

000 001 002 003 004 005 A CONSTELLATION-AWARE TRANSFORMER FOR 006 NONLINEAR CHANNEL EQUALIZATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Decoding signals over unknown channels with minimal pilot overhead is a critical challenge in communications. Existing deep learning approaches struggle to model long-range temporal dependencies. Conversely, off-the-shelf Transformers, while powerful sequence models, are domain-agnostic and inefficiently learn the channel’s physical properties from scarce data. We introduce the *Constellation-Aware Transformer* (CAT), a novel architecture that integrates fundamental communication principles into the Transformer model. CAT is composed of a stack of custom *TransFIRmer* blocks, which redesign the standard Transformer to be constellation-aware. Each block facilitates deep interaction between the received signals and the ideal constellation geometry via a specialized attention mechanism. Furthermore, it replaces the standard feed-forward network with a two-stream architecture: a bidirectional Finite Impulse Response (FIR)-inspired filter processes the signal representations for robust deconvolution, while a parallel MLP refines the constellation representations. In the challenging semi-supervised setting, CAT achieves superior performance across multiple noisy channels, significantly outperforming other baselines, with using fewer pilot signals.

1 INTRODUCTION

Deep learning methods for communications over unknown channels have attracted considerable interest recently (O’Shea & Hoydis, 2017; Bennatan et al., 2018; Nachmani et al., 2018; O’Shea et al., 2018; Shlezinger et al., 2020). A central challenge in this domain is to minimize the amount of pilot data required for reliable decoding, as these known symbols constitute a transmission overhead that reduces the overall data rate (Shlezinger et al., 2021). While classical methods like Expectation-Maximization (EM) offer a path to unsupervised equalization (Tong & Perreau, 1998; Dempster et al., 2018), their performance can be limited. To improve upon this, deep generative models, specifically Variational Autoencoders (VAEs) (Kingma & Welling, 2014), have been successfully adapted to a semi-supervised learning (SSL) framework (Kingma et al., 2014). This approach, which uses both labeled pilots and unlabeled payload data, has demonstrated a significant reduction in the required number of pilots (Burshtein & Bery, 2023; 2024).

However, the encoders in these systems, typically implemented with multilayer perceptron (MLP) or convolutional neural networks (CNNs), may not fully capture the complex temporal dependencies present in communication signals. The remarkable success of the Transformer architecture (Vaswani et al., 2017) in sequence modeling motivates its application to this domain. A direct, off-the-shelf adaptation, however, is suboptimal (Choukroun & Wolf, 2024). A generic Transformer is a powerful but domain-agnostic model that must learn the underlying physics of the problem—such as the discrete, geometric nature of the constellation and the filtering properties of the channel—entirely from data. This is inefficient and forfeits the advantage of decades of communication theory.

We argue that the path to superior performance lies not merely in applying a more powerful architecture, but in fundamentally redesigning its internal components to incorporate known principles. Here, we draw inspiration from a highly successful paradigm in natural language processing (NLP): *early and deep interaction*. In tasks like dense retrieval and multi-document processing, state-of-the-art models have shown that jointly processing a query and a document from the very first layer, allowing for fine-grained, token-level attention throughout the network, dramatically outperforms methods that process them independently and only compare final vector representations (Humeau

et al., 2019; Fang et al., 2020; Xiao et al., 2022; Liu et al., 2023). This principle of avoiding premature summarization by enabling early interaction is directly applicable to our problem.

We introduce the *Constellation-Aware Transformer (CAT)*, an architecture composed of a stack of novel *TransFIRmer* blocks, illustrated in Figure 1. Each TransFIRmer block is a self-contained processing block that redesigns the standard Transformer encoder by integrating two key innovations motivated by this principle:

1. Constellation-Aware Attention (CAT): A custom attention mechanism that co-processes the received signals alongside the ideal constellation representations from the very first layer. This implements the principle of early interaction, providing the model with an explicit, perfect prior of the target symbol space that guides the equalization process at every stage.
2. FIR-Inspired Feed-Forward Network: The standard position-wise MLP is replaced with a specialized, two-stream feed-forward network. This component, inspired by classical Finite Impulse Response (FIR) filters, is structurally tailored for the task of channel deconvolution, allowing it to learn an inverse channel filter more effectively than a generic MLP.

We demonstrate that CAT achieves state-of-the-art performance by creating a synergy between powerful models from the discrete, symbolic world of NLP to solve the inherently continuous-valued problem of signal equalization in communication theory.

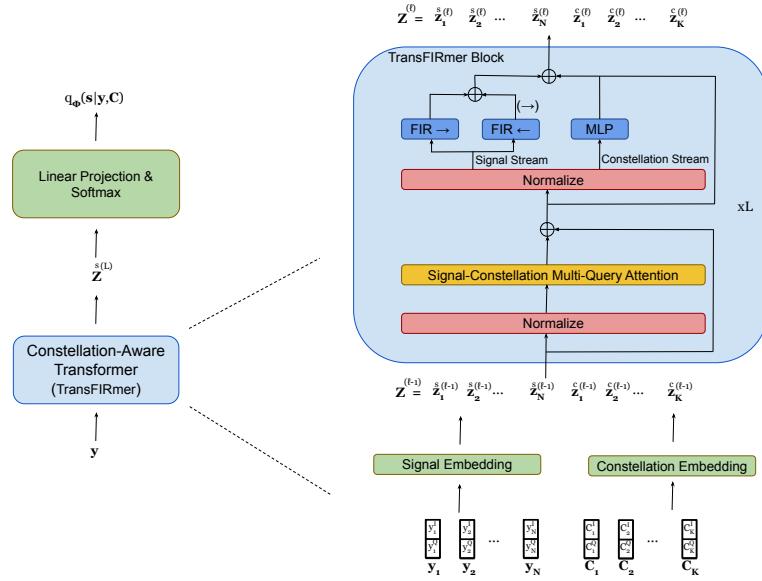


Figure 1: The architecture of our Constellation-Aware Transformer (CAT), which processes the received signals y and ideal constellation symbols \mathcal{C} , through a stack of L TransFIRmer blocks.

2 PROBLEM FORMULATION AND SETUP

We consider a block of N symbols, (s_1, \dots, s_N) , transmitted over an unknown channel. Each symbol, $s_i \in \{1, \dots, K\}$, is drawn independently uniformly. The symbol s_i is mapped to a corresponding complex signal from a fixed constellation \mathcal{C} of size K . For a more convenient processing, we represent these signals as real-valued vectors – We formally define an equivalence between a complex number in \mathbb{C} and its real-vector representation in \mathbb{R}^2 . These notations are used interchangeably for all physical quantities (e.g., transmitted and received signals, channel taps, and noise). Specifically, the ideal transmitted signal is denoted $\mathbf{x}_i = (x_i^I, x_i^Q) \in \mathbb{R}^2$, where x_i^I and x_i^Q are the in-phase and quadrature components. We let $\mathbf{x}(k)$ be the vector corresponding to symbol $s_i = k$.

The channel is unknown at the receiver. However, a small subset of the transmitted symbols, $\{s_i\}_{i=1}^{N_p}$, are known as pilot symbols, where $N_p \ll N$. The remaining symbols, $\{s_i\}_{i=N_p+1}^N$, constitute the unknown payload.

108 2.1 CHANNEL MODELS
109110 We consider two classes of channels: memoryless channels and channels with finite memory.
111112 2.1.1 MEMORYLESS CHANNELS
113114 In a memoryless channel, the received signal at a given time instant depends only on the signal trans-
115 mitted at that same instant. This process can include nonlinear distortions at the transmitter, such as
116 I/Q imbalance or effects from components like power amplifiers. We model this entire end-to-end
117 transformation as a complex, unknown function $h(\cdot)$. The received signal \mathbf{y}_i is the result of this
118 nonlinear function applied to the ideal signal \mathbf{x}_i , corrupted by additive noise \mathbf{n}_i , $\mathbf{y}_i = h(\mathbf{x}_i) + \mathbf{n}_i$,
119 where $\mathbf{y}_i = (y_i^I, y_i^Q) \in \mathbb{R}^2$. The conditional probability density function (PDF) $p(\mathbf{y}_i|s_i)$ is thus the
120 distribution induced by this memoryless process.
121122 2.1.2 CHANNELS WITH FINITE MEMORY
123124 In channels with finite memory, the received signal \mathbf{y}_i is affected by intersymbol interference (ISI),
125 meaning it depends on a sequence of past transmitted signals. This is common in wireless commu-
126 nications due to multipath propagation. Following the model in Burshtein & Bery (2024), this can
127 be described by a two-stage process: first, a memoryless nonlinearity $g(\cdot)$ at the transmitter (e.g.,
128 from power amplifiers), and second, a linear filter representing the channel's impulse response.
129 The received signal at time i is a convolution of the channel's impulse response with the sequence
130 of (potentially distorted) transmitted signals, $\mathbf{y}_i = \sum_{l=0}^{L-1} \mathbf{h}_l g(\mathbf{x}_{i-l}) + \mathbf{n}_i$, where $\{\mathbf{h}_l\}_{l=0}^{L-1}$ are the
131 complex-valued filter taps of the channel impulse response (of length L), and $g(\cdot)$ is an unknown
nonlinear function. Both the taps $\{\mathbf{h}_l\}$ and the function $g(\cdot)$ are unknown to the receiver.
132133 2.2 DECODING AND LEARNING FRAMEWORKS
134135 A standard supervised learning approach is to train a decoder using only the pilot data. The nature
of the decoder, however, depends on the channel type.
136137 • For *memoryless channels*, the decoder network, parameterized by ϕ , can process each sample
138 independently. Its input is the current sample \mathbf{y}_i , and it outputs a posterior probability distribu-
139 tion $q_\phi(s|\mathbf{y}_i)$.
140 • For *channels with memory*, the decoder must process the entire sequence of received signals
141 $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_N)$ to resolve the interference and decode a single symbol s_i . In this case, the
142 posterior is denoted $q_\phi(s_i|\mathbf{y})$.
143144 In both cases, the network is typically trained by minimizing the cross-entropy loss function over
the labeled pilot data:
145

146
$$\mathcal{L}_{\text{sup}}(\phi) = -\frac{1}{N_p} \sum_{i=1}^{N_p} \log q_\phi(s_i|\mathbf{y}_i \text{ or } \mathbf{y}). \quad (1)$$

147

148 Once the parameters $\hat{\phi}$ are learned, the payload data is decoded using the maximum a posteriori rule:
149

150
$$\hat{s}_i = \underset{s \in \{1, \dots, K\}}{\text{argmax}} q_{\hat{\phi}}(s \mid \mathbf{y}_i \text{ or } \mathbf{y}), \quad \text{for } i > N_p. \quad (2)$$

151

152 The primary limitation of this approach is that it requires a large number of pilots N_p to achieve
153 good performance, which reduces the overall data rate.
154155 2.3 THE SEMI-SUPERVISED VARIATIONAL FRAMEWORK
156157 To reduce the dependency on pilots, we adopt a semi-supervised learning (SSL) framework that
158 leverages both the labeled pilot data and the unlabeled payload data. The VAE-based approach
159 in Burshtein & Bery (2023; 2024) provides the foundation for this framework. It involves two
160 parameterized models:
161• An **encoder** (or inference model) $q_\phi(s|\mathbf{y})$, which approximates the true posterior $p(s|\mathbf{y})$. This
is parameterized by ϕ .
162

162 • A **decoder** (or generative model) $p_\theta(\mathbf{y}|s)$, which models the forward channel process. This is
 163 parameterized by θ . See more details regarding the implementation in Appendix C.3.
 164

165 In the case of channels with memory, the encoder $q_\phi(s_i|\mathbf{y})$ and decoder $p_\theta(\mathbf{y}|s)$ operate on the full
 166 sequences \mathbf{y} and s , respectively, to correctly model the temporal dependencies.

167 The models are trained jointly by minimizing a composite loss function that combines supervised
 168 and unsupervised objectives. The full semi-supervised VAE loss function, as derived from Kingma
 169 et al. (2014) and applied in Burshtein & Bery (2024), is given by:

$$\begin{aligned} \mathcal{L}_{\text{SSL-VAE}}(\phi, \theta) = & -\frac{\alpha}{N_p} \sum_{i=1}^{N_p} \log q_\phi(s_i|\mathbf{y}_i) - \frac{\gamma}{N_p} \sum_{i=1}^{N_p} \log p_\theta(\mathbf{y}_i|s_i) \\ & + \frac{1-\gamma}{N - N_p} \sum_{i=N_p+1}^N [-\mathbb{E}_{q_\phi(s|\mathbf{y}_i)}[\log p_\theta(\mathbf{y}_i|s)] + D_{KL}(q_\phi(s|\mathbf{y}_i) || p(s))] , \end{aligned} \quad (3)$$

170 where α and γ are hyperparameters that balance the different loss components, and the posterior
 171 $q_\phi(s|\mathbf{y})$ represents conditioning on either the individual sample or the entire sequence, $q_\phi(s|\mathbf{y}$ or $\mathbf{y})$.
 172 The first two terms represent the supervised losses on the pilot data. The third term is the unsupervised
 173 negative Evidence Lower Bound (ELBO) on the payload data, consisting of the reconstruction
 174 loss and a regularizing KL divergence term. Minimizing the KL divergence, $D_{KL}(q_\phi(s|\cdot) || p(s))$,
 175 encourages the entropy of the encoder’s output to be high, preventing it from becoming overconfident
 176 on unlabeled data.

177 Our proposed Constellation-Aware Transformer serves as a direct and powerful replacement for the
 178 encoder network $q_\phi(s|\mathbf{y})$ within this exact variational framework. The Transformer is particularly
 179 well-suited for channels with memory, as its self-attention mechanism can naturally model the long-
 180 range dependencies within the received sequence \mathbf{y} to produce accurate posterior estimates. By
 181 providing a richer architectural prior, we aim to learn a much more accurate posterior approximation
 182 q_ϕ , thereby achieving a lower overall loss and superior equalization performance.

190 3 PROPOSED METHOD: THE CONSTELLATION-AWARE TRANSFORMER

191 Our proposed method is grounded in a Bayesian interpretation of the equalization task, which reveals
 192 the necessity of a constellation-aware model. We first present this theoretical motivation and then
 193 detail the architecture of our Constellation-Aware Transformer (CAT), a novel deep learning model
 194 designed to approximate this ideal Bayesian estimator.

196 3.1 A BAYESIAN VIEW OF CONSTELLATION-AWARE EQUALIZATION

197 The necessity for a constellation-aware equalizer can be rigorously established within a Hierarchical
 198 Bayesian framework. While in any given transmission the constellation is a fixed parameter,
 199 a receiver operating under uncertainty can model this lack of knowledge probabilistically. This re-
 200 frames the problem from simple parameterization to optimal estimation under epistemic uncertainty,
 201 revealing that the ideal estimator must inherently process constellation information.

202 3.1.1 THE HIERARCHICAL GENERATIVE PROCESS

203 Let us model the complete generative process from the receiver’s point of view. Let $\mathcal{C} = \{\mathcal{C} \subset \mathbb{R}^2 \mid$
 204 $|\mathcal{C}| = K\}$ be the space of all possible constellations. We can model the receiver’s beliefs and the
 205 physical process as a three-stage hierarchy:

- 206 1. **Constellation Prior** $p(\mathcal{C})$: The receiver has a prior belief over the space of constellations,
 207 represented by a probability density function (PDF) $p(\mathcal{C})$ where $\mathcal{C} \in \mathcal{C}$.
- 208 2. **Symbol Prior** $p(s|\mathcal{C})$: Once a specific constellation \mathcal{C} is chosen, a symbol s is drawn from it,
 209 typically from a uniform distribution over the K points in that constellation.
- 210 3. **Channel Likelihood** $p(\mathbf{y}|s)$: The symbol s is transmitted through the channel, resulting in the
 211 observation \mathbf{y} . \mathbf{y} is conditionally independent of \mathcal{C} given s , i.e., $p(\mathbf{y}|s, \mathcal{C}) = p(\mathbf{y}|s)$.

212 The full joint probability distribution is given by the chain rule: $p(\mathbf{y}, s, \mathcal{C}) = p(\mathbf{y}|s)p(s|\mathcal{C})p(\mathcal{C})$.

216 3.1.2 DERIVING THE OPTIMAL ESTIMATOR UNDER UNCERTAINTY
217

218 The goal is to find the Minimum Mean Squared Error (MMSE) estimator for the symbol s given the
219 observation \mathbf{y} , which is the conditional expectation $\mathbb{E}[s|\mathbf{y}]$. To compute this, we must marginalize
220 out the nuisance variable \mathcal{C} by integrating over the entire space of constellations \mathfrak{C} . We can express
221 the MMSE estimator using the law of total expectation:

$$222 \hat{s}_{\text{MMSE}} = \mathbb{E}[s|\mathbf{y}] = \mathbb{E}_{\mathcal{C}|\mathbf{y}}[\mathbb{E}[s|\mathbf{y}, \mathcal{C}]] = \int_{\mathfrak{C}} \mathbb{E}[s|\mathbf{y}, \mathcal{C}] p(\mathcal{C}|\mathbf{y}) d\mathcal{C} = \int_{\mathfrak{C}} \left[\sum_{s \in \mathcal{C}} s \cdot p(s|\mathbf{y}, \mathcal{C}) \right] p(\mathcal{C}|\mathbf{y}) d\mathcal{C}. \\ 223 \quad (4) \\ 224$$

225 This result demonstrates that the optimal Bayesian estimator must perform two simultaneous in-
226 ferences: *constellation inference* (computing the posterior PDF $p(\mathcal{C}|\mathbf{y})$) and *symbol conditional*
227 *estimation* conditioned on a given constellation (the conditional symbol posterior $p(s|\mathbf{y}, \mathcal{C})$).
228

229 3.1.3 THE SPECIAL CASE: KNOWN CONSTELLATION
230

231 In our setup, the constellation $\mathcal{C}_{\text{true}}$ is known with certainty. The receiver's prior is therefore a Dirac
232 delta function centered at the true constellation, $p(\mathcal{C}) = \delta(\mathcal{C} - \mathcal{C}_{\text{true}})$. The posterior $p(\mathcal{C}|\mathbf{y})$ is then
233 also a Dirac delta at $\mathcal{C}_{\text{true}}$. The integral in Eq. (4) collapses to evaluating the bracketed term at $\mathcal{C}_{\text{true}}$:

$$234 \hat{s}_{\text{MMSE}} = \sum_{s \in \mathcal{C}_{\text{true}}} s \cdot p(s|\mathbf{y}, \mathcal{C}_{\text{true}}) = \mathbb{E}[s|\mathbf{y}, \mathcal{C}_{\text{true}}]. \\ 235 \\ 236$$

237 This is precisely the ideal estimator that a perfect constellation-aware model should target. The
238 purpose of our CAT architecture is to learn an effective approximation of this superior, parameter-
239 aware function.

240 3.2 THE CONSTELLATION-AWARE TRANSFORMER (CAT) ARCHITECTURE
241

242 Following recent architectural advances in large language models (LLMs), particularly the recent
243 advancements in efficient Transformer architectures such as Llama 3.1 (Grattafiori et al., 2024), the
244 CAT architecture is composed of a stack of L custom layers, which we term *TransFIRmer blocks*.
245 The architecture is illustrated in Figure 1.
246

247 3.2.1 INPUT REPRESENTATION AND EMBEDDING
248

249 The input to our model consists of the sequence of N received channel outputs $(\mathbf{y}_1, \dots, \mathbf{y}_N)$ and
250 the set of K ideal constellation symbols $\{\mathbf{x}(1), \dots, \mathbf{x}(K)\}$. Both are projected into a processing
251 space of dimension d_{model} using separate linear embedding layers.

252 To provide the model with awareness of the sequential nature of the received signals, we inject pos-
253 itional information directly into their representations. Specifically, after the initial linear embedding
254 of the signal sequence, we add fixed sinusoidal positional embeddings, following the original Trans-
255 former design (Vaswani et al., 2017). The constellation symbols, which form a set rather than an
256 ordered sequence, are embedded without positional information. The embedded vectors are:

$$257 \mathbf{z}_i^{\text{sig}} = \text{Embed}_{\text{sig}}(\mathbf{y}_i) + \mathbf{p}_i, i \in \{1, \dots, N\}, \quad \mathbf{z}_k^{\text{const}} = \text{Embed}_{\text{const}}(\mathbf{x}(k)), k \in \{1, \dots, K\}, \\ 258$$

259 where $\mathbf{p}_i \in \mathbb{R}^{d_{\text{model}}}$ is the sinusoidal positional embedding for the i -th position. The full input
260 sequence to the first TransFIRmer block, $\mathbf{Z}^{(0)} \in \mathbb{R}^{(N+K) \times d_{\text{model}}}$, is their concatenation.

261 3.2.2 THE TRANSFIRMER BLOCK
262

263 The TransFIRmer block is the core building block of our architecture, modifying the two canonical
264 sub-layers of the Transformer. It sequentially applies: (1) a signal-constellation attention mecha-
265 nism, and (2) a novel, two-stream feed-forward network inspired by signal processing principles.
266

267 **Signal-Constellation Attention Mechanism** The first stage is an efficient multi-query attention
268 (MQA) mechanism (Shazeer, 2019) designed to facilitate deep interaction between the received sig-
269 nals and the ideal constellation symbols. We apply an attention mask \mathbf{M} that configures the signal-
to-signal interaction, with modes including 'full' (fully bidirectional), 'causal' (autoregressive), and

‘causal channel’ (restricting the causal window to the estimated channel length L , similarly to sliding window attention in language models (Beltagy et al., 2020)). Although all modes were tested, we found that ‘full’ attention consistently yielded the best performance and was used for all reported results, likely because it provides a richer context for implicitly estimating the global channel state.

Two-Stream FIR-Inspired Feed-Forward Network The second stage replaces the standard position-wise MLP with a novel two-stream network that processes signal and constellation tokens differently, reflecting their distinct roles.

- **Signal Stream (Bidirectional FIR Filtering):** The sequence of signal token representations, $\mathbf{Z}_{\text{sig}}^{(l)}$, is processed by a pair of 1D convolutional layers acting as Finite Impulse Response (FIR) filters. One learned filter processes the sequence in the forward direction, while a second learned filter processes a time-reversed version of the sequence. The outputs are summed:

$$\text{FFN}_{\text{sig}}(\mathbf{Z}_{\text{sig}}) = \text{Conv}_{\text{fwd}}(\mathbf{Z}_{\text{sig}}) + \text{Flip}(\text{Conv}_{\text{inv}}(\text{Flip}(\mathbf{Z}_{\text{sig}}))). \quad (5)$$

This structure emulates a non-causal, zero-phase FIR filter, which is the ideal linear processor for deconvolution in block-based communication systems. It provides a powerful and correct inductive bias for learning channel equalization.

- **Constellation Stream (MLP):** In parallel, the set of constellation token representations, $\mathbf{Z}_{\text{const}}^{(l)}$, is processed by a standard two-layer Multi-Layer Perceptron (MLP) for learning complex symbol representations.

The outputs of these two streams are then concatenated and passed through a final residual connection. This two-stream design allows the model to learn an adaptive deconvolution filter for the noisy signals while simultaneously learning feature representations for the clean constellation symbols.

3.3 INTEGRATION INTO THE SEMI-SUPERVISED FRAMEWORK

The complete CAT model, comprising the embedding layers and the stack of L TransFIRmer blocks, serves as the encoder network $q_{\phi}(s|\mathbf{y})$. Its parameters, collectively denoted by ϕ , are trained end-to-end within the semi-supervised variational framework described in Section 2.3. By replacing a generic encoder with our specialized architecture, we provide the model with strong architectural priors tailored to the equalization task, enabling it to learn a more accurate posterior approximation q_{ϕ} and achieve superior performance with fewer pilot symbols.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate our proposed Constellation-Aware Transformer (CAT), we test it on two categories of channels: a nonlinear memoryless channel with I/Q imbalance and Rayleigh fading, and three standard channels with finite memory (ISI). All experiments use a 16-QAM constellation.

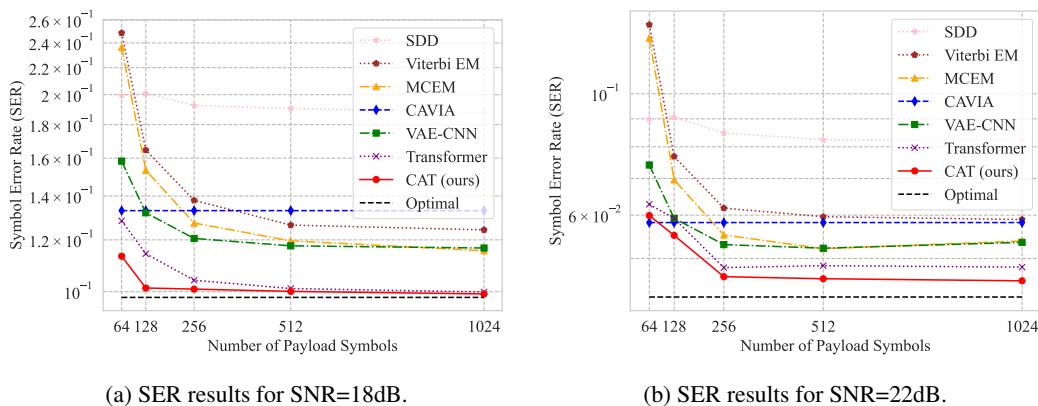
Our primary CAT model consists of a 3-layer stack of TransFIRmer blocks. Inspired by recent trends in optimizing large models, we employ Multi-Query Attention (Shazeer, 2019) and fixed sinusoidal positional embeddings. While other variants such as Multi-Head Attention (Vaswani et al., 2017) or Group-Query Attention (Ainslie et al., 2023), learned embeddings, or RoPE offered similar or marginally better performance in some cases, our chosen configuration significantly reduces the number of model parameters and accelerates both training and inference, making it a more practical choice. Other training hyperparameters, such as learning rate and annealing schedules, are kept consistent with Burshtein & Bery (2024) for a fair comparison, as detailed in Appendix C.

We compare our CAT against a comprehensive set of baselines, largely following the setup in Burshtein & Bery (2024): an Optimal Decoder (ML or BCJR) (Bahl et al., 1974), SSL Monte Carlo EM (MCEM) (Wei & Tanner, 1990), SSL Viterbi EM (Dempster et al., 2018), Simple Decision Directed (SDD), VAE-CNN (Burshtein & Bery, 2024), and the meta-learning algorithm CAVIA (Zingraf et al., 2019). We also include a Vanilla Transformer baseline, which is adopted for channel equalization (Kunde et al., 2025; Buffelli et al., 2025), to isolate the benefits of our architectural modifications. Brief descriptions of these methods are provided in Appendix D.

To ensure the statistical significance and robustness of our results, each data point presented in our figures and tables represents the mean Symbol Error Rate (SER) averaged over 1000 independent Monte Carlo trials. For each trial, a new channel realization (e.g., new fading coefficients, I/Q imbalance parameters) was randomly generated according to the specified distributions. We computed 95% confidence intervals for all mean SER values and found them to be exceptionally narrow, confirming that the observed performance differences between models are statistically significant and not a result of random fluctuations.

4.2 RESULTS ON MEMORYLESS CHANNELS

We first evaluate performance on the nonlinear memoryless channel. All results for our main CAT model use the ‘full’ attention mask. We found this configuration to be top-performing across both memoryless and memory channels, likely because allowing each signal token to see all other signal tokens provides a richer context for the attention mechanism to implicitly estimate the global channel state before equalization.



(a) SER results for SNR=18dB.

(b) SER results for SNR=22dB.

Figure 2: Symbol Error Rate (SER) on a memoryless nonlinear channel as a function of the total number of symbols, N . The number of pilot symbols is fixed at $N_p = 16$. Our CAT model significantly outperforms all baselines at both SNR=18dB (a) and SNR=22dB (b).

Figure 2 presents the SER as a function of the total number of symbols in a block, N , for SNR values of 18dB and 22dB. The results, confirmed to be statistically significant by our rigorous evaluation, clearly demonstrate the superior performance of our proposed CAT model across both SNR regimes. Compared to the VAE-CNN and other baselines, the CAT achieves a significantly lower SER, especially when the total number of symbols is small (e.g., $N = 64$ or $N = 128$). As the number of payload symbols increases, all semi-supervised methods improve, but the CAT consistently maintains a substantial and statistically robust performance gap, closely approaching the Optimal decoder’s performance.

4.3 RESULTS ON CHANNELS WITH MEMORY (ISI)

To evaluate the CAT’s performance on more challenging channels with intersymbol interference (ISI), we adopt three standard channel models taken from Burshtein & Bery (2024):

$$\begin{aligned}
 \mathbf{h}_1 &= [0.0545 + 0.05j, 0.2832 - 0.11971j, -0.7676 + 0.2788j, -0.0641 - 0.0576j, \\
 &\quad 0.0466 - 0.02275j], \\
 \mathbf{h}_2 &= [0.0554 + 0.0165j, -1.3449 - 0.4523j, 1.0067 + 1.1524j, \\
 &\quad 0.3476 + 0.3153j], \\
 \mathbf{h}_3 &= [0.0410 + 0.0109j, 0.0495 + 0.0123j, 0.0672 + 0.017j, 0.0919 + 0.0235j, \\
 &\quad 0.7920 + 0.1281j, 0.396 + 0.0871j, 0.2715 + 0.048j, \\
 &\quad 0.2291 + 0.0415j, 0.1287 + 0.0154j, 0.1032 + 0.0119j].
 \end{aligned}$$

These channels vary in length ($L = 5, 4, 10$ respectively), with a longer impulse response corresponding to more severe ISI and thus a more difficult equalization and channel estimation task. For

378 Table 1: Symbol Error Rate (SER) on channels with memory ($E_x/N_0 = 17$ dB, Payload=256).
 379 Our CAT model is compared against the VAE-CNN and a vanilla Transformer. The optimal BCJR
 380 performance, which assumes perfect CSI, is included where computationally feasible.

382 Channel	383 Pilots (N_p)	384 VAE-CNN	385 Transformer	386 CAT (Ours)	387 Optimal (BCJR)
$h^{(1)}$ (L=5)	16	0.2900	0.3392	0.3580	
	32	0.1251	0.1192	0.0842	
	64	0.0523	0.0610	0.0198	0.0121
	128	0.0494	0.0290	0.0156	
$h^{(2)}$ (L=4)	16	0.3447	0.3563	0.3330	
	32	0.1843	0.1593	0.1372	
	64	0.1002	0.0750	0.0340	0.0101
	128	0.0869	0.0888	0.0257	
$h^{(3)}$ (L=10)	16	0.6211	0.6481	0.6103	
	32	0.3943	0.3874	0.3426	
	64	0.1709	0.1692	0.1181	N/A
	128	0.1087	0.1022	0.0846	

395
 396 this experiment, we use a fixed payload size of 256 symbols and vary the number of pilot symbols
 397 $N_p \in \{16, 32, 64, 128\}$. The SNR is set to $E_x/N_0 = 17$ dB.

398 The results are summarized in Table 1. The vanilla Transformer baseline refers to the architecture
 399 from Kunde et al. (2025). The results demonstrate a clear trend. While all models struggle in the
 400 extremely low-pilot regime ($N_p = 16$), the proposed CAT model begins to significantly outperform
 401 both the VAE-CNN and the vanilla Transformer as the number of pilots increases to just 32. For
 402 $N_p \geq 64$, the CAT achieves a substantial reduction in SER, often by a factor of 2-3x compared to the
 403 next best model. This performance gap is particularly pronounced for the more challenging 10-tap
 404 channel (h_3), where the CAT’s architectural priors provide a distinct advantage.

405 The table also includes the performance of the optimal BCJR decoder, which assumes perfect and
 406 instantaneous channel state information (CSI). As noted in Burshtein & Bery (2024), computing the
 407 BCJR performance for the long h_3 channel is computationally prohibitive due to the exponential
 408 growth of the trellis state space (16^{L-1}), hence it is not reported. Our CAT model not only provides
 409 the best performance among the learning-based methods but also closes a significant portion of the
 410 gap to the theoretical optimal performance, especially with 128 pilots.

412 4.4 ABLATION STUDIES

414 To empirically validate our design
 415 choices, we performed key ablation
 416 studies on the memoryless channel
 417 (SNR=20dB, $N = 64$). The re-
 418 sults (Table 2) confirm the contri-
 419 bution of each component. Our
 420 full CAT model achieves the lowest
 421 SER of **0.0599**. While differences
 422 between top CAT variants are small,
 423 their non-overlapping 95% CIs con-
 424 firm the gains are statistically ro-
 425 bust. Removing the inverse FIR
 426 or replacing the bidirectional filter
 427 with a standard MLP (*CAT with*
 428 *MLP-FFN*) degrades performance,
 429 confirming the efficacy of the FIR

430 Table 2: Ablation study results (SER at SNR=20dB,
 431 $N = 64$). Results are shown with 95% confidence intervals.

Model Variant	SER ($\pm 95\%$ CI)
<i>Our Full Method</i>	
CAT (built with TransFIRmer blocks)	0.0599 \pm 0.0005
<i>Architecture & Prior Ablations</i>	
CAT without Inverse FIR Filter	0.0608 ± 0.0005
CAT with MLP-FFN (No FIR)	0.0615 ± 0.0006
Vanilla Transformer (No Prior)	0.0628 ± 0.0007
CAT (45° Rotated Prior)	0.1550 ± 0.0015
<i>Attention Mask Ablations</i>	
Self-Only Attention	0.0621 ± 0.0007
Causal Attention	0.0612 ± 0.0006
<i>External Baseline</i>	
VAE-CNN (from Burshtein & Bery (2024))	0.0741 ± 0.0009

432 inductive bias. Crucially, the benefit of constellation awareness is highlighted in two ways: First,
 433 the gap between *CAT with MLP-FFN* and the *Vanilla Transformer* (which lacks the prior) is sub-
 434 stantial. Second, providing an incorrect prior (45° rotation) severely degrades performance (SER
 435 0.1550), emphasizing the model’s effective utilization of the correct geometric information.

432 5 RELATED WORK

434 **Semi-Supervised and Unsupervised Channel Equalization.** The challenge of channel equalization with limited pilot data has been extensively studied (Caciularu & Burshtein, 2018; 2020; 435 Lauinger et al., 2022; Song et al., 2023; Nielsen et al., 2025). Recent semi-supervised methods, 436 particularly the VAE-based approach detailed in Zhu et al. (2023); Burshtein & Bery (2023; 2024); 437 Böck et al. (2025), have established a strong baseline by modeling the channel’s forward and 438 reverse processes. However, these approaches suffer from two key limitations. Architecturally, the 439 MLP or CNN-based encoders they employ lack the powerful sequence modeling capabilities of 440 modern Transformers (Lu et al., 2022). Conceptually, they must learn the entire problem structure 441 from data alone. From an Information Bottleneck perspective (Tishby et al., 1999), forcing a model 442 to infer the properties of the target symbols—that they belong to a discrete set with a specific, known 443 geometry—is an inefficient use of scarce pilot data. This suggests that a more effective model should 444 not have to *re-discover* this known prior, but rather be explicitly conditioned on it.

446 **Transformers in Wireless Communications.** The Transformer architecture Vaswani et al. (2017) 447 has recently been explored for various tasks in communications, including channel decoding, esti- 448 mation, and supervised equalization (Caciularu et al., 2021b; Choukroun & Wolf, 2022; Song et al., 449 2024; Zhou et al., 2024; Li et al., 2025; Kunde et al., 2025). While demonstrating the power of at- 450 tention for capturing complex signal dependencies, existing works have two significant gaps. First, 451 they operate almost exclusively in a fully supervised regime, assuming large labeled datasets are 452 available. To our knowledge, the application of Transformers to the more practical semi-supervised 453 equalization setting remains unexplored. Second, these studies typically employ off-the-shelf Trans- 454 former architectures. This treats the model as a generic black-box approximator and misses a critical 455 opportunity to incorporate domain knowledge. This approach is analogous to early NLP models that 456 would encode a query and document into separate, fixed-length vectors before comparing them (a 457 “late interaction” model).

458 A more powerful paradigm, proven successful in diverse and complex NLP tasks, is **early and deep** 459 **interaction**. Instead of processing a “query” and a “document” in separate streams and only 460 comparing their final, high-level representations (a late-interaction model), recent architectures facilitate 461 fine-grained, token-level attention between them from the very first layer (Conneau & Lample, 2019; 462 Humeau et al., 2019; Gan et al., 2022; Caciularu et al., 2021a; 2023). This principle of avoiding pre- 463 mature summarization is what we are the first to translate to the equalization problem. We append 464 the sequence of received signals as to the ideal constellation symbols, designing an architecture that 465 enables their deep interaction to address the limitations of prior art.

466 6 CONCLUSION

468 We have presented the Constellation-Aware Transformer (CAT), a novel architecture that achieves 469 state-of-the-art performance in semi-supervised channel equalization by synergistically combining 470 principles from disparate fields: the “early interaction” paradigm from modern NLP, and classical 471 signal processing estimation theory. Its core building block, the TransFIRmer layer, redefines the 472 standard Transformer by integrating two key innovations: (1) a signal-constellation attention mech- 473 474 475 476 477 478 479 480 481 482 483 484 485

474 mechanism that instantiates the early interaction paradigm by co-processing received signals and ideal 475 constellation symbols from the very first layer, providing an explicit geometric prior throughout the 476 network; and (2) a novel two-stream feed-forward network that applies a specialized bidirectional 477 FIR filter to signal tokens while using a parallel MLP to refine constellation representations.

478 Our experiments on both nonlinear memoryless and standard ISI channels conclusively demonstrate 479 that this principled design is exceptionally data-efficient. The CAT significantly outperforms VAE, 480 meta-learning, and standard Transformer baselines, particularly in challenging low-pilot regimes 481 where it often reaches near-optimal symbol error rates with as few as 32-64 pilot symbols. The 482 success of this model offers a broader design philosophy for deep learning in the physical sciences: 483 instead of applying generic, black-box architectures, significant gains in performance and data effi- 484 ciency can be realized by embedding established domain principles directly into the model’s struc- 485 ture. This paradigm opens several avenues for future research, including extending the CAT frame- 486 work to more complex scenarios like MIMO channels and exploring its application to other signal 487 processing tasks.

486
487
ETHICS STATEMENT

488
489 We confirm that our work adheres to the code of ethics. This research focuses on foundational im-
490 provements in machine learning architectures for the physical layer of communication systems. The
491 study does not involve human subjects, utilize sensitive private data, or employ real-world datasets;
492 all experiments are conducted using standardized, simulated communication channel models. The
493 primary goal of this research is to improve the data efficiency and reliability of communication sys-
494 tems. We anticipate the societal impact to be positive, potentially leading to more robust connectivity
495 and reduced energy consumption in deployed wireless networks by minimizing transmission over-
496 head. While the training of deep learning models requires computational resources, the proposed
497 CAT architecture is relatively lightweight, and its high data efficiency minimizes the computational
498 burden during both training and inference compared to generic architectures. We do not foresee any
499 immediate negative ethical implications stemming directly from this work.
500

501
REPRODUCIBILITY STATEMENT

502 To ensure the reproducibility of our results, we have provided comprehensive details throughout the
503 paper and the Appendix. The architecture of the proposed Constellation-Aware Transformer (CAT)
504 and the TransFIRmer block is detailed in Section 3. The precise mathematical formulations of the
505 simulated memoryless and ISI channel models used in our experiments are described in Appendix A.
506 Detailed implementation specifics, including model hyperparameters (Appendix C.1), optimizer set-
507 tings, and the annealing schedules for the semi-supervised learning framework (Appendix C.2), are
508 provided. The architecture of the generative model used within the VAE framework is detailed in
509 Appendix C.3, and descriptions of all baseline methodologies are included in Appendix D. The the-
510 oretical analysis supporting the architecture is provided in Appendix E (Theoretical Justification).
511 We utilize standard Symbol Error Rate (SER) metrics, averaged over 1000 Monte Carlo trials as
512 detailed in Section 4.1. To facilitate complete reproduction of our findings, we will make the source
513 code for the CAT model, the simulation environments, and the training scripts publicly available
514 upon acceptance of the paper.

515
REFERENCES

516 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
517 Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
518 points. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference*
519 *on Empirical Methods in Natural Language Processing*, pp. 4895–4901, Singapore, December
520 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.298. URL
521 <https://aclanthology.org/2023.emnlp-main.298/>.
522

523 L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for minimizing symbol
524 error rate (corresp.). *IEEE Transactions on Information Theory*, 20(2):284–287, 1974. doi: 10.
525 1109/TIT.1974.1055186.

526 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
527 *arXiv preprint arXiv:2004.05150*, 2020.

528 Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. Deep learning for decoding of linear codes - a
529 syndrome-based approach. In *2018 IEEE International Symposium on Information Theory (ISIT)*,
530 pp. 1595–1599, 2018. doi: 10.1109/ISIT.2018.8437530.

532 Benedikt Böck, Sadaf Syed, and Wolfgang Utschick. Sparse bayesian generative modeling for com-
533 pressive sensing. *The Annual Conference on Neural Information Processing Systems (NeurIPS)*,
534 2024.

535 Benedikt Böck, Andreas Oeldemann, Timo Mayer, Francesco Rossetto, and Wolfgang Utschick.
536 Physics-informed generative modeling of wireless channels. In *International Conference on Ma-
537 chine Learning (ICML)*, 2025.

538 Davide Buffelli, Sowmen Das, Yu-Wei Lin, Sattar Vakili, Chien-Yi Wang, Masoud Attarifar, Prit-
539 thijit Nath, and Da shan Shiu. Towards a foundation model for communication systems. In *ICML*

540 2025 *Workshop on Machine Learning for Wireless Communication and Networks (ML4Wireless)*,
 541 2025.

542

543 David Burshtein and Eli Bery. Semi-supervised variational inference over nonlinear channels. In
 544 *2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communica-*
 545 *tions (SPAWC)*, pp. 611–615, 2023. doi: 10.1109/SPAWC53906.2023.10304430.

546 David Burshtein and Eli Bery. Semi-supervised channel equalization using variational autoen-
 547 coders. *IEEE Transactions on Wireless Communications*, 23(12):19681–19695, 2024. doi:
 548 10.1109/TWC.2024.3485991.

549

550 Benedikt Böck, Michael Baur, Nurettin Turan, Dominik Semmler, and Wolfgang Utschick. A sta-
 551 tistical characterization of wireless channels conditioned on side information. *IEEE Wireless*
 552 *Communications Letters*, 13(12):3508–3512, 2024. doi: 10.1109/LWC.2024.3474800.

553 Avi Caciularu and David Burshtein. Blind channel equalization using variational autoencoders. In
 554 *2018 IEEE International Conference on Communications Workshops (ICC Workshops)*, pp. 1–6,
 555 2018. doi: 10.1109/ICCW.2018.8403666.

556

557 Avi Caciularu and David Burshtein. Unsupervised linear and nonlinear channel equalization and
 558 decoding using variational autoencoders. *IEEE Transactions on Cognitive Communications and*
 559 *Networking*, 6(3):1003–1018, 2020. doi: 10.1109/TCCN.2020.2990773.

560 Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew Peters, Arie Cattan, and Ido Dagan. CDLM:
 561 Cross-document language modeling. In Marie-Francine Moens, Xuanjing Huang, Lucia Spe-
 562 cia, and Scott Wen-tau Yih (eds.), *Findings of the Association for Computational Linguis-
 563 tics: EMNLP 2021*, pp. 2648–2662, Punta Cana, Dominican Republic, November 2021a. As-
 564 sociation for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.225. URL
 565 <https://aclanthology.org/2021.findings-emnlp.225/>.

566

567 Avi Caciularu, Nir Raviv, Tomer Raviv, Jacob Goldberger, and Yair Be’ery. perm2vec: Attentive
 568 graph permutation selection for decoding of error correction codes. *IEEE Journal on Selected*
 569 *Areas in Communications*, 39(1):79–88, 2021b. doi: 10.1109/JSAC.2020.3036951.

570

571 Avi Caciularu, Matthew Peters, Jacob Goldberger, Ido Dagan, and Arman Cohan. Peek across:
 572 Improving multi-document modeling via cross-document question-answering. In Anna Rogers,
 573 Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the*
 574 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1970–1989, Toronto,
 575 Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
 576 110. URL <https://aclanthology.org/2023.acl-long.110/>.

577

578 Yoni Choukroun and Lior Wolf. Error correction code transformer. *Advances in Neural Information*
 579 *Processing Systems (NeurIPS)*, 2022.

580

581 Yoni Choukroun and Lior Wolf. A foundation model for error correction codes. In *The Twelfth*
 582 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=7KDQPrAF3>.

583

584 Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. *Advances in*
 585 *neural information processing systems (NIPS)*, 2019.

586

587 A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
 588 the em algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1):
 589 1–22, 12 2018. ISSN 0035-9246. doi: 10.1111/j.2517-6161.1977.tb01600.x. URL <https://doi.org/10.1111/j.2517-6161.1977.tb01600.x>.

590

591 Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, and Jingjing Liu. Hierarchical
 592 graph network for multi-hop question answering. In Bonnie Webber, Trevor Cohn, Yulan He, and
 593 Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language*
 594 *Processing (EMNLP)*, pp. 8823–8838, Online, November 2020. Association for Computational
 595 Linguistics. doi: 10.18653/v1/2020.emnlp-main.710. URL <https://aclanthology.org/2020.emnlp-main.710/>.

594 Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, and Jianfeng Gao. Vision-language
 595 pre-training: Basics, recent advances, and future trends. *Found. Trends. Comput. Graph. Vis.*, 14
 596 (3–4):163–352, December 2022. ISSN 1572-2740. doi: 10.1561/0600000105. URL <https://doi.org/10.1561/0600000105>.

598 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 599 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 600 of models. *arXiv preprint arXiv:2407.21783*, 2024.

602 Samuel Humeau, Kurt Shuster, M. Lachaux, and J. Weston. Poly-encoders: Architectures and pre-
 603 training strategies for fast and accurate multi-sentence scoring. In *International Conference on*
 604 *Learning Representations (ICLR)*, 2019.

605 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
 606 *International Conference on Learning Representations (ICLR)*, 2017.

608 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *International Conference*
 609 *on Learning Representations (ICLR)*, 2014.

610 Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
 611 learning with deep generative models. *Advances in Neural Information Processing Systems*
 612 (*NIPS*), 2014.

614 Vishnu Teja Kunde, Vicram Rajagopalan, Chandra Shekhara Kaushik Valmeekam, Krishna
 615 Narayanan, Jean-Francois Chamberland, Dileep Kalathil, and Srinivas Shakkottai. Transformers
 616 are provably optimal in-context estimators for wireless communications. In *International*
 617 *Conference on Artificial Intelligence and Statistics (AISTATS)*, 2025.

618 Vincent Lauinger, Fred Buchali, and Laurent Schmalen. Blind equalization and channel estimation
 619 in coherent optical communications using variational autoencoders. *IEEE Journal on Selected*
 620 *Areas in Communications*, 40(9):2529–2539, 2022. doi: 10.1109/JSAC.2022.3191346.

621 Jane B Lawrie and I David Abrahams. A brief historical perspective of the wiener–hopf technique.
 622 *Journal of Engineering Mathematics*, 59(4):351–358, 2007.

624 Mingxiao Li, Kaiming Shen, and Shuguang Cui. A semantic approach to successive interference
 625 cancellation for multiple access networks. *IEEE Internet of Things Journal*, 12(11):16424–16437,
 626 2025. doi: 10.1109/JIOT.2025.3532484.

627 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Advances*
 628 *in Neural Information Processing Systems (NeurIPS)*, 2023.

630 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 631 ence on Learning Representations (ICLR)*, 2019.

632 Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as
 633 universal computation engines. *Proceedings of the AAAI Conference on Artificial Intelligence*,
 634 2022.

636 Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J. Gross, David Burshtein, and Yair Be’ery.
 637 Deep learning methods for improved decoding of linear codes. *IEEE Journal of Selected Topics*
 638 *in Signal Processing*, 12(1):119–131, 2018. doi: 10.1109/JSTSP.2017.2788405.

639 Soren Fons Nielsen, Darko Zibar, and Mikkel N. Schmidt. Blind equalization using a variational
 640 autoencoder with second order volterra channel model. *IEEE Transactions on Cognitive Commu-
 641 nications and Networking*, pp. 1–1, 2025. doi: 10.1109/TCCN.2025.3570452.

642 Timothy O’Shea and Jakob Hoydis. An introduction to deep learning for the physical layer. *IEEE*
 643 *Transactions on Cognitive Communications and Networking*, 3(4):563–575, 2017. doi: 10.1109/
 644 TCCN.2017.2758370.

646 Timothy James O’Shea, Tamoghna Roy, and T. Charles Clancy. Over-the-air deep learning based
 647 radio signal classification. *IEEE Journal of Selected Topics in Signal Processing*, 12(1):168–179,
 2018. doi: 10.1109/JSTSP.2018.2797022.

648 Jinho Park, Hyesu Kim, Jun-won Choi, In-Soo Lee, and Byonghyo Song. Learning to demodulate
 649 from few pilots via meta-learning. In *2020 IEEE International Conference on Communications*
 650 (*ICC*), pp. 1–6. IEEE, 2020.

651

652 Mark S Pinsker. Information and information stability of random variables and processes. *Holden-*
 653 *Day*, 1964.

654

655 Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint*
 656 *arXiv:1911.02150*, 2019.

657

658 Nir Shlezinger, Nariman Farsad, Yonina C Eldar, and Andrea J Goldsmith. ViterbiNet: A deep
 659 learning based viterbi algorithm for symbol detection. *IEEE Transactions on Wireless Communi-*
 660 *cations*, 19(5):3319–3331, 2020.

661

662 Nir Shlezinger, Rong Fu, and Yonina C. Eldar. Deepsic: Deep soft interference cancellation for
 663 multiuser mimo detection. *IEEE Transactions on Wireless Communications*, 20(2):1349–1362,
 664 2021. doi: 10.1109/TWC.2020.3032663.

665

666 J. Song, V. Lauinger, C. Häger, J. Schröder, A. G. i Amat, L. Schmalen, and H. Wymeersch. Blind
 667 frequency-domain equalization using vector-quantized variational autoencoders. In *49th Euro-*
 668 *pean Conference on Optical Communications (ECOC 2023)*, volume 2023, pp. 1222–1225, 2023.
 669 doi: 10.1049/icp.2023.2511.

670

671 Zihang Song, Yuan Ma, Chaoqun You, Haoxuan Yuan, Jinbo Peng, and Yue Gao. Transformer-based
 672 adaptive ofdm mimo equalization in intelligence-native ran. In *2024 IEEE/CIC International*
 673 *Conference on Communications in China (ICCC Workshops)*, pp. 179–184, 2024. doi: 10.1109/
 674 *ICCCWorkshops62562.2024.10693758*.

675

676 Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. In
 677 *Proc. of the 37-th Annual Allerton Conference on Communication, Control and Computing*, pp.
 678 368–377, 1999. URL <https://arxiv.org/abs/physics/0004057>.

679

680 Lang Tong and S. Perreau. Multichannel blind identification: from subspace to maximum likelihood
 681 methods. *Proceedings of the IEEE*, 86(10):1951–1968, 1998. doi: 10.1109/5.720247.

682

683 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 684 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
 685 *mation Processing Systems (NIPS)*, 2017.

686

687 Greg C. G. Wei and Martin A. Tanner. A monte carlo implementation of the em algorithm and
 688 the poor man’s data augmentation algorithms. *Journal of the American Statistical Associa-*
 689 *tion*, 85(411):699–704, 1990. ISSN 01621459, 1537274X. URL <http://www.jstor.org/stable/2290005>.

690

691 N. Wiener and E. Hopf. Über eine Klasse singulärer Integralgleichungen. *Sitzungsberichte der*
 692 *Preussischen Akademie der Wissenschaften; Physikalisch-Mathematische Klasse*, (30-32):696–
 693 706, 1931.

694

695 Wen Xiao, Iz Beltagy, Giuseppe Carenini, and Arman Cohan. PRIMERA: Pyramid-based masked
 696 sentence pre-training for multi-document summarization. In Smaranda Muresan, Preslav Nakov,
 697 and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for*
 698 *Computational Linguistics (Volume 1: Long Papers)*, pp. 5245–5263, Dublin, Ireland, May 2022.
 699 Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.360. URL <https://aclanthology.org/2022.acl-long.360/>.

700

701 Tao Zhou, Xiangping Liu, Zuowei Xiang, Haitong Zhang, Bo Ai, Liu Liu, and Xiaorong Jing.
 702 Transformer network based channel prediction for csi feedback enhancement in ai-native air
 703 interface. *IEEE Transactions on Wireless Communications*, 23(9):11154–11167, 2024. doi:
 704 10.1109/TWC.2024.3379123.

705

706 Hongzhi Zhu, Yongliang Guo, Wei Xu, and Xiaohu You. Semi-supervised mimo detection using
 707 cycle-consistent generative adversarial network. *IEEE Transactions on Cognitive Communica-*
 708 *tions and Networking*, 9(5):1226–1240, 2023. doi: 10.1109/TCCN.2023.3279260.

702 Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast con-
 703 text adaptation via meta-learning. In *Proceedings of the International Conference on Machine*
 704 *Learning (ICML)*, 2019.

707 A DETAILED CHANNEL MODELS

709 A.1 MEMORYLESS NONLINEAR CHANNEL

711 The memoryless nonlinear channel model used in our experiments, following Park et al. (2020);
 712 Burshtein & Bery (2023; 2024), consists of several stages. First, an ideal transmitted signal $\mathbf{x}_i =$
 713 (x_i^I, x_i^Q) from a 16-QAM constellation is subjected to a nonlinear I/Q imbalance distortion (which
 714 mostly stems from hardware imperfections). This creates a distorted signal $\tilde{\mathbf{x}}_i = (\tilde{x}_i^I, \tilde{x}_i^Q)$ according
 715 to:

$$716 \begin{bmatrix} \tilde{x}_i^I \\ \tilde{x}_i^Q \end{bmatrix} = \begin{bmatrix} 1 + \epsilon & 0 \\ 0 & 1 - \epsilon \end{bmatrix} \begin{bmatrix} \cos \delta & -\sin \delta \\ -\sin \delta & \cos \delta \end{bmatrix} \begin{bmatrix} x_i^I \\ x_i^Q \end{bmatrix}. \quad (6)$$

719 The imbalance parameters, ϵ and δ , are constant for each transmission block but are randomly drawn
 720 from Beta distributions, specifically $\epsilon = 0.15\epsilon_0$ and $\delta = 15^\circ\delta_0$, where $\epsilon_0, \delta_0 \sim \text{Beta}(5, 2)$.

721 The resulting complex signal, $\tilde{x}_i^I + j\tilde{x}_i^Q$, is then transmitted over a Rayleigh flat-fading channel.
 722 The received complex signal is given by:

$$724 y_i^I + jy_i^Q = h(\tilde{x}_i^I + j\tilde{x}_i^Q) + n_i, \quad (7)$$

726 where $h \sim \mathcal{CN}(0, 1)$ is the complex channel gain, which is fixed for the duration of a block, and
 727 $n_i \sim \mathcal{CN}(0, \sigma^2)$ is the i.i.d. complex additive white Gaussian noise. The Signal-to-Noise Ratio
 728 (SNR) is defined as $10/\sigma^2$, based on the average power of the original 16-QAM constellation. The
 729 final received signal used by our models is the real-valued vector $\mathbf{y}_i = (y_i^I, y_i^Q)$.

731 A.2 CHANNELS WITH FINITE MEMORY (ISI)

733 For the experiments involving intersymbol interference, we adopt the channel model from Burshtein
 734 & Bery (2023; 2024), which is a two-stage process. First, the ideal signal \mathbf{x}_i undergoes a memoryless
 735 nonlinear distortion $g(\cdot)$ to produce $\tilde{\mathbf{x}}_i = g(\mathbf{x}_i)$. For consistency, we use the same I/Q imbalance
 736 model described in the previous section for this nonlinearity.

737 The sequence of distorted signals is then transmitted through a noisy ISI channel. The received
 738 signal \mathbf{y}_i is the result of a convolution between the complex channel impulse response \mathbf{h} and the
 739 distorted signal sequence, corrupted by additive noise:

$$740 \begin{aligned} 741 y_i^I + jy_i^Q &= \sum_{l=0}^{L-1} h_l(\tilde{x}_{i-l}^I + j\tilde{x}_{i-l}^Q) + n_i, \end{aligned} \quad (8)$$

744 where L is the length of the channel impulse response and $n_i \sim \mathcal{CN}(0, \sigma^2)$ is complex AWGN. In
 745 our simulations, in Section 4.3, the noise variance σ^2 is set to achieve a target SNR of $E_x/N_0 =$
 746 17dB.

748 B DERIVATION OF THE SEMI-SUPERVISED VAE LOSS

750 The loss function for the semi-supervised VAE is constructed to leverage both labeled (pilot) and
 751 unlabeled (payload) data. The goal is to maximize the log-likelihood of the observed data, which
 752 can be expressed as a sum over the labeled and unlabeled sets:

$$754 \mathcal{L}_{\text{total}} = \sum_{i=1}^{N_p} \log p_{\theta}(\mathbf{y}_i | s_i) + \sum_{i=N_p+1}^N \log p_{\theta}(\mathbf{y}_i). \quad (9)$$

This is a generative objective. To incorporate the inference network q_ϕ , we also add a supervised cross-entropy term for the labeled data. The full objective combines these with weighting hyperparameters α and γ :

$$\mathcal{L}_{\text{full}} = \frac{\alpha}{N_p} \sum_{i=1}^{N_p} \log q_\phi(s_i | \mathbf{y}_i) + \frac{\gamma}{N_p} \sum_{i=1}^{N_p} \log p_\theta(\mathbf{y}_i | s_i) + \frac{1-\gamma}{N - N_p} \sum_{i=N_p+1}^N \log p_\theta(\mathbf{y}_i). \quad (10)$$

The final term, $\log p_\theta(\mathbf{y}_i)$ for the unlabeled data, is intractable to compute directly as it requires marginalizing over all possible symbols s . We therefore substitute it with its Evidence Lower Bound (ELBO):

$$\log p_\theta(\mathbf{y}_i) \geq \mathbb{E}_{q_\phi(s|\mathbf{y}_i)} [\log p_\theta(\mathbf{y}_i, s) - \log q_\phi(s|\mathbf{y}_i)]. \quad (11)$$

By maximizing this lower bound (equivalent to minimizing its negative), we arrive at the final loss function used for training. After rearranging terms and using the fact that $p_\theta(\mathbf{y}_i, s) = p_\theta(\mathbf{y}_i|s)p(s)$, the negative ELBO becomes:

$$-\text{ELBO} = -\mathbb{E}_{q_\phi(s|\mathbf{y}_i)} [\log p_\theta(\mathbf{y}_i|s)] + D_{KL}(q_\phi(s|\mathbf{y}_i) || p(s)). \quad (12)$$

Substituting this into the full objective gives the final loss function presented in Eq. (3). For computational tractability, the expectation term is approximated using a single sample from $q_\phi(s|\mathbf{y}_i)$, often implemented with the Gumbel-Softmax reparameterization trick Jang et al. (2017) to maintain differentiability.

C IMPLEMENTATION AND HYPERPARAMETER DETAILS

C.1 CAT AND VANILLA TRANSFORMER IMPLEMENTATION

Our Constellation-Aware Transformer (CAT) and the vanilla Transformer baseline share the same core configuration, differing only in their specific architectural components as described in Section 3.

Architecture. The models are built with a stack of 3 TransFIRmer (or standard Transformer) layers. The hidden dimension is set to $d_{\text{model}} = 10$, and we use Multi-Query Attention (MQA) (Shazeer, 2019) with a single attention head ($n_{\text{head}} = 1$) for efficiency. For the TransFIRmer layer’s two-stream feed-forward network, the bidirectional FIR filter for the signal stream is implemented with two 1D convolutions (one for left-to-right and another for right-to-left convolutions), each using a kernel size of 12. The parallel MLP for the constellation stream uses a single hidden layer that expands the dimension from d_{model} to d_{model} . Dropout with a rate of $p = 0.1$ is applied within the attention and feed-forward sub-layers. Fixed sinusoidal positional embeddings are used for all experiments.

Training. The models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of $\text{lr} = 10^{-3}$, betas of $(\beta_1, \beta_2) = (0.9, 0.999)$, and a weight decay of 0.01. We employ a linear learning rate scheduler that warms down the learning rate from its initial value to zero over the course of training, which consists of a total of 5000 parameter update steps. The models are trained on mini-batches containing 16 pilot symbols and 32 payload symbols.

C.2 HYPERPARAMETERS FOR SEMI-SUPERVISED LEARNING

The training of all semi-supervised models (CAT, vanilla Transformer, VAE-CNN, etc.) is governed by the same set of hyperparameters and annealing schedules, ensuring a fair comparison and following the setup in Burshtein & Bery (2023; 2024).

SSL Loss Weighting. The composite loss function in Eq. (3) is balanced by two key hyperparameters. The term α , which weights the supervised cross-entropy loss on the encoder, is fixed at $\alpha = 0.2$. The term γ , which balances the supervised reconstruction loss against the unsupervised ELBO, is annealed over the training process. This annealing schedule gradually decreases γ_l

(where l is the iteration index), shifting the training focus from the reliable pilot data to the more abundant but unlabeled payload data as the model becomes more confident. Specifically, we use $\gamma_l = 1/(1 + \beta_l)$, where $\beta_l = \min(2e^{0.0008(l-1)}, \beta_{\max})$, and $\beta_{\max} = \min((N - N_p)/N_p, 40)$. The value of γ_l is updated every 100 iterations.

Gumbel-Softmax Temperature. For models utilizing the Gumbel-Softmax reparameterization trick (including our CAT and the VAE-CNN), the temperature τ is also annealed to transition from a soft, exploratory phase to a hard, decisive phase. The schedule is given by $\tau_l = \max(0.5, e^{-0.001(l-1)})$, with updates occurring every 100 iterations.

C.3 THE GENERATIVE MODEL ARCHITECTURE

For both our CAT and the vanilla Transformer baseline, we operate within the semi-supervised variational framework, which requires a generative model (or decoder), $p_\theta(\mathbf{y}|s)$, to model the forward channel process. To ensure a fair comparison with prior art, we adopt the generative model architecture directly from the VAE-CNN work in Burshtein & Bery (2023; 2024). The parameters of this model are collectively denoted by θ . The specific architecture differs for memoryless and memory channels.

Memoryless Channels. For the memoryless channel, we model $p_\theta(\mathbf{y}_i|s_i)$ as an isotropic Gaussian distribution, $\mathcal{N}(\mathbf{y}_i; \mu_\theta(\mathbf{x}(s_i)), \sigma_\theta^2(\mathbf{x}(s_i))\mathbf{I})$. The mean μ_θ and log-variance $\log \sigma_\theta^2$ are produced by a decoder network. This network is a Multi-Layer Perceptron (MLP) which takes the ideal constellation signal $\mathbf{x}(s_i) \in \mathbb{R}^2$ as input, passes it through a series of hidden layers with ReLU activations, and finally uses two separate linear heads to output the 2-dimensional mean and log-variance vectors.

Channels with Memory (ISI). For channels with memory, the generative model is designed to explicitly capture the two-stage process of a transmitter nonlinearity followed by a linear ISI channel. The model first applies a memoryless nonlinear function $g(\cdot)$, parameterized by a small MLP, to each ideal symbol \mathbf{x}_i in the input sequence s to produce a sequence of distorted signals $\tilde{\mathbf{x}}$. This sequence is then convolved with a learnable Finite Impulse Response (FIR) filter, which models the complex channel impulse response \mathbf{h} . The real and imaginary parts of the filter taps are stored as two separate learnable parameter vectors. The output of this convolution provides the mean of the Gaussian distribution for the received sequence. The noise is modeled as i.i.d. Gaussian with a single learnable variance parameter σ^2 . Thus, the parameters θ for the generative model in the ISI case consist of the weights of the MLP g , the channel filter taps, and the scalar noise variance.

D BASELINE METHODOLOGIES

D.1 SIMPLE DECISION DIRECTED (SDD)

The SDD algorithm is a classical two-stage semi-supervised method (Burshtein & Bery, 2023; 2024).

- Initial Training:** A standard neural network decoder, $q_\phi(s|\mathbf{y})$, is first trained exclusively on the labeled pilot data $\{(\mathbf{y}_i, s_i)\}_{i=1}^{N_p}$ by minimizing the cross-entropy loss from Eq. (1). Let the resulting parameters be $\hat{\phi}_0$.
- Pseudo-Labeling and Retraining:** The trained model is used to generate “hard” pseudo-labels for the unlabeled payload data: $\hat{s}_i = \operatorname{argmax}_s q_{\hat{\phi}_0}(s|\mathbf{y}_i)$ for $i > N_p$. The model’s parameters are then fine-tuned by training on a combined dataset of original pilots and pseudo-labeled payload data, minimizing a weighted cross-entropy loss.

D.2 VITERBI EM

The Viterbi EM algorithm (Dempster et al., 2018) is a hard-decision variant of the Expectation-Maximization (EM) algorithm, as described in Burshtein & Bery (2024). It uses a generative model of the channel, $p_\theta(\mathbf{y}|s)$, parameterized by θ , and iterates between two steps:

864 1. **E-Step (Expectation):** Given the current estimate of the generative model’s parameters
 865 $\theta^{(t-1)}$, generate hard decisions (pseudo-labels) for the payload data by choosing the most
 866 likely symbol according to the current model: $\hat{s}_i^{(t)} = \operatorname{argmax}_s p_{\theta^{(t-1)}}(\mathbf{y}_i | s)$.
 867
 868 2. **M-Step (Maximization):** Update the generative model’s parameters by minimizing the
 869 reconstruction loss (negative log-likelihood) over a combined dataset of the original pilots
 870 and the newly generated pseudo-labels from the E-step, yielding $\theta^{(t)}$.

871 This process is repeated for a fixed number of iterations, gradually refining the channel model.
 872
 873

874 D.3 VAE-SSL (VAE-CNN)

875 This is the state-of-the-art semi-supervised method proposed in Burshtein & Bery (2023; 2024),
 876 which we refer to as VAE-CNN based on its typical implementation. It is a variational autoencoder-
 877 based framework that jointly trains two models:

879 • An **encoder** $q_{\phi}(s|\mathbf{y})$, which acts as the primary decoder. For channels with memory, this
 880 is typically implemented with a Convolutional Neural Network (CNN).
 881
 882 • A **decoder** $p_{\theta}(\mathbf{y}|s)$, which is a generative model that learns the forward channel process.

883 The two networks are trained simultaneously using a composite semi-supervised loss function (de-
 884 tailed in Eq. (3) that combines a supervised objective on the pilot data with an unsupervised, Evi-
 885 dence Lower Bound (ELBO) objective on the payload data. This allows the model to leverage the
 886 entire data block to learn a robust representation of the channel.
 887

888 D.4 CAVIA META-LEARNING

890 Fast Context Adaptation via Meta-Learning (CAVIA) (Zintgraf et al., 2019) is a meta-learning al-
 891 gorithm designed for rapid adaptation to new tasks. In our context, each channel realization is a
 892 “task”.

894 • **Meta-Training:** The model is trained on data from a large number of previous channel
 895 blocks $\{(\mathbf{y}^{(m)}, s^{(m)})\}_{m=1}^M$. The goal is to learn a set of shared parameters ϕ that are com-
 896 mon across all channels, while a small, task-specific “context vector” $\mathbf{z}^{(m)}$ is learned for
 897 each individual channel.
 898
 899 • **Meta-Testing (Adaptation):** When a new channel block arrives, the shared parameters ϕ
 900 are frozen. The model then rapidly infers a new context vector \mathbf{z}_{new} by training only on the
 901 few available pilot symbols from the new block.
 902
 903 • **Decoding:** The final decoder uses both the shared parameters ϕ and the adapted context
 904 vector \mathbf{z}_{new} to decode the payload data of the new block.

905 CAVIA’s strength lies in its ability to learn a good “general” model that can be quickly special-
 906 ized, making it highly effective in few-shot (low pilot) scenarios, provided that past channel data is
 907 available.

908 E THEORETICAL JUSTIFICATION: OPTIMAL ESTIMATION AND 909 ARCHITECTURAL ALIGNMENT

912 The advantage of the Constellation-Aware Transformer (CAT) architecture can be rigorously justi-
 913 fied from three complementary perspectives: a Hierarchical Bayesian framework, statistical learning
 914 theory (hypothesis spaces), and the functional decomposition of the optimal equalizer. We establish
 915 the necessity of accurate constellation information for optimal estimation and demonstrate that the
 916 CAT architecture is structurally aligned with theoretically optimal filtering. We note that similar, but
 917 more general conclusions (not restricted to specific architectures) were shown by Böck et al. (2024);
 918 Böck et al. (2024).

918 E.1 BAYESIAN ESTIMATION AND THE COST OF CONSTELLATION UNCERTAINTY
919920 We further analyze the Hierarchical Bayesian framework introduced in Section 3.1. This frame-
921 work allows us to quantify the impact of uncertainty about the constellation on the Minimum Mean
922 Squared Error (MMSE) estimation.923 E.1.1 THE OPTIMAL ESTIMATOR AND POSTERIOR DEPENDENCE
924925 Recall from Section 3.1 that the optimal MMSE estimator under uncertainty is derived by marginal-
926 izing out the constellation \mathcal{C} using the law of total expectation (Eq. (4)):
927

928
$$\hat{s}_{\text{MMSE}}(\mathbf{y}) = \mathbb{E}[s|\mathbf{y}] = \mathbb{E}_{\mathcal{C} \sim p(\mathcal{C}|\mathbf{y})}[\mathbb{E}[s|\mathbf{y}, \mathcal{C}]]. \quad (13)$$

929 This formulation demonstrates that the optimal estimator depends critically on the true constellation
930 posterior $p(\mathcal{C}|\mathbf{y})$.
931932 E.1.2 THE IMPACT OF APPROXIMATE CONSTELLATION KNOWLEDGE
933934 In practical systems, or when using domain-agnostic models that do not have explicit access to
935 the constellation, the exact posterior $p(\mathcal{C} | \mathbf{y})$ might be unavailable. A model might instead rely
936 on an *implicit approximation* of this posterior information, learned from data. We can view the
937 implemented estimator as replacing the exact marginalization in Eq. (13) by a mixture built from
938 some approximation $r(\mathcal{C} | \mathbf{y})$ that the model realizes:

939
$$\hat{s}_r(\mathbf{y}) = \mathbb{E}_{\mathcal{C} \sim r(\mathcal{C}|\mathbf{y})}[\mathbb{E}[s | \mathbf{y}, \mathcal{C}]]. \quad (14)$$

940 The following lemma quantifies the suboptimality introduced by this approximation.
941942 **Lemma 1** (Estimator-Gap Bound). *Assume symbols s , considering a finite-energy constellation, lie
943 in a bounded set with $\|s\|_2 \leq S_{\max}$. Let $p(\mathcal{C} | \mathbf{y})$ be the true constellation posterior and let $r(\mathcal{C} | \mathbf{y})$
944 be an approximation. Define $\hat{s}_{\text{MMSE}}(\mathbf{y})$ and $\hat{s}_r(\mathbf{y})$ as above. Then, for every observation \mathbf{y} ,*

945
$$\|\hat{s}_r(\mathbf{y}) - \hat{s}_{\text{MMSE}}(\mathbf{y})\|_2^2 \leq 2S_{\max}^2 \text{KL}(r(\mathcal{C} | \mathbf{y}) \| p(\mathcal{C} | \mathbf{y})). \quad (15)$$

946 *Proof.* We aim to bound the squared L2 distance between the optimal MMSE estimator, $\hat{s}_{\text{MMSE}}(\mathbf{y})$,
947 utilizing the true posterior $p(\mathcal{C}|\mathbf{y})$, and the approximate estimator, $\hat{s}_r(\mathbf{y})$, utilizing the approximation
948 $r(\mathcal{C}|\mathbf{y})$. We denote these distributions as p and r for brevity.949 Let $g(\mathcal{C})$ be the conditional MMSE estimator given a specific constellation \mathcal{C} :

950
$$g(\mathcal{C}) := \mathbb{E}[s | \mathbf{y}, \mathcal{C}].$$

951 The estimators can be expressed as expectations of $g(\mathcal{C})$:

952
$$\begin{aligned} \hat{s}_{\text{MMSE}}(\mathbf{y}) &= \int g(\mathcal{C})p(d\mathcal{C}), \\ 953 \hat{s}_r(\mathbf{y}) &= \int g(\mathcal{C})r(d\mathcal{C}). \end{aligned}$$

954 We first establish that $g(\mathcal{C})$ is bounded. Since the L2 norm $\|\cdot\|_2$ is a convex function, we can apply
955 Jensen's inequality:

956
$$\|g(\mathcal{C})\|_2 = \|\mathbb{E}[s | \mathbf{y}, \mathcal{C}]\|_2 \leq \mathbb{E}[\|s\|_2 | \mathbf{y}, \mathcal{C}].$$

957 Given the assumption that $\|s\|_2 \leq S_{\max}$ almost surely, the expectation is also bounded by S_{\max} .
958 Thus, $\|g(\mathcal{C})\|_2 \leq S_{\max}$ for all \mathcal{C} .959 We now analyze the L2 norm of the difference between the two estimators. By the linearity of
960 integration, we can combine them into a single integral over the signed measure $(r - p)$:

961
$$\begin{aligned} 962 \|\hat{s}_r(\mathbf{y}) - \hat{s}_{\text{MMSE}}(\mathbf{y})\|_2 &= \left\| \int g(\mathcal{C})r(d\mathcal{C}) - \int g(\mathcal{C})p(d\mathcal{C}) \right\|_2 \\ 963 &= \left\| \int g(\mathcal{C})(r - p)(d\mathcal{C}) \right\|_2. \end{aligned}$$

972 Next, we apply the generalized triangle inequality for integrals (which is a form of Jensen’s in-
 973 equality for the norm function), stating that $\|\int f d\mu\| \leq \int \|f\| d|\mu|$, where $|\mu|$ is the total variation
 974 measure of the signed measure μ .

$$975 \quad 976 \quad 977 \quad \left\| \int g(\mathcal{C})(r - p)(d\mathcal{C}) \right\|_2 \leq \int \|g(\mathcal{C})\|_2 |r - p|(d\mathcal{C}).$$

978 We now utilize the established bound $\|g(\mathcal{C})\|_2 \leq S_{\max}$:

$$979 \quad 980 \quad 981 \quad \int \|g(\mathcal{C})\|_2 |r - p|(d\mathcal{C}) \leq \int S_{\max} |r - p|(d\mathcal{C}) \\ 982 \quad 983 \quad 984 \quad = S_{\max} \int |r - p|(d\mathcal{C}).$$

985 The term $\int |r - p|(d\mathcal{C})$ is the L1 distance between the probability measures r and p . This is related
 986 to the Total Variation (TV) distance, defined as $\|r - p\|_{\text{TV}} = \frac{1}{2} \int |r - p|(d\mathcal{C})$. Substituting this
 987 definition:

$$988 \quad 989 \quad 990 \quad S_{\max} \int |r - p|(d\mathcal{C}) = 2S_{\max} \|r - p\|_{\text{TV}}.$$

991 Thus far, we have shown $\|\hat{s}_r(\mathbf{y}) - \hat{s}_{\text{MMSE}}(\mathbf{y})\|_2 \leq 2S_{\max} \|r - p\|_{\text{TV}}$. To relate the TV distance to
 992 the KL divergence, we invoke Pinsker’s inequality (Pinsker, 1964), which states that $\|r - p\|_{\text{TV}} \leq$
 993 $\sqrt{\frac{1}{2} \text{KL}(r\|p)}$.

$$994 \quad 995 \quad 996 \quad \|\hat{s}_r(\mathbf{y}) - \hat{s}_{\text{MMSE}}(\mathbf{y})\|_2 \leq 2S_{\max} \sqrt{\frac{1}{2} \text{KL}(r\|p)}.$$

997 Finally, squaring both sides yields the stated bound:

$$1000 \quad 1001 \quad 1002 \quad \|\hat{s}_r(\mathbf{y}) - \hat{s}_{\text{MMSE}}(\mathbf{y})\|_2^2 \leq \left(2S_{\max} \sqrt{\frac{1}{2} \text{KL}(r\|p)} \right)^2 \\ 1003 \quad 1004 \quad 1005 \quad = 4S_{\max}^2 \cdot \frac{1}{2} \text{KL}(r\|p) \\ 1006 \quad 1007 \quad 1008 \quad = 2S_{\max}^2 \text{KL}(r\|p).$$

□

1009 E.1.3 IMPLICATIONS FOR CONSTELLATION-AWARE DESIGN

1010 Lemma 1 provides a strong motivation for the CAT architecture. As discussed in Section 3.1.3, in
 1011 our setup the constellation $\mathcal{C}_{\text{true}}$ is known. The true posterior is therefore a Dirac delta function,
 1012 $p(\mathcal{C}|\mathbf{y}) = \delta(\mathcal{C} - \mathcal{C}_{\text{true}})$.

1013 A perfect constellation-aware model like CAT explicitly utilizes this knowledge, effectively trying to
 1014 set its approximation $r(\mathcal{C}|\mathbf{y}) = p(\mathcal{C}|\mathbf{y})$. The KL divergence is zero, and the estimator gap vanishes.
 1015 The resulting estimator is the ideal $\mathbb{E}[s|\mathbf{y}, \mathcal{C}_{\text{true}}]$.

1016 Conversely, a domain-agnostic model (like a Vanilla Transformer) must infer the constellation from
 1017 scarce pilot data. It learns an implicit approximation $r(\mathcal{C}|\mathbf{y})$. Lemma 1 shows that the performance
 1018 of such a model is fundamentally limited by its ability to accurately estimate the true constellation
 1019 structure. The inefficiency of using data to learn a known prior results in a non-zero KL divergence
 1020 and thus a performance gap.

1022 E.2 THE SUPERIORITY OF CONSTELLATION-AWARE HYPOTHESIS SPACES

1023 We now analyze the problem through the lens of Minimum Mean Squared Error (MMSE) estimation.
 1024 The objective is to estimate the true symbol s , drawn from constellation \mathcal{C} , from an observation

1026 $\mathbf{y} \in \mathbb{C}^N$. The goal is to minimize the MSE, $\mathbb{E} [\|s - \hat{s}\|^2]$. The optimal estimator is the conditional
 1027 expectation:

$$\hat{s}_{\text{MMSE}} = \mathbb{E}[s|\mathbf{y}].$$

1029 By Bayes' rule, $p(s|\mathbf{y}) \propto p(\mathbf{y}|s)p(s)$. The prior $p(s)$ is defined by the constellation \mathcal{C} . Thus, the
 1030 optimal estimator is intrinsically dependent on \mathcal{C} . When approximating $\mathbb{E}[s|\mathbf{y}]$ using deep learning,
 1031 we choose between different hypothesis spaces.

1032

- 1033 • **Standard (Domain-Agnostic) Approach:** The estimator $\hat{s} = g(\mathbf{y})$ is chosen from a class of
 1034 functions \mathcal{G}_{std} that map the observation space to the symbol space without explicit knowledge
 1035 of the constellation structure.
- 1036 • **Constellation-Aware (Parametric) Approach:** The estimator $\hat{s} = \psi(\mathbf{y}, \mathcal{C})$ is chosen from an
 1037 expanded class \mathcal{G}_{CA} that explicitly accepts the constellation \mathcal{C} as a parameter.

1038 **Theorem 1** (Advantage of the Parametric Hypothesis Space). *Let s be a symbol drawn from a finite
 1039 constellation \mathcal{C} and observed as \mathbf{y} . Define the hypothesis classes:*

$$\mathcal{G}_{\text{std}} = \{g : \mathbb{C}^N \rightarrow \mathbb{C}\}, \quad \mathcal{G}_{\text{CA}} = \{\psi : \mathbb{C}^N \times \mathcal{P}(\mathbb{C}) \rightarrow \mathbb{C}\}.$$

1042 where $\mathcal{P}(\mathbb{C})$ is the space of possible constellations. The achievable MMSE satisfies:

$$\text{MMSE}_{\text{CA}} = \inf_{\psi \in \mathcal{G}_{\text{CA}}} \mathbb{E} [\|s - \psi(\mathbf{y}, \mathcal{C})\|^2] \leq \inf_{g \in \mathcal{G}_{\text{std}}} \mathbb{E} [\|s - g(\mathbf{y})\|^2] = \text{MMSE}_{\text{std}}.$$

1046 *Proof.* The class of standard estimators \mathcal{G}_{std} is a subset of the constellation-aware estimators \mathcal{G}_{CA} .
 1047 For any function $g \in \mathcal{G}_{\text{std}}$, one can define a function $\psi \in \mathcal{G}_{\text{CA}}$ as $\psi(\mathbf{y}, \mathcal{C}) = g(\mathbf{y})$ for all \mathcal{C} . This
 1048 function ψ ignores its second argument. Thus, $\mathcal{G}_{\text{std}} \subseteq \mathcal{G}_{\text{CA}}$. Since the infimum of a function over
 1049 a superset cannot be larger than the infimum over a subset, it follows directly that $\text{MMSE}_{\text{CA}} \leq$
 1050 MMSE_{std} . \square

1052 A strict improvement ($\text{MMSE}_{\text{CA}} < \text{MMSE}_{\text{std}}$) is realized if and only if the optimal estimator ψ^* is
 1053 a function of \mathcal{C} . This is true when \mathcal{C} is the true constellation, as the ideal estimator $\mathbb{E}[s|\mathbf{y}]$ depends
 1054 fundamentally on the prior $p(s)$ defined by \mathcal{C} . Conversely, if an irrelevant parameter is provided, the
 1055 MMSE remains the same. Theorem 1 formally establishes that providing the known constellation
 1056 as input grants access to a superior solution space.

1057 This theoretical advantage is strongly validated by the empirical ablation studies presented in Sec-
 1058 tion 4.4 (Table 2). The Vanilla Transformer, representing an estimator from \mathcal{G}_{std} , must implicitly
 1059 learn the constellation geometry from scarce pilot data, resulting in a significantly higher Symbol
 1060 Error Rate (SER) compared to the CAT architecture, which leverages \mathcal{G}_{CA} . Furthermore, the superi-
 1061 ority formalized here relies critically on the accuracy of the provided prior \mathcal{C} . As demonstrated in the
 1062 ablations, when CAT is supplied with an incorrect prior (a 45° rotated constellation), its performance
 1063 degrades severely, falling below even the agnostic baseline. This confirms that the model is indeed
 1064 utilizing the provided geometric information effectively, and that the realization of the theoretical
 1065 gains depends on the fidelity of the injected domain knowledge.

1066 E.2.1 ARCHITECTURAL ALIGNMENT WITH OPTIMAL WIENER FILTERING

1068 We provide a rigorous justification for the Constellation-Aware Transformer (CAT) architecture by
 1069 demonstrating its structural alignment with optimal equalization and detection strategies. We show
 1070 that CAT is designed to realize the optimal MIMO Wiener Filter (Wiener & Hopf, 1931) for channel
 1071 inversion and the optimal Matched Filter for detection.

1073 **1. The Optimal Receiver Structure.** The channel model, including I/Q distortion (represented
 1074 by a 2×2 matrix \mathbf{G}) and ISI (with complex taps $\{h_l\}$), results in an effective 2×2 real-valued
 1075 MIMO channel impulse response, $\mathbf{H}_l = \mathbf{M}(h_l)\mathbf{G}$, where $\mathbf{M}(h_l)$ is the real matrix equivalent of the
 1076 complex tap h_l . The overall transmission for a block of N symbols can be expressed in matrix form
 1077 as $\mathbf{Y} = \mathcal{H}\mathbf{X} + \mathbf{N}$, where \mathcal{H} is the $2N \times 2N$ block Toeplitz convolution matrix constructed from the
 1078 taps $\{\mathbf{H}_l\}$.

1079 (i) *Optimal Equalization (The MIMO Wiener Filter):* The Linear Minimum Mean Square Error
 (LMMSE) equalizer for this system is the MIMO Wiener Filter (WF). Its coefficients are given by the

1080 Wiener-Hopf equations (Wiener & Hopf, 1931; Lawrie & Abrahams, 2007). Here, $E_s = \mathbb{E}[\|\mathbf{x}_i\|^2]$
 1081 represents the average energy per transmitted symbol, calculated as $E_s = \frac{1}{K} \sum_{k=1}^K \|\mathbf{x}(k)\|^2$ for a
 1082 uniform symbol distribution. The filter is defined as:
 1083

$$\mathbf{W}_{WF}^T = E_s \mathcal{H}^T (E_s \mathcal{H} \mathcal{H}^T + \sigma^2 \mathbf{I}_{2N})^{-1}. \quad (16)$$

1085 This filter performs several critical functions: **Temporal Deconvolution** (inverting ISI), **Spatial**
 1086 **Alignment** (correcting I/Q imbalance and channel rotations), and **Noise Optimization**. It requires
 1087 estimating the channel's autocorrelation matrix $\mathbf{R}_{YY} \propto E_s \mathcal{H} \mathcal{H}^T + \sigma^2 \mathbf{I}$ and applying its inverse, a
 1088 process known as whitening or decorrelation.
 1089

1090 *(ii) Optimal Detection (The Matched Filter):* After optimal equalization, the resulting estimate $\hat{\mathbf{x}}_i \in$
 1091 \mathbb{R}^2 is best detected using the Matched Filter. This process correlates the estimate with each possible
 1092 ideal constellation vector $\mathbf{x}(k) \in \mathbb{R}^2$ and selects the one with the highest correlation, adjusted by an
 1093 energy bias term:
 1094

$$\text{Decision} = \operatorname{argmax}_k \left(\hat{\mathbf{x}}_i^T \mathbf{x}(k) - \frac{1}{2} \|\mathbf{x}(k)\|^2 \right). \quad (17)$$

1096 **Proposition 1** (Structural Realization of the Optimal Receiver by CAT). *The Constellation-Aware*
 1097 *Transformer (CAT) architecture possesses the necessary inductive biases and structural components*
 1098 *to efficiently learn the MIMO Wiener Filter (or its generalization for unknown I/Q distortion) for*
 1099 *equalization and explicitly implement the Matched Filter bank for detection.*

1100 *Proof.* We demonstrate how the components of CAT realize these optimal strategies.
 1101

1103 **1. Learning the MIMO Wiener Filter: The TransFIRmer Block Synergy.** The equaliza-
 1104 **tion stage (\mathcal{T}_ϕ)** in CAT aims to learn the channel inversion corresponding to \mathbf{W}_{WF} . This is
 1105 achieved through the synergy of the FIR-FFN and the Self-Attention mechanism.
 1106

1107 *a. The MIMO FIR Inductive Bias (FIR-FFN):* The Wiener Filter \mathbf{W}_{WF} is fundamentally a
 1108 MIMO FIR filter. The TransFIRmer block's FIR-FFN (Eq. (5)) provides a learnable, bidirec-
 1109 tional FIR structure. This is precisely the functional class required to implement the temporal
 1110 deconvolution and spatial alignment (I/Q correction) of the MIMO WF, ensuring the learned
 1111 transformation is physically plausible.
 1112

1113 *b. Dynamic Statistics Estimation and Whitening (Self-Attention):* The Wiener solution re-
 1114 quires estimating the channel statistics (\mathbf{R}_{YY}) and applying its inverse for whitening. The
 1115 self-attention mechanism is uniquely suited for this dynamic estimation, as it computes pair-
 1116 wise interactions:
 1117

$$\text{Attention Scores} \propto (\mathbf{Z} \mathbf{W}_Q)(\mathbf{Z} \mathbf{W}_K)^T.$$

1118 This operation is structurally analogous to computing an empirical estimate of the local co-
 1119 variance structure $\hat{\mathbf{R}}_{YY}$, capturing how the channel correlates the input sequence. While the
 1120 Transformer does not explicitly compute the matrix inverse \mathbf{R}_{YY}^{-1} , the attention mechanism
 1121 *functionally realizes* the whitening transformation. Driven by the MSE loss minimization,
 1122 the network parameters adapt to decorrelate the input features, as this is the optimal strategy
 1123 for equalization.
 1124

1125 *c. Adaptive Conditional Wiener Filtering:* The components synergize within the Trans-
 1126 FIRmer block. Self-attention dynamically estimates the local channel statistics and condi-
 1127 tions the features (implicit whitening). The FIR-FFN then utilizes these conditioned fea-
 1128 tures to apply the precise, structured filtering. By integrating these, the TransFIRmer block
 1129 effectively learns a *conditional* Wiener filter, adapted dynamically to the specific channel
 1130 realization within the block.
 1131

1132 *d. Adaptation to Unknown I/Q Distortion:* The channel includes I/Q imbalance, modeled
 1133 as an unknown linear transformation \mathbf{G} (Appendix A) that varies per block. The equalizer
 1134 must rapidly adapt to this unknown \mathbf{G} , which is embedded within the overall channel matrix
 1135 \mathcal{H} . The stacked architecture of CAT excels at this, learning a complex mapping from the
 1136 observed signal statistics (estimated by attention and dependent on \mathbf{G}) to the optimal filter
 1137 coefficients needed to invert both I/Q distortion and ISI.
 1138

1134 2. **Implementing the Matched Filter: Constellation-Aware Attention.** The detection stage
 1135 (g_θ) implements the optimal decision rule (Eq. (17)).
 1136
 1137 *a. The Inefficiency of Implicit Learning:* Domain-agnostic architectures (e.g., Vanilla Trans-
 1138 formers) must use scarce pilot data to learn the constellation points $\mathbf{x}(k)$ in their final classi-
 1139 fier weights. This is inefficient, as the constellation geometry \mathcal{C} is known.
 1140
 1141 *b. Explicit Implementation and Decoupling:* The Constellation-Aware Attention mechanism
 1142 explicitly calculates the correlation between the equalized signal features (Queries, $\mathbf{z}_i^{(L)}$) and
 1143 the constellation representations (Keys, $\mathbf{c}_k^{(L)}$):

$$\alpha_{i,k} = \frac{(W_Q \mathbf{z}_i^{(L)})^T (W_K \mathbf{c}_k^{(L)})}{\sqrt{d_{\text{model}}}} \quad (18)$$

1144 The architecture is designed to align embeddings with physical quantities ($\mathbf{z}_i^{(L)} \rightarrow \hat{\mathbf{x}}_i$ and
 1145 $\mathbf{c}_k^{(L)} \rightarrow \mathbf{x}(k)$). Through appropriate parameterization, the attention score directly computes
 1146 the Matched Filter’s correlation term, $\hat{\mathbf{x}}_i^T \mathbf{x}(k)$. By providing \mathcal{C} as input, CAT structurally im-
 1147 plements the optimal detector. This crucially **decouples** the detection task from the equaliza-
 1148 tion task, allowing the network’s entire learning capacity to focus on the complex challenge
 1149 of approximating the adaptive MIMO Wiener filter.
 1150
 1151 \square

1152 E.3 CONCLUSION: SYNERGISTIC ALIGNMENT AND REDUCED SAMPLE COMPLEXITY

1153 The rigorous justification for the superior performance of the CAT architecture stems from the syn-
 1154 ergistic alignment of its components with optimal communication theory, supported by the Bayesian
 1155 analysis and learning theory frameworks.

1156 Lemma 1 quantifies the critical need for accurate constellation information, showing that estimation
 1157 error is bounded by the divergence between the model’s implicit belief and the true constellation
 1158 posterior. Theorem 1 establishes that providing this information explicitly grants access to a superior
 1159 hypothesis space. Proposition 1 demonstrates that CAT is structurally designed to leverage this
 1160 advantage by realizing the fundamental components of an optimal MIMO receiver:

- 1161 1. The FIR-FFN provides the exact MIMO FIR structure required for the Wiener filter, enabling
 1162 both **temporal deconvolution** and **spatial alignment**.
- 1163 2. Self-attention dynamically estimates the necessary channel statistics and implicitly performs
 1164 adaptive decorrelation (whitening).
- 1165 3. The Constellation-Aware Attention mechanism explicitly implements the Matched Filter
 1166 bank by utilizing the known constellation geometry \mathcal{C} .

1167 This alignment provides a powerful, physically grounded inductive bias that significantly reduces
 1168 the complexity of the learning task. Domain-agnostic models must use scarce pilot data to rediscover
 1169 both the optimal equalization strategy and the detection geometry.

1170 In contrast, CAT structurally embeds the optimal detection strategy. This crucially **decouples** de-
 1171 tection from equalization, allowing the network’s entire learning capacity to focus solely on the
 1172 complex task of equalization—adapting the filter parameters to the specific, unknown channel real-
 1173 ization. By constraining the search space to functions that are theoretically optimal, CAT reduces
 1174 estimation variance and achieves significantly lower sample complexity, explaining the substantial
 1175 empirical gains observed.