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Abstract001

Large language models (LLMs) often struggle002
with balanced class accuracy in text classifi-003
cation tasks using in-context learning (ICL),004
hindering some practical uses due to user dissat-005
isfaction or safety risks caused by misclassifica-006
tions. Retraining LLMs to address root causes007
in data or model priors is neither easy nor cost-008
effective. This paper delves deeper into the009
class accuracy imbalance issue, identifying that010
it arises because certain classes consistently011
receive disproportionately high ICL probabili-012
ties, causing under-prediction and lower accu-013
racy for others. More importantly, probability014
ranges affect the imbalance differently, allow-015
ing for precise, range-specific corrections. We016
introduce FuRud (Fuzzy Rule Optimization-017
based Debiasing), a method for sample-level018
class probability correction. FuRud tackles in-019
terpretability challenges by determining why020
certain classes need corrections and tailoring021
adjustments for each instance’s class probabil-022
ities which is powered by fuzzy sets with tri-023
angular membership functions, transforming024
a class probability based on the range it be-025
longs to. By solving a nonlinear integer pro-026
gramming problem with a labeled set of ICL027
class probabilities to minimize class accuracy028
bias (COBias) and maximize overall accuracy,029
each class selects an optimal correction func-030
tion from 19 triangular membership functions031
without updating an LLM, and the selected032
functions correct test instances at inference.033
Across seven benchmark datasets, FuRud re-034
duces COBias by over half (56%) and improves035
overall accuracy by 21% relatively, outperform-036
ing state-of-the-art debiasing methods.037

1 Introduction038

In-context learning (ICL) allows large language039

models (LLMs) to perform text classification tasks040

by prompting them with a few demonstrative ex-041

amples. However, the class accuracies are often042

imbalanced due to biases in the training data or043

model priors. Addressing such imbalance while 044

improving overall accuracy is a compelling frontier 045

in the realm of debiasing. The skewness in the 046

output space can be alleviated by inference-time 047

corrections on ICL output logits or probabilities. 048

For example, Lin and You (2024) explicitly targets 049

mitigating class accuracy differences and quantify 050

them as COBias, the averaged pairwise class accu- 051

racy differences, and learn class-level correction 052

weights. While effective, the prior method cor- 053

rects any instance with the same set of correction 054

weights, lacking considerations in capturing per- 055

sample, per-class nuances. 056

A direct cause of the imbalance is that ICL often 057

yields specific ranges of probabilities to each out- 058

put class. Some classes receive high probabilities 059

for any input, while others may not. The conse- 060

quence is that the latter is less frequently chosen 061

than the former, resulting in lower accuracies. On 062

the sample level, for all instances of a ground-truth 063

class A, it is a general observation that instances 064

with a low output probability in class A will have 065

lower accuracy compared to those instances with 066

a higher output probability in class A. The latter 067

instances may not need as much amplification in 068

class A output probability as the former instances. 069

This suggests that sample-level customized correc- 070

tion should be enabled to accommodate different 071

ICL probability ranges within a same output class. 072

Therefore, we aim for a sample-level correc- 073

tion method that interpretively amplifies or reduces 074

different ranges of an output class’s probabilities. 075

In this work, we address the pressing need for 076

enhanced understandings in how biased ICL pre- 077

dictions happen with the following research ques- 078

tions, and propose a per-sample, per-class correc- 079

tion method using fuzzy representation techniques. 080

RQ1: What is the interpretability challenge in 081

correcting in-context learned representations? 082

Given an N -class classification dataset, we de- 083

note the m-th instance’s input prompt and class 084
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as (xm, ym), where xm consists of a task instruc-085

tion, few-shot demonstrative examples, the input086

text and a question on its class. An LLM in-087

context learns output class probabilities pm =088

(pm1, . . . , pmN ) (normalized over N classes), then089

the prediction ŷm is argmaxi pmi. The pm may090

need corrections in one or more of the classes, to091

reduce imbalance in class accuracy and improve092

overall accuracy. The interpretability challenges093

raised in this process can be specified as (1) detect-094

ing which classes need corrections, and (2) for each095

correction-needed class, applying range-specific096

amplifications/reductions.097

RQ2: How can we achieve interpretable cor-098

rections with fuzzy rules? In short, we leverage099

membership functions to achieve interpretable cor-100

rections. For more backgrounds, interpretable ma-101

chine learning systems need a human-readable sub-102

set of input attributes to generate the target (Jethani103

et al., 2021; Carvalho et al., 2019), so they often use104

fuzzy rules and fuzzy memberships, which provide105

interpretable quantifiers of given attributes (such106

as the size, Small), to learn these systems (Vernon107

et al., 2024; Vilone and Longo, 2020; Ishibuchi108

and Nojima, 2007). In classical fuzzy rule clas-109

sification systems, input attributes are assigned to110

fuzzy sets to generate rules for pattern classification111

(Ishibuchi et al., 1999, 2005; Nojima and Ishibuchi,112

2016; Rudziński, 2016; Gorzałczany and Rudz-113

iński, 2017). A fuzzy classification system contains114

multiple human-readable rules, which can be as115

simple as “1. If attribute Bare Nuclei is Small then116

the consequent (predicted) class is Benign.2....3. If117

attribute Uniformity of Cell Size is not Small then118

the consequent class is Malignant.” (Gorzałczany119

and Rudziński, 2017). Here, Small and not Small120

are fuzzy sets, and their corresponding membership121

functions quantify the level of participation of each122

given attribute in the respective fuzzy set.123

In this work, we leverage the range-wise trans-124

formation capabilities of membership functions for125

debiasing. A membership function is a curve that126

maps an input attribute to a fuzzy value between127

0 and 1 (Zadeh, 1965). Viewing class probabil-128

ities as input attributes, we can use membership129

functions to adjust the probabilities, as long as the130

membership functions are selected under debias-131

ing objectives. The key intuition is that a mem-132

bership function can asymmetrically amplify or133

reduce different ranges of inputs. As such, a fuzzy134

rule based debiaser is applied to pmi, denoted as135

fAi(pmi), where Ai is a fuzzy set for class i, and its136

membership function fAi maps pmi to a corrected 137

p′mi := fAi(pmi). The debiaser can be viewed as a 138

single rule: 139

If class 1 is A1 and ... and class N is AN︸ ︷︷ ︸
Antecedent

140

then predict argmaxj fAj (pmj)︸ ︷︷ ︸
Consequent

(1) 141

Our goal is to optimize the selection of membership 142

functions towards mitigating COBias and improv- 143

ing overall accuracy. Specially, we include a Don’t 144

Change membership function that will keep a class 145

unchanged. When a correction is needed, a piece 146

of the triangular function is activated for evaluating 147

the corrected probability based on the range that 148

the input probability belongs to. 149

To this end, we propose FuRud, a Fuzzy Rule 150

Optimization based Debiasing method, which lever- 151

ages combinatorial optimization (Section 3). Op- 152

timized on a labeled set of few-shot ICL output 153

class probabilities, each class in a downstream task 154

selects a membership function from 19 triangular 155

membership functions for correction, optimizing a 156

multi-objective of COBias minimization and over- 157

all accuracy maximization. It achieves good im- 158

provements in accuracy and COBias with sample- 159

level corrections, shown by experiments and analy- 160

ses (Section 4) and discussions (Section 5). Figure 161

1 is an overview: an optimization set of ICL class 162

probabilities and ground-truth answers are input to 163

the multi-objective nonlinear integer programming 164

model, which jointly selects optimal functions for 165

each class. For a test instance, the learned member- 166

ship functions correct the ICL class probabilities. 167

To highlight, the membership functions selected 168

by FuRud enable sample-level correction and inter- 169

pretability. FuRud identifies if an LLM in-context 170

learns an accurate class probability for a given 171

instance, namely, if Don’t Change is selected, it 172

means the LLM has learned accurate output rep- 173

resentations for the class; otherwise, corrections 174

are performed on a per-sample basis. Our source 175

code will be released upon paper publication. Our 176

contributions are: 177

• We propose a fuzzy rule based debiasing 178

method (FuRud) for per-sample, per-class ICL 179

output correction. 180

• We formulate a multi-objective nonlinear inte- 181

ger programming model that selects triangular 182
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Figure 1: An overview of FuRud. ICL output probabilities across answer classes for input instances are obtained.
On an optimization set, class probabilities and ground-truth labels are input to the FuRud multi-objective nonlinear
integer programming model for joint learning of optimal membership functions. During inference, the optimal
membership functions perform tailored corrections to class probabilities for test instances. This figure is for
illustration purposes only, actual range changes and improvements are detailed in Section 4.

membership functions for each class, to mini-183

mize class accuracy differences (COBias) and184

maximize overall accuracy.185

• Across seven benchmarks, FuRud has greatly186

reduced COBias and improved overall accu-187

racy. For example, it reduces the origianl ICL188

COBias by a relative decrease of 56% and im-189

proves ICL accuracy by a relative increase of190

21%; it also achieves higher accuracy (avg. ac-191

curacy reaching 72.0%) and competitive CO-192

Bias (avg. COBias dropping to 17.8%) over193

state-of-the-art debiasing methods.194

2 Related Work195

Language Model Bias Mitigation. At the heart196

of debiasing is detecting biased patterns that arise197

in a large language model (LLM)’s outputs. Prior198

work has found various prediction biases in ICL,199

and address the biased patterns by methods of con-200

textual prompt engineering and output adjustment201

(Brown et al., 2020; Schick et al., 2021; Zhao202

et al., 2021). Particularly, on classification tasks,203

researchers have found that LLMs’ outputs are sen-204

sitive to ICL formatting, such as prompt templates,205

demonstrations, and verbalizers (Min et al., 2022;206

Holtzman et al., 2021; Schick and Schütze, 2021);207

besides, LLMs tend to output common tokens in the208

pre-training data (Zhao et al., 2021). These bias fac-209

tors lead to majority label bias (Zhao et al., 2021),210

COBias (pairwise class accuracy differences) (Lin211

and You, 2024), etc, causing imbalanced per-class 212

accuracies, and researchers address these biases 213

by making output distribution calibrations (Zhao 214

et al., 2021; Fei et al., 2023; Zhou et al., 2024), 215

or by class probability re-weighting (Lin and You, 216

2024). For example, Zhao et al. (2021) calibrate 217

the output distribution with content-free/dummy 218

test prompts. Zhou et al. (2024) calibrate the out- 219

put distribution in a test-time manner, estimating 220

a contextual correction term of each class on a 221

batch of test examples; the proposed Batch Calibra- 222

tion (BC) method outperforms previous calibration 223

methods (Zhao et al., 2021; Fei et al., 2023) on 224

a range of text classification tasks. Lin and You 225

(2024) re-weights output probabilities by a set of 226

class-specific weight coefficients; the proposed De- 227

biasing as Nonlinear Integer Programming method 228

(DNIP) achieves much lower COBias with higher 229

accuracy than the ICL baseline. Though these debi- 230

asing methods effectively adjust ICL outputs, they 231

do not emphasize interpretable bias handling. For 232

example, a calibration method may not explicitly 233

explain why a class needs corrections, or users may 234

not fathom how a re-weighting method performs 235

the exact corrections a class need. 236

3 Fuzzy Rule Optimization Based 237

Debiasing 238

In the fuzzy rule setting, for N classes, each class 239

selects a fuzzy set Ai, or equivalently, a member- 240
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Figure 2: 19 triangular membership functions.

ship function fAi , from a family of K fixed fuzzy241

sets. We let F = {f1, ..., fk, ..., fK} denote the242

family of membership functions. The membership243

function selection problem is solved using simu-244

lated annealing. FuRud is a combinatorial optimiza-245

tion model, so it is performed in inference time on246

an optimization set of ICL output class probabilities247

with ground-truth labels, without LLM parameter248

updates. The selected membership functions are249

directly applied to transform test-time class proba-250

bilities.251

Membership Functions. Each class selects from252

19 triangular membership functions. Triangular253

membership functions are popular for fuzzy rule-254

based classification (Ishibuchi et al., 2005), as the255

speed of changes is easily controlled by the slope,256

and the linearity is computationally efficient. With-257

out knowing the expected fuzzy partitions in down-258

stream datasets, we employ four fuzzy partitions,259

resulting in 19 triangular membership functions260

of different granularities, shown in Figure 2, in-261

cluding the Don’t Change membership function -262

the identity function. Other membership functions263

represent a sharp or smooth transformation of the264

input value. More details are provided in Appendix265

A. The general form of a triangular membership266

function fk(·) can be written as:267

fk(pmi; ak, bk, ck) =



0, if pmi ≤ ak
pmi − ak
bk − ak

, ak ≤ pmi ≤ bk

ck − pmi

ck − bk
, bk ≤ pmi ≤ ck

0, otherwise
(2)268

where ak, bk, ck are the left endpoint, the input269

value where the peak is reached, and the right end-270

point of fk. For example, for f11, the ak, bk, ck 271

values are 0.125, 0.25, 0.375 respectively. 272

The updated probability p′mi is computed by: 273

p′mi =


pmi, if

∑N
i=1 p

′
mi = 0∑

k

fk(pmi)1(κi = k), otherwise

(3) 274

where κi is the integer selection variable for class 275

i. 1(·) evaluates to 1 if the condition inside is 276

satisfied, otherwise 0. Furthermore, in case p′mi = 277

0 for all classes, we reset each to be its original 278

probability in pm. Therefore, ŷm = argmaxi p
′
mi. 279

Multi-Objective Programming and Energy 280

Function. Let κ = (κ1, . . . , κN ) be the integer 281

selection variables for classes 1, ..., N , where κi is 282

chosen from the given set of membership functions, 283

and κi = k means fk is chosen. Our goal is to learn 284

κ that improve ICL classifications under two main 285

evaluation metrics, accuracy and COBias (Lin and 286

You, 2024), i.e., our multi-objective spans across 287

lowering COBias and increasing accuracy. 288

Crucially, we balance class accuracy by explic- 289

itly modeling COBias on the optimization set. The 290

first objective is: 291

minZCOBias =
1

NC2

∑N−1

i=1

N∑
j=i+1

∣∣Acci − Accj
∣∣

(4) 292

where NC2 = N(N − 1)/2, Acci is the accuracy 293

score of class i on the optimization set. 294

The second objective improves overall accuracy: 295

maxZAcc =
1

|SOpt|
∑

m∈SOpt 1{ŷm = ym}
(5) 296

where SOpt is the indices of optimization instances. 297

To further handle extreme cases of low class 298

accuracies, we penalize classes that fail to reach an 299

accuracy threshold, and minimize the loss between 300

the threshold and per-class accuracy (cut off at 0). 301

The third objective is: 302

minZExtreme =
∑N

i=1
max{0, λ− Acci} (6) 303

where λ is a fixed threshold value. 304

The above objective functions are a mix of mini- 305

mization and maximization, and the resulted multi- 306

objective programming model requires integer vari- 307

ables. Each of them alone corresponds to an inte- 308

ger programming problem, which is NP-complete 309

(Garey and Johnson, 1979). Classic solutions for 310

4



integer programming use operational research tech-311

niques, such as Branch-and-Bound, often used for312

linear integer programming problems. It could313

be difficult for such methods to handle nonlinear314

integer programming models which contain non-315

differentiable functions. Consequently, a series of316

metaheuristic algorithms have emerged, such as317

Simulated Annealing (SA), and each metaheuris-318

tic has their own strengths and limitations. We319

use one of the metaheuristics, SA, to tackle the320

proposed mathematical model. The SA implemen-321

tation follows (Lin and You, 2024). Since it is dif-322

ficult to solve each one as an individual optimiza-323

tion problem and force an optimal solution, our324

strategy is instead to compute a weighted sum of325

1−ZAcc, ZCOBias, ZExtreme as a single energy func-326

tion E to be optimized. Hence, the multi-objectives327

are combined into a total minimization objective:328

min
κ

E(κ;λ,p′) (7)329

where E(κ;λ,p′) = ω +
∑

h∈SObj γ
hZh, SObj is330

the penalty (objective) functions, and ω, γhs are331

penalty parameters. SA optimizes on E to obtain332

an optimal selection of membership functions.333

In summary, Eq. 4 targets minimizing COBias,334

Eq. 5 targets maximizing overall accuracy, and Eq.335

6 targets maximizing per-class accuracy, which336

enforces it to meet a threshold; Eq. 7 combines337

the three objectives as a multi-objective function.338

Details on how Eq. 7 is optimized are described in339

experimental setups (Section 4.1).340

4 Experiments341

4.1 Experimental Setups342

Evaluation Tasks and Evaluation Metrics. The343

proposed method is evaluated on a diverse range344

of text classification datasets, including AGNews345

(Zhang et al., 2015), a 4-class news topic classifica-346

tion; DBpedia (Auer et al., 2007), a 14-class ontol-347

ogy classification dataset derived from Wikipedia;348

SST-5 (Socher et al., 2013), a 5-class sentiment349

classification dataset; TREC (Voorhees and Tice,350

2000; Li and Roth, 2002), a 6-class question classi-351

fication dataset; RTE (Dagan et al., 2006), a binary352

entailment recognition dataset; and two biomedical353

domain-specific datasets, including DDI (Segura-354

Bedmar et al., 2013), a 5-class drug-drug interac-355

tion relation extraction dataset; PubMedQA (Jin356

et al., 2019), a 3-class biomedical question answer-357

ing dataset. Each evaluation dataset is split into op-358

timization/development/test sets. We follow (Lin359

and You, 2024) to preprocess the datasets. Evalua- 360

tion metrics are accuracy and COBias. 361

FuRud Setups. The 19 triangular membership 362

functions in Figure 2 form the base of selections 363

for FuRud. We take the full or a subset of training 364

instances from a downstream dataset to perform 365

FuRud optimization. We prompt Llama-2-13B in 366

1-shot manner to obtain softmax probabilities at 367

the output token over the entire vocabulary, which 368

is then normalized over the classes. These ICL 369

class probabilities and ground-truth labels are used 370

to form the optimization set. The energy func- 371

tion we used is a special form of Equation 7 with 372

ω = 1, γAcc = −1, γCOBias = α, γExtreme = β. 373

That is, the final multi-objective optimization func- 374

tion is minκZ = 1−ZAcc+αZCOBias+βZExtreme, 375

where we learn κi for class i = 1, . . . , N on the 376

optimization set. Each κi is selected from the given 377

set of membership functions, and κi = k denotes 378

that membership function fk is selected. At in- 379

ference time, let p = (p1, . . . , pi, . . . , pN ) be the 380

ICL class probabilities of a test instance, then these 381

probabilities are transformed by the learned mem- 382

bership functions, according to Eq. 3. The final 383

corrected prediction is ŷ = argmaxi fκi(pi). 384

The FuRud model Z is solved using simulated 385

annealing (SA). The core step of SA is to sample 386

a new solution κ = (κ1, . . . , κN ), e.g., (16, . . . , 387

8), which is evaluated against Z. If the new Z 388

is smaller, FuRud accepts the new solution; other- 389

wise, it accepts the new solution with an acceptance 390

probability exp(−∆Z/T ), where T is the tempera- 391

ture at the step. The values of α, β are tuned on the 392

development set. Since we do not know an estimate 393

for the expected threshold value λ in downstream 394

tasks, we set it to 0.5 for simplicity. Prompting 395

is done on a 80G A100 GPU. The SA algorithm 396

executes on an AMD EPYC 7742 CPU in minutes. 397

We compare FuRud with the ICL baseline and 398

two state-of-the-art ICL debiasing methods, includ- 399

ing DNIP (Lin and You, 2024) and BC (Zhou et al., 400

2024). For fair comparisons, for each dataset, we 401

prompt with three different 1-shot demonstrations 402

and obtain three sets of initial probabilities. The 403

demonstration is randomly sampled from optimiza- 404

tion examples. The average test accuracy and CO- 405

Bias over three runs are reported. 406

4.2 Main Results 407

Table 1 shows the test accuracy and COBias of ICL, 408

BC, DNIP, and FuRuD. Comparing FuRud to the 409

ICL baseline, the average relative accuracy increase 410
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Acc. ↑ COBias ↓
Task ICL BC DNIP FuRud ICL BC DNIP FuRud

AGNews 79.97.0 82.55.0 87.90.7 85.73.4 28.316.1 23.112.1 6.30.6 6.91.6
DBpedia 88.61.7 89.11.5 93.40.6 92.20.4 16.23.7 15.43.3 7.70.6 9.20.6

SST-5 44.94.3 47.62.3 48.31.9 48.83.8 53.15.0 49.810.7 18.710.1 22.28.4
TREC 68.510.8 72.94.4 77.12.0 77.33.9 35.96.5 31.95.1 14.21.3 18.51.4
RTE 71.52.2 76.10.6 74.30.8 74.51.8 43.47.0 16.41.9 4.33.3 7.15.0
DDI 7.20.9 14.42.5 40.46.0 69.36.3 45.65.9 32.67.6 7.53.2 36.84.6

PubMedaQA 55.12.9 55.51.3 63.114.0 55.95.4 61.21.9 26.23.2 41.129.6 24.08.4

Avg. 59.4 62.6 69.2 72.0 40.5 27.9 14.3 17.8

Table 1: Test accuracy and COBias (%); average scores over three runs are reported.

Dataset,
Classes

Test Sentence
(w/o prompt)

Test
Label

ICL Class
Prob.

ICL
Prediction

Membership
Function

Corrected
Class Prob.

Corrected
Prediction Interpretations

AGNews
World, Sports,
Business, Tech

US unemployment claims slip but
picture still murky, NEW YORK

Fewer Americans lined up to claim first-time
jobless benefits last week but analysts said

the modest decline said very little about
the current state of the labour market.

Business
[0.42, 0.01,
0.32, 0.25]

World
f7, f16,
f11, f7

[0, 0,
0.47, 0]

Business

By FuRud, all classes need
corrections. For this test instance,

original ICL wrongly predicts
Busi. as World. After correction,

probability of class Busi. becomes
highest, leading to the right prediction.

DBpedia
Company, School, Artist, Athlete,
Politician, Transportation, Building,
Nature, Village, Animal, Plant,
Album, Film, Book

Floyd Thomas Christian Sr.
(December 18 1914 – May 11 1998)

was Florida Commissioner of Education
from 1965 to 1973. Christian was born in
Bessemer Alabama. He moved to Pinellas

County with his family in 1927...

Politician

[0, 0.16, 0.08, 0.64,
0.12, 0, 0, 0,

0, 0, 0, 0,
0, 0]

Athlete

f3, f16, f7, f8,
DC, f2, f2, f2,
f16, f2, f16, DC,

DC, DC

[0, 0, 0, 0,
0.12, 0, 0, 0,

0, 0, 0, 0,
0, 0]

Politician

By FuRud, 4 out of 14 classes
apply Don’t Change (Their ICL

probability is relatively accurate.),
including class Politician. Though ICL

probability of the actual class Politic. is 0.12 and
unchanged after correction, classes like
Ath.’s probability is corrected to 0 by f8,

leading to the right prediction.

Table 2: Examples of sample-level corrections and explanations.

is 21%, and the average relative COBias reduction411

is 56%. The average test accuracy of FuRud over412

seven benchmarks is 72%, which outperforms the413

accuracy of BC and DNIP; the average test COBias414

of FuRud is 17.8%, which is comparable to DNIP415

with obtains the lowest COBias (14.3% ) among the416

methods compared. It is noted that FuRud uses the417

full optimization set to make a fair comparison to418

DNIP. However, FuRud can also work in a few-shot419

optimization manner, as discussed in Appendix B.420

On top of that, FuRud provides per-sample, per-421

class interpretability, analyzed as follows.422

4.3 Interpretability Analysis423

Across seven tasks, AGNews is the only task that424

Don’t Change was not applied to any class over any425

of its three runs with different initial ICL probabili-426

ties; RTE, DDI, and PubMedQA applied DC to a427

single class at most; TREC and SST-5 applied DC428

to a two classes at most; DBpedia, with 14 classes,429

at most applied DC to 4 classes, showing that most430

ICL output classes need correction.431

In addition, Figure 3 visualizes range-specific432

probability changes after applying membership433

function corrections on AGNews and RTE, demon-434

strating that the membership functions selected435

by FuRud effectively transform different proba-436

bility ranges of each output class to improve or at437

least maintain class accuracy, while making class438

accuracies more balanced. Moreover, the worst- 439

performing class by ICL in either task is signifi- 440

cantly improved by FuRud, due to that lower and 441

medium probability ranges of the worst-performing 442

class gets amplified and the higher ranges of other 443

classes gets slightly reduced. Results on other 444

datasets are similar. Table 2 exemplifies how per- 445

sample, per-class corrections are interpreted. 446

We further quantitatively evaluate the ratio of 447

instances that benefit from the correction. Figure 448

4 shows the accuracy of range-specific instances 449

within class Business of AGNews. This class 450

has 1,204 test instances, which are divided into 5 451

groups ranging from [0.0, 0.2] to [0.8, 1.0] based on 452

their initial ICL output probability in Business. For 453

example, 108 instances have ICL Business proba- 454

bilities in [0.2, 0.4] and only 9% of these instances 455

are correctly predicted. This group of instances is 456

effectively corrected by membership function f11 457

and synergetic corrections in other classes, reach- 458

ing 66% accuracy after correction, i.e., 57% (66%- 459

9%) more instances in this group obtain the right 460

predictions after corrections. 461

5 Discussion 462

5.1 FuRud on Letter Based ICL Outputs 463

FuRud greatly improves highly skewed letter based 464

ICL Outputs. In details, we experiment with the 465

letter answer prompts, which is widely used in clas- 466
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Figure 3: Class probabilities before and after applying corrections. For each task, we report results of the seed 1 run
out of 3 runs. There was a stark ICL accuracy difference of 37% between True and False on RTE. FuRud addresses
it by amplifying the medium range of False and simultaneously reducing the relatively high range of True.

Figure 4: Quantitative evaluation on the ratio of instances that benefit from the correction, exemplified by class
Business of AGNews. The difference of “Acc of examples” between bottom and top subfigures represents the ratio.
The red color highlights the activated pieces of the membership function for range-specific correction.

sification and reasoning tasks. Letter options could467

lead to more shallow pattern matching problems468

than using label token as answer options. Using this469

prompt, the model outputs a single letter choice of470

“A”, “B”, etc. corresponding to a class label, which471

often results in highly skewed outputs, because472

LLMs have a tendency to select a certain letter473

option regardless of the content (Bentham et al.,474

2024). We find similar issues when evaluating475

seven datasets using letter options. For example, on476

AGNews, the LLM biases to predict “B” (Sports),477

leading to an average of 99% accuracy in Sports478

and 12% accuracy in Business. FuRud improves479

accuracy by an relative 44% and achieves a signifi-480

cant COBias reduction of a relative 54% over ICL,481

as shown in Table 3 (averaged over seven datasets).482

Method Acc. COBias
ICL (letter) 36.913.6 47.215.6

FuRud (letter) 53.110.5 21.68.2

Table 3: Letter based results.

Besides the 483

tabled results, on 484

AGNews, overall 485

test accuracy 486

improves from 487

45% to 66%, COBias reduces from 54% to 10%. 488

Class accuracy changes are: World, 40% → 69%; 489

Sports, 99% → 70%; Business, 12% → 66%; 490

Technology, 27% → 59%. These results suggest 491

that FuRud can debias ICL class probabilities no 492

matter if an input prompt leads to spurious label 493

matching results. 494

5.2 Membership Function Granularities 495

We experiment with different combinations of the 496

four fuzzy partitions in Figure 2 and show that 497

membership granularities lead to accuracy-COBias 498

7



tradeoffs. In details, we conduct five ablations499

based on the four partitions characterized by differ-500

ent slopes ±1,±2,±4,±8, where a bigger slope501

indicates higher granularities. The ±1 partition is502

the DC partition (f18, f19). Since it plays a vital503

role in maintaining some classes, we keep it in all504

five combinations, including DC alone, DC and505

each of the rest partitions, and mixed partitions (all506

four partitions). The average scores across seven507

datasets are reported; for each dataset, average ac-508

curacy and COBias over three runs with different509

demonstrations is taken.510

Figure 5: Accuracy-COBias trade-
off of fuzzy partitions.

As shown511

by Figure 5,512

while COBias513

greatly reduces514

with higher515

membership516

granularities,517

overall accu-518

racy slightly519

decreases.520

Therefore, although it is tempting to include more521

fine-grained membership functions to reduce522

COBias, don’t forget the accuracy-COBias tradeoff.523

The best accuracy and COBias is achieved with524

mixed partitions. Moreover, although he DC525

partition alone can obtain 15% higher accuracy526

than ICL accuracy, but the improvement mainly527

comes from a single task (DDI). In addition, we528

added a side analysis with partition ±8 alone,529

while achieving similar accuracies, the COBias is530

6% higher than using DC and partition ±8 together,531

suggesting that the Don’t Change function is532

essentially needed when using mixed partitions to533

attain both good COBias and overall accuracy.534

5.3 Additional Analyses535

More Models. On varied relatively small LLMs,536

FuRud consistently improves their performances,537

showcased by additional results on Llama-2-7B538

and GPT-2-XL in Appendix C.539

More ICL Strategies. FuRud significantly im-540

proves accuracy and COBias for a more sophisti-541

cated prompting case, where the demonstration in542

the prompt uses N -shot examples taken from each543

class, as detailed in Appendix D.544

Computational Costs. The computational cost545

of FuRud is low. Execution time of the optimiza-546

tion program ranges rom several minutes to around547

30 minutes, depending on the number of classes,548

optimization set sizes, and etc.549

Interpretability Comparisons: FuRud vs DNIP. 550

DNIP does not capture sample-level nuances 551

needed in the correction as FuRud does, not suit- 552

able for classes that need fine-grained sample-level 553

correction. The membership functions overcome 554

this issue, explaining how each class in a particular 555

instance should be corrected, and this is the main 556

innovation of our paper. 557

Using traditional fuzzy classification systems. 558

Training involves extensive computations as it re- 559

quires maintaining multiple candidate rules for de- 560

biasing, e.g., “Rq: If class 1 probability is Aq1 and 561

. . . and class N probability is AqN , then predict 562

Yq”, and test time for a winning rule grows with 563

the number of candidates. To obtain high accu- 564

racy, a huge number of rules may be employed, 565

making the system inefficient. In contrast, FuRud 566

is cost-effective, and implicitly reflects the many 567

rules employed in a traditional system. For more 568

discussions, please refer to Appendix E. 569

6 Conclusion 570

We present FuRud, a post-hoc debiasing method 571

for sample-level ICL output correction that effec- 572

tively enhances overall accuracy and accuracy bal- 573

ance across multiple classes, leveraging combina- 574

torial optimization to select optimal fuzzy mem- 575

bership functions for interpretable, range-specific 576

corrections on the original ICL class probabilities. 577

On a diverse set of text classification benchmarks, 578

FuRud greatly reduces COBias while enhancing 579

overall accuracy over ICL results, outperforming 580

state-of-the-art debiasing methods. 581

Limitations 582

There is a possibility that certain classes in a task 583

may not need as much fine-grained sample-level 584

correction as other classes. Those classes may 585

apply class-level correction to any instance, e.g., 586

weight coefficients, to obtain sufficient COBias re- 587

duction while being interpretable at the broader 588

level. As such, an organic integration of both broad 589

and fine-grained corrections should be studied in 590

the future. In addition, class accuracy imbalances 591

widely exist in variants of small (e.g., Llama-2- 592

13B) and larger (e.g., ChatGPT) LLMs (Lin and 593

You, 2024), how much FuRud could balance larger 594

LLMs could be quantitatively analyzed to exem- 595

plify more practical usages of the method. This 596

paper primarily focuses on a single small model for 597

its representativeness as a widely applied LLM. 598

8



References599

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens600
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.601
DBpedia: A Nucleus for A Web of Open Data. In602
Proceedings of the 6th International The Semantic603
Web and 2nd Asian Conference on Asian Semantic604
Web Conference, pages 722–735.605

Oliver Bentham, Nathan Stringham, and Ana Marasović.606
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A Details on Membership Functions757

Table 4 lists the details about the membership func-758

tions used in this work.759

Figure 6: Few-shot optimization.

B Few-shot Optimization 760

FuRud can optimize a downstream task with as 761

few as 10 examples. We take few-shot optimized 762

TREC and SST-5 results for illustration. Figure 6 763

shows test accuracy and COBias of FuRud (in mint 764

green color) when used in a few-shot optimization 765

manner, starting with 10 few-shot examples and 766

growing to 100 and 500 examples. TREC and SST- 767

5 are shown to illustrate that FuRud can achieve an 768

average of 9% accuracy improvements with 18% 769

COBias reduction over the ICL baseline at 10 few- 770

shot optimization examples. 771

At 10 examples, FuRud obtains a 11% and 6% 772

relative increase in accuracy over the ICL base- 773

line on TREC and SST-5 respectively, at the same 774

time, it reduces COBias by a relative 20% and 775

16% on each dataset. The accruacy and COBias 776

performances gradually improve as the number of 777

examples increases to 500. Compared to existing 778

methods, FuRud outperforms BC in few-shot sce- 779

narios, and performs better than (TREC) or on par 780

(SST-5) with DNIP while being interpretable. Sim- 781

ilar findings apply to the other five datasets, as 782

shown in Figure 7. In short, FuRud achieves better 783

or comparable results than DNIP, and better results 784

than BC and the ICL baseline, while providing 785

enhanced interpretability. 786

C FuRud’s Performances on More LLMs 787

We ran experiments of FuRud on two additional 788

models, Llama-2-7B and GPT2-XL. Results are 789

shown in Table 5. For example, on Llama-2-7B, 790

FuRud improves accuracy by a relative 22%, and 791

reduces COBias by a relative 63% over ICL base- 792

lines, demonstrating that FuRud gains consistent 793

performance improvements on various models. In- 794

deed, our current evaluations are focused on rela- 795

tively small LLMs, but our approach can also work 796

for larger models, as long as class probabilities are 797

available and the imbalanced per-class accuracy 798
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Function Parameters Name Short Form Meaning

f1 0, 0, 0.5 Low-2 L-2
Low-range transformation,
smooth change with slope −2, peak at 0

f2 0, 0.5, 1 Medium-2 M-2
Medium-range transformation,
smooth change with slope ±2, peak at 0.5

f3 0.5, 1, 1 High-2 H-2
High-range transformation,
smooth change with slope 2, peak at 1

f4 0, 0, 0.25 Low-4 L-4
Low-range transformation,
sharp change with slope −4, peak at 0

f5 0, 0.25, 0.5 Medium Low-4 ML-4
Low-to-medium-range transformation,
sharp change with slope ±4, peak at 0.25

f6 0.25, 0.5, 0.75 Medium-4 M-4
Medium-range transformation,
sharp change with slope ±4, peak at 0.5

f7 0.5, 0.75, 1 Medium High-4 MH-4
Medium-to-high-range transformation,
sharp change with slope ±4, peak at 0.75

f8 0.75, 1, 1 High-4 H-4
High-range transformation,
sharp change with slope 4, peak at 1

f9 0, 0, 0.125 Very Very Low-8 VVL-8
Very-very-low-range transformation,
very sharp change with slope −8, peak at 0

f10 0, 0.125, 0.25 Very Low-8 VL-8
Very-low-range transformation,
very sharp change with slope ±8, peak at 0.125

f11 0.125, 0.25, 0.375 Low-8 L-8
Low-range transformation,
very sharp change with slope ±8, peak at 0.25

f12 0.25, 0.375, 0.5 Medium Low-8 ML-8
Low-to-medium-range transformation,
very sharp change with slope ±8, peak at 0.375

f13 0.375, 0.5, 0.625 Medium-8 M-8
Medium-range transformation,
very sharp change with slope ±8, peak at 0.5

f14 0.5, 0.625, 0.75 Medium High-8 MH-8
Medium-to-high-range transformation,
very sharp change with slope ±8, peak at 0.625

f15 0.625, 0.75, 0.875 High-8 H-8
High-range transformation,
very sharp change with slope ±8, peak at 0.75

f16 0.75, 0.875, 1 Very High-8 VH-8
Very-high-range transformation,
very sharp change with slope ±8, peak at 0.875

f17 0.875, 1, 1 Very Very High-8 VVH-8
Very-very-high-range transformation,
very sharp change with slope 8, peak at 1

f18 0, 0, 1 Full-1 F-1
Full-range transformation,
very smooth change with slope −1, peak at 0

f19 0, 1, 1 Don’t Change Don’t Change Identity function

Table 4: Names, parameters (a, b, c), short forms, and meanings for membership functions.

issue exists.799

D FuRud’s Performances under More800

ICL Demonstration Selection801

Strategies802

We additionally prompt Llama-2-13B with the fol-803

lowing demonstration selection strategy: k-shot804

prompting, where k is the number of classes. A805

demonstrative example from each class is randomly806

selected from the optimization set and represented807

in the prompt. FuRud significantly improves accu-808

racy and COBias over ICL baselines, as shown in809

Table 6.810

Compared to the 1-shot strategy (Table 1), the k-811

shot strategy provides a different starting point for812

FuRud. For example, the average ICL accuracy by813

k-shot (61.9%) is slightly larger than that obtained814

by 1-shot (59.4%), and average COBias (25.6%) is815

smaller than 1-shot (40.5%). FuRud boosts average816

accuracy to 73.5% and reduces COBias to 13.0%.817

In conclusion, different example selection strate- 818

gies provide different starting points to optimize, 819

on which FuRud consistently improve. 820

E More Discussions 821

We have a different motivation from traditional 822

post-hoc corrections. Some may argue that en- 823

suring equitable accuracies across all classes is a 824

well-studied problem in standard machine learn- 825

ing classifiers. It is worth emphasizing that the 826

per-class prediction accuracy imbalance should be 827

treated within their particular context. The accu- 828

racy bias in ICL outputs stems from completely 829

different causes than the unequal class accuracies 830

observed in potentially overfitted traditional classi- 831

fiers, where the former is rooted in prompts and the 832

LLMs, and the latter arises from class imbalance 833

of supervised training data. That’s why our method 834

is particularly applied to ICL’s output token class 835

probabilities, pinpointing specific patterns and ap- 836
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Model Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedQA Avg.

Llama-2-7B

ICL Acc 86.42.5 88.92.0 42.111.1 66.76.6 66.34.3 6.70.4 40.36.7 56.8
COBias 14.06.5 13.52.1 55.61.5 33.210.0 61.610.5 41.41.7 40.916.1 37.2

FuRud Acc 88.50.5 91.50.5 49.50.7 73.13.9 72.71.0 54.46.4 55.77.6 69.3
COBias 7.42.5 8.40.6 24.01.2 14.11.9 4.22.7 16.95.0 21.816.6 13.8

GPT2-XL

ICL Acc 52.15.4 31.89.9 34.913.7 27.410.5 55.41.9 14.54.4 55.20.0 38.8
COBias 35.511.5 40.03.6 48.75.4 45.68.7 82.424.5 40.75.9 59.412.6 50.3

FuRud Acc 69.00.5 67.711.8 43.43.1 41.72.7 51.23.7 53.217.0 48.40.3 53.5
COBias 7.42.9 23.06.5 25.41.4 30.27.0 8.93.6 23.16.5 17.64.6 19.4

Table 5: Test accuracy and COBias Comparisons on more LLMs.

Demonstration
Selection Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedQA Avg.

k-shot ICL Acc 83.51.5 95.21.2 50.32.3 67.012.7 75.00.8 9.71.0 52.35.3 61.9
COBias 14.95.1 7.02.2 36.37.2 38.25.1 22.513.2 39.73.5 20.94.2 25.6

FuRud Acc 88.10.6 96.60.4 54.31.3 77.96.0 75.94.6 62.32.1 59.25.9 73.5
COBias 7.72.5 4.40.7 13.84.1 11.63.3 5.01.4 27.02.2 21.38.7 13.0

Table 6: Test accuracy and COBias under the k-shot demonstration selection strategy.

plying precise, targeted corrections.837

In the future, more versatile rules can be ex-838

plored, and we may also examine the tradeoff be-839

tween the accuracy and rule complexity. Simpler840

rules are easier to understand, but the transforma-841

tions may fail to catch the intricate interactions842

between class predictions. More complex rules843

may have better modeling capabilities, but they are844

harder to read. In addition, this work focuses on845

evaluating text classification, and we will extend846

interpretable ICL debiasing to more language tasks,847

modalities, and model architectures.848
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Figure 7: Additional few-shot optimization results.

13


	Introduction
	Related Work
	Fuzzy Rule Optimization Based Debiasing
	Experiments
	Experimental Setups
	Main Results
	Interpretability Analysis

	Discussion
	FuRud on Letter Based ICL Outputs
	Membership Function Granularities
	Additional Analyses

	Conclusion
	Details on Membership Functions
	Few-shot Optimization
	FuRud's Performances on More LLMs
	FuRud's Performances under More ICL Demonstration Selection Strategies
	More Discussions

