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Abstract

Large language models (LLMs) often struggle
with balanced class accuracy in text classifi-
cation tasks using in-context learning (ICL),
hindering some practical uses due to user dissat-
isfaction or safety risks caused by misclassifica-
tions. Retraining LLMs to address root causes
in data or model priors is neither easy nor cost-
effective. This paper delves deeper into the
class accuracy imbalance issue, identifying that
it arises because certain classes consistently
receive disproportionately high ICL probabili-
ties, causing under-prediction and lower accu-
racy for others. More importantly, probability
ranges affect the imbalance differently, allow-
ing for precise, range-specific corrections. We
introduce FuRud (Fuzzy Rule Optimization-
based Debiasing), a method for sample-level
class probability correction. FuRud tackles in-
terpretability challenges by determining why
certain classes need corrections and tailoring
adjustments for each instance’s class probabil-
ities which is powered by fuzzy sets with tri-
angular membership functions, transforming
a class probability based on the range it be-
longs to. By solving a nonlinear integer pro-
gramming problem with a labeled set of ICL
class probabilities to minimize class accuracy
bias (COBias) and maximize overall accuracy,
each class selects an optimal correction func-
tion from 19 triangular membership functions
without updating an LLM, and the selected
functions correct test instances at inference.
Across seven benchmark datasets, FuRud re-
duces COBias by over half (56%) and improves
overall accuracy by 21% relatively, outperform-
ing state-of-the-art debiasing methods.

1 Introduction

In-context learning (ICL) allows large language
models (LLMs) to perform text classification tasks
by prompting them with a few demonstrative ex-
amples. However, the class accuracies are often
imbalanced due to biases in the training data or

model priors. Addressing such imbalance while
improving overall accuracy is a compelling frontier
in the realm of debiasing. The skewness in the
output space can be alleviated by inference-time
corrections on ICL output logits or probabilities.
For example, Lin and You (2024) explicitly targets
mitigating class accuracy differences and quantify
them as COBias, the averaged pairwise class accu-
racy differences, and learn class-level correction
weights. While effective, the prior method cor-
rects any instance with the same set of correction
weights, lacking considerations in capturing per-
sample, per-class nuances.

A direct cause of the imbalance is that ICL often
yields specific ranges of probabilities to each out-
put class. Some classes receive high probabilities
for any input, while others may not. The conse-
quence is that the latter is less frequently chosen
than the former, resulting in lower accuracies. On
the sample level, for all instances of a ground-truth
class A, it is a general observation that instances
with a low output probability in class A will have
lower accuracy compared to those instances with
a higher output probability in class A. The latter
instances may not need as much amplification in
class A output probability as the former instances.
This suggests that sample-level customized correc-
tion should be enabled to accommodate different
ICL probability ranges within a same output class.

Therefore, we aim for a sample-level correc-
tion method that interpretively amplifies or reduces
different ranges of an output class’s probabilities.
In this work, we address the pressing need for
enhanced understandings in how biased ICL pre-
dictions happen with the following research ques-
tions, and propose a per-sample, per-class correc-
tion method using fuzzy representation techniques.
RQ1: What is the interpretability challenge in
correcting in-context learned representations?
Given an N-class classification dataset, we de-
note the m-th instance’s input prompt and class



as (T, Ym), Where x,,, consists of a task instruc-
tion, few-shot demonstrative examples, the input
text and a question on its class. An LLM in-
context learns output class probabilities p,, =
(Pm1s - -, Pmn) (normalized over N classes), then
the prediction ¢, is arg max; pm;. The p,, may
need corrections in one or more of the classes, to
reduce imbalance in class accuracy and improve
overall accuracy. The interpretability challenges
raised in this process can be specified as (1) detect-
ing which classes need corrections, and (2) for each
correction-needed class, applying range-specific
amplifications/reductions.

RQ2: How can we achieve interpretable cor-
rections with fuzzy rules? In short, we leverage
membership functions to achieve interpretable cor-
rections. For more backgrounds, interpretable ma-
chine learning systems need a human-readable sub-
set of input attributes to generate the target (Jethani
etal., 2021; Carvalho et al., 2019), so they often use
fuzzy rules and fuzzy memberships, which provide
interpretable quantifiers of given attributes (such
as the size, Small), to learn these systems (Vernon
et al., 2024; Vilone and Longo, 2020; Ishibuchi
and Nojima, 2007). In classical fuzzy rule clas-
sification systems, input attributes are assigned to
fuzzy sets to generate rules for pattern classification
(Ishibuchi et al., 1999, 2005; Nojima and Ishibuchi,
2016; Rudzinski, 2016; Gorzatczany and Rudz-
inski, 2017). A fuzzy classification system contains
multiple human-readable rules, which can be as
simple as “1. If attribute Bare Nuclei is Small then
the consequent (predicted) class is Benign.2....3. If
attribute Uniformity of Cell Size is not Small then
the consequent class is Malignant.” (Gorzatczany
and Rudzinski, 2017). Here, Small and not Small
are fuzzy sets, and their corresponding membership
functions quantify the level of participation of each
given attribute in the respective fuzzy set.

In this work, we leverage the range-wise trans-
formation capabilities of membership functions for
debiasing. A membership function is a curve that
maps an input attribute to a fuzzy value between
0 and 1 (Zadeh, 1965). Viewing class probabil-
ities as input attributes, we can use membership
functions to adjust the probabilities, as long as the
membership functions are selected under debias-
ing objectives. The key intuition is that a mem-
bership function can asymmetrically amplify or
reduce different ranges of inputs. As such, a fuzzy
rule based debiaser is applied to p,,;, denoted as
fa,(pPmi), where A; is a fuzzy set for class 4, and its

membership function f4, maps p,,; to a corrected
Phni = fa,(Pmi)- The debiaser can be viewed as a
single rule:

If class 1is Ay and ... and class NV is Ay

~
Antecedent

then predict arg max; fa, (pm;) ey

Consequent

Our goal is to optimize the selection of membership
functions towards mitigating COBias and improv-
ing overall accuracy. Specially, we include a Don’t
Change membership function that will keep a class
unchanged. When a correction is needed, a piece
of the triangular function is activated for evaluating
the corrected probability based on the range that
the input probability belongs to.

To this end, we propose FuRud, a Fuzzy Rule
Optimization based Debiasing method, which lever-
ages combinatorial optimization (Section 3). Op-
timized on a labeled set of few-shot ICL output
class probabilities, each class in a downstream task
selects a membership function from 19 triangular
membership functions for correction, optimizing a
multi-objective of COBias minimization and over-
all accuracy maximization. It achieves good im-
provements in accuracy and COBias with sample-
level corrections, shown by experiments and analy-
ses (Section 4) and discussions (Section 5). Figure
1 is an overview: an optimization set of ICL class
probabilities and ground-truth answers are input to
the multi-objective nonlinear integer programming
model, which jointly selects optimal functions for
each class. For a test instance, the learned member-
ship functions correct the ICL class probabilities.

To highlight, the membership functions selected
by FuRud enable sample-level correction and inter-
pretability. FuRud identifies if an LLM in-context
learns an accurate class probability for a given
instance, namely, if Don’t Change is selected, it
means the LLM has learned accurate output rep-
resentations for the class; otherwise, corrections
are performed on a per-sample basis. Our source
code will be released upon paper publication. Our
contributions are:

* We propose a fuzzy rule based debiasing
method (FuRud) for per-sample, per-class ICL
output correction.

* We formulate a multi-objective nonlinear inte-
ger programming model that selects triangular
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Figure 1: An overview of FuRud. ICL output probabilities across answer classes for input instances are obtained.
On an optimization set, class probabilities and ground-truth labels are input to the FuRud multi-objective nonlinear
integer programming model for joint learning of optimal membership functions. During inference, the optimal
membership functions perform tailored corrections to class probabilities for test instances. This figure is for
illustration purposes only, actual range changes and improvements are detailed in Section 4.

membership functions for each class, to mini-
mize class accuracy differences (COBias) and
maximize overall accuracy.

» Across seven benchmarks, FuRud has greatly
reduced COBias and improved overall accu-
racy. For example, it reduces the origianl ICL
COBias by a relative decrease of 56% and im-
proves ICL accuracy by a relative increase of
21%; it also achieves higher accuracy (avg. ac-
curacy reaching 72.0%) and competitive CO-
Bias (avg. COBias dropping to 17.8%) over
state-of-the-art debiasing methods.

2 Related Work

Language Model Bias Mitigation. At the heart
of debiasing is detecting biased patterns that arise
in a large language model (LLM)’s outputs. Prior
work has found various prediction biases in ICL,
and address the biased patterns by methods of con-
textual prompt engineering and output adjustment
(Brown et al., 2020; Schick et al., 2021; Zhao
et al., 2021). Particularly, on classification tasks,
researchers have found that LLMs’ outputs are sen-
sitive to ICL formatting, such as prompt templates,
demonstrations, and verbalizers (Min et al., 2022;
Holtzman et al., 2021; Schick and Schiitze, 2021);
besides, LLMs tend to output common tokens in the
pre-training data (Zhao et al., 2021). These bias fac-
tors lead to majority label bias (Zhao et al., 2021),
COBias (pairwise class accuracy differences) (Lin

and You, 2024), etc, causing imbalanced per-class
accuracies, and researchers address these biases
by making output distribution calibrations (Zhao
et al., 2021; Fei et al., 2023; Zhou et al., 2024),
or by class probability re-weighting (Lin and You,
2024). For example, Zhao et al. (2021) calibrate
the output distribution with content-free/dummy
test prompts. Zhou et al. (2024) calibrate the out-
put distribution in a test-time manner, estimating
a contextual correction term of each class on a
batch of test examples; the proposed Batch Calibra-
tion (BC) method outperforms previous calibration
methods (Zhao et al., 2021; Fei et al., 2023) on
a range of text classification tasks. Lin and You
(2024) re-weights output probabilities by a set of
class-specific weight coefficients; the proposed De-
biasing as Nonlinear Integer Programming method
(DNIP) achieves much lower COBias with higher
accuracy than the ICL baseline. Though these debi-
asing methods effectively adjust ICL outputs, they
do not emphasize interpretable bias handling. For
example, a calibration method may not explicitly
explain why a class needs corrections, or users may
not fathom how a re-weighting method performs
the exact corrections a class need.

3 Fuzzy Rule Optimization Based
Debiasing

In the fuzzy rule setting, for /V classes, each class
selects a fuzzy set A;, or equivalently, a member-
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Figure 2: 19 triangular membership functions.

ship function f4,, from a family of K fixed fuzzy
sets. We let F' = {f1,..., fx,..., [ } denote the
family of membership functions. The membership
function selection problem is solved using simu-
lated annealing. FuRud is a combinatorial optimiza-
tion model, so it is performed in inference time on
an optimization set of ICL output class probabilities
with ground-truth labels, without LLM parameter
updates. The selected membership functions are
directly applied to transform test-time class proba-
bilities.

Membership Functions. Each class selects from
19 triangular membership functions. Triangular
membership functions are popular for fuzzy rule-
based classification (Ishibuchi et al., 2005), as the
speed of changes is easily controlled by the slope,
and the linearity is computationally efficient. With-
out knowing the expected fuzzy partitions in down-
stream datasets, we employ four fuzzy partitions,
resulting in 19 triangular membership functions
of different granularities, shown in Figure 2, in-
cluding the Don’t Change membership function -
the identity function. Other membership functions
represent a sharp or smooth transformation of the
input value. More details are provided in Appendix
A. The general form of a triangular membership
function fx(-) can be written as:

07 lfpmz S ag

%, ag < pmi < by
Jie(Pmis ak, bi, cx) = Ch — Pmi

m7 br, < pmi < ¢k

0, otherwise

2
where ay, bg, c;, are the left endpoint, the input
value where the peak is reached, and the right end-

point of fi. For example, for fy1, the ag, by, cx
values are 0.125, 0.25, 0.375 respectively.
The updated probability p/ . is computed by:

<N
ity 7, =0

otherwise

Pmi,
Pmi =N fi(pmi) 1(ri = k),
k
3)

where ; is the integer selection variable for class
i. 1(-) evaluates to 1 if the condition inside is
satisfied, otherwise 0. Furthermore, in case p;m =
0 for all classes, we reset each to be its original
probability in p,,,. Therefore, ¢, = arg max; p/,.;.
Multi-Objective Programming and Energy
Function. Let k = (k1,...,kN) be the integer
selection variables for classes 1, ..., N, where k; is
chosen from the given set of membership functions,
and x; = k means f, is chosen. Our goal is to learn
x that improve ICL classifications under two main
evaluation metrics, accuracy and COBias (Lin and
You, 2024), i.e., our multi-objective spans across
lowering COBias and increasing accuracy.

Crucially, we balance class accuracy by explic-
itly modeling COBias on the optimization set. The
first objective is:

min ZCOBias — L ZN_I ﬁ: !Acc- — Acc~‘
- NOy Li=1 ’ J

Jj=t+1
“
where NCy = N(N — 1)/2, Acc; is the accuracy
score of class 7 on the optimization set.
The second objective improves overall accuracy:

ZmGSOPt HYm = Ym}
)
where SOP! is the indices of optimization instances.
To further handle extreme cases of low class
accuracies, we penalize classes that fail to reach an
accuracy threshold, and minimize the loss between
the threshold and per-class accuracy (cut off at 0).
The third objective is:

1
Acc __
max £ = ‘SOpt‘

N
min ZExtreme — E - max{0,\ — Acc;} (6)
=

where A is a fixed threshold value.

The above objective functions are a mix of mini-
mization and maximization, and the resulted multi-
objective programming model requires integer vari-
ables. Each of them alone corresponds to an inte-
ger programming problem, which is NP-complete
(Garey and Johnson, 1979). Classic solutions for



integer programming use operational research tech-
niques, such as Branch-and-Bound, often used for
linear integer programming problems. It could
be difficult for such methods to handle nonlinear
integer programming models which contain non-
differentiable functions. Consequently, a series of
metaheuristic algorithms have emerged, such as
Simulated Annealing (SA), and each metaheuris-
tic has their own strengths and limitations. We
use one of the metaheuristics, SA, to tackle the
proposed mathematical model. The SA implemen-
tation follows (Lin and You, 2024). Since it is dif-
ficult to solve each one as an individual optimiza-
tion problem and force an optimal solution, our
strategy is instead to compute a weighted sum of
1 — ZAce, zCOBias  zExtreme a4 4 gingle energy func-
tion F to be optimized. Hence, the multi-objectives
are combined into a total minimization objective:

min E(k; A\, p') @)

where E(r; A, p') = w + 3, _ cobj Ahzh, SO is
the penalty (objective) functions, and w, y"s are
penalty parameters. SA optimizes on F to obtain
an optimal selection of membership functions.

In summary, Eq. 4 targets minimizing COBias,
Eq. 5 targets maximizing overall accuracy, and Eq.
6 targets maximizing per-class accuracy, which
enforces it to meet a threshold; Eq. 7 combines
the three objectives as a multi-objective function.
Details on how Eq. 7 is optimized are described in
experimental setups (Section 4.1).

4 Experiments

4.1 Experimental Setups

Evaluation Tasks and Evaluation Metrics. The
proposed method is evaluated on a diverse range
of text classification datasets, including AGNews
(Zhang et al., 2015), a 4-class news topic classifica-
tion; DBpedia (Auer et al., 2007), a 14-class ontol-
ogy classification dataset derived from Wikipedia;
SST-5 (Socher et al., 2013), a 5-class sentiment
classification dataset; TREC (Voorhees and Tice,
2000; Li and Roth, 2002), a 6-class question classi-
fication dataset; RTE (Dagan et al., 2006), a binary
entailment recognition dataset; and two biomedical
domain-specific datasets, including DDI (Segura-
Bedmar et al., 2013), a 5-class drug-drug interac-
tion relation extraction dataset; PubMedQA (Jin
et al., 2019), a 3-class biomedical question answer-
ing dataset. Each evaluation dataset is split into op-
timization/development/test sets. We follow (Lin

and You, 2024) to preprocess the datasets. Evalua-
tion metrics are accuracy and COBias.

FuRud Setups. The 19 triangular membership
functions in Figure 2 form the base of selections
for FuRud. We take the full or a subset of training
instances from a downstream dataset to perform
FuRud optimization. We prompt Llama-2-13B in
1-shot manner to obtain softmax probabilities at
the output token over the entire vocabulary, which
is then normalized over the classes. These ICL
class probabilities and ground-truth labels are used
to form the optimization set. The energy func-
tion we used is a special form of Equation 7 with
w = 1’ ,yAcc — _1’ ,YCOBias = a, ,yExtreme — B
That is, the final multi-objective optimization func-
tion is mz‘nHZ - 1— ZAcc +azCOBias +5zExtreme’
where we learn k; for class ¢ = 1,..., N on the
optimization set. Each k; is selected from the given
set of membership functions, and x; = k denotes
that membership function fj is selected. At in-
ference time, let p = (p1,...,pi,...,pN) be the
ICL class probabilities of a test instance, then these
probabilities are transformed by the learned mem-
bership functions, according to Eq. 3. The final
corrected prediction is § = arg max; fu., (p;).

The FuRud model Z is solved using simulated
annealing (SA). The core step of SA is to sample
a new solution k = (k1,...,kN), €.g., (16, ...,
8), which is evaluated against Z. If the new Z
is smaller, FuRud accepts the new solution; other-
wise, it accepts the new solution with an acceptance
probability exp(—AZ/T), where T' is the tempera-
ture at the step. The values of «, 5 are tuned on the
development set. Since we do not know an estimate
for the expected threshold value A in downstream
tasks, we set it to 0.5 for simplicity. Prompting
is done on a 80G A100 GPU. The SA algorithm
executes on an AMD EPYC 7742 CPU in minutes.

We compare FuRud with the ICL baseline and
two state-of-the-art ICL debiasing methods, includ-
ing DNIP (Lin and You, 2024) and BC (Zhou et al.,
2024). For fair comparisons, for each dataset, we
prompt with three different 1-shot demonstrations
and obtain three sets of initial probabilities. The
demonstration is randomly sampled from optimiza-
tion examples. The average test accuracy and CO-
Bias over three runs are reported.

4.2 Main Results

Table 1 shows the test accuracy and COBias of ICL,
BC, DNIP, and FuRuD. Comparing FuRud to the
ICL baseline, the average relative accuracy increase



Acc. 1 COBias |

Task ICL BC DNIP  FuRud  ICL BC DNIP  FuRud
AGNews 79.97_0 82.55_0 87.90_7 85.73_4 28.316_1 23.1 12.1 6.30_6 6.91_6
DBpedia 88.61,7 89.1 15 93~40.6 92.20,4 16.23,7 15.43,3 7.70‘(, 9~20.6
SST-5 44943 47.623 48319 48.838 53.150 49.810.7 18.710.1 22.284
TREC 68.51038 72944 77120 77.339 35.9s 31.95,4 14.2,3 18.514
RTE 71.522 76.106 74308 74.518 43.479 16.4,9 4333 T.150
DDI 7.209 14.455 40.460 69.36.3 45.659 32.676 7.532 36.846
PubMedaQA 55.12_9 55.51_3 63.1 14.0 55.95_4 61.21_9 26.23_2 41-129.6 24.03_4
Ave. 59.4 62.6 692 IT200N 405 27.9 14.3 17.8

Table 1: Test accuracy and COBias (%); average scores over three runs are reported.

Dataset, Test Sentence Test ICL Class ICL Membership Corrected  Corrected Interpretations
Classes (w/o prompt) Label Prob. Prediction Function Class Prob. Prediction P >
US unemployment claims slip but By FuRud, all classes need
AGNews picture still murky, NEW YORK corrections. For this test instance,
S R Fewer Americans lined up to claim first-time o o [0.42,0.01, —_—" o fich [0, 0, P original ICL wrongly predicts
1oy jobless benefits last week but analysts said 032,025 fRiodie 047, 0] Busi. as World. After correction,
Business, Tech ’ 5 3 8 - a
the modest decline said very little about probability of class Busi. becomes
the current state of the labour market. highest, leading to the right prediction.
By FuRud, 4 out of 14 classes
DBpedia Floyd Thomas Christian Sr. apply Don’t Change (Their ICL
P ) (December 18 1914 — May 11 1998) [0, 0.16, 0.08, 0.64, f3. fios fro fse 10,0,0,0, probability is relatively accurate.),
Company, School, Artist, Athlete, een o S . _prod SIVEY
Politician, Transportation, Buildin, was Florida Commissioner of Education Politician 0.12,0,0,0, Athlete DC, fa, fa, fo.  0.12,0,0,0, Politician including class Politician. Though ICL
Nt Vil ol from 1965 to 1973. Christian was bom in et 0.0.0,0, fi6: f2. f16.DC. 0,0.0,0, 11 probability of the actual class Politic. is 0.12 and
ure, vitlage, Animal, g Bessemer Alabama. He moved to Pinellas 0,0] DC, DC 0,0] unchanged after correction, classes like

Album, Film, Book County with his family in 1927...

Ath.’s probability is corrected to 0 by f8,
leading to the right prediction.

Table 2: Examples of sample-level corrections and explanations.

is 21%, and the average relative COBias reduction
is 56%. The average test accuracy of FuRud over
seven benchmarks is 72%, which outperforms the
accuracy of BC and DNIP; the average test COBias
of FuRud is 17.8%, which is comparable to DNIP
with obtains the lowest COBias (14.3% ) among the
methods compared. It is noted that FuRud uses the
full optimization set to make a fair comparison to
DNIP. However, FuRud can also work in a few-shot
optimization manner, as discussed in Appendix B.
On top of that, FuRud provides per-sample, per-
class interpretability, analyzed as follows.

4.3 Interpretability Analysis

Across seven tasks, AGNews is the only task that
Don’t Change was not applied to any class over any
of its three runs with different initial ICL probabili-
ties; RTE, DDI, and PubMedQA applied DC to a
single class at most; TREC and SST-5 applied DC
to a two classes at most; DBpedia, with 14 classes,
at most applied DC to 4 classes, showing that most
ICL output classes need correction.

In addition, Figure 3 visualizes range-specific
probability changes after applying membership
function corrections on AGNews and RTE, demon-
strating that the membership functions selected
by FuRud effectively transform different proba-
bility ranges of each output class to improve or at
least maintain class accuracy, while making class

accuracies more balanced. Moreover, the worst-
performing class by ICL in either task is signifi-
cantly improved by FuRud, due to that lower and
medium probability ranges of the worst-performing
class gets amplified and the higher ranges of other
classes gets slightly reduced. Results on other
datasets are similar. Table 2 exemplifies how per-
sample, per-class corrections are interpreted.

We further quantitatively evaluate the ratio of
instances that benefit from the correction. Figure
4 shows the accuracy of range-specific instances
within class Business of AGNews. This class
has 1,204 test instances, which are divided into 5
groups ranging from [0.0, 0.2] to [0.8, 1.0] based on
their initial ICL output probability in Business. For
example, 108 instances have ICL Business proba-
bilities in [0.2, 0.4] and only 9% of these instances
are correctly predicted. This group of instances is
effectively corrected by membership function fq;
and synergetic corrections in other classes, reach-
ing 66% accuracy after correction, i.e., 57% (66%-
9%) more instances in this group obtain the right
predictions after corrections.

5 Discussion

5.1 FuRud on Letter Based ICL Outputs

FuRud greatly improves highly skewed letter based
ICL Outputs. In details, we experiment with the
letter answer prompts, which is widely used in clas-
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Figure 3: Class probabilities before and after applying corrections. For each task, we report results of the seed 1 run
out of 3 runs. There was a stark ICL accuracy difference of 37% between True and False on RTE. FuRud addresses
it by amplifying the medium range of False and simultaneously reducing the relatively high range of True.
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Bottom row: new ranges and improved accuracy for the examples in each previous range, by FuRud (scaled relatively),
suggesting that examples after fuzzy transformations have more accurate output probabilities for class Business.

Figure 4: Quantitative evaluation on the ratio of instances that benefit from the correction, exemplified by class
Business of AGNews. The difference of “Acc of examples” between bottom and top subfigures represents the ratio.
The red color highlights the activated pieces of the membership function for range-specific correction.

sification and reasoning tasks. Letter options could  Besides the Method Acc.  COBias
lead to' more shallow pattern matc'hing prleems tabled results, on Ffl(liLuélflt;tet?r) gg?i;g 427126]8526
than using label token as answer options. Using this ~ AGNews, overall
prompt, the model outputs a single letter choice of  test  accuracy Table 3: Letter based results.
“A”, “B”, etc. corresponding to a class label, which  improves from

often results in highly skewed outputs, because
LLMs have a tendency to select a certain letter
option regardless of the content (Bentham et al.,
2024). We find similar issues when evaluating
seven datasets using letter options. For example, on
AGNews, the LLM biases to predict “B” (Sports),
leading to an average of 99% accuracy in Sports
and 12% accuracy in Business. FuRud improves
accuracy by an relative 44% and achieves a signifi-

45% to 66%, COBias reduces from 54% to 10%.
Class accuracy changes are: World, 40% — 69%;
Sports, 99% — 70%; Business, 12% — 66%;
Technology, 27% — 59%. These results suggest
that FuRud can debias ICL class probabilities no
matter if an input prompt leads to spurious label

matching results.

5.2 Membership Function Granularities

cant COBias reduction of a relative 54% over ICL,

as shown in Table 3 (averaged over seven datasets). We experiment with different combinations of the

four fuzzy partitions in Figure 2 and show that
membership granularities lead to accuracy-COBias



tradeoffs. In details, we conduct five ablations
based on the four partitions characterized by difter-
ent slopes +1, 2, 4, £8, where a bigger slope
indicates higher granularities. The 11 partition is
the DC partition (fis, fi9). Since it plays a vital
role in maintaining some classes, we keep it in all
five combinations, including DC alone, DC and
each of the rest partitions, and mixed partitions (all
four partitions). The average scores across seven
datasets are reported; for each dataset, average ac-
curacy and COBias over three runs with different
demonstrations is taken.

As  shown
by Figure 5,

while COBias DT e

1 035 e e e oc i
greatly reduces 2 o3| | ocafumypaniion+2 :

R . o |-t DC & fuzzy partition +4 — - - == #
with hlgher O 0.25 DC & fuzzy partition +8
- A\Iflfuzzy partitions

membership 2 i S s ‘
granularities, 06 065 075
overall accu-
racy slightly  Figure 5: Accuracy-COBias trade-
decreases. off of fuzzy partitions.

Therefore, although it is tempting to include more
fine-grained membership functions to reduce
COBias, don’t forget the accuracy-COBias tradeoff.
The best accuracy and COBias is achieved with
mixed partitions. Moreover, although he DC
partition alone can obtain 15% higher accuracy
than ICL accuracy, but the improvement mainly
comes from a single task (DDI). In addition, we
added a side analysis with partition £8 alone,
while achieving similar accuracies, the COBias is
6% higher than using DC and partition 8 together,
suggesting that the Don’t Change function is
essentially needed when using mixed partitions to
attain both good COBias and overall accuracy.

5.3 Additional Analyses

More Models. On varied relatively small LLMs,
FuRud consistently improves their performances,
showcased by additional results on Llama-2-7B
and GPT-2-XL in Appendix C.

More ICL Strategies. FuRud significantly im-
proves accuracy and COBias for a more sophisti-
cated prompting case, where the demonstration in
the prompt uses N-shot examples taken from each
class, as detailed in Appendix D.

Computational Costs. The computational cost
of FuRud is low. Execution time of the optimiza-
tion program ranges rom several minutes to around
30 minutes, depending on the number of classes,
optimization set sizes, and etc.

Interpretability Comparisons: FuRud vs DNIP.
DNIP does not capture sample-level nuances
needed in the correction as FuRud does, not suit-
able for classes that need fine-grained sample-level
correction. The membership functions overcome
this issue, explaining how each class in a particular
instance should be corrected, and this is the main
innovation of our paper.
Using traditional fuzzy classification systems.
Training involves extensive computations as it re-
quires maintaining multiple candidate rules for de-
biasing, e.g., “Ry: If class 1 probability is A,; and
. and class N probability is Ay, then predict
Y,”, and test time for a winning rule grows with
the number of candidates. To obtain high accu-
racy, a huge number of rules may be employed,
making the system inefficient. In contrast, FuRud
is cost-effective, and implicitly reflects the many
rules employed in a traditional system. For more
discussions, please refer to Appendix E.

6 Conclusion

We present FuRud, a post-hoc debiasing method
for sample-level ICL output correction that effec-
tively enhances overall accuracy and accuracy bal-
ance across multiple classes, leveraging combina-
torial optimization to select optimal fuzzy mem-
bership functions for interpretable, range-specific
corrections on the original ICL class probabilities.
On a diverse set of text classification benchmarks,
FuRud greatly reduces COBias while enhancing
overall accuracy over ICL results, outperforming
state-of-the-art debiasing methods.

Limitations

There is a possibility that certain classes in a task
may not need as much fine-grained sample-level
correction as other classes. Those classes may
apply class-level correction to any instance, e.g.,
weight coefficients, to obtain sufficient COBias re-
duction while being interpretable at the broader
level. As such, an organic integration of both broad
and fine-grained corrections should be studied in
the future. In addition, class accuracy imbalances
widely exist in variants of small (e.g., Llama-2-
13B) and larger (e.g., ChatGPT) LLMs (Lin and
You, 2024), how much FuRud could balance larger
LLMs could be quantitatively analyzed to exem-
plify more practical usages of the method. This
paper primarily focuses on a single small model for
its representativeness as a widely applied LLM.
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A Details on Membership Functions

Table 4 lists the details about the membership func-
tions used in this work.

TREC SST-5

FuRud, Acc
BC, COBias
FuRud, COBias

70 DNIP, Acc
IcL, coBias
601 ICL, Acc BC, Acc DNIP, COBias
DNIP, Acc FuRud, Acc
50 ICL, COBias BC, COBias
DNIP, COBias FuRud, COBias

@
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Figure 6: Few-shot optimization.

B Few-shot Optimization

FuRud can optimize a downstream task with as
few as 10 examples. We take few-shot optimized
TREC and SST-5 results for illustration. Figure 6
shows test accuracy and COBias of FuRud (in mint
green color) when used in a few-shot optimization
manner, starting with 10 few-shot examples and
growing to 100 and 500 examples. TREC and SST-
5 are shown to illustrate that FuRud can achieve an
average of 9% accuracy improvements with 18%
COBias reduction over the ICL baseline at 10 few-
shot optimization examples.

At 10 examples, FuRud obtains a 11% and 6%
relative increase in accuracy over the ICL base-
line on TREC and SST-5 respectively, at the same
time, it reduces COBias by a relative 20% and
16% on each dataset. The accruacy and COBias
performances gradually improve as the number of
examples increases to 500. Compared to existing
methods, FuRud outperforms BC in few-shot sce-
narios, and performs better than (TREC) or on par
(SST-5) with DNIP while being interpretable. Sim-
ilar findings apply to the other five datasets, as
shown in Figure 7. In short, FuRud achieves better
or comparable results than DNIP, and better results
than BC and the ICL baseline, while providing
enhanced interpretability.

C FuRud’s Performances on More LLMs

We ran experiments of FuRud on two additional
models, Llama-2-7B and GPT2-XL. Results are
shown in Table 5. For example, on Llama-2-7B,
FuRud improves accuracy by a relative 22%, and
reduces COBias by a relative 63% over ICL base-
lines, demonstrating that FuRud gains consistent
performance improvements on various models. In-
deed, our current evaluations are focused on rela-
tively small LLMs, but our approach can also work
for larger models, as long as class probabilities are
available and the imbalanced per-class accuracy
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Table 4: Names, parameters (a, b, ¢), short forms, and meanings for membership functions.

iSsue exists.

D FuRud’s Performances under More
ICL Demonstration Selection
Strategies

We additionally prompt Llama-2-13B with the fol-
lowing demonstration selection strategy: k-shot
prompting, where k is the number of classes. A
demonstrative example from each class is randomly
selected from the optimization set and represented
in the prompt. FuRud significantly improves accu-
racy and COBias over ICL baselines, as shown in
Table 6.

Compared to the 1-shot strategy (Table 1), the k-
shot strategy provides a different starting point for
FuRud. For example, the average ICL accuracy by
k-shot (61.9%) is slightly larger than that obtained
by 1-shot (59.4%), and average COBias (25.6%) is
smaller than 1-shot (40.5%). FuRud boosts average
accuracy to 73.5% and reduces COBias to 13.0%.

11

In conclusion, different example selection strate-
gies provide different starting points to optimize,
on which FuRud consistently improve.

E More Discussions

We have a different motivation from traditional
post-hoc corrections. Some may argue that en-
suring equitable accuracies across all classes is a
well-studied problem in standard machine learn-
ing classifiers. It is worth emphasizing that the
per-class prediction accuracy imbalance should be
treated within their particular context. The accu-
racy bias in ICL outputs stems from completely
different causes than the unequal class accuracies
observed in potentially overfitted traditional classi-
fiers, where the former is rooted in prompts and the
LLMs, and the latter arises from class imbalance
of supervised training data. That’s why our method
is particularly applied to ICL’s output token class
probabilities, pinpointing specific patterns and ap-



Model Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedQA Avg.
Llama-2-7B
ICL Acc 86.45 5 88.92 0 42.1111 66.766 66.34.3 6.70.4 40.36.7 56.8
COBias 14-065 13.521 55.615 33.210_0 61.61()‘5 41.417 40‘916& 37.2
FuRud Acc 88.50,5 91.50,5 49.50,7 73.13,9 72.71,0 54-46.4 55-77.6 69.3
COBias 7.42.5 8.40,6 24.01,2 14.11,9 4.22,7 16.95,0 2]-'816.6 13.8
GPT2-XL
ICL Acc 52.15‘4 31.89,9 34.913_7 27.410‘5 55.41,9 14.54,4 55.20_0 38.8
COBias 35.5115 40.036 48.75,4 45.6&7 82.424,5 40.759 59-4126 50.3
FuRud Acc 69.00,5 67.711,8 43.43,1 41.72,7 51.23,7 53.217,0 48.40,3 53.5
COBias 7.42_9 23-06.5 25.41,4 30.27,0 8.93,6 23-16.5 17-64,6 19.4
Table 5: Test accuracy and COBias Comparisons on more LLM:s.
Demonstration ;. i AGNews DBpedia SST-5 TREC RTE  DDI PubMedQA Avg.
Selection
k-shot ICL Acc 83.515 95.212 50.323 67.0127 75.0()‘8 9.71A0 52.353 61.9
COBias 14.95.1 7.022 36.372 38.251 22.5132 39.735 20.94.2 25.6
FuRud Acc 88.10_6 96.60.4 54.31.3 77-96.0 75.94.6 62.32,1 59.25,9 73.5
COBias 7.72,5 4.40,7 13.84,1 11.63,3 5.01,4 27.02,2 21.33,7 13.0

Table 6: Test accuracy and COBias under the k-shot demonstration selection strategy.

plying precise, targeted corrections.

In the future, more versatile rules can be ex-
plored, and we may also examine the tradeoff be-
tween the accuracy and rule complexity. Simpler
rules are easier to understand, but the transforma-
tions may fail to catch the intricate interactions
between class predictions. More complex rules
may have better modeling capabilities, but they are
harder to read. In addition, this work focuses on
evaluating text classification, and we will extend
interpretable ICL debiasing to more language tasks,
modalities, and model architectures.
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Figure 7: Additional few-shot optimization results.
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