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ABSTRACT

Decoding signals over unknown channels with minimal pilot overhead is a criti-
cal challenge in communications. Existing deep learning approaches struggle to
model long-range temporal dependencies. Conversely, off-the-shelf Transformers,
while powerful sequence models, are domain-agnostic and inefficiently learn the
channel’s physical properties from scarce data. We introduce the Constellation-
Aware Transformer (CAT), a novel architecture that integrates fundamental com-
munication principles into the Transformer model. CAT is composed of a stack
of custom TransFIRmer blocks, which redesign the standard Transformer to be
constellation-aware. Each block facilitates deep interaction between the received
signals and the ideal constellation geometry via a specialized attention mecha-
nism. Furthermore, it replaces the standard feed-forward network with a two-
stream architecture: a bidirectional Finite Impulse Response (FIR)-inspired fil-
ter processes the signal representations for robust deconvolution, while a parallel
MLP refines the constellation representations. In the challenging semi-supervised
setting, CAT achieves superior performance across multiple noisy channels, sig-
nificantly outperforming other baselines, with using fewer pilot signals.

1 INTRODUCTION

Deep learning methods for communications over unknown channels have attracted considerable
interest recently (O’Shea & Hoydis, 2017; Bennatan et al., 2018; Nachmani et al., 2018; O’Shea
et al., 2018; Shlezinger et al., 2020). A central challenge in this domain is to minimize the amount of
pilot data required for reliable decoding, as these known symbols constitute a transmission overhead
that reduces the overall data rate (Shlezinger et al., 2021). While classical methods like Expectation-
Maximization (EM) offer a path to unsupervised equalization (Tong & Perreau, 1998; Dempster
et al., 2018), their performance can be limited. To improve upon this, deep generative models,
specifically Variational Autoencoders (VAEs) (Kingma & Welling, 2014), have been successfully
adapted to a semi-supervised learning (SSL) framework (Kingma et al., 2014). This approach,
which uses both labeled pilots and unlabeled payload data, has demonstrated a significant reduction
in the required number of pilots (Burshtein & Bery, 2023; 2024).

However, the encoders in these systems, typically implemented with multilayer perceptron (MLP)
or convolutional neural networks (CNNs), may not fully capture the complex temporal dependencies
present in communication signals. The remarkable success of the Transformer architecture (Vaswani
et al., 2017) in sequence modeling motivates its application to this domain. A direct, off-the-shelf
adaptation, however, is suboptimal (Choukroun & Wolf, 2024). A generic Transformer is a powerful
but domain-agnostic model that must learn the underlying physics of the problem—such as the
discrete, geometric nature of the constellation and the filtering properties of the channel—entirely
from data. This is inefficient and forfeits the advantage of decades of communication theory.

We argue that the path to superior performance lies not merely in applying a more powerful archi-
tecture, but in fundamentally redesigning its internal components to incorporate known principles.
Here, we draw inspiration from a highly successful paradigm in natural language processing (NLP):
early and deep interaction. In tasks like dense retrieval and multi-document processing, state-of-
the-art models have shown that jointly processing a query and a document from the very first layer,
allowing for fine-grained, token-level attention throughout the network, dramatically outperforms
methods that process them independently and only compare final vector representations (Humeau
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et al., 2019; Fang et al., 2020; Xiao et al., 2022; Liu et al., 2023). This principle of avoiding prema-
ture summarization by enabling early interaction is directly applicable to our problem.

We introduce the Constellation-Aware Transformer (CAT), an architecture composed of a stack of
novel TransFIRmer blocks, illustrated in Figure 1. Each TransFIRmer block is a self-contained
processing block that redesigns the standard Transformer encoder by integrating two key innovations
motivated by this principle:

1. Constellation-Aware Attention (CAT): A custom attention mechanism that co-processes the
received signals alongside the ideal constellation representations from the very first layer. This
implements the principle of early interaction, providing the model with an explicit, perfect prior
of the target symbol space that guides the equalization process at every stage.

2. FIR-Inspired Feed-Forward Network: The standard position-wise MLP is replaced with a spe-
cialized, two-stream feed-forward network. This component, inspired by classical Finite Im-
pulse Response (FIR) filters, is structurally tailored for the task of channel deconvolution, al-
lowing it to learn an inverse channel filter more effectively than a generic MLP.

We demonstrate that CAT achieves state-of-the-art performance by creating a synergy between pow-
erful models from the discrete, symbolic world of NLP to solve the inherently continuous-valued
problem of signal equalization in communication theory.
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Figure 1: The architecture of our Constellation-Aware Transformer (CAT), which processes the
received signals y and ideal constellation symbols C, through a stack of L TransFIRmer blocks.

2 PROBLEM FORMULATION AND SETUP

We consider a block of N symbols, (s1, . . . , sN ), transmitted over an unknown channel. Each sym-
bol, si ∈ {1, . . . ,K}, is drawn independently uniformly. The symbol si is mapped to a correspond-
ing complex signal from a fixed constellation C of size K. For a more convenient processing, we
represent these signals as real-valued vectors – We formally define an equivalence between a com-
plex number in C and its real-vector representation in R2. These notations are used interchangeably
for all physical quantities (e.g., transmitted and received signals, channel taps, and noise). Specifi-
cally, the ideal transmitted signal is denoted xi = (xIi , x

Q
i ) ∈ R2, where xIi and xQi are the in-phase

and quadrature components. We let x(k) be the vector corresponding to symbol si = k.

The channel is unknown at the receiver. However, a small subset of the transmitted symbols,
{si}

Np

i=1, are known as pilot symbols, where Np ≪ N . The remaining symbols, {si}Ni=Np+1, con-
stitute the unknown payload.
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2.1 CHANNEL MODELS

We consider two classes of channels: memoryless channels and channels with finite memory.

2.1.1 MEMORYLESS CHANNELS

In a memoryless channel, the received signal at a given time instant depends only on the signal trans-
mitted at that same instant. This process can include nonlinear distortions at the transmitter, such as
I/Q imbalance or effects from components like power amplifiers. We model this entire end-to-end
transformation as a complex, unknown function h(·). The received signal yi is the result of this
nonlinear function applied to the ideal signal xi, corrupted by additive noise ni, yi = h(xi) + ni,
where yi = (yIi , y

Q
i ) ∈ R2. The conditional probability density function (PDF) p(yi|si) is thus the

distribution induced by this memoryless process.

2.1.2 CHANNELS WITH FINITE MEMORY

In channels with finite memory, the received signal yi is affected by intersymbol interference (ISI),
meaning it depends on a sequence of past transmitted signals. This is common in wireless commu-
nications due to multipath propagation. Following the model in Burshtein & Bery (2024), this can
be described by a two-stage process: first, a memoryless nonlinearity g(·) at the transmitter (e.g.,
from power amplifiers), and second, a linear filter representing the channel’s impulse response.
The received signal at time i is a convolution of the channel’s impulse response with the sequence
of (potentially distorted) transmitted signals, yi =

∑L−1
l=0 hlg(xi−l) + ni, where {hl}L−1

l=0 are the
complex-valued filter taps of the channel impulse response (of length L), and g(·) is an unknown
nonlinear function. Both the taps {hl} and the function g(·) are unknown to the receiver.

2.2 DECODING AND LEARNING FRAMEWORKS

A standard supervised learning approach is to train a decoder using only the pilot data. The nature
of the decoder, however, depends on the channel type.

• For memoryless channels, the decoder network, parameterized by ϕ, can process each sample
independently. Its input is the current sample yi, and it outputs a posterior probability distribu-
tion qϕ(s|yi).

• For channels with memory, the decoder must process the entire sequence of received signals
y = (y1, . . . ,yN ) to resolve the interference and decode a single symbol si. In this case, the
posterior is denoted qϕ(si|y).

In both cases, the network is typically trained by minimizing the cross-entropy loss function over
the labeled pilot data:

Lsup(ϕ) = − 1

Np

Np∑
i=1

log qϕ(si|yi or y). (1)

Once the parameters ϕ̂ are learned, the payload data is decoded using the maximum a posteriori rule:

ŝi = argmax
s∈{1,...,K}

qϕ̂(s | yi or y), for i > Np. (2)

The primary limitation of this approach is that it requires a large number of pilots Np to achieve
good performance, which reduces the overall data rate.

2.3 THE SEMI-SUPERVISED VARIATIONAL FRAMEWORK

To reduce the dependency on pilots, we adopt a semi-supervised learning (SSL) framework that
leverages both the labeled pilot data and the unlabeled payload data. The VAE-based approach
in Burshtein & Bery (2023; 2024) provides the foundation for this framework. It involves two
parameterized models:

• An encoder (or inference model) qϕ(s|y), which approximates the true posterior p(s|y). This
is parameterized by ϕ.

3
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• A decoder (or generative model) pθ(y|s), which models the forward channel process. This is
parameterized by θ. See more details regarding the implementation in Appendix C.3.

In the case of channels with memory, the encoder qϕ(si|y) and decoder pθ(y|s) operate on the full
sequences y and s, respectively, to correctly model the temporal dependencies.

The models are trained jointly by minimizing a composite loss function that combines supervised
and unsupervised objectives. The full semi-supervised VAE loss function, as derived from Kingma
et al. (2014) and applied in Burshtein & Bery (2024), is given by:

LSSL-VAE(ϕ, θ) =− α

Np

Np∑
i=1

log qϕ(si|yi)−
γ

Np

Np∑
i=1

log pθ(yi|si)

+
1− γ

N −Np

N∑
i=Np+1

[
−Eqϕ(s|yi)[log pθ(yi|s)] +DKL(qϕ(s|yi||p(s))] , (3)

where α and γ are hyperparameters that balance the different loss components, and the posterior
qϕ(s|y) represents conditioning on either the individual sample or the entire sequence, qϕ(s|y or y).
The first two terms represent the supervised losses on the pilot data. The third term is the unsuper-
vised negative Evidence Lower Bound (ELBO) on the payload data, consisting of the reconstruction
loss and a regularizing KL divergence term. Minimizing the KL divergence, DKL(qϕ(s|·)||p(s)),
encourages the entropy of the encoder’s output to be high, preventing it from becoming overconfi-
dent on unlabeled data.

Our proposed Constellation-Aware Transformer serves as a direct and powerful replacement for the
encoder network qϕ(s|y) within this exact variational framework. The Transformer is particularly
well-suited for channels with memory, as its self-attention mechanism can naturally model the long-
range dependencies within the received sequence y to produce accurate posterior estimates. By
providing a richer architectural prior, we aim to learn a much more accurate posterior approximation
qϕ, thereby achieving a lower overall loss and superior equalization performance.

3 PROPOSED METHOD: THE CONSTELLATION-AWARE TRANSFORMER

Our proposed method is grounded in a Bayesian interpretation of the equalization task, which reveals
the necessity of a constellation-aware model. We first present this theoretical motivation and then
detail the architecture of our Constellation-Aware Transformer (CAT), a novel deep learning model
designed to approximate this ideal Bayesian estimator.

3.1 A BAYESIAN VIEW OF CONSTELLATION-AWARE EQUALIZATION

The necessity for a constellation-aware equalizer can be rigorously established within a Hierarchi-
cal Bayesian framework. While in any given transmission the constellation is a fixed parameter,
a receiver operating under uncertainty can model this lack of knowledge probabilistically. This re-
frames the problem from simple parameterization to optimal estimation under epistemic uncertainty,
revealing that the ideal estimator must inherently process constellation information.

3.1.1 THE HIERARCHICAL GENERATIVE PROCESS

Let us model the complete generative process from the receiver’s point of view. Let C = {C ⊂ R2 |
|C| = K} be the space of all possible constellations. We can model the receiver’s beliefs and the
physical process as a three-stage hierarchy:

1. Constellation Prior p(C): The receiver has a prior belief over the space of constellations,
represented by a probability density function (PDF) p(C) where C ∈ C.

2. Symbol Prior p(s|C): Once a specific constellation C is chosen, a symbol s is drawn from it,
typically from a uniform distribution over the K points in that constellation.

3. Channel Likelihood p(y|s): The symbol s is transmitted through the channel, resulting in the
observation y. y is conditionally independent of C given s, i.e., p(y|s, C) = p(y|s).

The full joint probability distribution is given by the chain rule: p(y, s, C) = p(y|s)p(s|C)p(C).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1.2 DERIVING THE OPTIMAL ESTIMATOR UNDER UNCERTAINTY

The goal is to find the Minimum Mean Squared Error (MMSE) estimator for the symbol s given the
observation y, which is the conditional expectation E[s|y]. To compute this, we must marginalize
out the nuisance variable C by integrating over the entire space of constellations C. We can express
the MMSE estimator using the law of total expectation:

ŝMMSE = E[s|y] = EC|y[E[s|y, C]] =
∫
C

E[s|y, C]p(C|y)dC =

∫
C

[∑
s∈C

s · p(s|y, C)

]
p(C|y)dC.

(4)

This result demonstrates that the optimal Bayesian estimator must perform two simultaneous in-
ferences: constellation inference (computing the posterior PDF p(C|y)) and symbol conditional
estimation conditioned on a given constellation (the conditional symbol posterior p(s|y, C)).

3.1.3 THE SPECIAL CASE: KNOWN CONSTELLATION

In our setup, the constellation Ctrue is known with certainty. The receiver’s prior is therefore a Dirac
delta function centered at the true constellation, p(C) = δ(C − Ctrue). The posterior p(C|y) is then
also a Dirac delta at Ctrue. The integral in Eq. (4) collapses to evaluating the bracketed term at Ctrue:

ŝMMSE =
∑
s∈Ctrue

s · p(s|y, Ctrue) = E[s|y, Ctrue].

This is precisely the ideal estimator that a perfect constellation-aware model should target. The
purpose of our CAT architecture is to learn an effective approximation of this superior, parameter-
aware function.

3.2 THE CONSTELLATION-AWARE TRANSFORMER (CAT) ARCHITECTURE

Following recent architectural advances in large language models (LLMs), particularly the recent
advancements in efficient Transformer architectures such as Llama 3.1 (Grattafiori et al., 2024), the
CAT architecture is composed of a stack of L custom layers, which we term TransFIRmer blocks.
The architecture is illustrated in Figure 1.

3.2.1 INPUT REPRESENTATION AND EMBEDDING

The input to our model consists of the sequence of N received channel outputs (y1, . . . ,yN ) and
the set of K ideal constellation symbols {x(1), . . . ,x(K)}. Both are projected into a processing
space of dimension dmodel using separate linear embedding layers.

To provide the model with awareness of the sequential nature of the received signals, we inject posi-
tional information directly into their representations. Specifically, after the initial linear embedding
of the signal sequence, we add fixed sinusoidal positional embeddings, following the original Trans-
former design (Vaswani et al., 2017). The constellation symbols, which form a set rather than an
ordered sequence, are embedded without positional information. The embedded vectors are:

zsig
i = Embedsig(yi) + pi, i ∈ {1, . . . , N}, zconst

k = Embedconst(x(k)), k ∈ {1, . . . ,K},

where pi ∈ Rdmodel is the sinusoidal positional embedding for the i-th position. The full input
sequence to the first TransFIRmer block, Z(0) ∈ R(N+K)×dmodel , is their concatenation.

3.2.2 THE TRANSFIRMER BLOCK

The TransFIRmer block is the core building block of our architecture, modifying the two canonical
sub-layers of the Transformer. It sequentially applies: (1) a signal-constellation attention mecha-
nism, and (2) a novel, two-stream feed-forward network inspired by signal processing principles.

Signal-Constellation Attention Mechanism The first stage is an efficient multi-query attention
(MQA) mechanism (Shazeer, 2019) designed to facilitate deep interaction between the received sig-
nals and the ideal constellation symbols. We apply an attention mask M that configures the signal-
to-signal interaction, with modes including ‘full‘ (fully bidirectional), ‘causal‘ (autoregressive), and
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‘causal channel‘ (restricting the causal window to the estimated channel length L, similarly to slid-
ing window attention in language models (Beltagy et al., 2020)). Although all modes were tested,
we found that ‘full‘ attention consistently yielded the best performance and was used for all reported
results, likely because it provides a richer context for implicitly estimating the global channel state.

Two-Stream FIR-Inspired Feed-Forward Network The second stage replaces the standard
position-wise MLP with a novel two-stream network that processes signal and constellation tokens
differently, reflecting their distinct roles.

• Signal Stream (Bidirectional FIR Filtering): The sequence of signal token representations,
Z

(l)
sig , is processed by a pair of 1D convolutional layers acting as Finite Impulse Response (FIR)

filters. One learned filter processes the sequence in the forward direction, while a second
learned filter processes a time-reversed version of the sequence. The outputs are summed:

FFNsig (Zsig) = Convfwd (Zsig) + Flip (Convinv (Flip (Zsig))) . (5)

This structure emulates a non-causal, zero-phase FIR filter, which is the ideal linear processor
for deconvolution in block-based communication systems. It provides a powerful and correct
inductive bias for learning channel equalization.

• Constellation Stream (MLP): In parallel, the set of constellation token representations, Z(l)
const,

is processed by a standard two-layer Multi-Layer Perceptron (MLP) for learning complex sym-
bol representations.

The outputs of these two streams are then concatenated and passed through a final residual connec-
tion. This two-stream design allows the model to learn an adaptive deconvolution filter for the noisy
signals while simultaneously learning feature representations for the clean constellation symbols.

3.3 INTEGRATION INTO THE SEMI-SUPERVISED FRAMEWORK

The complete CAT model, comprising the embedding layers and the stack of L TransFIRmer blocks,
serves as the encoder network qϕ(s|y). Its parameters, collectively denoted by ϕ, are trained end-
to-end within the semi-supervised variational framework described in Section 2.3. By replacing a
generic encoder with our specialized architecture, we provide the model with strong architectural
priors tailored to the equalization task, enabling it to learn a more accurate posterior approximation
qϕ and achieve superior performance with fewer pilot symbols.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate our proposed Constellation-Aware Transformer (CAT), we test it on two categories
of channels: a nonlinear memoryless channel with I/Q imbalance and Rayleigh fading, and three
standard channels with finite memory (ISI). All experiments use a 16-QAM constellation.

Our primary CAT model consists of a 3-layer stack of TransFIRmer blocks. Inspired by recent trends
in optimizing large models, we employ Multi-Query Attention (Shazeer, 2019) and fixed sinusoidal
positional embeddings. While other variants such as Multi-Head Attention (Vaswani et al., 2017)
or Group-Query Attention (Ainslie et al., 2023), learned embeddings, or RoPE offered similar or
marginally better performance in some cases, our chosen configuration significantly reduces the
number of model parameters and accelerates both training and inference, making it a more practical
choice. Other training hyperparameters, such as learning rate and annealing schedules, are kept
consistent with Burshtein & Bery (2024) for a fair comparison, as detailed in Appendix C.

We compare our CAT against a comprehensive set of baselines, largely following the setup in Bur-
shtein & Bery (2024): an Optimal Decoder (ML or BCJR) (Bahl et al., 1974), SSL Monte Carlo
EM (MCEM) (Wei & Tanner, 1990), SSL Viterbi EM (Dempster et al., 2018), Simple Decision
Directed (SDD), VAE-CNN (Burshtein & Bery, 2024), and the meta-learning algorithm CAVIA
(Zintgraf et al., 2019). We also include a Vanilla Transformer baseline, which is adopted for channel
equalization (Kunde et al., 2025; Buffelli et al., 2025), to isolate the benefits of our architectural
modifications. Brief descriptions of these methods are provided in Appendix D.
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To ensure the statistical significance and robustness of our results, each data point presented in our
figures and tables represents the mean Symbol Error Rate (SER) averaged over 1000 independent
Monte Carlo trials. For each trial, a new channel realization (e.g., new fading coefficients, I/Q im-
balance parameters) was randomly generated according to the specified distributions. We computed
95% confidence intervals for all mean SER values and found them to be exceptionally narrow, con-
firming that the observed performance differences between models are statistically significant and
not a result of random fluctuations.

4.2 RESULTS ON MEMORYLESS CHANNELS

We first evaluate performance on the nonlinear memoryless channel. All results for our main CAT
model use the ‘full‘ attention mask. We found this configuration to be top-performing across both
memoryless and memory channels, likely because allowing each signal token to see all other signal
tokens provides a richer context for the attention mechanism to implicitly estimate the global channel
state before equalization.
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(a) SER results for SNR=18dB.
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(b) SER results for SNR=22dB.

Figure 2: Symbol Error Rate (SER) on a memoryless nonlinear channel as a function of the total
number of symbols, N . The number of pilot symbols is fixed at Np = 16. Our CAT model signifi-
cantly outperforms all baselines at both SNR=18dB (a) and SNR=22dB (b).

Figure 2 presents the SER as a function of the total number of symbols in a block, N , for SNR
values of 18dB and 22dB. The results, confirmed to be statistically significant by our rigorous eval-
uation, clearly demonstrate the superior performance of our proposed CAT model across both SNR
regimes. Compared to the VAE-CNN and other baselines, the CAT achieves a significantly lower
SER, especially when the total number of symbols is small (e.g.,N = 64 orN = 128). As the num-
ber of payload symbols increases, all semi-supervised methods improve, but the CAT consistently
maintains a substantial and statistically robust performance gap, closely approaching the Optimal
decoder’s performance.

4.3 RESULTS ON CHANNELS WITH MEMORY (ISI)

To evaluate the CAT’s performance on more challenging channels with intersymbol interference
(ISI), we adopt three standard channel models taken from Burshtein & Bery (2024):

h1 = [0.0545 + 0.05j, 0.2832− 0.11971j,−0.7676 + 0.2788j,−0.0641− 0.0576j,

0.0466− 0.02275j],

h2 = [0.0554 + 0.0165j,−1.3449− 0.4523j, 1.0067 + 1.1524j,

0.3476 + 0.3153j],

h3 = [0.0410 + 0.0109j, 0.0495 + 0.0123j, 0.0672 + 0.017j, 0.0919 + 0.0235j,

0.7920 + 0.1281j, 0.396 + 0.0871j, 0.2715 + 0.048j,

0.2291 + 0.0415j, 0.1287 + 0.0154j, 0.1032 + 0.0119j].

These channels vary in length (L = 5, 4, 10 respectively), with a longer impulse response corre-
sponding to more severe ISI and thus a more difficult equalization and channel estimation task. For
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Table 1: Symbol Error Rate (SER) on channels with memory (Ex/N0 = 17dB, Payload=256).
Our CAT model is compared against the VAE-CNN and a vanilla Transformer. The optimal BCJR
performance, which assumes perfect CSI, is included where computationally feasible.

Channel Pilots (Np) VAE-CNN Transformer CAT (Ours) Optimal (BCJR)

h(1) (L=5)

16 0.2900 0.3392 0.3580

0.012132 0.1251 0.1192 0.0842
64 0.0523 0.0610 0.0198
128 0.0494 0.0290 0.0156

h(2) (L=4)

16 0.3447 0.3563 0.3330

0.010132 0.1843 0.1593 0.1372
64 0.1002 0.0750 0.0340
128 0.0869 0.0888 0.0257

h(3) (L=10)

16 0.6211 0.6481 0.6103

N/A32 0.3943 0.3874 0.3426
64 0.1709 0.1692 0.1181
128 0.1087 0.1022 0.0846

this experiment, we use a fixed payload size of 256 symbols and vary the number of pilot symbols
Np ∈ {16, 32, 64, 128}. The SNR is set to Ex/N0 = 17dB.

The results are summarized in Table 1. The vanilla Transformer baseline refers to the architecture
from Kunde et al. (2025). The results demonstrate a clear trend. While all models struggle in the
extremely low-pilot regime (Np = 16), the proposed CAT model begins to significantly outperform
both the VAE-CNN and the vanilla Transformer as the number of pilots increases to just 32. For
Np ≥ 64, the CAT achieves a substantial reduction in SER, often by a factor of 2-3x compared to the
next best model. This performance gap is particularly pronounced for the more challenging 10-tap
channel (h3), where the CAT’s architectural priors provide a distinct advantage.

The table also includes the performance of the optimal BCJR decoder, which assumes perfect and
instantaneous channel state information (CSI). As noted in Burshtein & Bery (2024), computing the
BCJR performance for the long h3 channel is computationally prohibitive due to the exponential
growth of the trellis state space (16L−1), hence it is not reported. Our CAT model not only provides
the best performance among the learning-based methods but also closes a significant portion of the
gap to the theoretical optimal performance, especially with 128 pilots.

4.4 ABLATION STUDIES

Table 2: Ablation study results (SER at SNR=20dB,
N = 64). Results are shown with 95% confidence intervals.

Model Variant SER (± 95% CI)
Our Full Method

CAT (built with TransFIRmer blocks) 0.0599 ± 0.0005
Architecture & Prior Ablations

CAT without Inverse FIR Filter 0.0608 ± 0.0005
CAT with MLP-FFN (No FIR) 0.0615 ± 0.0006
Vanilla Transformer (No Prior) 0.0628 ± 0.0007
CAT (45◦ Rotated Prior) 0.1550 ± 0.0015

Attention Mask Ablations
Self-Only Attention 0.0621 ± 0.0007
Causal Attention 0.0612 ± 0.0006

External Baseline
VAE-CNN (from Burshtein & Bery (2024)) 0.0741 ± 0.0009

To empirically validate our design
choices, we performed key ablation
studies on the memoryless channel
(SNR=20dB, N = 64). The re-
sults (Table 2) confirm the contri-
bution of each component. Our
full CAT model achieves the lowest
SER of 0.0599. While differences
between top CAT variants are small,
their non-overlapping 95% CIs con-
firm the gains are statistically ro-
bust. Removing the inverse FIR
or replacing the bidirectional filter
with a standard MLP (CAT with
MLP-FFN) degrades performance,
confirming the efficacy of the FIR
inductive bias. Crucially, the benefit of constellation awareness is highlighted in two ways: First,
the gap between CAT with MLP-FFN and the Vanilla Transformer (which lacks the prior) is sub-
stantial. Second, providing an incorrect prior (45◦ rotation) severely degrades performance (SER
0.1550), emphasizing the model’s effective utilization of the correct geometric information.
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5 RELATED WORK

Semi-Supervised and Unsupervised Channel Equalization. The challenge of channel equal-
ization with limited pilot data has been extensively studied (Caciularu & Burshtein, 2018; 2020;
Lauinger et al., 2022; Song et al., 2023; Nielsen et al., 2025). Recent semi-supervised methods,
particularly the VAE-based approach detailed in Zhu et al. (2023); Burshtein & Bery (2023; 2024);
Böck et al. (2025), have established a strong baseline by modeling the channel’s forward and re-
verse processes. However, these approaches suffer from two key limitations. Architecturally, the
MLP or CNN-based encoders they employ lack the powerful sequence modeling capabilities of
modern Transformers (Lu et al., 2022). Conceptually, they must learn the entire problem structure
from data alone. From an Information Bottleneck perspective (Tishby et al., 1999), forcing a model
to infer the properties of the target symbols—that they belong to a discrete set with a specific, known
geometry—is an inefficient use of scarce pilot data. This suggests that a more effective model should
not have to re-discover this known prior, but rather be explicitly conditioned on it.

Transformers in Wireless Communications. The Transformer architecture Vaswani et al. (2017)
has recently been explored for various tasks in communications, including channel decoding, esti-
mation, and supervised equalization (Caciularu et al., 2021b; Choukroun & Wolf, 2022; Song et al.,
2024; Zhou et al., 2024; Li et al., 2025; Kunde et al., 2025). While demonstrating the power of at-
tention for capturing complex signal dependencies, existing works have two significant gaps. First,
they operate almost exclusively in a fully supervised regime, assuming large labeled datasets are
available. To our knowledge, the application of Transformers to the more practical semi-supervised
equalization setting remains unexplored. Second, these studies typically employ off-the-shelf Trans-
former architectures. This treats the model as a generic black-box approximator and misses a critical
opportunity to incorporate domain knowledge. This approach is analogous to early NLP models that
would encode a query and document into separate, fixed-length vectors before comparing them (a
“late interaction” model).

A more powerful paradigm, proven successful in diverse and complex NLP tasks, is early and deep
interaction. Instead of processing a “query” and a “document” in separate streams and only com-
paring their final, high-level representations (a late-interaction model), recent architectures facilitate
fine-grained, token-level attention between them from the very first layer (Conneau & Lample, 2019;
Humeau et al., 2019; Gan et al., 2022; Caciularu et al., 2021a; 2023). This principle of avoiding pre-
mature summarization is what we are the first to translate to the equalization problem. We append
the sequence of received signals as to the ideal constellation symbols, designing an architecture that
enables their deep interaction to address the limitations of prior art.

6 CONCLUSION

We have presented the Constellation-Aware Transformer (CAT), a novel architecture that achieves
state-of-the-art performance in semi-supervised channel equalization by synergistically combining
principles from disparate fields: the “early interaction” paradigm from modern NLP, and classical
signal processing estimation theory. Its core building block, the TransFIRmer layer, redefines the
standard Transformer by integrating two key innovations: (1) a signal-constellation attention mech-
anism that instantiates the early interaction paradigm by co-processing received signals and ideal
constellation symbols from the very first layer, providing an explicit geometric prior throughout the
network; and (2) a novel two-stream feed-forward network that applies a specialized bidirectional
FIR filter to signal tokens while using a parallel MLP to refine constellation representations.

Our experiments on both nonlinear memoryless and standard ISI channels conclusively demonstrate
that this principled design is exceptionally data-efficient. The CAT significantly outperforms VAE,
meta-learning, and standard Transformer baselines, particularly in challenging low-pilot regimes
where it often reaches near-optimal symbol error rates with as few as 32-64 pilot symbols. The
success of this model offers a broader design philosophy for deep learning in the physical sciences:
instead of applying generic, black-box architectures, significant gains in performance and data effi-
ciency can be realized by embedding established domain principles directly into the model’s struc-
ture. This paradigm opens several avenues for future research, including extending the CAT frame-
work to more complex scenarios like MIMO channels and exploring its application to other signal
processing tasks.
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ETHICS STATEMENT

We confirm that our work adheres to the code of ethics. This research focuses on foundational im-
provements in machine learning architectures for the physical layer of communication systems. The
study does not involve human subjects, utilize sensitive private data, or employ real-world datasets;
all experiments are conducted using standardized, simulated communication channel models. The
primary goal of this research is to improve the data efficiency and reliability of communication sys-
tems. We anticipate the societal impact to be positive, potentially leading to more robust connectivity
and reduced energy consumption in deployed wireless networks by minimizing transmission over-
head. While the training of deep learning models requires computational resources, the proposed
CAT architecture is relatively lightweight, and its high data efficiency minimizes the computational
burden during both training and inference compared to generic architectures. We do not foresee any
immediate negative ethical implications stemming directly from this work.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided comprehensive details throughout the
paper and the Appendix. The architecture of the proposed Constellation-Aware Transformer (CAT)
and the TransFIRmer block is detailed in Section 3. The precise mathematical formulations of the
simulated memoryless and ISI channel models used in our experiments are described in Appendix A.
Detailed implementation specifics, including model hyperparameters (Appendix C.1), optimizer set-
tings, and the annealing schedules for the semi-supervised learning framework (Appendix C.2), are
provided. The architecture of the generative model used within the VAE framework is detailed in
Appendix C.3, and descriptions of all baseline methodologies are included in Appendix D. The the-
oretical analysis supporting the architecture is provided in Appendix E (Theoretical Justification).
We utilize standard Symbol Error Rate (SER) metrics, averaged over 1000 Monte Carlo trials as
detailed in Section 4.1. To facilitate complete reproduction of our findings, we will make the source
code for the CAT model, the simulation environments, and the training scripts publicly available
upon acceptance of the paper.
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A DETAILED CHANNEL MODELS

A.1 MEMORYLESS NONLINEAR CHANNEL

The memoryless nonlinear channel model used in our experiments, following Park et al. (2020);
Burshtein & Bery (2023; 2024), consists of several stages. First, an ideal transmitted signal xi =
(xIi , x

Q
i ) from a 16-QAM constellation is subjected to a nonlinear I/Q imbalance distortion (which

mostly stems from hardware imperfections). This creates a distorted signal x̃i = (x̃Ii , x̃
Q
i ) according

to: [
x̃Ii
x̃Qi

]
=

[
1 + ϵ 0
0 1− ϵ

] [
cos δ − sin δ
− sin δ cos δ

] [
xIi
xQi

]
. (6)

The imbalance parameters, ϵ and δ, are constant for each transmission block but are randomly drawn
from Beta distributions, specifically ϵ = 0.15ϵ0 and δ = 15◦δ0, where ϵ0, δ0 ∼ Beta(5, 2).

The resulting complex signal, x̃Ii + jx̃Qi , is then transmitted over a Rayleigh flat-fading channel.
The received complex signal is given by:

yIi + jyQi = h(x̃Ii + jx̃Qi ) + ni, (7)

where h ∼ CN (0, 1) is the complex channel gain, which is fixed for the duration of a block, and
ni ∼ CN (0, σ2) is the i.i.d. complex additive white Gaussian noise. The Signal-to-Noise Ratio
(SNR) is defined as 10/σ2, based on the average power of the original 16-QAM constellation. The
final received signal used by our models is the real-valued vector yi = (yIi , y

Q
i ).

A.2 CHANNELS WITH FINITE MEMORY (ISI)

For the experiments involving intersymbol interference, we adopt the channel model from Burshtein
& Bery (2023; 2024), which is a two-stage process. First, the ideal signal xi undergoes a memoryless
nonlinear distortion g(·) to produce x̃i = g(xi). For consistency, we use the same I/Q imbalance
model described in the previous section for this nonlinearity.

The sequence of distorted signals is then transmitted through a noisy ISI channel. The received
signal yi is the result of a convolution between the complex channel impulse response h and the
distorted signal sequence, corrupted by additive noise:

yIi + jyQi =

L−1∑
l=0

hl(x̃
I
i−l + jx̃Qi−l) + ni, (8)

where L is the length of the channel impulse response and ni ∼ CN (0, σ2) is complex AWGN. In
our simulations, in Section 4.3, the noise variance σ2 is set to achieve a target SNR of Ex/N0 =
17dB.

B DERIVATION OF THE SEMI-SUPERVISED VAE LOSS

The loss function for the semi-supervised VAE is constructed to leverage both labeled (pilot) and
unlabeled (payload) data. The goal is to maximize the log-likelihood of the observed data, which
can be expressed as a sum over the labeled and unlabeled sets:

Ltotal =

Np∑
i=1

log pθ(yi|si) +
N∑

i=Np+1

log pθ(yi). (9)
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This is a generative objective. To incorporate the inference network qϕ, we also add a supervised
cross-entropy term for the labeled data. The full objective combines these with weighting hyperpa-
rameters α and γ:

Lfull =
α

Np

Np∑
i=1

log qϕ(si|yi) +
γ

Np

Np∑
i=1

log pθ(yi|si) (10)

+
1− γ

N −Np

N∑
i=Np+1

log pθ(yi).

The final term, log pθ(yi) for the unlabeled data, is intractable to compute directly as it requires
marginalizing over all possible symbols s. We therefore substitute it with its Evidence Lower Bound
(ELBO):

log pθ(yi) ≥ Eqϕ(s|yi)[log pθ(yi, s)− log qϕ(s|yi)]. (11)
By maximizing this lower bound (equivalent to minimizing its negative), we arrive at the final loss
function used for training. After rearranging terms and using the fact that pθ(yi, s) = pθ(yi|s)p(s),
the negative ELBO becomes:

−ELBO = −Eqϕ(s|yi)[log pθ(yi|s)] +DKL(qϕ(s|yi)||p(s)). (12)

Substituting this into the full objective gives the final loss function presented in Eq. (3). For com-
putational tractability, the expectation term is approximated using a single sample from qϕ(s|yi),
often implemented with the Gumbel-Softmax reparameterization trick Jang et al. (2017) to maintain
differentiability.

C IMPLEMENTATION AND HYPERPARAMETER DETAILS

C.1 CAT AND VANILLA TRANSFORMER IMPLEMENTATION

Our Constellation-Aware Transformer (CAT) and the vanilla Transformer baseline share the same
core configuration, differing only in their specific architectural components as described in Section 3.

Architecture. The models are built with a stack of 3 TransFIRmer (or standard Transformer)
layers. The hidden dimension is set to dmodel = 10, and we use Multi-Query Attention (MQA)
(Shazeer, 2019) with a single attention head (nhead = 1) for efficiency. For the TransFIRmer layer’s
two-stream feed-forward network, the bidirectional FIR filter for the signal stream is implemented
with two 1D convolutions (one for left-to-right and another for right-to-left convolutions), each
using a kernel size of 12. The parallel MLP for the constellation stream uses a single hidden layer
that expands the dimension from dmodel to dmodel. Dropout with a rate of p = 0.1 is applied within
the attention and feed-forward sub-layers. Fixed sinusoidal positional embeddings are used for all
experiments.

Training. The models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with a
learning rate of lr = 10−3, betas of (β1, β2) = (0.9, 0.999), and a weight decay of 0.01. We employ
a linear learning rate scheduler that warms down the learning rate from its initial value to zero over
the course of training, which consists of a total of 5000 parameter update steps. The models are
trained on mini-batches containing 16 pilot symbols and 32 payload symbols.

C.2 HYPERPARAMETERS FOR SEMI-SUPERVISED LEARNING

The training of all semi-supervised models (CAT, vanilla Transformer, VAE-CNN, etc.) is gov-
erned by the same set of hyperparameters and annealing schedules, ensuring a fair comparison and
following the setup in Burshtein & Bery (2023; 2024).

SSL Loss Weighting. The composite loss function in Eq. (3) is balanced by two key hyperpa-
rameters. The term α, which weights the supervised cross-entropy loss on the encoder, is fixed
at α = 0.2. The term γ, which balances the supervised reconstruction loss against the unsuper-
vised ELBO, is annealed over the training process. This annealing schedule gradually decreases γl
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(where l is the iteration index), shifting the training focus from the reliable pilot data to the more
abundant but unlabeled payload data as the model becomes more confident. Specifically, we use
γl = 1/(1 + βl), where βl = min(2e0.0008(l−1), βmax), and βmax = min((N −Np)/Np, 40). The
value of γl is updated every 100 iterations.

Gumbel-Softmax Temperature. For models utilizing the Gumbel-Softmax reparameterization
trick (including our CAT and the VAE-CNN), the temperature τ is also annealed to transi-
tion from a soft, exploratory phase to a hard, decisive phase. The schedule is given by τl =
max(0.5, e−0.001(l−1)), with updates occurring every 100 iterations.

C.3 THE GENERATIVE MODEL ARCHITECTURE

For both our CAT and the vanilla Transformer baseline, we operate within the semi-supervised vari-
ational framework, which requires a generative model (or decoder), pθ(y|s), to model the forward
channel process. To ensure a fair comparison with prior art, we adopt the generative model archi-
tecture directly from the VAE-CNN work in Burshtein & Bery (2023; 2024). The parameters of this
model are collectively denoted by θ. The specific architecture differs for memoryless and memory
channels.

Memoryless Channels. For the memoryless channel, we model pθ(yi|si) as an isotropic Gaussian
distribution, N (yi;µθ(x(si)), σ

2
θ(x(si))I). The mean µθ and log-variance log σ2

θ are produced
by a decoder network. This network is a Multi-Layer Perceptron (MLP) which takes the ideal
constellation signal x(si) ∈ R2 as input, passes it through a series of hidden layers with ReLU
activations, and finally uses two separate linear heads to output the 2-dimensional mean and log-
variance vectors.

Channels with Memory (ISI). For channels with memory, the generative model is designed to
explicitly capture the two-stage process of a transmitter nonlinearity followed by a linear ISI channel.
The model first applies a memoryless nonlinear function g(·), parameterized by a small MLP, to
each ideal symbol xi in the input sequence s to produce a sequence of distorted signals x̃. This
sequence is then convolved with a learnable Finite Impulse Response (FIR) filter, which models the
complex channel impulse response h. The real and imaginary parts of the filter taps are stored as
two separate learnable parameter vectors. The output of this convolution provides the mean of the
Gaussian distribution for the received sequence. The noise is modeled as i.i.d. Gaussian with a
single learnable variance parameter σ2. Thus, the parameters θ for the generative model in the ISI
case consist of the weights of the MLP g, the channel filter taps, and the scalar noise variance.

D BASELINE METHODOLOGIES

D.1 SIMPLE DECISION DIRECTED (SDD)

The SDD algorithm is a classical two-stage semi-supervised method (Burshtein & Bery, 2023;
2024).

1. Initial Training: A standard neural network decoder, qϕ(s|y), is first trained exclusively
on the labeled pilot data {(yi, si)}

Np

i=1 by minimizing the cross-entropy loss from Eq. (1).
Let the resulting parameters be ϕ̂0.

2. Pseudo-Labeling and Retraining: The trained model is used to generate “hard” pseudo-
labels for the unlabeled payload data: ŝi = argmaxs qϕ̂0

(s|yi) for i > Np. The model’s
parameters are then fine-tuned by training on a combined dataset of original pilots and
pseudo-labeled payload data, minimizing a weighted cross-entropy loss.

D.2 VITERBI EM

The Viterbi EM algorithm (Dempster et al., 2018) is a hard-decision variant of the Expectation-
Maximization (EM) algorithm, as described in Burshtein & Bery (2024). It uses a generative model
of the channel, pθ(y|s), parameterized by θ, and iterates between two steps:
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1. E-Step (Expectation): Given the current estimate of the generative model’s parameters
θ(t−1), generate hard decisions (pseudo-labels) for the payload data by choosing the most
likely symbol according to the current model: ŝ(t)i = argmaxs pθ(t−1)(yi|s).

2. M-Step (Maximization): Update the generative model’s parameters by minimizing the
reconstruction loss (negative log-likelihood) over a combined dataset of the original pilots
and the newly generated pseudo-labels from the E-step, yielding θ(t).

This process is repeated for a fixed number of iterations, gradually refining the channel model.

D.3 VAE-SSL (VAE-CNN)

This is the state-of-the-art semi-supervised method proposed in Burshtein & Bery (2023; 2024),
which we refer to as VAE-CNN based on its typical implementation. It is a variational autoencoder-
based framework that jointly trains two models:

• An encoder qϕ(s|y), which acts as the primary decoder. For channels with memory, this
is typically implemented with a Convolutional Neural Network (CNN).

• A decoder pθ(y|s), which is a generative model that learns the forward channel process.

The two networks are trained simultaneously using a composite semi-supervised loss function (de-
tailed in Eq. (3) that combines a supervised objective on the pilot data with an unsupervised, Evi-
dence Lower Bound (ELBO) objective on the payload data. This allows the model to leverage the
entire data block to learn a robust representation of the channel.

D.4 CAVIA META-LEARNING

Fast Context Adaptation via Meta-Learning (CAVIA) (Zintgraf et al., 2019) is a meta-learning al-
gorithm designed for rapid adaptation to new tasks. In our context, each channel realization is a
“task”.

• Meta-Training: The model is trained on data from a large number of previous channel
blocks {(y(m), s(m))}Mm=1. The goal is to learn a set of shared parameters ϕ that are com-
mon across all channels, while a small, task-specific “context vector” z(m) is learned for
each individual channel.

• Meta-Testing (Adaptation): When a new channel block arrives, the shared parameters ϕ
are frozen. The model then rapidly infers a new context vector znew by training only on the
few available pilot symbols from the new block.

• Decoding: The final decoder uses both the shared parameters ϕ and the adapted context
vector znew to decode the payload data of the new block.

CAVIA’s strength lies in its ability to learn a good “general” model that can be quickly special-
ized, making it highly effective in few-shot (low pilot) scenarios, provided that past channel data is
available.

E THEORETICAL JUSTIFICATION: OPTIMAL ESTIMATION AND
ARCHITECTURAL ALIGNMENT

The advantage of the Constellation-Aware Transformer (CAT) architecture can be rigorously justi-
fied from three complementary perspectives: a Hierarchical Bayesian framework, statistical learning
theory (hypothesis spaces), and the functional decomposition of the optimal equalizer. We establish
the necessity of accurate constellation information for optimal estimation and demonstrate that the
CAT architecture is structurally aligned with theoretically optimal filtering. We note that similar, but
more general conclusions (not restricted to specific architectures) were shown by Böck et al. (2024);
Böck et al. (2024).
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E.1 BAYESIAN ESTIMATION AND THE COST OF CONSTELLATION UNCERTAINTY

We further analyze the Hierarchical Bayesian framework introduced in Section 3.1. This frame-
work allows us to quantify the impact of uncertainty about the constellation on the Minimum Mean
Squared Error (MMSE) estimation.

E.1.1 THE OPTIMAL ESTIMATOR AND POSTERIOR DEPENDENCE

Recall from Section 3.1 that the optimal MMSE estimator under uncertainty is derived by marginal-
izing out the constellation C using the law of total expectation (Eq. (4)):

ŝMMSE(y) = E[s|y] = EC∼p(C|y)[E[s|y, C]]. (13)

This formulation demonstrates that the optimal estimator depends critically on the true constellation
posterior p(C|y).

E.1.2 THE IMPACT OF APPROXIMATE CONSTELLATION KNOWLEDGE

In practical systems, or when using domain-agnostic models that do not have explicit access to
the constellation, the exact posterior p(C | y) might be unavailable. A model might instead rely
on an implicit approximation of this posterior information, learned from data. We can view the
implemented estimator as replacing the exact marginalization in Eq. (13) by a mixture built from
some approximation r(C | y) that the model realizes:

ŝr(y) = EC∼r(C|y)
[
E[s | y, C]

]
. (14)

The following lemma quantifies the suboptimality introduced by this approximation.
Lemma 1 (Estimator-Gap Bound). Assume symbols s, considering a finite-energy constellation, lie
in a bounded set with ∥s∥2 ≤ Smax. Let p(C | y) be the true constellation posterior and let r(C | y)
be an approximation. Define ŝMMSE(y) and ŝr(y) as above. Then, for every observation y,

∥ŝr(y)− ŝMMSE(y)∥22 ≤ 2S2
max KL

(
r(C | y) ∥ p(C | y)

)
. (15)

Proof. We aim to bound the squared L2 distance between the optimal MMSE estimator, ŝMMSE(y),
utilizing the true posterior p(C|y), and the approximate estimator, ŝr(y), utilizing the approximation
r(C|y). We denote these distributions as p and r for brevity.

Let g(C) be the conditional MMSE estimator given a specific constellation C:

g(C) := E[s | y, C].

The estimators can be expressed as expectations of g(C):

ŝMMSE(y) =

∫
g(C)p(dC),

ŝr(y) =

∫
g(C)r(dC).

We first establish that g(C) is bounded. Since the L2 norm ∥ · ∥2 is a convex function, we can apply
Jensen’s inequality:

∥g(C)∥2 = ∥E[s | y, C]∥2 ≤ E[∥s∥2 | y, C].
Given the assumption that ∥s∥2 ≤ Smax almost surely, the expectation is also bounded by Smax.
Thus, ∥g(C)∥2 ≤ Smax for all C.

We now analyze the L2 norm of the difference between the two estimators. By the linearity of
integration, we can combine them into a single integral over the signed measure (r − p):

∥ŝr(y)− ŝMMSE(y)∥2 =

∥∥∥∥∫ g(C)r(dC)−
∫
g(C)p(dC)

∥∥∥∥
2

=

∥∥∥∥∫ g(C)(r − p)(dC)
∥∥∥∥
2

.
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Next, we apply the generalized triangle inequality for integrals (which is a form of Jensen’s in-
equality for the norm function), stating that ∥

∫
fdµ∥ ≤

∫
∥f∥d|µ|, where |µ| is the total variation

measure of the signed measure µ.∥∥∥∥∫ g(C)(r − p)(dC)
∥∥∥∥
2

≤
∫

∥g(C)∥2 |r − p|(dC).

We now utilize the established bound ∥g(C)∥2 ≤ Smax:∫
∥g(C)∥2 |r − p|(dC) ≤

∫
Smax |r − p|(dC)

= Smax

∫
|r − p|(dC).

The term
∫
|r − p|(dC) is the L1 distance between the probability measures r and p. This is related

to the Total Variation (TV) distance, defined as ∥r − p∥TV = 1
2

∫
|r − p|(dC). Substituting this

definition:

Smax

∫
|r − p|(dC) = 2Smax ∥r − p∥TV.

Thus far, we have shown ∥ŝr(y)− ŝMMSE(y)∥2 ≤ 2Smax ∥r − p∥TV. To relate the TV distance to
the KL divergence, we invoke Pinsker’s inequality (Pinsker, 1964), which states that ∥r − p∥TV ≤√

1
2KL(r∥p).

∥ŝr(y)− ŝMMSE(y)∥2 ≤ 2Smax

√
1

2
KL(r∥p).

Finally, squaring both sides yields the stated bound:

∥ŝr(y)− ŝMMSE(y)∥22 ≤

(
2Smax

√
1

2
KL(r∥p)

)2

= 4S2
max ·

1

2
KL(r∥p)

= 2S2
max KL(r∥p).

E.1.3 IMPLICATIONS FOR CONSTELLATION-AWARE DESIGN

Lemma 1 provides a strong motivation for the CAT architecture. As discussed in Section 3.1.3, in
our setup the constellation Ctrue is known. The true posterior is therefore a Dirac delta function,
p(C|y) = δ(C − Ctrue).

A perfect constellation-aware model like CAT explicitly utilizes this knowledge, effectively trying to
set its approximation r(C|y) = p(C|y). The KL divergence is zero, and the estimator gap vanishes.
The resulting estimator is the ideal E[s|y, Ctrue].

Conversely, a domain-agnostic model (like a Vanilla Transformer) must infer the constellation from
scarce pilot data. It learns an implicit approximation r(C|y). Lemma 1 shows that the performance
of such a model is fundamentally limited by its ability to accurately estimate the true constellation
structure. The inefficiency of using data to learn a known prior results in a non-zero KL divergence
and thus a performance gap.

E.2 THE SUPERIORITY OF CONSTELLATION-AWARE HYPOTHESIS SPACES

We now analyze the problem through the lens of Minimum Mean Squared Error (MMSE) estimation.
The objective is to estimate the true symbol s, drawn from constellation C, from an observation
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y ∈ CN . The goal is to minimize the MSE, E
[
∥s− ŝ∥2

]
. The optimal estimator is the conditional

expectation:
ŝMMSE = E[s|y].

By Bayes’ rule, p(s|y) ∝ p(y|s)p(s). The prior p(s) is defined by the constellation C. Thus, the
optimal estimator is intrinsically dependent on C. When approximating E[s|y] using deep learning,
we choose between different hypothesis spaces.

• Standard (Domain-Agnostic) Approach: The estimator ŝ = g(y) is chosen from a class of
functions Gstd that map the observation space to the symbol space without explicit knowledge
of the constellation structure.

• Constellation-Aware (Parametric) Approach: The estimator ŝ = ψ(y, C) is chosen from an
expanded class GCA that explicitly accepts the constellation C as a parameter.

Theorem 1 (Advantage of the Parametric Hypothesis Space). Let s be a symbol drawn from a finite
constellation C and observed as y. Define the hypothesis classes:

Gstd = {g : CN → C}, GCA = {ψ : CN × P(C) → C}.

where P(C) is the space of possible constellations. The achievable MMSE satisfies:

MMSECA = inf
ψ∈GCA

E
[
∥s− ψ(y, C)∥2

]
≤ inf
g∈Gstd

E
[
∥s− g(y)∥2

]
= MMSEstd.

Proof. The class of standard estimators Gstd is a subset of the constellation-aware estimators GCA.
For any function g ∈ Gstd, one can define a function ψ ∈ GCA as ψ(y, C) = g(y) for all C. This
function ψ ignores its second argument. Thus, Gstd ⊆ GCA. Since the infimum of a function over
a superset cannot be larger than the infimum over a subset, it follows directly that MMSECA ≤
MMSEstd.

A strict improvement (MMSECA < MMSEstd) is realized if and only if the optimal estimator ψ∗ is
a function of C. This is true when C is the true constellation, as the ideal estimator E[s|y] depends
fundamentally on the prior p(s) defined by C. Conversely, if an irrelevant parameter is provided, the
MMSE remains the same. Theorem 1 formally establishes that providing the known constellation
as input grants access to a superior solution space.

This theoretical advantage is strongly validated by the empirical ablation studies presented in Sec-
tion 4.4 (Table 2). The Vanilla Transformer, representing an estimator from Gstd, must implicitly
learn the constellation geometry from scarce pilot data, resulting in a significantly higher Symbol
Error Rate (SER) compared to the CAT architecture, which leverages GCA. Furthermore, the superi-
ority formalized here relies critically on the accuracy of the provided prior C. As demonstrated in the
ablations, when CAT is supplied with an incorrect prior (a 45◦ rotated constellation), its performance
degrades severely, falling below even the agnostic baseline. This confirms that the model is indeed
utilizing the provided geometric information effectively, and that the realization of the theoretical
gains depends on the fidelity of the injected domain knowledge.

E.2.1 ARCHITECTURAL ALIGNMENT WITH OPTIMAL WIENER FILTERING

We provide a rigorous justification for the Constellation-Aware Transformer (CAT) architecture by
demonstrating its structural alignment with optimal equalization and detection strategies. We show
that CAT is designed to realize the optimal MIMO Wiener Filter (Wiener & Hopf, 1931) for channel
inversion and the optimal Matched Filter for detection.

1. The Optimal Receiver Structure. The channel model, including I/Q distortion (represented
by a 2 × 2 matrix G) and ISI (with complex taps {hl}), results in an effective 2 × 2 real-valued
MIMO channel impulse response, Hl = M(hl)G, where M(hl) is the real matrix equivalent of the
complex tap hl. The overall transmission for a block of N symbols can be expressed in matrix form
as Y = HX+N, where H is the 2N × 2N block Toeplitz convolution matrix constructed from the
taps {Hl}.

(i) Optimal Equalization (The MIMO Wiener Filter): The Linear Minimum Mean Square Error
(LMMSE) equalizer for this system is the MIMO Wiener Filter (WF). Its coefficients are given by the
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Wiener-Hopf equations (Wiener & Hopf, 1931; Lawrie & Abrahams, 2007). Here, Es = E[∥xi∥2]
represents the average energy per transmitted symbol, calculated as Es = 1

K

∑K
k=1 ∥x(k)∥2 for a

uniform symbol distribution. The filter is defined as:

WT
WF = EsHT (EsHHT + σ2I2N )−1. (16)

This filter performs several critical functions: Temporal Deconvolution (inverting ISI), Spatial
Alignment (correcting I/Q imbalance and channel rotations), and Noise Optimization. It requires
estimating the channel’s autocorrelation matrix RY Y ∝ EsHHT + σ2I and applying its inverse, a
process known as whitening or decorrelation.

(ii) Optimal Detection (The Matched Filter): After optimal equalization, the resulting estimate x̂i ∈
R2 is best detected using the Matched Filter. This process correlates the estimate with each possible
ideal constellation vector x(k) ∈ R2 and selects the one with the highest correlation, adjusted by an
energy bias term:

Decision = argmax
k

(
x̂Ti x(k)−

1

2
∥x(k)∥2

)
. (17)

Proposition 1 (Structural Realization of the Optimal Receiver by CAT). The Constellation-Aware
Transformer (CAT) architecture possesses the necessary inductive biases and structural components
to efficiently learn the MIMO Wiener Filter (or its generalization for unknown I/Q distortion) for
equalization and explicitly implement the Matched Filter bank for detection.

Proof. We demonstrate how the components of CAT realize these optimal strategies.

1. Learning the MIMO Wiener Filter: The TransFIRmer Block Synergy. The equaliza-
tion stage (Tϕ) in CAT aims to learn the channel inversion corresponding to WWF. This is
achieved through the synergy of the FIR-FFN and the Self-Attention mechanism.

a. The MIMO FIR Inductive Bias (FIR-FFN): The Wiener Filter WWF is fundamentally a
MIMO FIR filter. The TransFIRmer block’s FIR-FFN (Eq. (5)) provides a learnable, bidirec-
tional FIR structure. This is precisely the functional class required to implement the temporal
deconvolution and spatial alignment (I/Q correction) of the MIMO WF, ensuring the learned
transformation is physically plausible.

b. Dynamic Statistics Estimation and Whitening (Self-Attention): The Wiener solution re-
quires estimating the channel statistics (RY Y ) and applying its inverse for whitening. The
self-attention mechanism is uniquely suited for this dynamic estimation, as it computes pair-
wise interactions:

Attention Scores ∝ (ZWQ)(ZWK)T .

This operation is structurally analogous to computing an empirical estimate of the local co-
variance structure R̂Y Y , capturing how the channel correlates the input sequence. While the
Transformer does not explicitly compute the matrix inverse R−1

Y Y , the attention mechanism
functionally realizes the whitening transformation. Driven by the MSE loss minimization,
the network parameters adapt to decorrelate the input features, as this is the optimal strategy
for equalization.

c. Adaptive Conditional Wiener Filtering: The components synergize within the Trans-
FIRmer block. Self-attention dynamically estimates the local channel statistics and condi-
tions the features (implicit whitening). The FIR-FFN then utilizes these conditioned fea-
tures to apply the precise, structured filtering. By integrating these, the TransFIRmer block
effectively learns a conditional Wiener filter, adapted dynamically to the specific channel
realization within the block.

d. Adaptation to Unknown I/Q Distortion: The channel includes I/Q imbalance, modeled
as an unknown linear transformation G (Appendix A) that varies per block. The equalizer
must rapidly adapt to this unknown G, which is embedded within the overall channel matrix
H. The stacked architecture of CAT excels at this, learning a complex mapping from the
observed signal statistics (estimated by attention and dependent on G) to the optimal filter
coefficients needed to invert both I/Q distortion and ISI.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2. Implementing the Matched Filter: Constellation-Aware Attention. The detection stage
(gθ) implements the optimal decision rule (Eq. (17)).

a. The Inefficiency of Implicit Learning: Domain-agnostic architectures (e.g., Vanilla Trans-
formers) must use scarce pilot data to learn the constellation points x(k) in their final classi-
fier weights. This is inefficient, as the constellation geometry C is known.

b. Explicit Implementation and Decoupling: The Constellation-Aware Attention mechanism
explicitly calculates the correlation between the equalized signal features (Queries, z(L)i ) and
the constellation representations (Keys, c(L)k ):

αi,k =
(WQz

(L)
i )T (WKc

(L)
k )√

dmodel
(18)

The architecture is designed to align embeddings with physical quantities (z(L)i → x̂i and
c
(L)
k → x(k)). Through appropriate parameterization, the attention score directly computes

the Matched Filter’s correlation term, x̂Ti x(k). By providing C as input, CAT structurally im-
plements the optimal detector. This crucially decouples the detection task from the equaliza-
tion task, allowing the network’s entire learning capacity to focus on the complex challenge
of approximating the adaptive MIMO Wiener filter.

E.3 CONCLUSION: SYNERGISTIC ALIGNMENT AND REDUCED SAMPLE COMPLEXITY

The rigorous justification for the superior performance of the CAT architecture stems from the syn-
ergistic alignment of its components with optimal communication theory, supported by the Bayesian
analysis and learning theory frameworks.

Lemma 1 quantifies the critical need for accurate constellation information, showing that estimation
error is bounded by the divergence between the model’s implicit belief and the true constellation
posterior. Theorem 1 establishes that providing this information explicitly grants access to a superior
hypothesis space. Proposition 1 demonstrates that CAT is structurally designed to leverage this
advantage by realizing the fundamental components of an optimal MIMO receiver:

1. The FIR-FFN provides the exact MIMO FIR structure required for the Wiener filter, enabling
both temporal deconvolution and spatial alignment.

2. Self-attention dynamically estimates the necessary channel statistics and implicitly performs
adaptive decorrelation (whitening).

3. The Constellation-Aware Attention mechanism explicitly implements the Matched Filter
bank by utilizing the known constellation geometry C.

This alignment provides a powerful, physically grounded inductive bias that significantly reduces
the complexity of the learning task. Domain-agnostic models must use scarce pilot data to rediscover
both the optimal equalization strategy and the detection geometry.

In contrast, CAT structurally embeds the optimal detection strategy. This crucially decouples de-
tection from equalization, allowing the network’s entire learning capacity to focus solely on the
complex task of equalization—adapting the filter parameters to the specific, unknown channel real-
ization. By constraining the search space to functions that are theoretically optimal, CAT reduces
estimation variance and achieves significantly lower sample complexity, explaining the substantial
empirical gains observed.
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