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Abstract
In this work, we reinvestigate the classical Markov
equivalence classes (MECs) and interventional
Markov equivalence classes (I-MECs) with a new
lens using higher-order feature interactions. We
find that this perspective is particularly insightful
for understanding statistical aspects (finite sample
complexity) of recovering the true DAG, high-
lighting the shortcomings which must be faced in
practical settings with finite sample availability.
We propose this research direction can help close
the gap between theoretical results on I-MECs
and practical approaches in Bayesian experiment
design, serving as a possible theoretical support
for results occurring in actual experiment data.

1. Introduction
The problem of Causal Discovery or Causal Structure Learn-
ing has had a long history of study (Pearl, 2009). Using
directed graphical models and understanding their obser-
vational structure mark some of the most salient historical
developments (Verma & Pearl, 1990). Adding interven-
tional data has also proven key for understanding what can
be recovered in the presence of experiment data (Eberhardt,
2007; Hauser & Bühlmann, 2012).

Across decades of research in causality, there have been vast
improvements in the understanding of causal structure and
significant advancements for structure learning algorithms.
Nevertheless, sample complexity often remains a secondary
consideration, being studied under various further assump-
tions (Kalisch & Bühlman, 2007; Gao et al., 2022). In this
work, we show how incorporating higher-order interactions
and unbounded interventions simultaneously paves a natural
path for further studying these statistical considerations for
causal discovery, especially in interventional settings.
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2. Related Work
We review some of the main related works for structure
learning with interventions. We see these works as often
divided into two main directions, the theoretical and the
practical, often done in parallel to one another.

Infinite Sample Identifiability The first is focusing on
the characterization and identification of Markov equiva-
lence classes (MECs) of graphical models under interven-
tions (Hauser & Bühlmann, 2012; Yang et al., 2018). Much
progress has been made on understanding the structure and
other aspects like the worst case identifiability of structures
(Eberhardt, 2007) and the combinatorial structure (Squires
& Uhler, 2022) have also been explored.

Finite Sample Bayesian Methods On the other side,
there are many works doing Bayesian Optimal Experiment
Design (Lindley, 1956) in the context of causal discov-
ery, which focuses on achieving the best recovery of the
graph under a Bayesian framework (Ghassami et al., 2018;
Agrawal et al., 2019; Tigas et al., 2022). These mainly focus
on improving the speed or efficiency of Bayes methods.

In addition, there is also (Acharya et al., 2018) looking at
identification with few samples even under confounding
and (Shiragur et al., 2024) reducing the number of CI tests
needed. Another work inspired by similar considerations is
(Kocaoglu, 2023), but it restricts itself to observational data
and ultimately chooses a slightly different definition.

3. Problem Formulation
The classical case of I-MECs (Hauser & Bühlmann, 2012)
deals with choosing a set of interventions via I ⊆ P([d])
which can equally be written as a function N : P([d]) →
{0,∞}. Whenever I ∈ I or equivalently N (I) = ∞, we
say that we have access to samples under intervention I .
We use this notation to emphasize the fact that, implicitly,
all of their theoretical results assume the population limit
of infinite samples for each I s.t. N (I) = ∞. In this
work, we instead focus on the case of finite samples and
accordingly use the function N : P([d]) → N0 to track
the number of samples nI which have been collected under
each intervention distribution, indexed by the I ∈ P([d]).

For the simplicity of our theoretical results, we restrict to
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O(t2)
X1 ⊥⊥ X2 ✓ ✓ ✓ ✓
X1 ⊥⊥ X3 ✓ ✓ ✓ ✓
X2 ⊥⊥ X3 ✓ ✓ ✓ ✓

O(t3)
X1 ⊥⊥ X2 | X3 ✓ ✓ ✓ ✓
X1 ⊥⊥ X3 | X2 ✓ ✓ ✓ ✓
X2 ⊥⊥ X3 | X1 ✓ ✓ ✓ ✓

O(t3)
X1 ⊥⊥ X2, X3 ✓ ✓
X2 ⊥⊥ X1, X3 ✓ ✓
X3 ⊥⊥ X1, X2 ✓ ✓

Table 1. A full table depicting the 9 Conditional Independence Tests (CITs) satisfied by each possible choice of the 11 Markov Equivalence
Classes (MECs) for DAGs on three vertices. Each column represents a MEC and all DAGs within the class are depicted in the top row.

the regime where each variable’s finite domain (t) is much
larger than the total number of variables (d). We write
this assumption as d ≪ t. This enables us to refine the
traditional notions of MEC and I-MEC to versions which
have a dependence on the finite number of available samples.

In particular, writing nI = N (I), we may be concerned
with whether or not there are enough samples to learn a k-
dimensional function of the variables. In line with the curse
of dimensionality, we know that the number of samples
must be of at least size O(tk). Accordingly, we will write
that for each nI , we calculate the ‘order’ of the number of
samples we have collected with respect to our domain size t,
and write kI to be the largest integer such that nI ∈ Ω(tkI ).
Correspondingly, we write the function K : P([d]) → N0.

4. Identifiability of (I,N )-MECs
4.1. Lists of Independence Tests

We first recall that each DAG will lead to a list of conditional
independences obeyed by and disobeyed by the induced
distribution. Each MEC is then the set of all DAGs which
obey the exact same conditional dependencies. In Table
1, we depict all 9 CITs for the 25 DAGs (11 MECs) on
three variables. As d grows, it is difficult to exhaustively
list all DAGs, all MECs, and all CITs as the number of
DAGs, MECs, and CITs grow very rapidly in the number
of variables. Taking d=4 leads to (543, 185, 55) and taking
d=5 leads to (29281, 8782, 285), respectively, for instance.

Consequently, most existing algorithms instead directly
choose tests which lead to the easiest recovery of graph-
ical properties. However, this overlooks the sample size
requirements inherited by their CIT choices.

4.2. Power of an Independence Test

In particular, if we would like to test for “X1 ⊥⊥ X2”, a
fundamentally ‘2-dimensional’ test requiring O(t2) sam-
ples, while simultaneously wanting to test for “X1 ⊥⊥
X2 | X3”, a fundamentally ‘3-dimensional’ test requiring

O(t3) samples. Practically speaking, however, we may only
have O(t2) samples, meaning we can only perform the 2-
dimensional test and our 3-dimensional test will have very
low statistical power.

This ‘dimensionality’ interpretation is supported by our
d ≪ t assumption and directly determines which CITs
have statistical power. In particular, we will say that all
k′-dimensional tests on the intervened distribution pI(x)
where k′ ≤ kI := K(I) are valid, and all k′-dimensional
tests where k′ > kI are underpowered and hence invalid.

In the observational case, this means that instead of the
complete MECs, we would only have a coarser picture of
the equivalence classes built by the subset of CITs which
have been deemed valid. In Table 1, we can see how for
n ∈ O(t2), we would only have 8 equivalence classes, with
the last 4 of 11 MECs being merged into a single class
(containing the 15 DAGs in the top-right). These all disobey
the three 2-dimensional independence tests: X1 ̸⊥⊥ X2,
X1 ̸⊥⊥ X3, and X2 ̸⊥⊥ X3.

4.3. Incorporating Interventional Data

Of course, we would also like to incorporate the data we
have collected for each intervention I ∈ P([d]). We will
directly extend our previous arguments for CITs on the
intervened distributions pI(x) for each I ∈ P([d]). In Table
2, we depict all 9 CITs for the observational distribution and
all 9 CITs for the {1}-interventional distribution. Because
it is possible to identify beyond the MEC, we give each of
the 25 DAGs their own column.

We use the potential outcomes or SWIG notation (Robins,
1986; Richardson & Robins, 2013) of X2(x1) to help distin-
guish it from the observational case. Accordingly, one must
take slight caution when interpreting x1 or X2(x1), because
when we later take some CIT we must have a distribution
over x1, implying a choice of distribution over x1. Although
the actual choice of distribution may affect the statistical
efficiency, we restrict our exploration to the static setting so
it is sufficient for us to assume the uniform distribution.
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∅ 7→ O(t2)
X1 ⊥⊥ X2 ✓ ✓ ✓ ✓ ✓ ✓
X1 ⊥⊥ X3 ✓ ✓ ✓ ✓ ✓ ✓
X2 ⊥⊥ X3 ✓ ✓ ✓ ✓ ✓ ✓

∅ 7→ O(t3)
X1 ⊥⊥ X2 | X3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
X1 ⊥⊥ X3 | X2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
X2 ⊥⊥ X3 | X1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

∅ 7→ O(t3)
X1 ⊥⊥ X2, X3 ✓ ✓ ✓
X2 ⊥⊥ X1, X3 ✓ ✓ ✓
X3 ⊥⊥ X1, X2 ✓ ✓ ✓

{1} 7→ O(t2)
x1 ⊥⊥ X2(x1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
x1 ⊥⊥ X3(x1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

X2(x1) ⊥⊥ X3(x1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

{1} 7→ O(t3)
x1 ⊥⊥ X2(x1) | X3(x1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
x1 ⊥⊥ X3(x1) | X2(x1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
X2(x1) ⊥⊥ X3(x1) | x1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

{1} 7→ O(t3)
x1 ⊥⊥ X2(x1), X3(x1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
X2(x1) ⊥⊥ x1, X3(x1) ✓ ✓ ✓ ✓ ✓ ✓
X3(x1) ⊥⊥ x1, X2(x1) ✓ ✓ ✓ ✓ ✓ ✓

Table 2. All 25 DAGs on three variables along with their complete set of conditional independence tests for both the observational setting
(I = ∅) and the interventional setting while intervening on X1 (I = {1}). Additionally organized by their MEC and the order of each
conditional independence test.

Recall that we cannot identify the full MEC with only
quadratic samples in the observational case. Surpris-
ingly, we can in the interventional case by taking
n∅, n{1}, n{2}, n{3} all in O(t2) (moreover we can identify
the DAG exactly). This demonstrates that the folk knowl-
edge that interventions should be statistically more efficient
for identifying DAG structure can be rigorously shown un-
der the framework we introduce.

This additionally contrasts with the large body of work in
interventional discovery which assumes the MEC as the
starting point. Indeed, unless the cost of collecting interven-
tional data is orders of magnitude more difficult than col-
lecting observational data, it seems rather bizarre to assume
starting knowledge of the MEC. This is perhaps antitheti-
cal to studying interventional settings in the first place and
perhaps deserves greater scrutiny. In three variables, the
quadratically identifiable MEC is still relatively informative;
however, this only worsens as d grows.

5. Extension to Hypergraphs and Interactions
We now extend to higher-order interactions in the context of
sample complexity concerns (Enouen & Sugiyama, 2024).
Recent work has extended the classical MEC over DAGs to
a hyper MEC (HMEC) over hyper DAGs (HDAGs) (Enouen
et al., 2025). We reintroduce their main points herein.

Definition 5.1. Conditional Multi-Independence Test. We
will write that three variables X1, X2, X3 are multi-
independent, denoted as ⊥⊥3 (X1, X2, X3) if we may write
the distribution over the variables in the following form:

log p(x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3)

This extends on the typical notion of independence from an
additive model perspective:

log p(x1, x2) = f1(x1) + f2(x2)

Extensions to k-multi-dependence for k > 3 and for condi-
tional multi-dependence are defined in the obvious way.

It is fairly straightforward to see that these tests are also
identifiable directly from the observed distribution, and it
can be further seen that these CMITs extend beyond the
typical CITs which defined Markov equivalence. Accord-
ingly, it is possible for them to define the hyper MEC via
the equivalence over this larger set of CMITs.

5.1. Interactions using Hypergraphs

Recall that for a directed graph G = (V,E), we write
PaG(j) = {k ∈ [d] : (k, j) ∈ G} for the parents of
a node. For a directed hypergraph H = (V,H) with
H ⊆ {(S, j) : j ∈ V, S ⊆ (V − j)}, we write the hy-
perparents as HypPaH(j) = {S : (S, j) ∈ H}. We may
write the Markov and hyper-Markov properties as:

log p(x) =

d∑
i=1

(
θ(xi;xPa(i))−Z(xPa(i))

)
(1)

log p(x) =

d∑
i=1

∑
S∈HypPa(i)

θ(xi;xS)−Z(xPa(i)) (2)

Theorem 5.2. (Enouen et al. (2025)) The HMEC is the set
of all HDAGs which have the same ‘body’ and same ‘multi-
colliders’, extending the notion of skeleton and colliders in
the DAG case.

In the same way that a skeleton’s edges describes a depen-
dency which will never disappear under any conditioning
set, a body’s hyperedges describes a multidependency which
will never disappear under any conditioning set. In the same
way that a collider describes two parents whose dependency
is induced by their joint child, a multi-collider describes
three or more parents whose dependency is induced by their
joint child.
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O(t2)
X1 ⊥⊥ X2 ✓ ✓ ✓ ✓ ✓
X1 ⊥⊥ X3 ✓ ✓ ✓ ✓ ✓
X2 ⊥⊥ X3 ✓ ✓ ✓ ✓ ✓

O(t3)
X1 ⊥⊥ X2|X3 ✓ ✓ ✓ ✓
X1 ⊥⊥ X3|X2 ✓ ✓ ✓ ✓
X2 ⊥⊥ X3|X1 ✓ ✓ ✓ ✓

O(t3)
X1 ⊥⊥ X2X3 ✓ ✓
X2 ⊥⊥ X1X3 ✓ ✓
X3 ⊥⊥ X1X2 ✓ ✓

O(t3) ⊥⊥3 (X1, X2, X3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3. All 34 HDAGs depicted in each of the 15 HMECs. The 3D multidependence test (CMIT) which distinguishes the higher-order
structure is also included in addition to the 9 CITs.

5.2. Interactions and Interventions with (I,N )-HMECs

Based on the discussion in Section 4, it should be straightfor-
ward to first see how we can extend their notion of HMEC
to the coarser version which is identifiable in finite samples.
For example, any ⊥⊥3-CMIT testing requires a minimum of
three dimensions and thus requires at least O(t3) samples.

We depict in Table 3 the extension of Table 1 to the case
of HDAGs and HMECs. Once again, we see a similar
partitioning where the full observational structure is not
identified in only quadratic samples. Although we only
depict the small case of d=3, it is already enough to show
the differences without infinite samples. Moreover, the
impact of our finite sample focus only has a greater and
greater impact as we increase to larger d. Once again, the
interventional data can be incorporated and proves critical
for identifying structure.

6. Relevance to Causal Inference
Another key area of impact, especially since the hypergraph
extension blends graphical structure with semiparametric
regression model specification, is causal estimation. Inter-
ventions can improve causal estimation in complex settings,
even without interventions on the final treatment of interest.

6.1. Statistical Efficiency

The area of causal estimation often assumes unconfound-
edness and uses backdoor adjustments (e.g. via AIPW).
Although this overlooks graphical complexity, it enables the
literature to dive deeper into subtleties on estimation and
efficiency. The usage of sieve methods (Newey, 1997; Chen,
2007) allows for a gradually expanding structure based on n,
mirroring the growth in complexity in (I,N )-MECs. More-
over, some work highlights the additive interaction model
for favorable finite sample complexity scaling for real-world
settings (Andrews & Whang, 1990).

Moreover, in the case of double machine learning (DML),
having robust convergence rates under partial misspecifica-
tion is a key topic of interest (Chernozhukov et al., 2018).
It is imagined that these concerns can be revisited in a hy-
pergraphical model and moreover that the hypergraphical
model can automatically specify necessary interactions as
discussed in the next section.

6.2. Valid Adjustments and Bad Controls

Even for simple backdoor identification, graphical struc-
ture informs estimation implications (via bias or precision),
(Cinelli et al., 2024), and gives tools for finding valid adjust-
ment sets (Textor et al., 2017).

Beyond valid adjustment sets, recent work further studies
efficiency thereof (Rotnitzky & Smucler, 2020). Similar ex-
tensions to the selection of valid adjustment variables would
be the selection of valid adjustment interactions, closely re-
lated to regression model selections like additive interaction
models. With partial knowledge on the HDAG, if analogous
adjustment tools could be developed, it too can be leveraged
directly for the causal inference practitioner.

7. Conclusion
The biggest takeaway we hope can be that the MEC is not
a powerful enough description to describe the statistical
nuance in recovering the causal graphical model. More-
over, the language of interventions as well as interactions
provides an extremely powerful first look at the statistical
shortcomings the classical MEC and I-MEC approaches. It
is hoped that for future works on experimental design, these
statistical aspects of recovery can be more directly incorpo-
rated to use reasoning under uncertainty while also shedding
the dependency on the MEC starting point. Further devel-
opments and refinements of the statistical theory presented
herein would likely continue to lead to downstream benefits.
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A. Additional Figures

Figure 1. All 3D MECs

Figure 2. All 3D HMECs
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Figure 3. All 4D MECs

Figure 4. All 4D HMECs
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