
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POLICY TRANSFER FOR IMPROVED SAMPLE EFFI-
CIENCY IN GOAL-CONDITIONED REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Goal-Conditioned Reinforcement Learning (GCRL) tackles the challenging prob-
lem of long-horizon, sparse-reward goal-reaching tasks with continuous actions.
Recent methods, relying on a two-level hierarchical policy along with a graph
of sub-goal landmarks, have demonstrated reasonable asymptotic performance.
However, existing algorithms suffer from poor sample efficiency due to exces-
sively many uninformative landmarks and the inability to transfer low-level be-
haviour between related tasks. We instead claim that transferring a pre-trained
low-level policy between environments can improve landmark generation and dra-
matically improve sample efficiency and even success rates. We introduce an
algorithm PROMO, which explicitly models reachability using a pre-trained low-
level policy and uses it to improve landmark generation and transfer low-level
behaviour. We demonstrate 3-4x improvements in sample efficiency over exist-
ing state-of-the-art methods on the challenging robotics tasks of AntMaze and
Reacher3D, with the mild overhead of one-time policy pre-training. In addition,
our method achieves superior success rates across all environments, as well as
better training stability and much fewer, more informative landmarks.

1 INTRODUCTION

GCRL is a promising paradigm to solve Reinforcement Learning (RL) tasks parameterised by a
desired goal. These tasks can encode far more challenging information than their standard RL
counterparts, owing to the parameter-dependent, sparse reward structure. Many important spatial
applications such as robotic navigation and manipulation can be expressed as goal-reaching tasks
in low-dimensional goal spaces. Recently, several methods have tackled this problem by building a
graph of landmarks, i.e. important sub-goals which facilitate goal space coverage. These methods
employ a hierarchical structure, with a low-level policy implementing sub-goals and a high-level
policy maintaining the graph and choosing sub-goals for the low-level to implement. Shortest-path
algorithms are used to navigate through the graph. While these techniques have proven worthwhile,
they are still inefficient in terms of environment steps needed for training.

GCRL trains the separate skills of moving and planning together, potentially allowing for a more ex-
pressive overall policy, since the two levels communicate and develop together. However, this means
that the skill of moving through the goal space must be re-learned for every new environment, lead-
ing to very large sample complexity. Conversely, skills-based Hierarchical RL methods (Sohn et al.,
2018; Li et al., 2019; Tessler et al., 2017; Frans et al., 2018) seek to pre-train multiple “primitive”
skills (policies) and then transfer them to more complex environments, but these methods do not
make use of the strong prior of goal-reaching rewards.

In this work, we seek to bridge this gap by studying whether transferable skills can improve sample
efficiency in goal-conditioned problems by facilitating better balance between exploration (novelty)
and exploitation (reachability). This may open new avenues for the use of transfer in RL. Our main
contributions are:

• To our knowledge, the first application of pre-trained transferable skills in a GCRL context

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• A new reachability modelling method based on the transferred policy, along with a new
landmark generation procedure which utilises the reachability model to produce fewer,
more spaced out landmarks than existing methods.

• An extensive set of comparative, ablative and investigative experiments demonstrating the
ability of transfer-based reachability modelling to greatly improve both sample efficiency
and goal-reaching success over state-of-the-art methods.

2 RELATED WORK

Hierarchical GCRL methods follow the feudal structure of a high-level policy providing sub-goals
to a low-level policy, with both policies being trained together (Vezhnevets et al., 2017). Some
early examples include HAC (Levy et al., 2017), HIRO (Nachum et al., 2018) and RIS (Chane-
Sane et al., 2021), where the high-level policy directly outputs a subgoal. Other methods build a
graph of static landmarks (important sub-goals) and use it to plan over long distances (Zhang et al.,
2021; Kim et al., 2021; Huang et al., 2019) using a shortest path algorithm, thereby improving
efficiency. The graph nodes are landmarks, and the edges between them depend on some measure
of similarity or reachability. Search on the Replay Buffer (SoRB) (Eysenbach et al., 2019) takes all
states from the low-level replay buffer as landmarks and constructs a graph based on them. While
these methods achieved some early success, they still suffer from poor sample efficiency and many
uninformative landmarks. Moreover, rather than a fixed or constrained initial state distribution (the
most challenging case), they rely on the distribution uniformly covering the full space while training,
something that is impractical in many applications.

The current state-of-the-art methods, DHRL (Lee et al., 2022), BEAG (Yoon et al., 2024) and NGTE
(Park et al., 2024) are also landmark/graph-based and improved performance on the more challeng-
ing fixed distribution case, but still suffer from poor sample efficiency and excessive landmarks.
DHRL samples landmarks as achieved goals from the low-level replay buffer and focuses on decou-
pling the low-level and high-level time horizons, while BEAG assigns landmarks as the vertices of
an adaptively refined grid. Both these methods produce many uninformative landmarks. NGTE nav-
igates to a frontier landmark and uses it as an exploration outpost, similar to ours, but then generates
landmarks randomly.

All the above methods implicitly or explicitly balance reachability with novelty when generating
landmarks/subgoals. However, these quantities are represented by overly simplistic heuristics. For
example, many works use the low-level value function to assess reachability (e.g. DHRL, SoRB,
RIS), which is only accurate for close-by states (it is trained with one-step temporal difference errors
between close-by states). Other methods use the empirical test of whether a given landmark actually
was reached during exploration, without any modelling. NGTE does this on randomly sampled
landmarks and BEAG makes the grid more coarse (novelty-seeking) or fine (reachability-seeking)
based on whether landmarks were reached.

By contrast, we explicitly model reachability between all (including far-apart) possible sub-goals,
using a pre-trained and transferred low-level policy and a novel trajectory-accessibility architecture.
Novelty is measured as non-reachability from the existing landmarks. Our landmark generation
procedure can therefore balance reachability and novelty of very distant goals to generate much
fewer, more spaced out and therefore more informative landmarks. In addition, our method is the
first to pre-train and transfer the low-level policy to help in landmark generation and reuse the moving
behaviour across related tasks.

3 PRELIMINARIES

Goal-augmented MDP. We formulate the problem as a finite-horizon Goal-augmented Markov
Decision Process (GA-MDP) (Sutton & Barto, 2018; Nasiriany et al., 2019), defined by a 10-tuple
M = (S,A,G, T,R, d, ϕ, γ, ρS , ρG). The sets S, A and G are the state, action and goal spaces
respectively. We assume that G is bounded, a common assumption made by e.g. BEAG (Yoon et al.,
2024). State, action and goal spaces are usually continuous and Euclidean in GCRL, though this is
not a strict requirement. We adopt a convention of denoting achieved goals, i.e., the agent’s current
position in the goal space, by g and desired goals, e.g. the task goal, by h. T : S × A → S and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

R : S×A×G→ R is a (possibly stochastic) dynamics transition function. Additionally, the known
distance function d(g1, g2) : G×G→ R+ (inducing the 2-norm if spaces are Euclidean) is used to
determine reward. Specifically, the reward function R : S ×A×G→ R is 0 if the achieved goal is
within a known threshold δr ∈ R+ of the desired goal, and −1 otherwise. This sparse reward case
is the most challenging configuration, on which we focus in this work, but a dense reward can be
defined as the negative distance to the goal. γ ∈ [0, 1] is a discount factor and ρS and ρG are the
initial state distribution and the task goal distribution. At the start of each episode, an initial state
and a goal are sampled from these distributions. Finally, ϕ : S → G is a known mapping from states
to corresponding achieved goals, usually taken as the selection of the appropriate vector elements.

Policy structure. We endow the agent with a stochastic low-level policy πLL(a | s, hLL) : A×S×
G→ [0, 1] and a deterministic high-level planner πHL(hLL | s, h) : G×S×G→ {0, 1}, where hLL
is a sub-goal passed periodically from πHL to πLL, giving a primitive action a for the environment.

Steps where new sub-goals are produced are called control steps and all steps in between them
produce actions by passing the same sub-goal as at the most recent control step. The initial step of
an episode is always a control step, but the rest are determined by the planner. The policies must
be optimised to maximise the expected discounted return (discounted sum of rewards) over the task
horizon.

Accessibility and reachability. Here we present two concepts which will play a central role
throughout the paper.

Definition (Accessible goal space). We formally define the accessible goal space (or region) Gacc
of M as the largest subset of G such that for every g ∈ Gacc, there exists an initial state s1 ∼ ρS ,
a sequence (s2, . . . , sN+1) of states generated by T , some action sequence (a1, . . . , aN ) and some
desired goal sequence (h1, . . . , hN ), satisfying ϕ(sN+1) = g. This region is intuitively the set of
points in goal space that can be reached at all (e.g. corridors as opposed to wall interior points in a
maze). A point within this set is called accessible.

Definition (Reachable goal). For any two goals g1, g2 ∈ G, we say that g2 is reachable from g1
with respect to a policy π(a | s, h) in k steps, if the expected state sequence (s1, . . . , sk+1) produced
by π under T , given any initial state s1 for which ϕ(s1) = g1, satisfies d(ϕ(sk+1), g2) < δr. This
concept assesses the ability to move from one goal to another under the action of a given policy.

Finally, we define the functions A(g) : G → {0, 1} and Rπ(g1, g2) : G × G → {0, 1} to be
indicator functions for accessibility and reachability, respectively. We will model these and use
them for landmark generation.

4 METHOD

In this section, we present our algorithm Progressive Reachability Optimisation and MOdelling
(PROMO). PROMO consists of a low-level GCRL policy πLL, pre-trained in a simpler environment,
and a high-level graph-based planner πHL, trained in the given complex environment using πLL as
a fixed sub-policy. One episode in the low-level environment corresponds to one high-level control
step in the main environment, though the planner may incite a new control step early if it chooses.

The training procedure has three steps: low-level policy training, trajectory model training and
high-level planner training (including landmark generation). At inference time, the trajectory and
accessibility models (together, the reachability model) are used to create a landmark graph at each
control step, through which the planner finds the shortest path to the goal. Landmarks (or the end
goal) are provided as subgoals to the low-level policy. The full inference flow is presented in Figure
2 while the low-level and high-level training scenarios are shown in Figure 1.

We distinguish between two formats for providing sub-goals to πLL: relative and absolute goals.
For translation-invariant tasks like maze navigation, sub-goals provided by πHL are relative to the
achieved goal at the most recent control step, whereas they are the standard absolute goals for all
other tasks. Navigation tasks are translation-invariant since the skill of moving a given displacement
does not depend on the absolute starting position. The remainder of this section details the three-step
training procedure and the architectural components. Note that Sections 4.5 (Reachability Model)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and 4.6 (Planner) are relevant for both inference time and exploration (navigating to frontier land-
marks) during training time. Full pseudocode for the planner training (Algorithm 1), the exploration
procedure (Algorithm 2) and the planner inference (Algorithm 3) can be found in the Appendix.

4.1 STEP 1: LOW-LEVEL POLICY TRAINING

The low-level policy, πLL, is trained in a simple environment to reach goals in a small box centred
on the agent’s initial position. We use Twin-Delayed Deep Deterministic Policy Gradient (TD3)
(Fujimoto et al., 2018) with Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), in
line with previous work, though any GCRL algorithm could be used. Note that we start the agent
at the origin if the provided sub-goals will be relative, otherwise the initial position is randomised.
The environment is chosen so that:

1. Its transition function is as close as possible to that of the main environment within the lat-
ter’s accessible region. For instance, both environments in Figure 1 share the same physics
in the corridors, even if not when colliding with walls.

2. Its accessible region is as large as possible in the goal space.

3. The desired goal is in a small (in comparison to the main environment) region of the initial
achieved goal (see Figure 1).

We describe this environment as ‘simple’ since a fully accessible goal space allows easy exploration
without trajectories being blocked. Moreover, the desired goal is always nearby compared to goals
in the main environment. Such environments are easy to construct by removing obstacles while
maintaining physics. In the worst case, it can be formed as a copy of the main environment, except
with the desired goal spawning in a small fixed region around the initial achieved goal. Once πLL is
trained, its parameters are fixed so that it can be used as a transferable black-box.

4.2 STEP 2: TRAJECTORY MODEL TRAINING

We train a Long Short-Term Memory (LSTM) recurrent neural network to predict the full trajectory
that πLL will produce, given a goal. This will be used as the first component of our reachability
model. To collect data, we run several evaluation episodes of the simple environment with the pre-
trained policy πLL, collecting full trajectories. We then do several epochs of supervised updates on
the LSTM parameters, minimising the Mean Squared Error (MSE) between corresponding goals in
the predicted and actual trajectories. Full details of the loss functions can be found in the Appendix.

4.3 STEP 3: HIGH-LEVEL PLANNER TRAINING

The planner is trained on the main environment in a round-based fashion, with new landmarks being
added to the landmark set progressively. The following two steps are executed in each round:

1. EXPLORATION
For each of several episodes: navigate to the most recently added reachable landmark (ac-
cording to the reachability model) and then explore randomly (give πLL random subgoals),
adding all achieved goals to the landmark’s achieved goal buffer (store them as trajectories).

2. TRAINING
For any landmark l, with buffer Dl, for whom the buffer length |Dl| has reached a fixed
threshold:

• Train the accessibility model using all data from Dl.
• Generate a new landmark lnext from l, initialising Dlnext .

If the initial achieved goal of any episode cannot reach any current landmarks (e.g. at the start, when
there are no landmarks), we add the goal itself as a new landmark. Whenever a new landmark is
added, it is always marked unfinished and we initialise a new buffer for it. The algorithm terminates
when all landmarks are marked finished. A landmark is marked finished when exploring from it
no longer gives novel achieved goals. In the following sections, we provide further details of the
components we have presented.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: The agent is pre-trained to reach nearby goals in a small environment, free of obstacles and
this policy is transferred to the given task environment. The high-level planner gives the low-level
policy nearby sub-goals toward the overall task goal.

Figure 2: PROMO architecture and inference flow.

4.4 LANDMARK GENERATION

We now detail the landmark generation procedure during planner training. To generate a new land-
mark from a given landmark and a list Dl of achieved goals collected during exploration, we dis-
cretise the goal space into a high-dimensional grid of bins (formally hyper-boxes in G) and assign a
score for each bin. The new landmark is the centroid of the bin with the highest score. We addition-
ally produce a few backup landmarks by treating the score function as a probability distribution and
sampling from it.

The score function is a product of three components, enforcing novelty, reachability and boundary
separation respectively. We express the score SB for bin B as:

SB := NBRB, l G(A). (1)

We describe each term in the product next.

Novelty Access Score NB is a measure of how well points in goal space give access to novel parts
of the space, if navigating through them using πLL. Let gi be a goal from Dl. We implement Dl so
that we have access to the full trajectory of gi. Define (g1i , ..., g

mi
i ) as the remaining segment of

gi’s trajectory after gi, for some mi ∈ N. Then, the novelty access score is the (bin-wise) average
proportion of future goals in the trajectory which are novel:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

NB :=
1

nB

∑
i

s.t. gi ∈B

N (i),

where N (i) :=

∑mi

j=1 I(NπLL, l(g
j
i ) = 1)

mi
.

(2)

Here, nB is the number of goals from Dl lying in bin B and N (i) is a novelty access score for the
ith goal in Dl, defined in terms of the indicator function I(·) and the following function quantifying
the novelty of a goal:

NπLL,L(g) :=

|L|∏
n=1

(1−RπLL(ln, g)) . (3)

NπLL,L(g) depends on the current set L of landmarks and assumes access to the goal-space reacha-
bility function RπLL(g1, g2) : G×G→ {0, 1} which we will model in the next section. NπLL,L(g)
has value 1 if the input goal is not reachable from any current landmark and 0 otherwise.

Reachability Score Next, we present the bin-wise reachability score, representing the probability
that the centroid of the bin is reachable from the exploration landmark l according to our reachability
function:

RB, l := RπLL(l, cB) . (4)

This is needed to make sure the new landmark can actually be reached during planning.

Boundary Separation Score Finally, we introduce a component score which makes sure that
landmarks are not generated very close to the edge of the accessible region of the goal space, since
this can lead to reachability problems during planning. The score is a Gaussian-smoothed measure of
the average accessibility of achieved goals lying within the bin. Consider the bin-wise accessibility
score:

AB :=
1

nB

∑
i

s.t. gi ∈B

A(gi) , (5)

where A(g) is our accessibility function (also modelled in the next section). This measures, on
average, whether the goals lying in the bin are accessible. We put this through a Gaussian filter
(Haddad et al., 1991) to smooth the boundaries between high and low scores, thereby lowering
the score just inside the boundary. Let G represent the Gaussian filter convolution of AB (we use
unit variance). This convolution is applied to the accessibility score tensor over bins B. Then the
boundary separation score component G(AB) is a factor in the final score, defined in Equation 1.

4.5 REACHABILITY MODEL

Our reachability model facilitates both graph construction during inference and exploration, as well
as reachability/novelty optimisation during landmark generation at training time. It consists of two
components: a trajectory model predicting the full trajectory taken by πLL given a goal in the simple
environment, and an accessibility model which predicts whether a goal is in the accessible region
of the main environment. Given two goals g1, g2 ∈ G, we then say g2 is reachable from g1 with
respect to πLL if and only if the following two conditions are satisfied:

1. πLL’s predicted trajectory successfully reaches g2 in the simple environment

2. The full predicted trajectory is contained in the accessible region of the main environment.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Suitability This is a good approximation since it captures the intuition that an agent needs to 1) be
able to travel far enough even without obstructions and 2) have a clear (accessible) path to the goal.
While these conditions are usually not enough to guarantee reachability in practice, we find that, if
used with a correction mechanism (which we describe later), it is enough to achieve excellent results.
See Figure 2 for a visualisation of the two conditions. The trajectory model training procedure has
been discussed earlier, and all that is left is to train the accessibility model.

Accessibility Model In each round, the accessibility model receives a new batch of goals achieved
during exploration and must learn to bound the global distribution of all rounds’ data. Any batch-
trained, unsupervised density estimator or one-class classifier can be used. The output is a binary
value representing inclusion in the learned accessible region. Some example methods are (deep)
one-class classifiers (Seliya et al., 2021), deep autoencoders (Zong et al., 2018) and normalising
flows (Kobyzev et al., 2020). In our experiments, we use an ensemble of one-class Support Vector
Machine (SVM) classifiers (more details in Appendix C), for their ease of implementation, but any
method could be substituted. Before high-level training, the model is initially trained on several
random exploration episodes. Each subsequent training round naturally fine-tunes the model on
data near the chosen exploration landmark.

4.6 PLANNER

At each control step during inference (or exploration), our planner πHL selects a sub-goal for πLL by
finding the shortest path through a graph of the current landmarks (plus the current achieved goal
and desired goal) using Dijkstra’s algorithm and then choosing the first node in the path. Nodes are
connected based on reachability. A (unit weight) edge exists between nodes ni and nj of the graph
if and only if at least one of the following three conditions are met:

1) i = j

2) ni and nj are landmarks and nj was generated from ni

3) RπLL(ni, nj) = 1 .

(6)

Due to errors in the reachability model, it is possible (though rare) for πHL not to reach a given node.
To mitigate this, we introduce a simple correction mechanism for planning. If a goal is not reached
for two consecutive high-level control steps, πHL instead provides a random nearby goal to πLL in
the next control step.

4.7 ALGORITHM TERMINATION

The planner training algorithm terminates when all landmarks have been marked finished. Each
round, we finish the landmark from which exploration was done if the number of novel goals reach-
able by the would-be next landmark, as a proportion of the round’s collected achieved goals, is
smaller than a threshold ϵ. We use the value ϵ = 0.001 throughout our experiments. Mathematically,
this finishing condition can be expressed as follows, given an exploration landmark l, a candidate
next landmark lnext and a list Dl of goals achieved during exploration:

|{g ∈ Dl : NπLL, L(g) = RπLL(lnext, g) = 1}|
|Dl|

< ϵ , (7)

where NLL, L and RπLL are the novelty and reachability functions presented earlier. If this criterion is
satisfied, lnext is discarded and l is marked finished. Otherwise, lnext is added to the set of landmarks.
Note that, lnext is only added if a trial episode shows that it is actually reachable from l, otherwise
the backups are tested for this. If no backups succeed, no landmark is added but l is not finished.

5 EXPERIMENTS

We test our method on challenging new and existing instantiations of the two standard MuJoCo
benchmarks for GCRL: AntMaze, a 2D quadruped maze navigation task and Reacher, a 3D robot

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) U-maze (b) π-maze (c) Complex-maze (d) Zonal-maze

(e) U-maze (f) π-maze (g) Complex-maze (h) Zonal-maze

Figure 3: Visualisations (first row), generated landmark graph with predicted accessible region (sec-
ond row) and results (third row) for the AntMaze environments, with initial distributions in blue and
goal distributions in green. The low-level policy and model were pre-trained for 2.7M total steps
(pre-training curves in Appendix E), and then reused for each of the above environments. Our algo-
rithm was trained over 5 seeds, while baselines were trained over 3.

(a) Reacher-wall (b) Reacher-L-wall (c) Reacher-wall (d) Reacher-L-wall

Figure 4: Results for Reacher environments. The low-level policy and model were pre-trained for a
total of 1M steps (Appendix E). Our algorithm and all baselines were trained over 5 seeds.

arm spatial goal-reaching task. These are visualised in Figure 3 and full environment details are
given in Appendix D. Throughout our experiments, we use sparse reward and the initial state is fixed
(with some small local variation). All experiments are evaluated by the average success rate of goal-
reaching over 10 evaluation episodes periodically through training, where an episode is considered
a success if the goal is reached at any point in its duration. Below, we present comparative results,
while detailed ablative studies are given in Appendix F.

5.1 COMPARATIVE RESULTS

In this section, we compare our method to the three state-of-the-art graph-based, hierarchical GCRL
baselines mentioned earlier: DHRL (Lee et al., 2022), BEAG (Yoon et al., 2024) and NGTE (Park
et al., 2024). We first compare the success rates and sample efficiency and then show that merely

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

transferring a low-level policy does not improve the baselines’ results, therefore demonstrating how
both levels of our algorithm work together to produce excellent results. Finally, we argue that our
algorithm produces significantly fewer landmarks and thus explores the space faster.

Success Curves As shown by Figures 3 and 4, our algorithm yields significant improvements not
only in sample efficiency, but also in success rates and training stability throughout all experiments.
In all environments tested, our algorithm 1) reached its peak performance faster than any other base-
line (often by a factor of 3-4x), 2) achieved a near-100% success rate in all but one environment and
3) achieved a substantially smaller standard deviation between different seeds. It is worth bearing in
mind that, unlike the other methods, ours requires a pre-training stage which takes up a noticeable
number of steps. However, this need only be performed once and then all environments can enjoy
the excellent sample efficiency we have demonstrated. We also conducted a detailed statistical in-
vestigation into the performance on Reacher-L-wall (Appendix H). We found that the averaging our
algorithm does over non-goal state components does not lead to meaningful increases in error. By
examining visualisations of the accessible region, we rather concluded that the errors were due to the
choice of the SVM ensemble for the accessibility model. This is not a core part of our methodology
and future work could replace the SVM with a more sophisticated neural method.

Pre-trained Transfer in the Baselines To dispel the idea that our method simply achieves good
results by virtue of a simple change in the structure of training, we ran the two best performing
baselines (BEAG and NGTE) with our pre-trained low-level policy, using relative subgoals and
frozen parameters, on π-maze and Zonal-maze. If indeed all our improvements were simply due to
pre-training, we would expect the baselines to match our results here. However, both baselines were
not able to effectively utilise the policy for either maze, as shown in Figure 11. For example, BEAG
only managed to explore half of Zonal-maze. Figure 11d shows a high-level plan generated based
on this incomplete exploration.

This failure to adapt is expected, since current hierarchical GCRL methods use end-to-end joint
training. This cannot avoid specialising the low-level policy not only to the particular environment,
but also to the plans being received from the high-level. It is therefore unsurprising that the baselines
cannot take and adapt a generalist policy. By contrast, our method uses the generalist policy in a
specific way to model reachability and then uses this model to generate well spaced out landmarks.
These results provide strong evidence for the novelty of our transfer-based reachability model.

Number of Landmarks Our method produces significantly fewer and therefore more informative
landmarks compared to the previous state of the art. Figure 10 shows some examples of the landmark
graphs produced by DHRL, BEAG and NGTE (taken from their papers) alongside those produced
by our algorithm. Since exploration is done from the furthest advanced landmark, our method wastes
less time closer to the start and expands the covered space faster, leading to better sample efficiency,
as demonstrated by the comparative results.

5.2 HIGH-DIMENSIONALITY AND NEURAL ACCESSIBILITY MODELS

GCRL methods either focus on high-dimensional visual goal/state spaces for simple, short-horizon
tasks (Nasiriany et al., 2019; Eysenbach et al., 2019) or, much more commonly, on low-dimensional
goal spaces for complex, long-horizon planning (NGTE, BEAG, DHRL). Our method falls into
the latter category. We have therefore used the SVM accessibility model in our experiments to
prioritise the ability to model complex topologies over compatibility with very high-dimensions.
To use our method in a high-dimensional context, the SVM may need to be replaced by a neural
density estimator (thresholded on probability). While testing in higher dimensions is out-of-scope
in this paper (as with the SOTA baselines), we sought to prove the concept of a neural accessibility
model by substituting a normalising flow (NF) Kobyzev et al. (2020) density estimator, specifically
the Augmented Real NVP flow (Huang et al., 2020), and tested on U-maze and Reacher-wall. For
Reacher-wall, we used a single NF and for U-maze we used an ensemble.

Figure 5 shows that the NF accessibility model produced good results in these tasks over 5 seeds,
though two of the Reacher-wall seeds had to be rerun due to policy collapse caused by underfitting
in the NF model. The density estimator expressiveness problem is orthogonal to our algorithm and
future work could find a more suitable density estimator or anomaly detection method. Deep SVDD

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) U-maze (b) Reacher-wall (c) U-maze (d) Reacher-wall

Figure 5: Left two: results using NF accessibility model for U-maze and Reacher-wall. Right two:
visualisations of the resulting accessible regions. U-maze region given by the probability heatmap
and Reacher-wall region given by a point cloud.

(Ruff et al., 2018) could be appropriate as it is a neural version of one-class SVM (anomaly detection
rather than density estimation). Nevertheless, these results show that our algorithm can, in principle,
be used with a purely neural (and therefore high-dimension compatible) reachability model.

5.3 COMPUTATION

We ran our experiments on a commodity CPU node with 8 cores and 24GB of memory. We tested
the wall clock time on a single machine, demonstrating that the pre-training does not add any extra
time per environment step, allowing us to gauge the time saved by pre-training simply by looking
at the environment steps in comparison with the baselines. Full details of this experiment are in
Appendix I.

6 LIMITATIONS AND FUTURE WORK

There are two scope trade-offs we have made in this work: 1) non-goal state averaging and 2) re-
striction to low-dimensional experiments. Firstly, the trajectory model averages over non-goal state
information, which might in theory be slightly rudimentary for some applications. However, our
statistical analysis showed that this did not impact the experiments in a meaningful way, suggest-
ing that averaging over non-goal state is indeed applicable to a wide range of complex environ-
ments. Nevertheless, we provide a straightforward possible way to incorporate non-goal state into
trajectory modelling and landmark generation in Appendix A. Future work could use this to test
on non-stationary environments (currently not solved by GCRL), where the effect of non-goal state
might be more significant. Finally, future work could test other neural density estimators and en-
sembling techniques to more accurately model accessibility, expanding the experiments to include
high-dimensional goal spaces.

7 CONCLUSIONS

Our goal was to examine whether transfer-augmented reachability modelling could provide benefits
to GCRL, especially in terms of sample efficiency. Through our experiments, we have answered this
question overwhelmingly in the affirmative. Moreover, we even achieved significantly better overall
performance and stability than the previous state-of-the-art methods. We hope that this work will
stimulate further interest in the broader applications of transfer learning in RL.

8 REPRODUCIBILITY STATEMENT

We have included our hyperparameters as well as all parameters for the environments, in order to
facilitate reproducibility of our results. We have also provided lists of parameters used for baselines
in the Appendix. The important functions for our algorithm’s code are given in the supplementary
materials. We are currently cleaning our code and, as soon as this is done, the full project will
be made available on our GitHub. Finally, our experiments section describes the computational
resources used so that other researchers can easily benchmark our algorithm.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pp. 1430–1440.
PMLR, 2021.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in neural information processing systems, 32,
2019.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In International Conference on Learning Representations, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Richard A Haddad, Ali N Akansu, et al. A class of fast gaussian binomial filters for speech and
image processing. IEEE Transactions on Signal Processing, 39(3):723–727, 1991.

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging the
gap between generative flows and latent variable models. arXiv preprint arXiv:2002.07101, 2020.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. Advances in Neural Information Processing Systems, 32, 2019.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in neural information processing systems, 34:28336–28349,
2021.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43
(11):3964–3979, 2020.

Seungjae Lee, Jigang Kim, Inkyu Jang, and H Jin Kim. Dhrl: a graph-based approach for long-
horizon and sparse hierarchical reinforcement learning. Advances in Neural Information Process-
ing Systems, 35:13668–13678, 2022.

Andrew Levy, Robert Platt Jr., and Kate Saenko. Hierarchical actor-critic. CoRR, abs/1712.00948,
2017. URL http://arxiv.org/abs/1712.00948.

Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. Hierarchical reinforcement learning
with advantage-based auxiliary rewards. Advances in Neural Information Processing Systems,
32, 2019.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in Neural Information Processing Systems, 32, 2019.

Jongchan Park, Seungjun Oh, and Yusung Kim. Novelty-aware graph traversal and expansion for
hierarchical reinforcement learning. In Proceedings of the 33rd ACM International Conference
on Information and Knowledge Management, pp. 1846–1855, 2024.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pp. 4393–4402. PMLR, 2018.

Naeem Seliya, Azadeh Abdollah Zadeh, and Taghi M Khoshgoftaar. A literature review on one-class
classification and its potential applications in big data. Journal of Big Data, 8(1):122, 2021.

11

http://arxiv.org/abs/1712.00948


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Hierarchical reinforcement learning for zero-shot
generalization with subtask dependencies. Advances in neural information processing systems,
31, 2018.

C. Spearman. The proof and measurement of association between two things. The American Jour-
nal of Psychology, 15(1):72–101, 1904. ISSN 00029556. URL http://www.jstor.org/
stable/1412159.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep hierarchi-
cal approach to lifelong learning in minecraft. In Proceedings of the AAAI conference on artificial
intelligence, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, and Jungseul Ok. Breadth-first exploration on adaptive
grid for reinforcement learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 57331–57349. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/yoon24d.html.

Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks
for planning. In International conference on machine learning, pp. 12611–12620. PMLR, 2021.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In In-
ternational Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=BJJLHbb0-.

A INCORPORATING NON-GOAL STATE

Here we present a possible method to incorporate non-goal state information into our algorithm,
beyond averaging. Currently, we sample the non-goal elements during its (pre-)training. The land-
mark generation step then uses the reachability model (including the trajectory model) to assess and
maximise over certain desirable metrics. This leads to the non-goal state being encoded only in
average into the landmark generation. Though this rudimentary encoding is enough to consistently
attain better results than existing methods, the results on Reacher-L-Wall show that a more complete
encoding might further expand the solvable problem space to tasks where there is high correlation
between reachability and all aspects of state. Note that robot arm environments exhibit this property
more than navigation tasks since the forearm (whose position is not determined by the achieved
goal) can often collide with obstacles.

To encode non-goal state more completely, we need to condition the trajectory model on the full state
(subject to zeroing of the achieved goal if using relative coordinates). The next question is how to use
this state-conditioned trajectory model during landmark generation. Recall that landmark generation
requests the reachability between two goals, effectively averaged over all possible non-goal state.
To reproduce this behaviour with a state-conditioned trajectory model, we could randomly sample
non-goal state elements and provide them along with the achieved goal input, possibly averaging
over multiple samples to improve stability. So far, we have just reproduced the current capabilities
of the landmark generator but using a state-conditioned model.

The real power of the state-conditioned model can then be realised during inference to plan paths
through the landmark graph which are predicted to be reachable given the actual current state. That
is, when the landmark graph is formed at each high-level control step, the edges outgoing from the
current achieved goal can be deleted if the destination landmarks are not reachable given the full
current state, according to the state-conditioned trajectory model. This method would constitute the
initial use of a rough estimate of the full landmark graph (based on state-averaged metrics), followed

12

http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://proceedings.mlr.press/v235/yoon24d.html
https://proceedings.mlr.press/v235/yoon24d.html
https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

by a local refinement based on the actual current state. In principle, this would take issues like
forearm collisions into account when planning and should also remove the need for the correction
mechanism, as this was only required as a workaround for the non-goal state problem. Future work
could implement this procedure and introduce more complex environments where the dynamics of
the achieved goal are heavily influenced by all aspects of the state.

B TRAJECTORY MODEL TRAINING

Here, we present the loss function for trajectory model training. For relative goals, the trajectory
model is a function FπLL : G′ →×k

i=1
G′ of one (desired) goal, since the starting goal is always the

origin. For absolute goals, the function is FπLL : G′ ×G′ →×k

i=1
G′ as an additional starting goal

input must be provided. We do several episodes of inference in the simple environment and train a
Long Short-Term Memory (LSTM) recurrent neural network with k sequential cells to model FπLL

by minimising the discrepancy between predicted and actual trajectories. Initial state is randomised,
provided the initial achieved goal is the origin if using relative goals. Every cell’s input is identical.
Given a list (τ1, ..., τN ) of N length-k achieved goal trajectories, a corresponding list (g1, ..., gN )
of initial achieved goals and a corresponding list (h1, ..., hN ) of desired goals, the mean squared
error (MSE) loss is:

Lrel
traj :=

1

kN

N∑
i=1

k∑
j=1

∥τ ji − FπLL(hi)j∥ , (8)

for relative goals, and

Labs
traj :=

1

kN

N∑
i=1

k∑
j=1

∥gji − FπLL(gi, hi)j∥ , (9)

for absolute goals. Here, we have used the notation τ ji to mean the jth goal in the ith trajectory of
(τ1, ..., τN ). Given the success threshold δr and the accessibility function A(g), the reachability
function is then expressed as:

RπLL(g1, g2) =


1,

if ∥FπLL(g2 − g1)k − (g2 − g1)∥ < δr

and A(FπLL(g2 − g1)i + g1) = 1

∀ i ∈ {1, ..., k} ,
0, otherwise

(10)

for relative goals, and

RπLL(g1, g2) =


1,

if ∥FπLL(g1, g2)k − g2∥ < δr

and A(FπLL(g1, g2)i) = 1

∀ i ∈ {1, ..., k} ,
0, otherwise

(11)

for absolute goals.

C ACCESSIBILITY MODEL TRAINING

For the accessibility model, we trained a Support Vector Machine (SVM) classifier which uses a
data batch of collected achieved goals to bound a region of the goal space as the accessible region,
classifying inclusion in it. Since we only have access to positive data points (achieved goals), we
use a one-class version of SVM. Additionally, since the data is collected progressively, we train a
new SVM each round, on only that round’s exploration data, and consider the overall region to be

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the union of the regions modelled by the individual components. Therefore, the model is actually
an ensemble of one-class SVM classifiers. Since each round’s data is directly tied to a new base
SVM, the initial exploration (before high-level training) is neither possible nor needed with this
approach (as it would be for a single global model). We chose this method since it can bound
relatively complex data distributions while being easy to implement with scipy. However, for
high-dimensional goal spaces, a neural method such as normalising flows or neural autoencoders
would be a better choice.

Finally, to speed up inference, our implementation stores a bounding box for the data used to train
each base SVM. When querying inclusion of a point in the union, the bounding boxes are first
checked (a much faster operation) and then only the base SVMs corresponding to the containing
bounding boxes are checked. This trick greatly improves inference speed for large goal spaces like
AntMaze, but would not be needed for a single, global accessibility model.

D ENVIRONMENTS

D.1 ANTMAZE

AntMaze consists of a robot ant quadruped which must navigate a maze to the end goal. All mazes
were trained and evaluated with a success threshold of 1 (in contrast to previous works which evalu-
ate on a more lenient value of 5). The goal is sampled uniformly from either a small zone, multiple
small zones or multiple points. The goal distribution is kept the same for training and evaluation.
Our simple environment was set to a 20 x 20 wall-free box centred on the origin, with training suc-
cess threshold 1. The low-level policy was trained once per seed for 2.5M steps, with the trajectory
model trained for a further 200K steps. It was then transferred to the following four mazes:

• U-maze: 24 x 24, 600 steps

• π-maze: 40 x 40, 1200 steps

• Complex-maze: 56 x 56, 2000 steps

• Zonal-maze: 56 x 56, 2500 steps.

D.2 REACHER

Whereas AntMaze’s goal space is 2-dimensional, we consider two 7-DoF robot arm environments,
where the end effector must reach a given goal in 3-dimensional space. The first, Reacher-wall,
contains a simple vertical wall to cross over whereas the second, Reacher-L-wall, contains two walls
that form an L, where the end effector starts in an area trapped by the walls. In both environments,
the initial position is randomised in a small box and the goal distribution is constrained (both during
training and evaluation) to a small box on the other side of the obstacle. We use a training success
threshold of 0.1 and an evaluation success threshold of 0.2. To pre-train our low-level policy, the
simple environment has the same dimensions as the main environments but does not contain any
walls. Here, the initial position is randomised and the goal is sampled from a small box (0.5×0.5×
0.5) centred on the initial position. The arm’s reach (true accessible region without obstacles) is
roughly 0.8 units either side and about 0.6 units forward (though it is curved) We trained both the
low-level policy and trajectory model for 500K steps each.

E LOW-LEVEL TRAINING CURVES

We trained the low-level policy for 2.5M steps on our simple AntMaze environment assuming rel-
ative goals. We then trained the trajectory model for 200K steps. For Reacher, both the policy and
model were trained for 500K steps each. Since the trajectory model training consists of offline data
collection, followed by several epochs of updates, we cannot show trajectory model success curve
against environment steps. Instead we simply shade in the appropriate number of steps after the
policy training curve. The curves for both AntMaze and Reacher are shown in Figure 6, averaged
over 5 seeds.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) AntMaze (b) Reacher

Figure 6: Low-level policy training curves, averaged over 5 seeds and smoothed. Red shaded area
shows the additional steps used for trajectory model training.

(a) Boundary Separation (b) Correction Mechanism (U-maze)

Figure 7: Ablative Results

F ABLATIONS

To show robustness and component contribution, we provide the following ablations in AntMaze:

1. Without boundary separation term in landmark generation (U-maze, testing the term’s con-
tribution). Result: performance, efficiency and stability noticeably degraded. Figure 7a

2. Without correction mechanism (U-maze and π-maze, testing the mechanism’s contribu-
tion). Result: U-maze shows no significant effect but π-maze shows some degradation in
stability as well as more steps to terminate. Figures 7b and 8a

3. With action noise added to πLL in high-level training/evaluation (U-maze, testing robust-
ness to both stochasticity and mismatched high/low-level transition dynamics). Result:
robust performance and efficiency well maintained, though large action noise values seem
to slightly increase the time to terminate. Figure 8b

4. Varying landmark termination threshold ϵ (U-maze, examining hyperparameter-
sensitivity). Result: smaller values give good results whereas larger values cause early
termination, as expected. Figure 9a

The results are given in Figures 7, 8 and 9.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Correction Mechanism (π-maze) (b) Gaussian action noise with different scales

Figure 8: Ablative Results

(a) Varying the termination parameter ϵ (b) Non-goal State Error Correlation

Figure 9: Ablative Results / Statistical Investigation

G LANDMARKS

Figure 10 shows visual comparisons of the landmarks generated by BEAG and DHRL (figures pre-
sented in their papers) with our landmarks.

H REACHER INVESTIGATION

While our algorithm performed the best in both Reacher environments, there were nevertheless
some errors preventing full solution, especially for Reacher-L-wall. By inspection of video, we
noticed that the arm typically becomes stuck colliding with wall(s) whenever there is a breakdown,
suggesting unreachable landmarks and therefore false positives in reachability prediction (which
is performed during landmark generation). In order to explain this, we formulated two possible
(orthogonal) theories to investigate:

1. Non-goal state theory: Since our trajectory model training procedure averages over non-
goal components of the state, this information is not encoded with sufficient detail, leading
to trajectory prediction inaccuracies and, in turn, false positives in reachability prediction.
For example, collisions between the forearm (as opposed to the end effector) and the walls
are not taken into account. The correction mechanism is rudimentary and unable to com-
pensate for this when the wall topology is complex.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) BEAG U (b) DHRL U (c) DHRL Complex (d) NGTE Complex

(e) PROMO U (f) PROMO π (g) PROMO Complex (h) PROMO Zonal

Figure 10: Various AntMaze environment landmark graphs visualised for DHRL, BEAG, NGTE
and PROMO (ours).

2. Accessibility model theory: Our one-class SVM ensemble is not flexible enough to encode
the non-accessibility resulting from the thin and intricate shapes of obstacles, leading to
false positives in accessibility and therefore reachability prediction.

Non-goal state investigation For the first theory, we investigate whether there is a positive corre-
lation between variation in initial non-goal state components and average predicted trajectory error,
for similar initial achieved goals. Here, we split the achieved goal space into a high-dimensional grid
as before and calculate a metric on each bin, given trajectories collected through trajectory model
training (in the simple environment). Specifically, if {τ ac, B

1 , ..., τ ac, B
m } are the m actual full-episode

trajectories collected such that their initial states are {sB1 , ..., sBm} and their initial achieved goals
are all contained in B, we calculate the non-goal state variation score of B as the root mean square
deviation of the initial states:

VB :=

√√√√ 1

m

m∑
i=1

∥sBi − µB∥2, where µB :=
1

m

m∑
i=1

sBi . (12)

If the bin size is sufficiently small, this should measure the variation of non-goal state while keeping
the achieved goal relatively fixed. We obtain the bin size in each dimension by dividing the goal
space’s total range for that dimension by 10. If no collected trajectories started from B, the score
for B is undefined. Next, we use the trained trajectory model to predict the trajectory τ pr, B

i for
each actual trajectory τ ac, B

i , given the initial achieved goal and the desired goal for τ ac, B
i . We then

calculate the trajectory error score for B as:

EB :=
1

mk

m∑
i=1

k∑
j=1

∥gac, B
i, j − gpr, B

i, j ∥, (13)

where k is the episode length and gac, B
i, j and gpr, B

i, j are jth actual and predicted goals in the ith
actual and predicted trajectories of B respectively. Again, this score is undefined for empty bins.
Finally, we scatter-plot EB against VB for each non-empty bin B, expecting to see an increasing
pattern if the error is positively correlated with non-goal state variation. In addition, we perform a
Spearman’s rank correlation test (Spearman, 1904) on the (ordered) lists of error and variation scores
to determine whether there is a statistically significant positive correlation. This is an appropriate test
as the correlation is not assumed to be linear nor, since all values are positive, Gaussian/symmetric.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We ran 10, 000 evaluation episodes on a trained trajectory model in the Reacher simple environment.
The Spearman’s test produced a very weak positive correlation of ρ = 0.1296, with a one-tailed
(testing only positive correlation) p-value of p = 3.664 × 10−6. Using the common significance
level choice of α = 0.05, we see that p < α. The correlation is plotted in Figure 9b. We surmise
that the correlation, while slight, is statistically significant. In conclusion, while the non-goal state
issue contributes very mildly towards reachability modelling errors, it likely does not account for
the issues seen in Reacher-L-wall.

Accessibility model investigation For the second theory, we first visualise the trained accessible
region as a 3D point cloud for both reacher environments. This visualisation indeed shows that,
in both cases, the learned region wrongly envelopes the walls (while correctly excluding regions
inaccessible due to arm reach). This was confirmed by sampling 10000 goals both within and
adjacent to the obstacle and observing that both sets of goals were fully accessible according to the
model. The effect of this should be that, when generating landmarks, regions just on the other side
of a wall are wrongly seen as reachable, and therefore may be generated as new landmarks.

We then inspected the videos more closely and ascertained that the collisions were happening only
with the top (horizontal) wall, not the vertical wall. This leads us to the following conclusion about
the unreachable landmarks. Since the angles of the forearm and elbow make it in any case difficult to
access the region just on the other side of the vertical wall, and since this is not true for the horizontal
wall, the spurious landmarks are only generated close-by on the other side of the horizontal wall.
This explains the failures in Reacher-L-wall as well as the success of Reacher-wall, which does not
have a horizontal wall. The issue is therefore that very thin, intricate obstacles may push the limits
of the accessibility model’s expressiveness. We note, however, that there are some seeds in Reacher-
L-wall which generate near-100% results and, even in the bad seeds, the success rate is still higher
than the best baseline. We attribute this to the highly informative nature of other landmarks nearby
to spurious ones.

I WALL CLOCK TIME

In order to demonstrate that the computational overhead of pre-training is not disproportionate to
high-level training, we performed timed runs for all three algorithm stages with U-maze on a single
machine, a Dell Intel I7 laptop with 16.5GB of memory. This was chosen since our cluster produces
very unpredictable speeds. The times were then divided by the total number of environment steps
for the corresponding stage and the time-per-step values were compared. In particular, policy pre-
training took 37, 271, 471 ms (≈ 10.4 hrs) for 2, 500, 000 steps, trajectory model training took
1, 768, 500 ms (≈ 29.5 min) for 200, 000 steps and the planner took 12, 145, 708 ms (≈ 3.4 hrs) for
739, 349 steps. The time-per-step rates are therefore 15, 9 and 16 milliseconds per step respectively.
This shows that there is no increased computational burden for pre-training, up to the number of
environment steps used.

We were unable to perform fair wall clock time tests on the baselines since they required more mem-
ory than was available on the laptop. However, since the pre-training time-per-step rates are similar
to or lower than planner training, we can use the number of environment steps as a proxy to compare
overall computational burdens (at least to rule out added overhead based on our pre-training contri-
bution). As shown in our comparative results, our method significantly improves sample efficiency if
given a one-time pre-training budget. For the price of 2.7M pre-training steps, our algorithm saves
around 3M steps in both Complex-maze and Zonal-maze and attains significantly better success
rates in Reacher, thus justifying the trade-off.

J TRANSFER IN THE BASELINES (INVESTIGATION)

To prove that our comparative results cannot be matched simply by incorporating transfer into exist-
ing methods, we tried to transfer our pre-trained policy to BEAG and NGTE. However, this returned
poor results, shown in Figure 11.

K PSEUDOCODE AND HYPERPARAMETERS

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 PROMO Planner Training

Require: Steps per round nsteps, pre-trained low-level policy πLL, maximum control step interval k,
initial state distribution ρS , low-level goal space GLL, environment env, state-goal mapping
ϕ, train threshold ntr

1: procedure TRAINPLANNER
2: Train accessibility model on initial exploration data (explore directly from initial states)
3: Landmark set L← {}
4: Buffers← List()
5: for r = 1, 2, ... do
6: Buffers = Explore(L, Buffers)
7: for l ∈ L do
8: if |Dl| ≥ ntr then
9: Train Accessibility Model using Dlr

10: Calculate SB over grid bins B
11: lmax ← argmaxB SB
12: Check finishing condition for l using lmax ▷ Using 7
13: if Finishing condition satisfied then
14: Discard lmax
15: Mark l finished
16: end if
17: Sample q backups b1, ..., bq as bin centroids ▷ With bin B probability SB∑

B SB

18: for Candidate lnext in (lmax, b1, ..., bq) do
19: Trial episode to verify reachability of l from lr
20: if verified then
21: Add lnext to L
22: Initialise Dlnext

23: break
24: else
25: Discard lnext
26: end if
27: end for
28: end if
29: end for
30: if All landmarks finished then
31: break
32: end if
33: end for
34: return L
35: end procedure

Table 1: PROMO Hyperparameters (AntMaze)

Final Value Range Tried
nsteps (expl. steps per episode) 10000 2000 - 16000
nbins (landmark gen grid) 50 50
ϵ (finishing condition) 0.001 0.001, 0.005
SVM RBF kernel ν 0.01 0.01 - 0.1
SVM RBF kernel γ 0.1 0.01 - 0.1
LSTM hidden dim 64 64, 128, 256
LSTM batch size 500 200, 500, 1000
LSTM num train epochs 3000 1000, 3000, 10000
LSTM train steps 200K 200K
πLL Gaussian action noise σ 2. 0.1 - 2
πLL learning rate 0.001 0.001
πLL batch size 256 256
πLL learning rate 0.001 0.001
πLL train steps 2.5M 2.5M, 3M

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 Explore (Subroutine)

Require: Steps per round nsteps, planner πHL, pre-trained low-level policy πLL, maximum control step
interval k, initial state distribution ρS , low-level goal space GLL, environment env, state-
goal mapping ϕ

1: procedure EXPLORE(L, {Dl}l)
2: Parameters: Landmark set L, landmark buffers {Dl}l
3: step← 0
4: while step < nsteps do
5: s ∼ ρS
6: l← most recent reachable landmark or ϕ(s)
7: Append ϕ(s) to Dl

8: while episode not terminated do
9: if control step then

10: if reached l this episode then
11: Subgoal h ∼ Uniform(GLL)
12: else
13: Subgoal h← Plan(ϕ(s), le, L)
14: end if
15: end if
16: Low-level action a← πLL(s, h)
17: Next state s← env.step(a)
18: Add ϕ(s) to Dl

19: end while
20: end while
21: return buffers {Dl}l
22: end procedure

Algorithm 3 Plan (Subroutine)

Require: Reachability function RπLL

1: procedure PLAN(g, h, L)
2: Parameters: Achieved goal g, desired goal h, landmark set L
3: Construct landmark graph
4: Add g, h to graph using RπLL

5: Shortest path (h1, ..., hp, h)← Dijkstra(h)
6: return h1

7: end procedure

Table 2: PROMO Hyperparameters (Reacher)

Final Value Range Tried
nsteps (expl. steps per episode) 8000 2000 - 20000
nbins (landmark gen grid) 50 50
ϵ (finishing condition) 0.001 0.001, 0.005
SVM RBF kernel ν 0.01 0.01 - 0.1
SVM RBF kernel γ 0.1 0.01 - 0.1
LSTM hidden dim 64 64
LSTM batch size 100 100, 100, 500
LSTM num train epochs 500 200, 500
LSTM train steps 500K 500K, 1M
πLL Gaussian action noise σ 2. 0.1 - 2
πLL learning rate 0.001 0.001
πLL batch size 256 256
πLL train steps 500K 500K

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) π-maze (b) Zonal-maze (c) BEAG π Landmarks (d) BEAG Zonal Plan

Figure 11: Left two: baselines cannot adapt our pretrained (fixed) low-level policy to AntMaze
tasks. Right two: visualisations of graphs generated by the BEAG baseline with our pre-trained
low-level policy. Note the generated plan in Zonal-maze goes through the walls since only half of
the maze has been explored.

Table 3: Hyperparameters for DHRL and BEAG. We experimented with various hyperparameter
configurations, as well as different numbers of landmarks.

DHRL BEAG
initial episodes without graph planning 75 -
gradual penalty 1.5-5.0 -
high-level train freq 10 -
failure count threshold τn - 100,200,300,400
failure condition threshold τt - 1,3,5,7
number of landmarks 300-600 36-256
hidden layer (256, 256) (256, 256)
actor lr 0.0001 0.0001
critic lr 0.001 0.001
target network soft update rate τ 0.005 0.005
discount factor γ 0.99 0.99
batch size 1024 1024
target update freq 10 10
actor update freq 2 2

21


	Introduction
	Related Work
	Preliminaries
	Method
	Step 1: Low-level Policy Training
	Step 2: Trajectory Model Training
	Step 3: High-Level Planner Training
	Landmark Generation
	Reachability Model
	Planner
	Algorithm Termination

	Experiments
	Comparative Results
	High-Dimensionality and Neural Accessibility Models
	Computation

	Limitations and Future Work
	Conclusions
	Reproducibility Statement
	Incorporating Non-Goal State
	Trajectory Model Training
	Accessibility Model Training
	Environments
	AntMaze
	Reacher

	Low-level Training Curves
	Ablations
	Landmarks
	Reacher Investigation
	Wall Clock Time
	Transfer in the Baselines (Investigation)
	Pseudocode and Hyperparameters

