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Abstract

Intent detection and slot filling are two impor-001
tant basic tasks in natural language understand-002
ing. Actually, there are multiple intents in an003
utterance. How to map different intents to cor-004
responding slot becomes a new challenge for005
recent research. Existing models solve this006
problem by using neural layers to adaptively007
capture related intent information for each s-008
lot, which the process of intent selection is not009
clear enough. It is observed that there is strong010
consistency between intents and topics of a011
sentence, thus we exploit topic information for012
joint intent detection and slot filling via a topic013
fusion mechanism, where token-level topic in-014
formation take the place of intent information015
to guide slot prediction. In addition, sentence-016
level topic information is also utilized to en-017
hance the intent detection. Experiment result-018
s show explicit improvements on two public019
datasets, where provide 4.8% improvement in020
sentence accuracy on MixATIS and 0.7% im-021
provement in intent detection on MixSNIPS.022

1 Introduction023

Natural language understanding (NLU) is an essen-024

tial component in spoken dialogue system, which025

typically consists of intent detection and slot filling.026

These two tasks focus on capturing user’ intent027

and extracting critical constituents via annotating028

the utterance. There is an example from SNIPS029

dataset shows below. The utterance "i want to030

play music from iheart" is supposed to031

be identified by the intent label "PlayMusic"032

on a sentence-level as well as the slot label033

"B-service" for the value "iheart" on a word-034

level.035

Intent detection and slot filling are naturally de-036

fined as two separate tasks (Tur and De Mori, 2011).037

Intent detection can be treated as a classification038

problem, while slot filling can be seen as a se-039

quence labeling task. These two tasks are easy040

to proceed separately via pipeline approaches, but041

such frameworks may cause error propagation. To 042

solve the problems caused by pipeline manners, 043

joint learning methods are introduced to identify 044

the intent of the utterance and extract the slot in- 045

formation simultaneously. Some previous works 046

on joint models utilize neural networks to share 047

utterance-level representations between the two 048

tasks (Guo et al., 2014; Hakkani-Tur et al., 2016; 049

Chen et al., 2016). Furthermore, recent studies at- 050

tempt to establish relationship between intent and 051

slots (Goo et al., 2018; Qin et al., 2019) to enhance 052

the performance of joint models. Most aforemen- 053

tioned approaches focus on single intent prediction, 054

while users usually indicate multiple intents in real- 055

world scenario. How to leverage multiple intents 056

to guide corresponding slot prediction becomes a 057

new challenge for recent studies. 058

In order to utilize multiple intents to lead slot 059

prediction, Gangadharaiah and Narayanaswamy 060

(2019) first propose an attention-based neural net- 061

work model for the joint tasks, while each token 062

is provided with the same multiple intents infor- 063

mation. In addition, an adaptive graph interactive 064

framework is introduced to map fine-grained intent 065

information to slot filling on each token (Qin et al., 066

2020, 2021). However, we consider that aforemen- 067

tioned methods do not verity that if the correct 068

related intent information works on the correspond- 069

ing token, since the fine-grained intent information 070

captured by graph interaction layer is not explicit. 071

Therefore, we attempt to apply external knowledge 072

to definitely guide slot prediction on each token. 073

In this paper, we apply topic information into 074

joint multiple intent detection and slot filling vi- 075

a a topic fusion mechanism. Recent studies have 076

shown significant improvement on exploiting syn- 077

tactic knowledge into NLU tasks (Wang et al., 078

2020). Inspired by Wang et al. (2020), we find 079

that there is strong consistency between intents and 080

topics of an utterance so that we make an attempt 081

to apply topic information into the joint tasks. To 082
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this end, a topic fusion mechanism is introduced to083

combine the topic information with middle layer of084

intent detection as well as each token’s hidden state085

of slot filling encoder. Such a fusion mechanism is086

utilized to reinforce the intent detection on sentence087

level and guide each token for slot prediction.088

Our contributions are as follows:089

• To the best of our knowledge, we090

are the first to utilize topic informa-091

tion to support joint multiple intent092

detection and slot filling, where a093

topic fusion mechanism is explored094

to enhance the intent detection on095

sentence level and guide slot filling096

on token level.097

• We conduct experiments on two098

public datasets: MixATIS and S-099

nips, which achieve 4.8% F1 score100

improvement in sentence accuracy101

on MixATIS and 0.7% F1 score im-102

provement in intent detection on103

MixSNIPS.104

2 Approach105

In this section, we will discuss our proposed model106

in detail. Figure 1 gives an overview of our ap-107

proach. We can see that the intent detection and108

slot filling are transformed to multi-label classifi-109

cation task and sequence labeling task respectively.110

Following that, we first introduce the Topic Infor-111

mation Extractor(3.1) and Topic Fusion Mechanis-112

m(3.2), which utilized in our framework. Then we113

discuss a topic fusion mechanism applied into in-114

tent detection(3.3) and slot filling(3.4). Last a joint115

learning scheme(3.5) is utilized to optimize the two116

tasks simultaneously.117

2.1 Topic Information Extractor118

Latent Dirichlet Allocation (Blei et al., 2003) is119

a popular topic modeling technique, which maps120

high dimensional word space to low dimension-121

al topic space while reserving the implicit con-122

nection. In our framework, we use LDA mod-123

el to acquire topic information of input sequence124

{x1, x2, x3, ..., xT }. In the corpus D, each docu-125

ment dm includesNm words and can be denoted by126

a K-dimensional “document-topic” distribution θkm.127

And each topic k containing V words, is denoted128

by a V-dimensional “topic-word” distribution φtk.129

We follow Blei et al. (2003) to use Collapsed130

Gibbs Sampling to learn the “document-topic” dis-131

tribution θkm and the “topic-word” distribution φtk. 132

The process of Collapsed Gibbs Sampling can be 133

written as: 134

φtk =
ntk + β∑V

t=1(n
t
k + β)

(1) 135

θkm =
nkm + α∑K

k=1(n
k
m + α)

(2) 136

where ntk represents the number of times that word 137

t has been assigned to topic k and nkm denotes the 138

number of times that topic k has been assigned to 139

a word of the document dm. 140

In each iteration, the topic assignment for word 141

w ∈ D is updated alternatively by sampling from 142

a multinomial distribution P = [p1, ..., pk, ..., pK ]. 143

pk ∝ φtk · θkm (3) 144

where pk denotes the probability that topic k is sam- 145

pled. After the given S iterations, the ‘document- 146

topic” distribution θkm and “topic-word” distribu- 147

tion φtk can be obtained. 148

Instead of directly utilizing the distribution 149

θkm and φtk, we design a method to extract 150

sentence-level topic information EL
S and token- 151

level topic information EL
i . In particular, EL

S = 152

φemb(s1, s2, ..., sq) is the set of sentence-level top- 153

ic words embedding, where (s1, s2, ...sq) is ob- 154

tained from φtk and θkm.EL
i = φemb(w1, w2, ..., wp) 155

is the set of token-level topic words embedding, 156

where (w1, w2, ..., wp) is obtained from φtk and θkm 157

2.2 Topic Fusion Mechanism 158

In our model, we use Factorization Machine (FM) 159

to fuse the topic information with the context. FM 160

is produced by Rendle (2010) to interact features 161

for recommendation system. Different from exist- 162

ing efforts, which utilizes FM to compute the cost 163

of Neural Network, we apply it as a fusion layer to 164

learn the features interactions of topic information 165

and context. The basic FM algorism is defined as 166

follows: 167

HFM = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

〈vi, vj〉xixj

(4) 168

where w0 is the global bias, wi is the trainable 169

parameter and 〈vi, vj〉 =
∑n

f=1 vi,fvj,f . 170
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Figure 1: Framework of topic information fusion model

2.3 Intent Detection171

Input Representation Layer The GRU (Graph172

Recurrent Unit) Network is first proposed by173

Cho et al. (2014) to consider sequence label-174

ing tasks. We utilize bidirectional GRU to read175

the input sequence {e1, e2, ..., eT }, where ei =176

φemb(x1, x2, ...xT ) and φemb is the embedding177

function combining word-level and character-level178

embedding. Then we get the hidden state of bidi-179

rectional GRU H = {h1, h2, ..., hT }.180

Topic Fusion in Intent Detection Normally In-181

tent Detection is treated as a classification problem.182

Recent models utilize deep learning framework-183

s to solve this task (Xia et al., 2018; Yolchuyeva184

et al., 2019; Okur et al., 2019; Tian and Gorinski,185

2020). Some of them apply attention mechanism186

(Bahdanau et al., 2014) to focus on partial features.187

We find that topic information has strong connec-188

tion with intents of an utterance, thus a topic fusion189

mechanism is suggested showed in Eq.(4). In in-190

tent detection, topic fusion mechanism is utilized191

to combine sentence-level topic information with192

the context. The formulation is written as follows:193

hI =Maxpooling(hi) (5)194

hI,L = hFM
1 + hFM

2 (6)195

where hi is the hidden state of bidirectional GRU196

and hI,L is the sentence-level topic information197

fusion layer that modified from Eq.(4). Since the 198

equation is too long, we decompose is into Eq.(7) 199

and Eq.(8): 200

hFM
1 =WF0(E

L
S , h

I) + bF0 (7) 201
202

hFM
2 =

1

2
((v0(E

L
S , h

I))2 − v20(EL
S , h

I)2) (8) 203

whereEL
S denotes the sentence-level topic informa- 204

tion, WF0 and v0 are the trainable matrix parame- 205

ters. 206

Since the intent detection is treated as a multi- 207

label task, we use sigmoid function to give the 208

probability distribution yI over intent labels: 209

yI = σ(WIh
I,L + bI) (9) 210

where σ represents the sigmoid activation function. 211

2.4 Slot filling 212

Topic-aware Mechanism Inspired by Sutskever 213

et al. (2014), we modifies the traditional attention 214

algorism to learn related topic information for each 215

token. The topic-attention output is computed as: 216

αi = softmax(EL
i UW

T
topic) (10) 217

218
cLi = αiWtopic (11) 219

220
h′i = [cLi , hi] (12) 221

where EL
i is the token-level topic information, cLi 222

provides additional topic information for each to- 223

ken, which concatenates with the hidden state of 224

context hi. 225
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Topic Fusion in Slot Filling Similar to intent226

detection, topic fusion mechanism is leveraged to227

combine token-level topic information with each228

token of an utterance. hS,Li is the token-level topic229

information layer, which is decomposed into E-230

q.(14) and Eq.(15). Then the Bidirectional GRU231

reads it forwardly and backwardly:232

hS,Li = hFM
1i + hFM

2i (13)233
234

hFM
1i =WF1(E

L
i , h

′
i) + bF1 (14)235

236

hFM
2i =

1

2
((v1(E

L
i , h

′
i))

2 − v21(EL
i , h

′
i)
2) (15)237

238

hS,L
′

i = BiGRU(hS,Li ) (16)239

The softmax activation function is applied to240

predict the probability distribution of slot labels:241

ySi = softmax(WSh
S,L′

i + bS) (17)242

2.5 Joint Training243

To learn intent detection and slot filling jointly,244

we adopt a joint training model to consider the245

two tasks and update parameters simultaneously.246

The cross-entropy loss for intent detection and slot247

filling is computed as:248

LI = −
M∑

m=1

ŷI log(yI) (18)249

LS = − 1

T

T∑
i=1

C∑
c=1

ŷSi log(ySi ) (19)250

where M is the number of intent labels, T is the251

number of words in an utterance and C is the num-252

ber of slot labels. We use ŷI and ŷSi to denote the253

ground truth label of intent and slot.254

The training target of the model is to minimize255

the united loss function. Finally, the joint objective256

is defined as:257

Loss = γLI + (1− γ)LS (20)258

where γ is a hyper-parameter to adjust the impor-259

tance of the two tasks.260

3 Experiment and Analysis261

In this section, we first introduce the dataset used262

in the experiments. Then an analysis about our263

model according to the experimental results will be264

mentioned.265

3.1 Dataset 266

We use the two public datasets, the MixATIS 267

dataset (Tur et al., 2010; Qin et al., 2021) and 268

MixSNIPS dataset, to conduct our experiments. 269

All datasets are annotated with intent and entity la- 270

bels. The data division we used is the same as Qin 271

et al. (2021), where the MixATIS consists of 13162 272

utterances for training, 756 utterances for valida- 273

tion and 828 utterance for testing. Another dataset 274

MixSNIPS includes 39776, 2198, 2199 utterances 275

for training, validating and testing. 276

3.2 Baselines 277

To confirm the effectiveness of our framework, we 278

compared it with some published state-of-the-art 279

models, which are shown as follows: 280

• Attention-based (Liu and Lane, 281

2016) develops an attention-based 282

RNN models for joint intent detec- 283

tion and slot filling. The model uses 284

an attention mechanism to extract 285

features from utterance context for 286

the prediction of slot and intent. 287

• Slot-gated Full Atten (Goo et al., 288

2018) leverages attention mechanis- 289

m to combine intent detection with 290

slot filling task, which enables in- 291

tent information to apply into the 292

process of slot prediction via a slot- 293

gated algorism. 294

• Bi-Model (Wang et al., 2018) pro- 295

poses a RNN semantic frame pars- 296

ing model to consider cross-impact 297

between intent and slots. 298

• SF-ID Network SF-First with 299

CRF (E et al., 2019) utilizes a SF- 300

ID network to establish interrelated 301

relations for slot filling and intent 302

detection, in which the two subtasks 303

promote each other simultaneously 304

via attention mechanism. 305

• Stack-Propagation (Qin et al., 306

2019) adopts a joint model which 307

can directly incorporate intent infor- 308

mation to guide slot filling. 309

• Joint Multiple ID-SF (Gangad- 310

haraiah and Narayanaswamy, 2019) 311

investigates an attention-based neu- 312

ral network for multi-label intent de- 313

tection and slot filling. 314
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Table 1: Comparison with published results of joint models on the MixATIS and MixSnips dataset

Model
MixATIS MixSnips

Slot(F1) Intent(Acc) Sentence(Acc) Slot(F1) Intent(Acc) Sentence(Acc)
Attention-based (Liu and Lane, 2016) 86.4 74.6 39.1 89.4 95.4 59.5

Slot-gated Full Atten (Goo et al., 2018) 87.8 63.9 35.5 87.9 94.6 55.4

Bi-Model (Wang et al., 2018) 83.9 70.3 34.4 90.7 95.6 63.4

SF-ID Network SF-First with CRF (E et al., 2019) 87.4 66.2 34.9 90.6 96.0 59.9

Stack-Propagation (Qin et al., 2019) 87.8 72.1 40.1 94.2 96.0 72.9

Joint Multiple ID-SF (Gangadharaiah and Narayanaswamy, 2019) 84.6 73.4 36.15 90.6 95.1 62.9

AGIF (Qin et al., 2020) 86.7 74.4 40.8 94.2 95.1 74.2

GL-GIN(Qin et al., 2021) 88.3 76.3 43.5 94.9 95.6 75.4
Our model 88.7 73.0 48.3 94.4 96.3 69.8

Table 2: Results of ablation study on MixATIS dataset

Slot (F1) Intent (Acc) Sentence (Acc)
Our model 88.67 73.0 48.32
Our model (no token-L topic) 88.56 71.73 46.69

Our model (no sentence-L topic) 88.50 68.91 43.72

Our model (no both component) 88.43 67.80 43.23

• AGIF (Qin et al., 2020) suggests315

an adaptive graph-interactive frame-316

work to learn the strong relationship317

between the slot and intents.318

• GL-GIN (Qin et al., 2021) explores319

a non-autoregressive model for joint320

intent detection and slot filling to321

achieve more fast and accurate.322

3.3 Training Details323

In our experiments, the embedding layer merges324

word embedding and character embedding. We325

use pre-trained word vectors via FastText (Mikolov326

et al., 2018) and the character vectors are randomly327

initialized. Both the vectors are fine-tuned during328

training. The number of the bidirectional GRU329

units is set to 450, which is equal to the sum of330

dimensions of the word embedding and character331

embedding. Besides, the batch size is 64. Cross332

entropy is used as loss function and optimization333

is Adam (Kingma and Ba, 2014). To reduce the334

over-fitting, we apply dropout rate 0.2 to the bidi-335

rectional GRU. The iteration will be terminated336

after the F1 score of slot filling stop increasing 5337

iterations continuously.338

3.4 Results and Analysis339

Evaluation Method. To evaluate the performance340

of our model, we adopt F1 score and accuracy com-341

pared with five state-of-the-art models. Following342

previous works, the F1 score is calculated from343

Precision (P) and Recall (R).We score a slot as344

correct if both the entity boundaries and the enti- 345

ty type are correct. An utterance is considered as 346

correct if both the slots and intent are correct. The 347

experimental results are shown in Table 1. 348

Main Results. We compare our model with cur- 349

rent published joint models shown in Tabel 2. It is 350

explicit that our method outperforms other meth- 351

ods for joint slot filling and intent detection, which 352

achieves state-of-the-art performance mostly on the 353

MixATIS and MixSnips datasets. Compared to the 354

current best model GL-GIN (Qin et al., 2021) on 355

MixATIS dataset, our method achieves substantial 356

improvements on F1 score of slot filling and sen- 357

tence accuracy. Especially in sentence accuracy, 358

the our model achieves 4.5% absolute gain. Simi- 359

lar on MixSnips dataset, our model perfroms better 360

than GL-GIN (Qin et al., 2021) with the improve- 361

ments of 0.7% on F1 score of slot filling. 362

It is considered that the performance gain of in- 363

tent detection and slot filling is mainly because the 364

effectiveness of our topic fusion mechanism. The 365

results verify the statement that topic information 366

is beneficial to intent detection and slot filling. As 367

mentioned above, existing joint models try to con- 368

nect fine-grained multiple intent information for 369

slot filling on each token. But we think that top- 370

ic information is more explicit for the two tasks 371

because there is strong consistency between topic 372

information and intent. Furthermore, it is obvi- 373

ous that the improvement of sentence accuracy is 374

prominent on MixATIS dataset. This may credit 375

to our topic fusion mechanism is more efficient 376
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to dataset which contains more classification of377

labels.378

3.5 Ablation Study379

To demonstrate the effectiveness of each compo-380

nent in our joint intent detection and slot filling,381

we also conduct ablation experiment to understand382

the impact of each component on the whole model.383

Particularly, we investigate the topic fusion mecha-384

nism on sentence-level and token-level. The results385

are summarized in Table 2.The second line con-386

tains the results of our complete model and three387

extra experiments are performed. In the first ex-388

periment, we delete the topic fusion mechanism389

in slot filling, which does not utilize token-level390

topic information. Then we keep the token-level391

topic information and delete sentence-level topic392

information. Furthermore, we remove both of the393

aforementioned parts to conduct the experiment,394

which only apply Bidirectional GRU for joint mod-395

els.396

As shown in Table 2, the accuracy of intent de-397

tection increase from 71.73% to 73% when only398

applying sentence-level topic information. The399

accuracy of sentence also achieves 1.63% improve-400

ment, which verifies the benefit of sentence-level401

topic information to global utterance semantic com-402

prehension. In the ablation test of token-level topic403

information, the accuracy of intent detection im-404

proves from 68.91% to 73% and the F1 score of405

slot filling improves from 88.50% to 88.67%. Thus406

we can conclude that topic information works ef-407

fectively on the two subtasks. In addition, we find408

that the improvement of utilizing sentence-level409

topic information is more absolute than utilizing410

token-level topic information. This may credit to411

sentence-level topic information we obtained is412

more closed to intent information of an utterance.413

4 Related Work414

Traditional systems treat intent detection and slot415

filling as two separate tasks in a pipeline. Intent416

detection is usually considered as a text classifica-417

tion task, which relies on the methods of support418

vector machines (SVMs) (Haffner et al., 2003) and419

deep learning frameworks (Xia et al., 2018; Okur420

et al., 2019; Tian and Gorinski, 2020). Recently, a421

transformer model and universal sentence encoder422

based deep averaging network are utilized in in-423

tent detection task (Yolchuyeva et al., 2019). For424

slot filling, this task is formulated as a sequence425

labeling problem. Previous work on slot filling is 426

relied on Conditional Random Field (CRF) (Laf- 427

ferty et al., 2001) and maximum entropy Markov 428

models (MEMMs) (McCallum et al., 2000). Cur- 429

rently, deep learning methods are combined with 430

CRF to solve the slot filling problems. (Gong et al., 431

2019) proposes a deep cascade multi-task learn- 432

ing scheme for slot filling based on BiLSTM-CRF. 433

It is simple to conduct these two tasks separately 434

but pipeline methods may cause error propagation 435

problem. 436

To solve the problems caused by pipeline meth- 437

ods, joint slot filling and intent detection models 438

are proposed to improve the utterance semantics 439

and solve the error propagation problem of pipeline 440

methods (Goo et al., 2018). Prior method about 441

joint models is to share the same text represen- 442

tation and utilize a joint loss function for global 443

optimization (Guo et al., 2014; Chen et al., 2016). 444

A convolutional neural network (CNN) for slot 445

filling and intent detection is introduced, which ex- 446

tracts features through CNN layers for slot filling 447

and shared by intent detection (Xu and Sarikaya, 448

2013). The RNN-LSTM architecture proposed by 449

(Hakkani-Tur et al., 2016) enables slot filling and 450

intent detection optimized in a single model based 451

on bidirectional RNN with LSTM cells. In addi- 452

tion, (Liu and Lane, 2016) develops an attention- 453

based RNN model for joint intent detection and slot 454

filling. Besides, recent studies build relationship 455

between slots and intent. Goo et al. (2018) utilizes 456

attention mechanism to combine intent informa- 457

tion with slot filling task. Similar to slot-gated 458

mechanism, (Wang et al., 2018) utilizes a Bi-model 459

based RNN semantic frame parsing network struc- 460

ture to establish cross-impact between intent and 461

slots. Reference (E et al., 2019) introduces a SF- 462

ID network to build interrelated relations for slot 463

filling and intent detection to help them promote 464

each other simultaneously. 465

Most aforementioned methods focus on single 466

intent prediction, while users usually indicate mul- 467

tiple intents in real-world scenario. In order to 468

utilize multiple intents to lead slot prediction, Gan- 469

gadharaiah and Narayanaswamy (2019) first pro- 470

pose an attention-based neural network model for 471

multiple intent detection and slot filling. Howev- 472

er, it dose not map fine-grained intent information 473

to slot filling that each token is provided with the 474

same multiple intents information. Qin et al. (2020) 475

indicate that incorporating the same intents infor- 476
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mation for all tokens may lead to ambiguity, thus an477

adaptive graph-interactive framework for joint mul-478

tiple intent detection and slot filling is introduced.479

To achieve fine-grained multiple intent integration,480

they use graph attention network to connect multi-481

ple intents and slot. Furthermore, Qin et al. (2021)482

suggest to utilize no-autoregressive model to accel-483

erate the process of training and inference, which484

has achieved promising performance.485

Compared with previous works, we apply topic486

information into joint intent detection and slot fill-487

ing. It is observed that there is strong consistency488

between intents and topics of an utterance. There-489

fore, a topic fusion mechanism is produced to com-490

bine sentence-level topic information and token-491

level topic information with the context, which492

reinforces the intent prediction on sentence level493

and guides each token for slot filling.494

5 Conclusion495

In this paper, we leverage topic information pro-496

duce by LDA for joint intent detection and slot497

filling. To this end, a topic fusion mechanism is498

introduce to combine topic information with the499

context. Such a fusion mechanism is used to en-500

hance the prediction of intent and guide slot filling501

on each token. Experimental results show effective-502

ness of our model and outperform previous state-503

of-the-art models on two public datasets mostly. In504

the future, we will focus on how to integrate LDA505

model with neural network and attempt to apply it506

into other NLU tasks.507
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