 we also further optimize MixLoRA

6
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Table 1: Accuracy of MixLoRA, and our SharedLoRA and OperA. For each model, we report
the reduction in parameters over MixLoRA and the task accuracy. The baseline parameter count is
taken as MixLoRA with rank 16.

Model Adapter % redux ↓ ARC-c ↑ ARC-e ↑ PIQA ↑ OBQA ↑ BoolQ ↑ HS ↑ WG ↑ Avg ↑

Llama3-8B
MixLoRA -0.0 75.76 87.08 86.18 89.00 73.61 94.63 83.11 84.20
SharedLoRA -0.0 75.51 86.28 86.02 86.60 74.13 94.03 82.79 83.62
OperA -0.0 77.39 86.28 88.30 87.60 76.36 96.15 81.45 84.79

Llama3.1-8B
MixLoRA -0.0 76.96 86.82 86.40 83.20 74.65 94.77 84.14 83.85
SharedLoRA -7.1 76.11 87.21 86.18 83.00 74.43 94.52 83.74 83.60
OperA -28.2 76.88 86.32 87.92 85.20 75.23 96.10 80.58 84.03

Llama3.2-3B
MixLoRA -0.0 68.26 83.12 83.02 77.40 71.50 92.13 75.14 78.65
SharedLoRA -7.6 69.28 83.29 84.00 79.00 72.20 91.70 76.72 79.46
OperA -29.8 66.98 81.73 83.19 77.20 70.98 92.93 74.19 78.17

Phi4-14B
MixLoRA -0.0 91.21 94.28 91.90 92.60 75.47 95.95 88.79 90.03
SharedLoRA -6.5 90.36 95.20 92.44 92.00 76.18 96.12 88.32 90.09
OperA -45.8 88.14 92.84 91.84 91.00 74.49 95.25 86.27 87.43

Qwen2.5-3B
MixLoRA -0.0 80.12 88.64 86.62 87.60 70.92 91.67 80.03 83.66
SharedLoRA -6.9 79.95 88.05 86.23 87.40 71.47 91.96 81.21 83.75
OperA -60.6 80.89 89.40 86.02 87.60 70.06 92.99 74.82 83.11

Qwen2.5-7B
MixLoRA -0.0 87.88 94.19 88.74 92.80 74.52 95.29 83.27 88.10
SharedLoRA -7.1 87.03 92.04 88.36 92.20 74.43 94.85 85.16 87.72
OperA -24.1 87.71 93.39 90.42 91.40 74.74 95.91 83.66 88.18

both for accuracy and for parameter count, and show that SharedLoRA and OperA outperform
SoTA in this setting as well. However, the question remains whether OperA can actually leverage
its multiplicative interactions to be more parameter-efficient than the baseline. Table 2 indicates that
OperA is Pareto-optimal on 5 out of the 6 models, achieving higher accuracy at a lower parameter
count than the baseline. Phi4 is the only exception, possibly due to its greater size which hampers
convergence.

Table 2: Comparison of MixLoRA and OperA given the same parameter budget. For each
model, we report the reduction in parameters over MixLoRA and the task accuracy. The baseline
parameter count is taken as MixLoRA with rank 16.

Model Adapter % redux ↓ ARC-c ↑ ARC-e ↑ PIQA ↑ OBQA ↑ BoolQ ↑ HS ↑ WG ↑ Avg ↑

Llama3-8B
MixLoRA -56.0% 78.75 87.12 83.81 85.20 74.62 94.75 83.90 84.02
OperA -60.6% 77.64 86.41 87.60 84.20 74.74 95.71 83.03 84.19

Llama3.1-8B
MixLoRA -56.0% 78.33 86.45 83.60 87.40 75.69 95.16 83.42 84.29
OperA -60.6% 77.73 87.29 88.19 85.40 75.69 95.91 80.03 84.75

Llama3.2-3B
MixLoRA -55.7% 69.33 83.42 83.17 79.40 70.98 92.15 76.64 79.30
OperA -55.0% 69.08 84.64 82.64 79.40 71.53 93.60 75.16 79.44

Phi4-14B
MixLoRA -71.4% 91.47 96.68 92.27 93.60 76.02 95.81 87.85 90.53
OperA -45.8% 88.14 92.84 91.84 91.00 74.49 95.38 87.21 88.54

Qwen2.5-3B
MixLoRA -55.9% 82.08 88.39 85.70 84.93 70.80 92.76 79.79 83.49
OperA -60.6% 80.89 89.40 86.02 87.60 70.06 92.99 77.82 83.54

Qwen2.5-7B
MixLoRA -56.1% 86.77 91.92 88.93 92.40 75.17 95.36 85.79 88.05
OperA -63.2% 87.63 92.51 90.59 94.00 74.07 95.76 83.98 88.36

5.4 EFFECTIVE RANK

While the LoRA rank puts an upper bound to the dimensionality of the PEFT, whether the adapters
do actually make use of all available space can be directly investigated. Here, we choose the effective
rank (Roy & Vetterli, 2007) as the measure of interest due to its inherent robustness. The effective
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rank is the measure of the entropy of the singular values of a matrix, computed as:

erank(W ) =
∥W∥2F
∥W∥22

(10)

where ∥·∥F is the Frobenius norm and ∥·∥2 is the L2 norm. The effective rank computes the ratio
between the sum of all singular values to the greatest one, quantifying the concentration of the
singular values and therefore the effective dimensionality of the matrix.

We compute the effective rank of both MixLoRA and SharedLoRA adapters as training progresses
as the effective rank of the full LoRA matrix, i.e. erank(Ei). In the case of OperA, we compute
the effective rank of W − Ei instead, as each Ei is always full rank and we wish to evaluate the
additional dimensionality brought by Ei to the system, rather than its raw dimensionality.
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(a) Effective rank of MixLoRA.
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(b) Effective rank of SharedLoRA.
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(c) Effective rank of OperA.

Figure 2: Effective rank of the adapters. Development of the effective rank as finetuning pro-
gresses.

Figure 2 shows that the effective rank quickly rises at the beginning of training, as expected, but
then progressively settles. In the case of MixLoRA, the effective rank degrades quickly, hovering
around 2.5 for both shallow and deep layers, consistent with the findings in Li et al. (2024) that
performance is maintained down to a LoRA rank of 2. On the other hand, the effective rank of
SharedLoRA remains notably higher, especially in the first layer, surpassing 4. This indicates both
that SharedLoRA achieves a higher effective rank, and also that it places more emphasis on shal-
lower layers, closer to the input. Finally, OperA’s effective rank is notably higher and more stable
than the additive approaches, indicating that the additional information gained by OperA spans a
much greater subspace even with fewer parameters.

5.5 ABLATIONS

Optimal rank. The main hyperparameter that determines the parameter count of LoRA-based ap-
proaches is the rank of the adapters. As mentioned earlier, to obtain baseline results we first apply
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MixLoRA with rank 16, found to be optimal in the original work. However, we also perform a
more fine-grained search using more modern architectures to ensure as strong a baseline as possi-
ble. Fig. 3 shows that performance peaks at rank 12 for Llama3-8B, while it remains stable after
rank 12 for Qwen2.5-3B. Therefore, we choose rank 12 as the most parameter-efficient solution for
both, and extend this evaluation to all architectures to establish an optimized MixLoRA baseline in
Appendix B.1.

Optimal MPO size. The parameter count of OperA is mainly determined by the configuration of
the physical legs, which are specific to each model and are evaluated empirically for effectiveness.
Nonetheless, the amount of legs also contributes to the downstream performance by varying the
degree of factorization. To obtain the optimal number, we sweep from 3 to 7 legs on Qwen2.5-3B
and check the average performance across 5 tasks. Figure 2c shows that 5 legs provides the best
accuracy.
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Figure 3: MixLoRA performance de-
pends on rank. We report the average ac-
curacy of Llama3-8B and Qwen2.5-3B at
varying LoRA ranks, using MixLoRA.
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Figure 4: OperA performance depends
on the number of legs. We report the av-
erage accuracy of Qwen2.5-3B at various
leg configurations, using OperA.

6 CONCLUSION

In this work, we present SharedLoRA and OperA, two rank-efficient techniques for PEFT MoEfi-
cation. SharedLoRA is a two-tiered structure of LoRA adapters, which makes use of the more con-
ventional additive interactions. This structure allows SharedLoRA to achieve higher performance at
lower parameter counts, by achieving a higher effective rank than the SoTA. OperA, instead, is built
on multiplicative interactions, which are fundamental to learning in deep neural networks (Jayaku-
mar et al., 2020). OperA leverages MPOs, a multiplicative decomposition stemming from quantum
physics, to produce low-parameter adapters which can be combined with the pretrained weights to
obtain powerful high-rank experts. Therefore, we highlight the usefulness of the effective rank as
a quantification of the dimensionality of an adapter, and show that targeting it leads to improved
performance without an increase in parameter count.

Overall, we show that SharedLoRA and OperA reach SoTA results on most of the models and tasks
tested. Specifically, OperA reaches a higher accuracy than the baseline at a lower parameter cost on
5 out of the 6 models tested, making it the optimal choice for a given parameter budget.

Further work is necessary to evaluate the impact of structured compositions of LoRAs, such as
our two-tier SharedLoRA and the graph-based S’MoRE Zeng et al. (2025). At the same time,
multiplicative adapters Yu et al. (2025) have shown significant promise to replace additive adapters
such as LoRA in some situations, with our OperA achieving optimal performance across the board.
However, the level of optimization that contributes to the success of LoRA has not yet been achieved
for its multiplicative alternatives, and is a significant avenue for future research.
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Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states.
Annals of physics, 326(1):96–192, 2011.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
ICLR, 2017.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng zhong Xu. HydraloRA: An asymmetric
loRA architecture for efficient fine-tuning. In NeurIPS, 2024.

Jiaqi Wang, Hanqi Jiang, Yiheng Liu, Chong Ma, Xu Zhang, Yi Pan, Mengyuan Liu, Peiran Gu,
Sichen Xia, Wenjun Li, Yutong Zhang, Zihao Wu, Zhengliang Liu, Tianyang Zhong, Bao Ge,
Tuo Zhang, Ning Qiang, Xintao Hu, Xi Jiang, Xin Zhang, Wei Zhang, Dinggang Shen, Tianming
Liu, and Shu Zhang. A comprehensive review of multimodal large language models: Performance
and challenges across different tasks. arXiv preprint arXiv:2408.01319, 2024.

Yifei Xia, Fangcheng Fu, Wentao Zhang, Jiawei Jiang, and Bin CUI. Efficient multi-task LLM
quantization and serving for multiple loRA adapters. In NeurIPS, 2024a.

12

https://openai.com/index/gpt-5-system-card/
https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuchen Xia, Jiho Kim, Yuhan Chen, Haojie Ye, Souvik Kundu, Cong Hao, and Nishil Talati.
Understanding the performance and estimating the cost of LLM fine-tuning. arXiv preprint
arXiv:2408.04693, 2024b.

Jiahui Yang, Yongjia Ma, Donglin Di, Hao Li, Wei Chen, Yan Xie, Jianxun Cui, Xun Yang, and
Wangmeng Zuo. QR-LoRA: Efficient and disentangled fine-tuning via QR decomposition for
customized generation. arXiv preprint arXiv:2507.04599, 2025.

Beiming Yu, Zhenfei Yang, and Xiushuang Yi. MoKA: Parameter efficiency fine-tuning via mix-
ture of Kronecker product adaption. In International Conference on Computational Linguistics
(ICCL), 2025.

Tongtian Yue, Longteng Guo, Jie Cheng, Xuange Gao, Hua Huang, and Jing Liu. Ada-K routing:
Boosting the efficiency of MoE-based LLMs. In ICLR, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Proceedings of the Association for Computational Lin-
guistics, 2019.

Hanqing Zeng, Yinglong Xia, Zhuokai Zhao, Gilbert Jiang, Qiang Zhang, Jiayi Liu, Lizhu Zhang,
Xiangjun Fan, and Benyu Zhang. S’more: Structural mixture of residual experts for llm fine-
tuning. arXiv preprint arXiv:2504.06426, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADAPTER DETAILS

A.1 MIXLORA

We report the hyperparameters chosen for MixLoRA in Table 3. The hyperparameters are chosen
based on the findings in the original paper, and then further finetuning as described in this work.

Table 3

Model Rank Alpha Dropout Results

All 16 32 0.05 Section 5.2
All 12 24 0.05 Appendix B.1
All 8 16 0.05 Section 5.5
All 7 14 0.05 Section 5.4

A.2 SHAREDLORA

We report the hyperparameters chosen for SharedLoRA in Table 3. The hyperparameters are chosen
based on an search conducted on the rank and dropout ratio.

Table 4

Model Rank Alpha Dropout Results

All 12 24 0.2 Section 5.2
All 8 16 0.2 Appendix B.1

A.3 OPERA

The hyperparameters for OperA depend on the chosen model, specifically the size of the physical
legs. We report in Table 5 both the row legs (Row) and the column legs (Column) in the format
r1 : r2 : ... : rl and c1 : c2 : ... : cl, with l the number of legs. The number of legs here is always 5,
as found in Section 5.5.
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Table 5

Model Column Row Rank Alpha Dropout Results

Llama3-8B
2:8:32:4:2 4:7:32:4:4 6 12 0.2 Section 5.2
2:8:32:4:2 4:7:32:4:4 6 12 0.2 Section 5.4, 5.5, Appendix B.1

Llama3.1-8B
2:8:32:4:2 4:7:32:4:4 6 12 0.2 Section 5.2
2:8:32:4:2 4:7:32:4:4 6 12 0.2 Section 5.4, 5.5, Appendix B.1

Llama3.2-3B
2:8:12:8:2 2:8:32:8:2 6 12 0.2 Section 5.2
2:8:12:8:2 2:8:32:8:2 6 12 0.2 Section 5.4, 5.5, Appendix B.1

Phi4-14B
2:8:40:4:2 4:8:35:4:4 6 12 0.2 Section 5.2
2:8:40:4:2 4:8:35:4:4 6 12 0.2 Section 5.4, 5.5, Appendix B.1

Qwen2.5-3B
2:8:16:4:2 2:8:43:8:2 6 12 0.2 Section 5.2
2:8:16:4:2 2:8:43:8:2 6 12 0.2 Section 5.4, 5.5, Appendix B.1

Qwen2.5-7B
2:8:28:4:2 4:8:37:8:2 6 12 0.2 Section 5.2
2:8:28:4:2 4:8:37:8:2 6 12 0.2 Section 5.4, 5.5, Appendix B.1
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B ADDITIONAL RESULTS

B.1 RANK OPTIMIZATION

We perform an hyperparameter search on Llama3-8B and Qwen2.5-3B to obtain the optimal rank
of MixLoRA on more recent architectures. Our rank sweep is more fine grained that in the origi-
nal work, and our results indicate that substantial space savings can be achieved with rank 12 (see
Section 5.4 for the ablation results). Therefore, we also aim to reduce the parameters of the MoEs
in SharedLoRA and OperA. The results in Table 6 indicate that both our methods are stable and
amenable to different configurations, providing evidence for their flexibility. This is especially re-
markable for OperA, which shows similar robustness to an already established method such as LoRA
while employing a notably different technique. Specifically, the performance of SharedLoRA and
OperA in Table 6 are again equal or superior to MixLoRA, with even more impressive space savings
of 38% and 58% respectively over the original baseline.

Table 6: Accuracy of rank-optimized MixLoRA, SharedLoRA, and OperA. For each model, we
report the reduction in parameters over MixLoRA and the task accuracy. The baseline parameter
count is taken as MixLoRA with rank 16.

Model Adapter % redux ↓ ARC-c ↑ ARC-e ↑ PIQA ↑ OBQA ↑ BoolQ ↑ HS ↑ WG ↑ Avg ↑

Llama3-8B
MixLoRA -24.9 77.13 87.84 85.90 87.20 74.71 94.70 83.35 84.40
SharedLoRA -38.2 78.92 86.24 86.02 86.60 74.13 94.92 83.19 84.29
OperA -60.6 77.64 86.41 87.60 84.20 74.74 95.71 83.03 84.19

Llama3.1-8B
MixLoRA -24.9 76.11 85.27 87.76 84.20 75.50 94.93 84.61 84.05
SharedLoRA -38.2 76.62 87.46 86.62 86.60 74.65 94.92 84.29 84.45
OperA -60.6 77.73 87.29 88.19 85.40 75.69 95.91 83.03 84.75

Llama3.2-3B
MixLoRA -25.2 69.28 84.85 83.57 79.80 72.20 92.53 73.09 79.33
SharedLoRA -38.2 68.00 82.66 83.79 79.00 72.20 92.87 76.24 79.25
OperA -55.0 69.08 84.64 82.64 79.40 71.53 93.60 75.16 79.44

Phi4-14B
MixLoRA -25.0 90.36 96.84 91.89 94.00 75.41 95.81 88.32 90.38
SharedLoRA -37.8 90.87 95.70 91.78 91.80 75.72 96.01 88.08 89.99
OperA -71.4 88.14 92.84 91.84 91.00 74.49 95.38 87.21 88.54

Qwen2.5-3B
MixLoRA -25.0 81.06 88.59 86.56 86.40 71.28 91.94 79.08 83.56
SharedLoRA -37.8 81.57 89.31 85.96 87.60 71.56 92.16 79.32 83.93
OperA -60.6 80.89 89.40 86.02 87.60 70.06 92.99 77.82 83.54

Qwen2.5-7B
MixLoRA -24.9 87.54 92.17 88.90 92.80 74.10 95.60 84.14 87.89
SharedLoRA -37.9 87.03 91.54 89.99 92.20 73.90 95.10 84.14 87.56
OperA -63.2 87.63 92.51 90.59 94.00 74.07 95.76 83.98 88.36

B.2 RANK ABLATION

Table 7 report all the results of the rank ablation performed on Qwen2.5-3B and Llama3-7B.

Table 7: Results of the rank ablation. We sweep the rank of MixLoRA from 16 to 8 on Qwen2.5-
3B and Llama3-8B, to determine the optimal configuration.

Adapter Model Rank ↓ % redux ↓ ARC-c ↑ ARC-e ↑ PIQA ↑ OBQA ↑ BoolQ ↑ Avg ↑

MixLoRA

Qwen2.5-3B
16 -0% 80.12 88.64 86.62 87.60 70.92 82.78
12 -24.5% 81.06 88.59 86.56 86.40 71.28 82.78
8 -49.5% 81.91 89.01 83.19 87.60 71.59 82.66

Llama3-8B
16 -0% 75.76 87.08 86.18 89.00 73.61 82.33
12 -24.9% 77.13 87.84 85.90 87.20 74.71 82.56
8 -49.8% 78.84 87.33 83.59 86.80 75.30 82.37
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B.3 MPO SIZE ABLATION

Table 8 report all the results of the ablation on the number of legs of the MPO performed on
Qwen2.5-3B.

Table 8: Results of the MPO size ablation. We sweep the number of legs in OperA from 3 to 7 on
Qwen2.5-3B, to determine the optimal configuration.

Adapter Model Column Row % redux ↓ ARC-c ↑ ARC-e ↑ PIQA ↑ OBQA ↑ BoolQ ↑ Avg ↑

OperA Qwen2.5-3B
2:2:4:16:2:2 2:2:4:43:4:2:2 -60.6% 80.55 89.52 85.53 88.20 69.82 82.72
2:8:16:4:2 2:8:43:8:2 -60.6% 80.89 89.40 86.02 87.60 70.06 82.79
16:16:8 16:43:16 -60.6% 80.03 89.35 85.53 88.60 69.02 82.51

B.4 FUSION

The adapter fusion approach of MixLoRA (Li et al., 2024) has been shown to notably improve the
performance of additive adapters with LoRA. In Table 9 we report that such approach is helpful for
multiplicative adapters such as OperA as well.

Table 9: Results of the fusion ablation. We evaluate whether the adapter fusion approach is suc-
cessful for OperA/ as well on Llama3-8B and Qwen2.5-3B.

Model Adapter ARC-c ↑ ARC-e ↑ PIQA ↑ OBQA ↑ BoolQ ↑ Avg ↑

Llama3-8B
OperA (w/o fusion) 73.46 84.30 87.11 86.6 74.07 81.11
OperA 77.64 86.41 87.6 84.2 74.74 84.19

Qwen2.5-3B
OperA (w/o fusion) 76.54 87.84 82.92 85.8 69.17 80.45
OperA 80.89 89.40 86.02 87.60 70.06 83.54
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