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Abstract: The temporal shape of laser pulses is one of the essential performances in the inertial
confinement fusion (ICF) facility. Due to the complexity and instability of the laser propagation
system, it is hard to predict the pulse shapes precisely by pure analytic methods based on the
physical model [Frantz-Nodvik (F-N) equation]. Here, we present a data-driven model based on a
convolutional neural network (CNN) for precise prediction. The neural network model introduces
sixteen parameters neglected in the F-N equation based models to expand the representation
dimension. The sensitivity analysis of the experimental results confirms that these parameters
have different degrees of influence on the temporal output shapes and cannot be ignored. The
network characterizes the whole physical process with commonality and specificity features to
improve the description ability. The prediction accuracy evaluated by a root mean square of
the proposed model is 7.93%, which is better compared to three optimized physical models.
This study explores a nonanalytic methodology of combining prior physical knowledge with
data-driven models to map the complex physical process by numerical models, which has strong
representation capability and great potential to model other measurable processes in physical
science.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Inertial confinement fusion (ICF) is a possible way to harness thermonuclear fusion energy
by using a high-power laser driver to bombard the deuterium-tritium target [1–3]. ICF laser
driving device is a huge, complex, and highly systematic optical engineering. It focuses multiple
laser beams on the target simultaneously so that the high-energy and high-power laser interacts
uniformly with the material to produce a high-temperature and high-pressure environment.
The power balance between different laser beams is directly related to the success of the ICF
experiment, which is ensured by precisely controlling the temporal shapes of the laser pulses.
The main amplifier system of the laser device provides most of the power gain of the laser pulses
but is also the primary source of waveform distortion [4]. Due to the expensive cost of the main
amplifier operation, it is required to predict the output laser performance accurately for control
by offline numerical simulation instead of experimental trials [5]. Besides, the temporal shapes
are diverse for each trial shot, which causes difficulties in modeling, prediction, and control.

The existing prediction methods rely on physical models of the optical transmission and
amplifying process. National Ignition Facility (NIF) [6–9] of Lawrence Livermore National
Laboratory developed the Laser Performance Operations Model (LPOM) software for physical
modeling [10,11], which describes the pulse amplification process by Frantz-Nodvik saturated
gain model [12] based on precise measurements. The overall agreement with the measurements
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is better than 5% for the time-resolved power with 1ns boxcar smoothing [13,14]. For OMEGA
EP laser system, PSOPS, a semi-analytic model was developed [15]. It can forward and backward
predict the performance of beamlines accurately in real-time with multi-pass amplification
model using measured small signal gain and appropriate saturation fluence. In another Chinese
high-power laser device [16], the SG99 was developed as a precise analysis and simulation model
[17]. It derives the recurrence relation of the particles on upper and lower energy levels based on
the velocity equation and reduces the gain recovery effect and the thermal effect of the degraded
energy level in multi-pass amplification. However, it uses an iterative algorithm with a complex
model, so the computation takes a longer time. Moreover, the Laser Performance Operation
Simulation System (LPOSS) was developed as an efficient real-time computational model [18,19].
It gives out the trend of the waveform based on optimized Frantz-Nodvik saturated gain model.
However, there is still a gap between the theoretically calculated pulse shape and measured data of
the main amplifier due to the unstable device state, complex environmental factors, and varying
uneven near-field distribution [20]. Therefore, the theoretical model is not accurate enough in
practice but is challenging to correct.

Due to the limitations of the analytical approach, some empirically found relevant influences
are difficult to incorporate into the physical model. The prediction model used now is a stable
model for a single shot, but hard to describe time-varying trends for long-time operations. A
data-driven approach allows an implicit model to express the physical process with a complex
scenario. A large amount of data is used to train and find suitable parameters to characterize the
model. There are several similar applications of data-driven models in ICF facilities, but most of
them are for image processing [21]. The convolutional neural network (CNN) is a typical model
which has a strong ability to extract features and accounts for the structure and correlation of data
[22]. It is adopted to classify the microscopic damages for optical components repairing [23,24],
detect the laser-induced optical defects online [25], and select capsule mandrels best suited for
capsule production [26]. Sequence prediction problems, such as lifetime prediction, often use
CNN to extract features and coupled RNN (LSTM or SRU) for calculation [27–29]. But, CNN
can also perform calculations on time series data such as temporal convolutional neural (TCN)
network [30–32]. Meanwhile, according to the convolution theorem, convolution can better
characterize the variation in the frequency domain, which assists in accelerating the computation
or processing of detailed data [33–37]. The models above make the computational process robust,
repeatable, efficient, and operator-independent, but most studies are for 2-dimensional images or
3-dimensional image sequences. In this research, inspired by LPOM, LPOSS, and CNNs, we
employ one-dimensional (1D) CNN to predict temporal pulse shape and introduce prior empirical
knowledge to steer the direction of network modeling for solving the regression problem.

In this paper, we propose and demonstrate a method for predicting the temporal shape of the laser
output from the main amplifier based on a novel convolutional neural network. With the physical
process analysis, 16 additional influence parameters neglected by the conventional models are
introduced to describe the variation of the main amplifier state, including environmental, temporal,
and near-field factors. A multi-branch CNN with additive and multiplicative skip connections
is designed to represent the amplification and propagation process with the characteristics of
physics and data. The prediction accuracy of the proposed method on the experimental data
in the ICF device studied in this paper is RMS 7.93%, better than other optimized F-N based
physical models.

2. Methods

2.1. Main amplifier system and physic-based models

The main amplifier of the high-power laser facility discussed in this paper consists of a cavity
amplifier, cavity spatial filter, boost amplifier, and transport spatial filter, which is shown in Fig. 1.
The gain medium shown as dark blue oblique lines is Nd: glass disks pumped by light before
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experiments. When the laser transmits through the main amplifier, it gains the energy stored in
the upper laser level in the gain medium before the arrival of the input signal. The laser pulse
passes through the oscillator-amplifier medium several times along the directed red lines at the
top of the figure. The leading edge of the pulse encounters more reversed particles than the
trailing edge, so the pulse changes temporal shape as it propagates through the amplifier and the
peak moves forward.

Fig. 1. Structure of the main amplifier.

In the gain process, the rate of change of the inverse population density n and the photon
density ϕ can be expressed as

∂n
∂t
= −nσϕc −

n
τf
+Wp(ng − n), (1)

∂ϕ
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where σ is the stimulated emission cross section, c is the light speed, τf is the spontaneous
emission time, Wp is the pump rate, ng is the population density of the ground level in the four
level gain medium, τc is the decay time for photons in the optical resonator, and S is the rate at
which spontaneous emission is added to the laser emission [12].

With the simplifying assumptions that 1) the pump rate is much faster than the transit time
of the laser pulse, 2) the spontaneous emission time is much longer than the pulse width of the
laser, 3) the effect of fluorescence and pumping is ignored during the pulse duration, 4) a square
pulse is injected into the amplifier, Frantz-Nodvik solved the rate equations. The Frantz-Nodvik
(F-N) solution describing the amplification and distortion of the temporal shape of laser pulses is
expressed as
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where Pi(t) and Po(t) are input and output temporal pulse shapes, Ei(t) is the time dependent
input energy Ei(t) =

∫ t
0 Pi(t′)dt′, Es is the saturation energy, and G0 is the small-signal gain.

For slow change of the facility state caused by the long time operation, an optimized dynamic
G0 calculation method is adopted in LPOSS [38]
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where Gi is the small signal gain of the ith shot, n is the amount of historical shots used to update
the small signal gain, qi is the weight of historical shots, p is the correction factor dependent on
the number of shots on the same day m.

The FN equation is a relatively rough model. Since it does not consider the losses in the
transmission process, an optimized F-N equation introducing losses is proposed in LPOSS [18]

Po(t) =
G0k(t){︂

1 + A[k(t) − 1]G0−1
ln G0

}︂ {︂
1 + A[k(t) − 1]G0−1

ln G0
+ G0[k(t) − 1]

}︂ Pi(t), (5)

where A is the loss factor and k(t) = exp
(︂

Ei(t)
Es

)︂
.

For the multi-pass amplification in the facility, an optimized iterative amplification model is
proposed in PSOPS [15]

Pk(t) = β2Gk(t)Pk−1(t), (6)
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Ek(t) =
∫ t

t0
βPk−1(t′)dt′, (8)

where β is the per-disk-surface loss factor, γ(R) is the empirical scaling factor on the pulse width
[39].

All these methods have made some improvements on the original F-N equation and achieved
good results in their respective devices. But they remain the fitting of key parameters of the
improved model, characterizing the gain capability with a small number of averaged factors.
These methods work well for analyzing the gain capacity of historical shots, but the effectiveness
of predicting future experiments is compromised where there are changes in the state of the main
amplifier.

2.2. Influencing factors

The laser pulses are spatiotemporally three-dimensional. The near-field distribution is non-
uniform in space and inconsistent across shots, which does not exactly match the F-N equation
assumptions. Although the temporal waveform is the integration of the laser pulse in space
over time, the spatial and temporal distribution interact and are coupled. The near-field area
influences the power density of the laser, which determines the gain saturation. Moreover, the
inhomogeneous near-field distribution exacerbates the self-focusing phenomenon caused by the
nonlinearity in laser transmission and affects amplification performance. Thus, we defined four
features to characterize the spatial distribution of the laser pulses, which are near-field area (S),
contrast (C), modulation (M), and inhomogeneity (A).

S =

N∑︁
x=1

M∑︁
y=1

[u(x, y) − ubg]dxdy

usig
, (9)
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where u(x, y) is the grayscale distribution of the near-field image, ubg and usig is the average
grayscale value of the background part and the signal part, wsig is the half-height width of the
signal peak in the grayscale histogram, ∆u is the deviation between the measured distribution
and the fitted Gaussian distribution of the signal part in the grayscale histogram, and a2 is the
amplitude obtained from the Gaussian fit.

Some other factors also affect the amplification. In terms of each trial shot, the pulse duration
affects the gain recovery effect, which in turn determines the amplification capability [11].
Between continual trial shots, the interval time affects the recovery of components, which
influences the amplifying performance of the latter experiment. As time-in-service grows,
the aging and degradation of components cause decay of the gain performance. In addition,
the ambient temperature and humidity in specific locations impact the performance of vital
components, such as fibers in the front end, capacitors and cables in the energy storage, etc.

All of the parameters analyzed above may have different degrees of influence on the temporal
shapes. We performed a correlation analysis of all the possible influencing factors and selected
16 factors with weak intercorrelation, shown in Table 1.

Table 1. Selected influence factors for prediction.

No. Name Influence on the temporal shapes

1 Pulse width Gain recovery effect

2 Service time Aging and degradation of components

3 Time interval Recovery of components

4 Area Power density and gain saturation

5 Contrast
Nonlinear effect and gain saturation6 Modulation

7 Uniformity

8 Front end temperature 01
Components in front end, such as fibers, affect the spectrum

9 Front end temperature 02

10 South energy storage temperature 01 Components in south energy storage, such as capacitors

11 North energy storage temperature 01 Components in north energy storage, such as capacitors

12 Front end humidity 01
Components in front end, such as fibers, affect the spectrum

13 Front end humidity 02

14 South energy storage humidity 02 Components in south energy storage, such as capacitors

15 North energy storage humidity 01 Components in north energy storage, such as capacitors and
cables16 North energy storage humidity 05

Although these parameters play roles in the transmission and amplification of the laser, it is
hard to express them in an analytics-based physical model. Firstly, some factors are not standard
physical quantities, such as device service time. It qualitatively represents the degradation state
of components instead of quantitative representation with physical models. Secondly, several
parameters are coupled to influence the gain process. For example, the ambient parameters and
the state factors affect the performance of some vital components together. Moreover, even if
several complex analytical models are built, they are hard to be solved. Thus, since the analytical
models have inherent shortcomings and are difficult to be corrected, it is necessary to introduce
other methods to achieve more accurate temporal pulse shape prediction.

2.3. Neural network model

A novel neural network is designed to consider the effect of the above parameters on the output
waveform for a better description of the amplifying process. The two types of input data
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(influence factors and temporal input shapes) are fed to three branches. Branch 1 and 3 extract
data characteristics. Branch 2 converges these characteristics, represents the transmission and
gain process and outputs the amplified temporal shapes. The specific structure is shown in Fig. 2.

Fig. 2. The architecture of the proposed temporal shape prediction model based on a
convolutional neural network.

Branch 2 is the main body part of the proposed neural network, subdivided into three blocks.
Block A uses five 1-D convolutional layers with additive skip connections to characterize the
commonality of laser transmission and the gain process.

With an additive skip connection, the output of the ith layer in Block A can be expressed as

y[i] = a[f [i] ∗ ypad
[i - 1]] + y[i - 1], (13)

where y[i] and y[i−1] is the output of the ith and (i-1)th layer with the same size (2000 elements),
and ypad

[i−1] is the result of padding y[i−1]. f [i] is the convolution filter of the ith layer, * indicates
convolution operation and the result can be represented as z[i]. a is the activation function.

Circular padding is used to expand the output of the previous layer, which pads (K-1)/2 values
before and after the vector respectively to ensure that the output size after convolution operation
is the same as the input size. The convolution operation can be specifically expressed as

z[i](t) =
K∑︂

k=1
f [i](k) × ypad

[i−1](t + k), (14)

where K is the size of convolution filter f [i].
We design these convolution filters with different sizes K (121, 101, 51, 31, 21) to obtain

frequency response curves with various resolutions according to the convolution theorem. The
successive convolutions are equivalent to the product of the response curves in the frequency
domain, and thus the response is refined.

F̃(ω) =
n∏︂

i=1
F[i](ω), (15)

where F[i](ω) is the frequency domain distribution of the ith layer convolution filter and F̃(ω) is
the integrated frequency response of each layer.

However, continual products cause the disappearance of tiny responses, resulting in the loss of
information. Additive skip connections enrich the details after multi-layer convolution. In the
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frequency domain, it extends the continuous products of high-order filters into the polynomials
of each ordered product, which enhances the representation of the inherent properties of the gain
process.

F̃(ω) =
n∑︂

j=1

(︄
n∏︂

i=j
F[i](ω)

)︄
+ 1. (16)

It is worth noting that F[i](ω) here does not depend only on the convolution filters but is
also affected by the activation function. The activation function here is demanded not to affect
the calculation of the frequency domain response, so a segmented linear activation function is
required. The most common segmented linear rectification function (ReLU) is suppressed when
the input x is less than 0. Although this property is very useful in classification problems, it leads
to dead training for the regression problem of this study. Therefore, Leaky ReLU is chosen to
ensure efficient training and no interference with the spectrum [40].

LeakyReLU(x) = max(x, 0.01x). (17)

Then, in Block B, we design convolutional layers with dynamic filters composed of features
instead of constant filters composed of network parameters as classical CNN does. The features
extracted from Branch 1 and 3 are set as convolutional filters to characterize the specificity of the
physical process. The convolution operations here are the same as Eq. (14).

With influence factors input, which is scalar with low correlation, Branch 1 adopts two
fully connected layers with 50 and 41 nodes and Tanh activation functions to map them into a
50-dimensional space and then obtains their 41-dimensional feature expressions. These features
are fused with the output of Block A yA more efficiently, as a filter of the convolution layer.
Moreover, a multiplicative skip connection is designed to represent the gain, which is expressed
as

y[1]B = {σ[fB1 ∗ yApad] + 1} · yA, (18)

where σ(·) is the sigmoid function, fB1 is the convolutional filter which is the output features of
Branch 1, yA is the input of this layer which is the output of Block A, yApad is yA with circular
padding, and y[1]B is the output of this layer. The multiplicative skip connection is still inherently
additive but is more suitable for describing gain in the time domain.

In Branch 3 at the bottom, with time-series waveform data input, a tiny convolutional network
is adopted to extract its main features as a 51-element vector. It contains a convolutional layer
with filter size of 100 and stride of 4, a max-pooling layer with kernel size of 4 and stride of 4,
a convolutional layer with filter size of 19 and stride of 2, and Tanh activation functions after
each convolutional layer. The output of Branch 3 is then assigned to the filter of the second
convolutional layer in Block B.

y[2]B = {σ[fB3 ∗ y[1]Bpad] + 1} · y[1]B , (19)

where fB3 is the convolutional filter which is the output features of Branch 3, y[1]Bpad is circular
padded y[1]B , and y[2]B is the output of Block B.

The convolution in the network is more like the cross-correlation function because no flipping
is performed before multiplications. In extracting the features, the contribution of the background
noise of the waveform is small, so the intercorrelation calculation here increases the signal-to-
noise ratio. Due to the pulse shape distortion characteristics of the amplification process, the latter
part of the input and output pulses are more similar and contribute more to the cross-correlation
results. Thus, this layer enhances the response to the gain recovery effect.

Finally, in Block C, which is considered a head in this network, a convolutional layer with a
filter size of 5 and stride of 2, is used to shape the results and final error compensation.
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During network training, the loss function, which evaluates the difference between the temporal
shape of the network prediction and the measured data, is a mean squared difference function,
calculated as

L =
1
N

N∑︂
i=1

M∑︂
t=1

Ts | |Pi(t) −ˆ︁Pi(t)| |
2
, (20)

where Pi(t) and P̂i(t) are the measured and predicted temporal shapes of the output laser pulse i
of the main amplifier; N is the mini-batch size, and M is the amount of sample points of temporal
shapes. Since the facility state changes over time, the newer data reflects the current state of the
amplifier better. We add the service shot time Ts as coefficients in the loss function so that the
more recent data has a greater impact on the model training, making the trained network model
match the up-to-date state of the facility.

To accelerate the optimization and avoid falling into local optimum in training, the learning
rate is set as a piecewise function changing with epochs, shown in Fig. 3. A gradually increasing
learning rate warms up the beginning of the training and helps find a suitable optimization path.
After 1500 epochs, the learning rate is kept twice the initial value to accelerate and skip the local
minima trap. After 2000 epochs, the learning rate decreases dramatically after every 1000 epochs
of training to ensure a fine search for suitable parameters near the optimal solution.

Fig. 3. Variation of learning rate with epochs.

3. Experiments and results

The dataset is obtained from one laser beamline over a four-year operation from 2018 to 2021
of the high-power laser facility discussed in this paper. The measured data are preprocessed to
remove redundancy and stored as standard data in the database. The input and output temporal
shapes are stretched so that the sampling intervals are 10ps and the edges are aligned. They are
then linear normalized for better network training [41]. A typical preprocessed sample is shown
as blue curves in Figs. 4(a) and (d). The measured output waveforms in operation are used as the
ground truth to train and test the proposed model.

The available sample amount is 690, which is expanded to obtain a more robust trained
network. Since the time-series data values have strong mapping relationships, some conventional
expansion methods are not available, such as flipping, cropping, deformation, etc. In this paper,
two data augmentation methods are adopted, which are signal shifting and random addition of
background noise. Specifically, the signal and background parts of each sample are separated.
For the signal, we randomly move it forward or backward. For the background, we randomly
scale the noise amplitude by 0.5-1.5. Augmented data are shown in Figs. 4(b),(c),(e),(f). All data
are arranged in the order of experiment time, and the previous 90% of the data are used as the
training set and are expanded to 5 times the number of samples for training the neural network.
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Fig. 4. Samples of training dataset. Preprocessed (a) input and (d) output waveforms
measured in a trial. Augmented (b),(c) input and (e),(f) output waveforms in training dataset.

The latter 10% of data with time closer to the present, with 69 sets of samples, are used as the
testing set to test the performance of the proposed method in this paper.

The network is implemented with PyTorch 1.1.0 based on Python 3.6.4. Network training and
testing are performed on a PC with a Core i7-7800X CPU (3.50 GHz) and 48 GB of RAM using
an NVIDIA GeForce GTX 1080Ti GPU. The parameters in the neural network are randomly
initialized as tiny values before training. The training process using Adam optimizer takes
approximately 10 hours for 3105 pairs of waveform vectors with a length of 2000 elements and a
batch size of 20. After training, input wave shapes from the testing dataset are randomly input
into the network, and the predicted power waveforms are rapidly produced as the output.

We use the three optimized models based on the F-N equation introduced in Section 2.1 to
compare with the proposed model in this paper. The parameters in the three compared methods
are determined by curve fitting with historical experiments. The key parameters in models are
fitted using the data from the previous ten experiments of the current shot to be predicted. For
the F-N with updated G0 model, the key parameters Es, G0, and parameters a and b in function p
are fitted according to Eq. (3) and Eq. (4). For the F-N with loss model, Es, G0, and A are fitted
according to Eq. (5). For the multi-pass amplification model in PSOPS, Es, G0, and β are fitted
according to Eq. (6)–(8).

The prediction results of the proposed prediction model and the other three F-N based optimized
models are compared to the measurement data in experiments as shown in Fig. 5 and Fig. 6.
Each column is an experimental shot, and each row represents the prediction result of each
method, while the last row shows the near-field beam distribution. The prediction results of
all four models approximately match the measurement, but there are some differences in the
details. The parameters of the three fitting-based models are sensitive and sometimes do not
describe the relationship between input and output energy well. It makes some prediction results
significantly underpowered. The power density is influenced by the near-field distribution, so that
the gain saturation effect changes, but it is difficult to accurately describe the different saturation
relationships for each shot by the fitted parameters. In addition, the gain recovery is not well
handled in F-N based models, which makes the prediction results appear high on the leading
edges or low on the trailing edges.

For the updated G0 model, it was originally designed for the preamplifier in another Chinese
high-power laser facility, which has fewer influencing factors and less complexity of the
amplification process. Thus, the updated model for G0 may need to introduce more nonlinear
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Fig. 5. The prediction results of various methods for different temporal shapes with
corresponding near-field beam distributions.
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Fig. 6. The prediction results of various methods for different temporal shapes with masked
near-field beam distributions.
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functions to fit the current state of the device better. The prediction of the F-N with loss model
performs better, but when the state of the main amplifier changes abruptly, it cannot describe
it accurately with the previous ten shots, shown as the last row in Fig. 5 and the first row in
Fig. 6. The multi-pass amplification model is a more accurate model considering more effects.
However, due to the different operation strategies between OMEGA EP and the facility in this
paper, the parameters that need to be measured in PSOPS model can only be obtained by fitting
them with data of the historical experiments in this application. The stability of the devices also
differs, specifically the gain capacity of the different shots in one day changes in this paper while
the OMEGA EP does not, so the predictions of the PSOPS model are biased in this paper. In
comparison, the proposed method has better prediction performance in various waveform and
near-field distribution cases.

Fig. 7. Saliency results of each input parameters.

We quantitatively evaluate the average prediction performance and accuracy of the proposed
method with testing data containing 69 shots. Widely adopted metrics are used, namely peak
valley value (PV) and root mean square (RMS). PV and RMS with 1ns boxcar smoothing are
also evaluated. The specific performances of the three F-N equation based optimized model and
the proposed neural network method are shown in Table 2.

Table 2. Prediction performance of different approaches.

Methods PV / % PV1ns / % RMS / % RMS1ns / %

F-N with updated G0 14.88 8.54 15.79 11.99

F-N with Loss 7.52 3.20 10.98 4.74

Multi-pass amplification 8.82 5.20 12.88 7.39

Neural network 6.65 3.02 7.93 3.43

The results of the proposed model have less PV and RMS than the other models, which shows
that the pulse shapes predicted by the proposed method are closer to the true values for the
whole test set, and the details are more accurate. In general, the physical models based on the
FN equation can describe the trend of pulse shapes, but they are biased in some details. It is
more difficult to improve the physical model, difficult to resolve when more influences need
to be introduced, and not easily adaptable to a more variable system. Neural networks, on the
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other hand, are good at describing the relationships between different kinds of data and have an
advantage in this case.

To investigate the reason for the greater accuracy of the proposed method, we analyzed the
effect of the additionally introduced input parameters on the results. The saliency of input
parameters is defined as the partial derivative of the L1 loss function to each input parameter,
denoted as

∂L
∂xi
=

∂

[︃
M∑︁
t=1

| |P̂(t) − PFN(t)| |1

]︃
∂(xi − xi)

, (21)

where P̂(t) and PFN(t) is the prediction of output temporal shapes with the proposed neural
network method and the F-N equation, xi is the ith input parameters, and xi is the average of
them. It characterizes how the variation of each input parameter affects the difference between
the network output and the theoretical calculation, which is calculated for each sample and
statistically shown in Fig. 7.

Some of the input parameters have a significant impact on the results. Among them, the service
time characterizes the slow change of the amplifier state after a long-time operation. The time
interval indicates the recovery time, which affects the readiness of the amplifier and is a sudden
change for each shot. The nearfield distribution determines the power density of the pulses, which
affects whether the operation region of the amplification reaches the zone of saturation. The
saliency plot shows that the near-field area has the greatest degree of influence. The temperature
and humidity of the front-end 01 monitoring point have obvious saliency, and the front-end
affects the laser spectrum. But the specific contribution needs to be observed by increasing the
monitoring equipment. North energy storage humidity also impacts the charging and discharging
process. However, the detailed role still needs to be analyzed by more measurement equipment.
The pulse width has a partially discrete distribution in the figure because the gain recovery effect
varies only when the pulse width is large. The saliency analysis is consistent with the theoretical
model and the prior knowledge accumulated during operations [42]. Moreover, the results
also show that the influence of temperature and humidity parameters on the results cannot be
neglected. Operating personnel should maintain them in operation and add auxiliary monitoring
systems in the future.

4. Conclusions

In summary, a neural network model is presented to predict the temporal output pulse shape of the
main amplifier in a high-power ICF facility. With analysis of the amplification characteristics, a
purpose-designed convolutional neural network concerning 16 additional parameters is proposed
to improve the representation of the physical process. Different branches extract features that
serve as convolutional filters to characterize the states of the amplifier more directly. Additive skip
connections prevent frequency domain information from being lost after multi-layer convolution,
and multiplicative skip connections fit the gain. To enhance the robustness of the proposed
model, we augment the training dataset by shifting the signal and adjusting the background
noise. The performances of the conventional analytical methods in LPOSS and PSOPS and
the proposed neural network model are investigated based on experimental data. The proposed
method achieved better prediction results with an RMS of 7.93% (3.43% with a boxcar smoothing)
and a PV of 6.65% (3.02% with a boxcar smoothing), compared to other physical based models.
The saliency of each input parameter is further analyzed to explore the reasons for the accuracy
improvement. The analysis results are consistent with prior knowledge and point out some
influencing factors neglected before to be observed and controlled. The proposed nonanalytical
prediction method based on a convolutional neural network is feasible in the main amplifier
laser pulse prediction. It has potential in other complex measurable physical processes in the
high-power field.
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