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ABSTRACT

Reinforcement Learning (RL) can be considered as a sequence modeling task, i.e.,
given a sequence of past state-action-reward experiences, a model autoregressively
predicts a sequence of future actions. Recently, Transformers have been success-
fully adopted to model this problem. In this work, we propose State-Action-
Reward Transformer (StARformer), which explicitly models strongly-related lo-
cal causal relations to help improve action prediction in long sequences. StAR-
former first extracts local representations (i.e., StAR-representations) from each
group of state-action-reward tokens within a very short time span. A sequence
of such local representations combined with state representations, is then used to
make action predictions over a long time span. Our experiments show that StAR-
former outperforms the state-of-the-art Transformer-based method on Atari (im-
age) and Gym (state vector) benchmarks, in both offline-RL and imitation learn-
ing settings. StARformer is also more compliant with longer sequences of inputs
compared to the baseline. The code will be released online.

1 INTRODUCTION

Reinforcement Learning (RL) naturally comes with sequential data: an agent observes a state from
the environment, takes an action, observes the next state and receives a reward from the environ-
ment. With the recent advances, RL has been formulated as a sequential decision-making task, and
Transformer (Vaswani et al., 2017) architectures have been adopted as generative trajectory models
to solve it, i.e., given past experiences of an agent composed of a sequence of state-action-reward
triplets, a model iteratively generates an output sequence of action predictions (Chen et al., 2021;
Janner et al., 2021). This newly introduced formulation has shown to be useful, especially in terms
of its capability to model long-term sequences (Janner et al., 2021) and sequence distributions (Chen
et al., 2021).

In the state-of-the-art Transformer models for RL such as Chen et al. (2021); Janner et al. (2021),
an input sequence is plainly processed through self-attention – the core modeling component of
Transformers (Vaswani et al., 2017). In fact, here, states, actions, and rewards are considered as in-
dividual tokens (unit representations), and self-attention is applied to model their pairwise relations.
This way, a given state, action, or reward token may attend to any of the (previous) tokens in the
sequence, and this allows the model to capture long-term relations.

However, states, actions, and rewards within closed timesteps are strongly connected by significant
causal relations. For instance, the states in the recent past have a stronger effect on the next action,
compared to the states in distant past. Similarly, the immediate-future state and the corresponding
reward are direct results of the current action. In such a setting, a Transformer attending to all
tokens naively may suffer from excess information and dilute the truly-essential relation priors,
especially when inputs are quite long, either in spatial (Yang et al., 2021) or temporal (Janner et al.,
2021) dimension, or with the Transformer layers going deep (Touvron et al., 2021b). Therefore, we
believe that learning a short-term representation from these strongly-related elements (i.e., tokens in
this case) explicitly, can benefit from strong relation priors and eventually help long-term sequence
modeling in RL.

To this end, we propose State-Action-Reward Transformer (StARformer), a Transformer architec-
ture learning State-Action-Reward-representations (i.e., StAR-representations) for sequence mod-
eling in RL. StARformer comes with two basic components: a Step Transformer and a Sequence
Transformer. The Step Transformer learns local representations (i.e., StAR-representations) explic-
itly, based on strongly-related state-action-reward tokens within a timestep. The Sequence Trans-
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former then combines StAR-representations and state representations over a long-term span to make
a sequence of action predictions. In our experiments, we show that StARformer outperforms the
state-of-the-art Transformer-based method in both offline-RL and imitation learning settings, while
being more compliant with longer input sequences in comparison.

2 PRELIMINARY
2.1 TRANSFORMER

Transformer (Vaswani et al., 2017) architectures showed a diverse application in language (Devlin
et al., 2018) and vision tasks (Dosovitskiy et al., 2020; Arnab et al., 2021). Given a sequence
of input tokens X = {xi}, X ∈ Rn×d, a Transformer layer maps it to an output sequence of
tokens Z = {zi}, Z ∈ Rn×d through Multi-headed Self-Attention (MSA) (Devlin et al., 2018),
followed by Multi-Layer Perceptron blocks (MLP) with residual connection (He et al., 2016) and
Layer Normalization (LN) (Ba et al., 2016): Z ′ = MSA(LN(X)) +X , Z = MLP(LN(Z ′)) + Z ′.
A Transformer model is obtained by stacking multiple such layers. We denote the mapping for each
layer (l) as F (·): Zl = F (Zl−1). We use the notation F (·) to represent a Transformer layer in the
remaining sections.

Self-attention (Lin et al., 2017; Parikh et al., 2016; Cheng et al., 2016; Vaswani et al., 2017) is
the core component of Transformer, which models pairwise relations. In Vaswani et al. (2017),
an input token representation X is linearly mapped into query, key and value representations, i.e.,
{Q,K, V } ∈ Rn×d, to compute self-attention as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V.

The idea is to aggregate values based on pairwise similarity computed from queries and keys. In such
mechanism, each token can “attend to”, i.e. aggregate all tokens in the sequence, with a specified
weight.

Vision Transformer (ViT) (Dosovitskiy et al., 2020) extends the same idea of self-attention to the
image domain, by tokenizing input images, i.e., extracting a set of non-overlapping image patches
to create a sequence of tokens. Given an input image s ∈ RH×W×C , a set of n non-overlapping
local patches P = {pi} ∈ Rh×w×C is extracted, flattened and linearly mapped to a sequence of
tokens {xi} ∈ Rd, through a fully-connected (FC) layer Rhwc → Rd. We use a similar tokenizing
approach in ViT for a part of our state token embeddings.

2.2 RL AS SEQUENCE MODELING

Figure 1: Illustration of RL as sequence modeling (using Transformer). (a) A straightforward ap-
proach. (b) Our improvement. The concept is local features helps the long-term modeling. Red
arrows stand for action is “autoregressively generated” by state. Green arrow stands for this local
representation contributes the action generation together with state representation.

We consider a Markov Decision Process (MDP), described by tuple (S,A, P,R), where s ∈ S
represents the state, a ∈ A, the action, r ∈ R, the reward, and P , the transition dynam-
ics given by P (s′|s, a). In MDP, a trajectory (τ ) is defined as the past experience of an agent,
which is a sequence composed of states, actions, and rewards in the following temporal order
τ = {r1, s1, a1, r2, s2, a2, . . . , rt, st, at}. RL as a sequence modeling task is formulated as
making action predictions from past experience (Chen et al., 2021; Janner et al., 2021) according to:

Pr(ât) = p(at| r1:t, s1:t, a1:t−1). (1)

Recent work (Chen et al., 2021; Janner et al., 2021) try to adopt an existing Transformer architec-
ture (Radford et al., 2019) to RL in this formulation. In Chen et al. (2021); Janner et al. (2021),
states (s), actions (a), and rewards (r) are considered as input tokens (see Figure 1a), while using a
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Figure 2: Architecture of the proposed StARformer model (with an image-based state representa-
tion). (a) Network overview, which shows how, Step Transformer and Sequence Transformer are
connected at each layer. (b) Detailed functionality of each component. Step Transformer processes
T separate groups of tokens simultaneously with shared weights. We learn StAR-representation glt
by aggregating output tokens from Step Transformer and use it in Sequence Transformer. We only
keep tokens with even indices and discard the others in Sequence Transformer’s output since we
generate actions from states. (c) A trajectory is segmented into local groups of (at−1, rt−1, st) and
embeded as tokens. (d) States are separately embedded using convolutions with shared weights.

causal mask to ensure an autoregressive output sequence generation (i.e. following Eq. 1). Here, a
token can only access its corresponding previous tokens—in time— through self-attention.

In contrast, our formulation models strong causal relations explicitly, while attending to long-term
relations separately. To do this, in this work, we break a trajectory into small groups of state-
action-reward tuples (i.e., s, a, r), and learn explicit local relations within the tokens of each group
through self-attention (see Figure 1b). We further model long-term relations together with learned
local relations inclusively. Our grouping is based on the intuition that the local causal relations
between s, a and r are strong, i.e., the reward rt−1 and the state st are direct results of the action
at−1. Therefore, we propose our StARformer to learn strong intermediate representations from local
groups of (at−1, rt−1, st) explicitly, to help improve long-term sequence modeling.

3 METHOD
3.1 OVERVIEW

StARformer consists of two basic components: Step Transformer and Sequence Transformer,
together with interleaving connections (see Figure 2a). Step Transformer learns StAR-
representations from strongly-connected local tokens explicitly, which are then fed into the Sequence
Transformer along with integrated state representations to model a long-term sequence of trajectory.
At the output of the final Sequence Transformer layer, we make action predictions via a prediction
head. In the following subsections, we introduce the two Transformer components in detail.

3.2 STEP TRANSFORMER

3.2.1 STATE-ACTION-REWARD EMBEDDINGS

Grouping state-action-reward Our intuition is to model strong local relations explicitly in the
Step Transformer. To do so, we first segment a trajectory (τ ) into a set of groups, where each group
consists of previous action (at−1), reward (rt−1) and current state (st)1. See Figure 2b. Each element
within a group has a strong causal relation with the others.

Patch-wise state token embeddings To create a more descriptive state representation, we tok-
enize each input state by dividing it into a set of non-overlapping “spatial” patches along the (part
of) their dimensions. We can consider such patches for both image or vector input states, i.e., the
two main types of input state representations in RL. In the case of image states st ∈ RH×W×C , we

1We pad the trajectory with a null action and zero reward at the initial state s1 of the trajectory (see Sec-
tion 3.4)
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divide each image into patches {sit},∈ Rh×w×C , similar to ViT (Dosovitskiy et al., 2020), which
gives HW/hw state tokens in total per image. In the case of vector states st ∈ RC , we simply
consider each channel sit as a “spatial” patch from its channel space, and obtain C state tokens in
total per vector. We use a linear projection— weights of which are shared by each state patch across
all groups— to create token embeddings (RhwC → Rd for image states or R1 → Rd for vector
states):

zsit =

{
FC(Flatten(sit)) + espatial

i for image states,
FC(sit) + espatial

i for vector states,

where espatial
i ∈ Rd represents the spatial positional embedding for each patch location, n, the number

of patches and d, the embedding dimension. Note that there are no temporal positional embeddings
for patch-wise spatial tokens since they are processed agnostic of timesteps.

Our motivation in creating a set of patch-wise tokens is to allow the Step Transformer to model
the relations of actions and rewards with state localities. We believe that it encodes more (spatially)
descriptive local information in the learned StAR-representation, and eventually helps the task of
sequential action prediction.

Action and reward token embeddings We simply embed the action tokens with a linear projec-
tion, and the reward tokens with a linear projection followed by a Tanh(·) activation function similar
to Chen et al. (2021) to smooth a proper value range:

zat−1 = FC(at−1),
zrt = Tanh(FC(rt)).

Altogether, we get a state-action-reward representation as the input to the initial Step Trans-
former layer which is given by: Z0

t = {zat−1 , zrt , zs1t , zs2t , . . . , zs
n
t
}. We have T groups of

such token representations per trajectory, which are simultaneously processed by the Step Trans-
former with shared parameters.
3.2.2 STEP TRANSFORMER LAYER

We adopt the conventional Transformer design from Vaswani et al. (2017) (see Section 2.1) as our
Step Transformer layer. Each group of tokens from the previous layer Zl−1

t is transformed to Zl
t by

a Step Transformer layer with the mapping F l
step: Zl

t = F l
step(Z

l−1
t ).

At the output of each Step Transformer layer l, we further obtain a State-Action-Reward-
representation (StAR-representation) glt ∈ RD by aggregating output tokens Zl

t ∈ Rn×d (see green
flows in Figure 2b). We do this by concatenating tokens of each group Zl

t and linearly projecting
(Rnd → RD), where d and D correspond to embedding dimensions of Step Transformer and Se-
quence Transformer respectively:

glt = FC([Zl
t]) + etemporal

t .

Here [·] represents concatenation of the tokens within each group and etemporal
t ∈ RD, the temporal

positional embeddings for each timestep. It is important to note that we add such temporal positional
embeddings to glt at each layer, as [Zl

t] is learned agnostic in time. Finally, The output StAR-
representation glt is fed into the corresponding Sequence Transformer layer for long-term sequence
modeling.

3.3 SEQUENCE TRANSFORMER

Our Sequence Transformer models long-term sequences by looking at StAR-representations and the
integrated state tokens (introduced below) over the whole trajectory.

3.3.1 INTEGRATED STATE TOKEN EMBEDDINGS

In contrast to the patch-wise token embeddings in Step Transformer, we embed the input states
st (image or vector) as a whole, to create integrated state tokens h0t to be fed into the Sequence
Transformers. Each such token represents a single state representation, describing the state globally
in space. We do this by processing each state through multiple convolutional layers (in the case of
image states), or through multiple fully-connected layers (in the case of vector states). We use the
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convolutional encoder from Mnih et al. (2015).

h0t =

{
Conv(st) + etemporal

t for image states,
FC(st) + etemporal

t for vector states,

where etemporal
t ∈ RD represents the temporal positional embeddings exactly the same as we add to

gt for each timestep. This difference in state embeddings (patch-wise vs integrated) is motivated by
the potential benefits of the representation diversity, which is empirically validated in our ablations
in Section 5.4.

3.3.2 SEQUENCE TRANSFORMER LAYER

Similar to Step Transformer, we use the conventional Transformer layer design from Vaswani et al.
(2017) for our Sequence Transformer. The input to the Sequence Transformer layer l consists of
representations from two sources: (1) the learned StAR-representations glt ∈ RD from the corre-
sponding Step Transformer layer, and (2) the integrated state representation hl−1t ∈ RD from the
previous Sequence Transformer layer. The two types of token representations are merged to form a
single sequence, preserving their temporal order (as elaborated below):

Y l
in = {gl1, hl−11 , gl2, h

l−1
2 , . . . , glT , h

l−1
T }. (2)

We place glt before hl−1t —which originates from st— because glt contains information of the pre-
vious action at−1, which comes prior to st in the trajectory. We also apply a causal mask in the
Sequence Transformer to ensure that the tokens at time t cannot attend any future tokens (i.e., > t).

Sequence Transformer computes an intermediate set of output tokens Y l
out = F l

sequence(Y
l

in). We
then select the tokens at even indices of Y l

out (where indexing starts from 1) to be the integrated
state tokens hlt, which are fed into the next Sequence Transformer layer. We do this because the
even indices correspond to the tokens originated from the integrated state representations st (see
Figure 2c top right), and should be used to predict actions (see Figure 1) from an autoregressive
perspective. Tokens in Y l

out with odd indices are discarded.

Y l
out = {ylout;1, y

l
out;2, . . . , y

l
out;2T },

hli := ylout;2i.

Therefore, the overall input (StAR-representation and integrated state representation) to the subse-
quent layer can be given as (by rewriting Eq. 2):

Y l+1
in = {gl+1

1 , hl1, g
l+1
2 , hl2, . . . , g

l+1
T , hlT } = {gl+1

i , ylout;2i}Ti=1

3.3.3 ACTION PREDICTION

The output of the last Sequence Transformer layer (after selection as mentioned above) is used to
make action predictions by processing it through a prediction head φ(·) linearly mapping to the
action dimension (with shared weights for all timesteps): ât = φ(hlt) (see Appendix for more
details).

3.4 TRAINING AND INFERENCE

During training, we provide trajectories τ with a length T , randomly sampled (and sliced) from a
memory buffer. We use cross-entropy loss for a discrete action space and the mean-squared error
(MSE) for a continuous action space. The overall loss term for a given training sequence is the loss
averaged across all T predictions.

At inference, we initialize an input trajectory as τ = {a0, r0, s1}, where a0 is a null action2 and
r0 = 0 is a zero reward which we pad at the start of each trajectory. StARformer makes an initial
prediction â1 based on τ and receive next state s2 and reward r2. We concatenate these â1, s2 and
r2 to the trajectory τ and make iterative predictions until one episodes ends.

2See Appendix for details on defining null actions.
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4 EXPERIMENT SETTINGS

Settings We use offline RL (Levine et al., 2020) and imitation learning as our experiment settings.
These are commonly used in related work which formulates RL as a sequence modeling task (Chen
et al., 2021; Janner et al., 2021), because ground truth labels can be obtained for actions to train a
sequence model. In offline RL, we have a fixed memory buffer of sub-optimal trajectory rollouts.
Offline RL is generally more challenging compared to conventional RL (Levine et al., 2020) due to
the shifted distribution.

In imitation learning, however, an agent is not exposed to reward signals. Therefore, in this setting,
we simply keep the same sub-optimal dataset from offline RL and remove the rewards when creating
the trajectory sequences. This is an even harder problem compared to traditional imitation learning,
where the provided trajectories are usually expert demonstrations (i.e. with high rewards). The only
difference in terms of the model structure is that we now have one fewer reward token at the input of
Step Transformerin our model, and T fewer reward tokens in the baseline model (T is the number
of time-steps in the input trajectory).

Environments We consider Atari (Bellemare et al., 2013) (image state, discrete action space)
and OpenAI Gym (Brockman et al., 2016) (vector state, continuous action space) to evaluate our
model in different input modalities and action spaces. We pick 6 games in Atari: Assault, Boxing,
Breakout, Pong, Qbert, and Seaquest. We select 3 environments in OpenAI Gym (Brockman et al.,
2016): Hopper, Walker, and HalfCheetah. The same environments are used in Chen et al. (2021)
as well. We use the same offline RL datasets as in Chen et al. (2021) to perform a thorough and
fair comparison. In fact, we use the Atari dataset from Agarwal et al. (2020) and the Gym dataset
from Fu et al. (2020).

We report the absolute value of average episode return (i.e., cumulative reward) from evaluation
rollouts. Results with mean and standard deviation are from multiple runs across 3 random seeds.

5 RESULTS

Table 1: Evaluation episode returns of our proposed StARformer (SF) and the baseline Decision-
Transformer (DT) Chen et al. (2021) on Atari and Gym environments. The highest scores in each
setting and environment are in bold. Gain is the relative improvement (percentage) of our method
compared to the baseline. We also present the reward statistics of the training datasets for reference.

Setting Method Atari Environment
Assault Boxing Breakout Pong Qbert Seaquest

offline RL DT 504 ± 54 78.3 ± 4.6 70.7 ± 8.1 12.8 ± 3.2 3782 ± 695 1007 ± 170
SF (ours) 772 ± 215 80.7 ± 5.6 132.1 ± 21.5 16.4 ± 2.7 6584 ± 2643 771 ± 366
(Gain) 53.1% 3.1% 97.0% 28.2% 74.1% -23.4%

Imitation DT 595 ± 89 72 ± 2.6 54.3 ± 1.2 7.7 ± 2.1 2099 ± 1075 826 ± 118
SF (ours) 867 ± 201 79.4 ± 2.6 89.0 ± 13.0 15.4 ± 2.8 6448 ± 751 915 ± 121
(Gain) 45.6% 10.2% 63.8% 100.9% 207.2% 10.7%

Dataset (Max.) 153 98 92 21 600 290

Setting Method Gym Environment
HalfCheetah Hopper Walker2d

offline RL DT 10799 ± 74.1 3578 ± 13.8 4995.3 ± 18.6
SF (ours) 11278 ± 20.7 3549 ± 27.9 5010.3 ± 49.9
(Gain) 4.4% -0.8% 0.3%

Imitation DT 10805 ± 130.3 3572 ± 4.0 5024.3 ± 26.5
SF (ours) 11315 ± 15.9 3592 ± 4.7 5034.3 ± 11.2
(Gain) 4.7% 0.6% 0.2%

Dataset (Mean ± Std.) 10656 ± 441.7 3511 ± 328.6 4920.5 ± 136.4

5.1 CAN STARFORMER IMPROVE SEQUENCE MODELING FOR RL?

We first compare our StARformer (SF) with the state-of-the-art Transformer-based RL method in
Atari and Gym environments, under both offline RL and imitation learning settings. We select the
Decision-Transformer proposed in Chen et al. (2021), (referred as DT) as our baseline. Here, we
keep T = 30 for Atari and T = 20 for Gym, similar to (Chen et al., 2021), where T is the number of
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Figure 3: Performance under different trajectory lengths. T ∈ {10, 20, 30} in Atari and
T ∈{5,10,15,20} in Gym. In most of the cases, StARformer shows a better performance when
increasing the trajectory length, and surpasses that of the baseline, validating that our method can
effectively model long-term sequences.

time-steps (length) of each input trajectory (τ ). Evaluation rollouts automatically end in Atari when
the game is over, and after a fixed number of steps (1000 steps) in Gym.

Table 1 shows that our method outperforms the baseline almost always, in both offline RL and imi-
tation learning settings. StARformer outperforms the baseline by a large margin in Atari, showing
that our method can model image state inputs very well. Our method also has a lower standard devi-
ation than the baseline in Gym under imitation learning while achieving higher rewards on average.
This suggests our StARformer gains better stability in modeling trajectories without the guidance of
reward signals.

We further compare the change in performance, when switching from offline RL to imitation, show-
ing how reward signals affect the sequence modeling. In fact, Table 1 shows that in Atari, StAR-
former performs comparably (except for Breakout) in both settings, but the performance of the
baseline has dropped in imitation learning setting. It validates that StARformer can model RL as a
sequence prediction task, even without a reward signal, whereas the baseline considerably depends
on the reward. However, in Gym environments, removing rewards surprisingly results in minor per-
formance changes for both of the methods. We believe this is because Transformers are sensitive to
the highly dense rewards in Gym as opposed to Atari.

5.2 CAN STARFORMER MODEL LONG TRAJECTORIES?

Longer sequences are usually more challenging to model, but at the same time, they should benefit
action predictions due to extra information. We vary the input sequence length T in both Atari
and Gym environments and evaluate the effect on offline RL setting. The results are shown in
Figure 3. It shows in general, StARformer performs better when increasing the trajectory length,
often outperforming the baseline, which validates the claim that our method can model long-term
sequences effectively.

5.3 WHICH REWARD SETTING: STEP-WISE REWARD OR REWARD-TO-GO?

Table 2: Results in step-wise reward and reward-to-go settings (under offline RL).
Method Setting Assault Boxing Breakout Pong Qbert Seaquest

SF (ours) step-wise 772 80.7 132.1 16.4 6584 771
RTG 420 60.2 23.1 0.7 1748 670

DT RTG 504 78.3 70.7 12.8 3782 1007
step-wise 452 66.2 64.9 11.0 3494 611

We are also interested in how different reward settings work with sequence modeling in RL, and con-
sider the effect of step-wise reward and reward-to-go (RTG) (Chen et al., 2021). Step-wise reward rt
is the raw reward generated by an environment for each step, which is usually considered in most of
RL algorithms. Our StARformer also uses this step-wise reward. Decision-Transformer (Chen
et al., 2021), however, originally uses RTG R̂t, which is the sum of future step-wise rewards:
R̂t =

∑T
t′=t rt′ . We perform an experiment applying both the reward settings to each method,

results of which are shown in Table 2. The original reward settings used by each method is under-
lined. We observe that none of the methods work well when the reward formulation has changed.
StAR-representation even shows a larger performance drop under RTG. This is because our method
benefits from modeling the information over a short-term span, which conflicts with RTG as it en-
codes the information from the future.
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5.4 ABLATIONS

We use the Atari environments to conduct our ablations because: a) the episode returns in Atari are
more obvious and — in most cases — have no upper limit, b) Atari has images as input states, which
is better for studying the effect of integrated state tokens — used by the Sequence Transformer —
and, c) it is more suited to investigate the model capacity.
Integrated state tokens Here, we investigate the effect of integrated state tokens hlt in long-term
modeling i.e., in Sequence Transformer, and how we encode such state tokens. In addition to our ap-
proach which uses convolutional layers, we implement two other variants: (a) We remove integrated
state tokens, meaning that Sequence Transformer learns solely from StAR-representations {ght } (re-
ferred to as Ours w/o conv). (b) Similar to our patch-wise embedding, we encode state inputs to
the Sequence Transformerusing another patch embedding (referred to as Ours (conv. → ViT)). It is
worth noting that for the variant (b), the embedding modules in our two Transformers do not share
the same parameters. Results of this ablation are given in Table 3. We observe that our method with

Table 3: Ablation results on state representations of the Sequence Transformer (imitation learning)
Method Assault Boxing Breakout Pong Qbert Seaquest

Ours (w/ conv.) 867 79.4 89 15.4 6448 915
Ours w/o conv. 580 78.7 35 14 4358 936
Ours (conv→ ViT) 508 53 33 13 1825 536

convolutional integrated state tokens performs the best. Either removing or replacing the convolu-
tional encoder results in a performance drop. We believe that the diversity between convolutional
and ViT representations helps the model perform better— as also seen in model distillation (Touvron
et al., 2021a) or model ensembles.
Step-to-Sequence layer-wise connection In StARformer, the Step Transformer is connected to
the Sequence Transformer via glt in a layer-wise manner (i.e., at each corresponding layer). We
further investigate why our connection method is important by comparing with two other variants:
(a) glt is fused with hlt by summation (referred as Ours Fusion, see Figure 4(a)). (b) the only con-
nection between the two is from the last layer of Step Transformer to the first layer of Sequence
Transformer , in which, the Sequence Transformer is “stacked” on-top of the Step Transformer (re-
ferred as Ours Stack, see Figure 4(b)). Results are shown in Table 4. It shows that our per-layer
connection method is important for long-term prediction, which is fusing information from StAR-
representation in a layer-wise manner, and is done through attention rather than direct fusion.

Figure 4: Illustration for our ablation study Transformer connection. We omit positional embeddings
for simplicity. gl (in green) is the StAR-representation from l-th layer of the Step Transformer and
h0 (in blue) is the initial integrated state token embeddings for Sequence Transformer. L is the
number of layers.

Table 4: Ablation results on Transformer connectivity (offline RL)
Method Assault Boxing Breakout Pong Qbert Seaquest

Ours 772 80.7 132.1 16.4 6584 771
Ours Fusion 801 69.1 31.1 7.6 4248 606
Ours Stack 939 64.9 30.9 13.7 575 361

Does StARformer win by model capacity? Our model has ∼14M parameters, which is about 10
times larger than the baseline DT (Chen et al., 2021). Most of our parameters corresponds to patch-
wise state embeddings. To see if the benefit of our method comes from extra parameters, we take
an intuitive approach, replacing the baseline state encoder with our patch-wise state embedding (re-
ferred as DT with ViT). This makes the baseline and our method comparable in terms of parameters,
results of which is shown in Table 5. We see that our model still outperforms the modified baseline
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Table 5: Ablation results on model capacity (offline RL)
Method Assault Boxing Breakout Pong Qbert Seaquest

Ours 772 80.7 132.1 16.4 6584 771
DT with ViT 608 74.3 47.0 2.7 1135 885
DT 504 78.3 70.7 12.8 3782 1007

in 5 out of 6 games with a comparable number of parameters. It validates that simply increasing
the model capacity may not improve the performance or even degrade in some cases. In fact, the
modeling mechanism of our method is how it outperforms the baseline.

6 RELATED WORK

6.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is usually modeled as a Markov Decision Process (MDP). In this set-
ting, an action is made solely based on the current state according to the Markov property. Based on
Markov property, single-step value-estimation methods have been derived from the Bellman equa-
tion, including Q-learning (Watkins & Dayan, 1992) and Temporal Difference (TD) learning, along
with many other variants such as SARSA (Rummery & Niranjan, 1994), TD(λ) (Sutton, 1988),
TD-Gammon (Tesauro et al., 1995), and Actor-Critic (Konda & Tsitsiklis, 2000). In recent work,
neural networks are used to approximate the value function in value-based methods, introducing
Deep Q-learning (Mnih et al., 2013).

Most recent directions (Chen et al., 2021; Janner et al., 2021) formulate RL as a sequence modeling
task, i.e., given a sequence of recent experiences including state-actions-reward triplets, a model
predicts a sequence of actions. This can potentially replace value-estimation methods and can be
trained as supervised learning. However, this needs pre-existing trajectories (collected in advance),
which makes it more compliant with offline RL and imitation learning settings.

6.2 TRANSFORMERS

Transformer architectures (Vaswani et al., 2017) have been first introduced in language process-
ing tasks (Devlin et al., 2018; Radford et al., 2018; 2019), to model interactions between a se-
quence of unit representations (i.e., tokens), in this case, word embeddings. Recently, however,
Transformers have been adopted in vision tasks with the key idea of breaking down images/videos
into tokens (Dosovitskiy et al., 2020; Arnab et al., 2021; Chen et al., 2020; Neimark et al., 2021),
often outperforming convolutional networks (CNNs) in practice. Chen et al. (2021) exploit how
GPT (Radford et al., 2019) can be applied to RL under sequence modeling settings.

Sequence modeling in RL is similar to learning from videos in terms of input data, which are com-
posed of sequences of images (states). One challenge of applying Transformers on videos is the large
number of input tokens. This problem has been explored in multiple directions, including attention
approximation (Choromanski et al., 2020; Wang et al., 2020; Kitaev et al., 2019), separable attention
in different dimensions (Arnab et al., 2021; Bertasius et al., 2021), reducing the number of tokens
using local windows (Liu et al., 2021a;b) or adaptively generating a small amount of tokens (Ryoo
et al., 2021).

StARformer shares a similar concept of using local windows for self-attention as Liu et al. (2021a).
Our approach is also closely related to “divided space-time attention” in Bertasius et al. (2021) and
“factorized self-attention” in Arnab et al. (2021), in terms of performing spatial followed by tempo-
ral attention. Our Step-to-Sequence connection is inspired by (Han et al., 2021), which is designed
for image domain. However, our model is still unique as (a) we perform “spatial” (using Step Trans-
former) and “temporal” (using Sequence Transformer) attention in multiple Transformer layers, (b)
we use separate sets of tokens having different origins, and (c) We feed a set of locally-attended
tokens to perform self-attention with a set of global tokens for long-term sequence modeling.

7 CONCLUSION

In this work, we introduce StARformer, which models strongly connected local relations explicitly
(using the Step Transformer) to help improve the long-term sequence modeling in RL (using the Se-
quence Transformer). Our extensive empirical results show how the learned StAR-representations
help our model to outperform the baseline in both Atari and Gym environments, in both offline RL
and imitation learning settings. We further demonstrate that our designed architecture and token em-
beddings are essential to successfully model trajectories, with an emphasis on long-term sequences.
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A APPENDIX

A.1 ACTION PREDICTION HEAD

For a discrete action space, we use a linear projection RD → R|A| to predict |A| logits corresponding
to each action, where |A| is the size of action space. For a continuous action space, we use a linear
layer followed by a Tanh(·) activation function to map the predictions into a normalized continuous
action range of [−1, 1].

A.2 NULL ACTION

We pat the trajectory with null action a0 when at the initial state when only s0 is presented in the
trajectory. The null action is set as an extra label for discrete action space, like a mask which is an
extra vocabulary in language processing. We simply define a0 = |A| in Atari, since the original
action space is indexed from 0 and this a0 value is not included in the space, serving as our null
action label. For Gym environment, we follow (Chen et al., 2021) using ai0 = −10 for each action
dimension. These choices are not specific to our method, just for padding a trajectory, and can be
flexibly defined according to each environment.

A.3 HYPER-PARAMETERS

We keep most hyper-parameters same as (Chen et al., 2021) for a fair comparison.

Table 6: Our hyper-paremeter settings
Hyper-parameter Value

Layers 6
MSA heads (long-term) 8
Embedding dimension (long-term) 192
MSA heads (long-term) 4
Embedding dimension (long-term) 64
Nonlinearity GeLU for self-attention; ReLU for convolution
Dropout 0.1
Learning rate 6× 10−4

Adam betas (0.9, 0.95)
Grad norm clip 1.0
Weight decay 0.1
Learning rate decay see Chen et al. (2021)
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