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Abstract001

In this paper, we design a signalling game-002
based emergent communication environment003
to generate state-of-the-art emergent languages004
in terms of similarity to human language. This005
is done with hyperparameter optimization, us-006
ing XferBench as the objective function. Xfer-007
Bench quantifies the statistical similarity of008
emergent language to human language by mea-009
suring its suitability for deep transfer learning010
to human language. Additionally, we demon-011
strate the predictive power of entropy on the012
transfer learning performance of an emergent013
language as well as validate previous results on014
the entropy-minimization properties of emer-015
gent communication systems. Finally, we re-016
port generalizations regarding what hyperpa-017
rameters produce more realistic emergent lan-018
guages, that is, ones which transfer better to019
human language.020

1 Introduction021

Emergent language has tremendous potential to022

generate realistic human language data for deep023

learning methods without the need to collect data024

directly (or indirectly) from humans (Boldt and025

Mortensen, 2024c). This stems from the fact that026

emergent language aims to replicate the commu-027

nicative pressures that drive the development of028

human language and are hypothesized to explain029

various patterns observed in linguistics (Scholz030

et al., 2024). Yet little work has been done to031

date designing emergent communication systems032

to generate languages with high statistical simi-033

larity to human languages. Such languages could034

better serve as synthetic human language data for035

pretraining and evaluating NLP models. Thus, in036

this paper, we generate emergent languages with037

a signalling game that have a high degree of sim-038

ilarity to human languages, demonstrating state-039

of-the-art performance on emergent-to-human lan-040

guage deep transfer learning. Specifically, we use041
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Figure 1: Hyperparameter search shows that emergent
and human languages tend towards the Pareto fron-
tier of minimizing entropy and minimizing XferBench
score (lower is better) while non-emergent synthetic lan-
guages less reliably follow this trend. Dashed gray line
represents a lower bound on entropy versus XferBench
score.

Bayesian hyperparameter search to optimize a sig- 042

nalling game on the XferBench benchmark (Boldt 043

and Mortensen, 2024b). 044

First and foremost, this moves the field of emer- 045

gent language measurably closer to the goal of pro- 046

viding realistic, fully synthetic data for NLP. On 047

a methodological level, hyperparameters in emer- 048

gent communication research are often selected 049

arbitrarily or based on convenience. Instead, hyper- 050

parameters ought to be selected, we suggest, such 051

that they maximize emergent language’s similarity 052

to human language. For example, vocabulary sizes 053

in emergent languages are often very small (only 054

one of eight emergent language environments sur- 055

veyed in Boldt and Mortensen (2024a) exceeds a 056

vocabulary size of 70) while our research suggests 057

that the optimal vocabulary size is in the 1k to 10k 058

range. Increasing vocabulary sizes, then, not only 059

improves transfer learning performance but also 060
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makes it possible for emergent languages to repli-061

cate the long-tailed, Zipfian word distribution that062

is characteristic of human language (Zipf, 1949;063

Piantadosi, 2014), for example.064

Our experiments also confirm a significant re-065

lationship between transfer learning performance066

and corpus entropy. Not only does it appear that067

the entropy of a corpus determines a lower bound068

on XferBench score (lower is better) but that emer-069

gent languages minimize entropy with respect to070

a given XferBench score in a way that procedu-071

rally generated (i.e., non-emergent, synthetic) lan-072

guages do not (see Figure 1). Such minimization is,073

significantly, an emergent phenomenon as neither074

entropy nor transfer learning performance are di-075

rectly involved in the optimization of the emergent076

communication system (and neither entropy nor077

XferBench incorporate each other). This observa-078

tion is significant in two regards: First, it suggests079

that transfer learning and, consequently, statistical080

similarity to human language can be (partially) ex-081

plained with information theory. Second, it aligns082

closely with prior work that finds that emergent083

communication minimizes entropy with respect to084

task success within the environment (Kharitonov085

et al., 2020; Chaabouni et al., 2022).086

We discuss related work in Section 2. Methods087

are discussed in Section 3, and the experiments088

are presented in Section 4. An analysis of the re-089

sults is performed in Section 5 with discussion and090

conclusion in Sections 6 and 7.091

Contributions We (1) introduce emergent com-092

munication environments which produce the most093

human language-like emergent languages to date,094

as shown by state-of-the-art performance on a deep095

transfer learning task using the XferBench bench-096

mark; (2) provide concrete recommendations on097

better hyperparameter settings for emergent lan-098

guage, making them more statistically similar to099

human language; and (3) provide evidence that100

entropy minimization is a general property of emer-101

gent communication systems, showing that it is102

minimized with respect to transfer learning perfor-103

mance.104

2 Related Work105

For a general overview of deep learning-based106

emergent communication research, see Lazaridou107

and Baroni (2020). This paper shares the goal of108

producing emergent language corpora that are suit-109

able for transfer learning to human languages with110

Yao et al. (2022), which also introduces the corpus 111

transfer method for applying emergent commu- 112

nication techniques to pretraining deep learning 113

models used in this paper. Boldt and Mortensen 114

(2023), similarly to this paper, investigate the effect 115

of hyperparameters on emergent communication, 116

although their study focuses primarily on the ef- 117

fects of individual hyperparameters on entropy in- 118

stead optimizing an entire system for an evaluation 119

metric. Finally, this paper scales up emergent com- 120

munication game hyperparameters in a way that 121

overlaps with Chaabouni et al. (2022), although 122

the latter focuses on addressing the practical chal- 123

lenges of scaling up certain facets of the signalling 124

game (e.g., number of agents) rather than directly 125

optimizing a particular objective. 126

The task of generating emergent languages for 127

pretraining NLP models falls within the broad cate- 128

gory data augmentation with synthetic data but dif- 129

fers from most other approaches due emergent lan- 130

guage’s unique nature as an emergent phenomenon. 131

First, emergent language differs from procedurally 132

generating data from rules because emergent tech- 133

niques preclude stipulating the exact process for 134

generating the data; expert knowledge is incorpo- 135

rated into designing the system which generates 136

the data, not generating the data itself. On the 137

other hand, emergent language differs from using 138

pretrained language models to generate synthetic 139

data since emergent communication is derived from 140

scratch, again precluding any (pre)training on hu- 141

man language data. 142

3 Methods 143

3.1 Objective: XferBench 144

The ultimate objective that we are optimizing for 145

is transfer learning performance on downstream 146

human language tasks. This objective is quantified 147

by XferBench (Boldt and Mortensen, 2024b, MIT 148

license), which measures how much pretraining 149

on an emergent language corpus decreases cross- 150

entropy on a limited-data, downstream language 151

modelling task on human languages (illustrated 152

in the gray box of Figure 2). Since the output of 153

XferBench is mean cross-entropy across human lan- 154

guages, a lower score better. XferBench takes as 155

input a corpus of 15 million tokens, which is used 156

for the pretraining stage and finetunes on 2 million 157

tokens of the (human) evaluation language. The 158

language model used for XferBench is based on 159

GPT-2 (Radford et al., 2019) and has ∼60 million 160

parameters. Since XferBench has a long runtime, 161
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language model

Tune on
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Evaluate objective (XferBench)
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ment with HPs
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Figure 2: Illustration of hyperparameter optimization with XferBench (adapted from Boldt and Mortensen (2024b)
(CC BY 4.0 License)).

we use a modified version only during hyperparam-162

eter search termed XferBench-da which only evalu-163

ates on one human language (viz. Danish) which164

we found to have high correlation (R2 > 0.95)165

with the complete XferBench; see Appendix A for166

details.167

3.2 Environment: signalling game168

The environment we use in our experiments is the169

signalling game. In particular we use the discrimi-170

nation variant of the signalling game based on the171

implementation in EGG (Kharitonov et al., 2021,172

https://github.com/facebookresearch/EGG,173

MIT license). The discrimination variant of the174

signalling game consists of two agents, a sender175

and a receiver interacting for a single round. In a176

given round, the sender observes an input, sends a177

message to the receiver, and the receiver selects an178

observation out of a number of candidates based179

on the message. Of the candidate observations, one180

is correct (i.e., the same as the sender’s input), and181

the rest are “distractors”. In the implementation182

used in this paper:183

• Observations are concatenations of a fixed184

number of one-hot vectors.185

• Messages are sequences of integers repre-186

sented by one-hot vectors.187

• Agents are feed-forward neural networks with188

one hidden layer and GRU-based RNNs to189

generate/read the message.190

• The sender–receiver system is trained end-to-191

end with backpropagation using a Gumbel-192

Softmax layer (Maddison et al., 2017; Jang193

et al., 2017) to generate the message.194

Overall, this emergent communication system195

is about as “vanilla” as is studied in the literature.196

This is advantageous for a number of reasons:197

• The environment is fast to run, requiring 10 to198

120 minutes depending on the hyperparame-199

ters.200

• It has a (comparatively) limited number of hy-201

perparameters making hyperparameter search 202

more tractable and reducing potential con- 203

founding variables. 204

• It serves as “lower bound” for optimizing 205

emergent communication environments since 206

we can determine the maximum performance 207

possible in a system with minimal complexity. 208

• The training is stable, converging to a high 209

success rate for most hyperparameter combi- 210

nations. 211

The data is generated for the input corpus to Xfer- 212

Bench by sampling from the dataset and feeding 213

these observations into the sender which generates 214

the message. 215

3.3 Variables: hyperparameters 216

The hyperparameters are the independent variable 217

of the primary experiments presented in this pa- 218

per; that is, the hyperparameters will be varied 219

in order to optimize the system for the objective 220

function. Some hyperparameters manipulated in 221

this study are unique to the signalling game (e.g., 222

how many attributes and values in the signalling 223

game observations) while others come from deep 224

learning-based architectures more generally (e.g., 225

learning rate, neural network architecture). 226

We primarily investigate the following hyperpa- 227

rameters: 228

Learning rate Multiplication factor for the 229

weight updates for parameters in the neural 230

network. 231

Embedding size Size of embedding layer in both 232

the sender and the receiver networks; these are 233

independent layers, but their sizes are varied 234

in unison for hyperparameter search. 235

Hidden size The size of hidden layer in both the 236

sender and the receiver networks; values are 237

varied in unison. 238

n attributes Number of one-hot vectors in each 239

observation. 240

n values Size of one-hot vectors in observations. 241
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n distractors Number of incorrect observations242

shown to the receiver (in addition to the cor-243

rect one).244

n epochs Number of training examples seen.1245

Temperature Temperature of the Gumbel-246

Softmax layer which the sender uses to247

generate messages during training.248

Vocabulary size Dimension of the one hot vectors249

which comprise the message.250

Message length Number of one-hot vectors in a251

message.2252

Other hyperparameters that were either not dis-253

cussed or not investigated are documented in Ap-254

pendix B.255

3.4 Optimization: hyperparameter search256

Finally, we discuss the method used for optimizing257

the hyperparameters of the emergent communica-258

tion system (the parameters system itself are opti-259

mized with backpropagation, as mentioned above).260

The simplest of all hyperparameter search methods261

is grid search, where each element of the Carte-262

sian product of every set of hyperparameter val-263

ues is evaluated. Even using a modest 3 values264

per aforementioned hyperparameter would require265

310 ≈ 60 000 trials, taking 5 GPU-years (at 1 hour266

per trial). Thus, we employ Bayesian parameter267

optimization to more efficiently select hyperparam-268

eter combinations to evaluate; this additionally al-269

lows us to specify a range of hyperparameter values270

instead of individual values. This process is illus-271

trated in Figure 2.272

We specifically use a Tree-structured Parzen Esti-273

mator (TPE) (Bergstra et al., 2011) as implemented274

in Optuna (Akiba et al., 2019, MIT license). At275

a basic level, TPE works by partitioning hyperpa-276

rameter combinations into a “good” set and a “bad”277

set based on the objective function value and se-278

lects the next combination of hyperparameters by279

maximizing the probability of the hyperparameters280

being in the good set divided by the probability of281

them being in the bad set. These probability es-282

timates use multivariate kernel density estimators283

and permit discrete, categorical, and conditional284

hyperparameter values. After running the environ-285

ment with the hyperparameters and the objective286

function on the result, the sampler’s probability esti-287

1Since the data is procedurally generated, a new dataset of
1024 observations is sampled for each epoch.

2Technically, the implementation allows for variable length
messages, but optimization led to all messages always being
the max length.

mates are updated in accordance with the objective 288

function’s value. For a more detailed explanation, 289

see Watanabe (2023). 290

4 Experiments 291

The code to run the experiments and analyses is 292

publicly available at [supplementary material for 293

review] under the MIT license. 294

4.1 Hyperparameter searches 295

In this paper, we present four main searches 296

(Searches 1–4, parameters given in Table 1) with 297

two additional searches (Searches 5r and 6e) for 298

use in later analyses (Section 5). The following is 299

a summary of the hyperparameter searches: 300

Search 1 Large number of hyperparameters var- 301

ied with a wide range; used small version of 302

XferBench-da (1M train tokens for 1 epoch, 303

200k test tokens for 2 epochs). 304

Search 2 Same number of hyperparameters var- 305

ied with smaller or larger ranges depending on 306

results of Search 1; used medium version of 307

XferBench-da (4M train tokens for 2 epochs, 308

1M test tokens for 3 epochs) 309

Search 3 Same parameters as Search 2 while al- 310

lowing number of epochs to go higher and 311

using the full version of XferBench-da (15M 312

train tokens for 5 epochs, 2M test tokens for 10 313

epochs). 314

Search 4 Reduces ranges or fixes parameters from 315

Search 3 to maximize exploitation of good pa- 316

rameters; 4* in Table 1 is the best-performing 317

trial from Search 4. 318

Search 5r Most parameters varied with wide 319

ranges except using random sampling to re- 320

move sampling bias; similar to Search 1 with 321

narrower ranges on learning rate. Discussed in 322

Section 5.2. 323

Search 6e Optimized for maximizing entropy af- 324

ter a number of previous searches (not discussed 325

in the paper); similar to Search 4 in this regard. 326

Discussed in Section 5.2. 327

The parameters of Searches 1–4 are given in Table 1 328

(for complete table, see Table 3). The implementa- 329

tion defaults for other hyperparameters were used 330

unless otherwise specified. Optuna’s default param- 331

eters for TPE were used across all experiments. 332

The signalling game takes 5 to 40 minutes to 333

run (depending primarily on the number of epochs, 334

and, to a lesser extent, the message length), and the 335

full version of XferBench-da takes approximately 336

40 minutes to run. Thus, the average trial (for 337
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# |Trials| |Attrs.| |Vals.| |Distrs.| Temp. |Embed.| |Hidden| LR |Vocab| Length |Epochs|

1 578 [3, 7] [3, 7] [1, 127] [0.1, 10] [8, 128] [8, 128] [500µ, 50m] [10, 20k] [1, 40] 500
2 171 [5, 10] [5, 10] — [0.5, 4] [64, 512] [64, 512] [500µ, 5m] [300, 30k] — —
3 140 — — — — — — — — — [500, 5k]
4 282 [6, 20] 6 23 2 128 256 [1m, 3m] [500, 30k] — —
4* 1 11 6 23 2 128 256 1.79m 9721 16 1715

Table 1: All hyperparameters were treated as log-scale hyperparameters. |·| refers to cardinality. “—” means
unchanged from the previous run. µ, m, and k refer to the SI prefixes micro (×10−6), milli (×10−3), and kilo
(×103), respectively.
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Figure 3: Examples of different hyperparameter–objective relations observed in the various searches and hyperpa-
rameters. From left-to-right, we have: (a) a clear best value, (b) a clear trend outside the provided range, (c) a weak
trend toward a particular value, and (d) no definite trend. The y-axis based on different “sizes” of XferBench-da
normalized to similar scales.

the latter searches) takes approximately [0.75, 1.5]338

hours. Parallelization was used to run multiple339

trials within a search at a time. See Appendix D340

for a discussion of computing resources used.341

Search design For each iteration of the primary342

searches (i.e., 1–4), we changed the search param-343

eters based on their correlation with the objective344

function. We observed four main univariate pat-345

terns3, illustrated in Figure 3. For parameters346

with a clear trend toward the center (Figure 3a), we347

narrowed the range to encourage exploiting good348

values. Some parameters trended to one side of349

the range (Figure 3b), which indicated needing to350

extend the range. Parameters with weak to no trend351

(Figures 3c and 3d) were left unchanged for the352

initial searches and given an arbitrary value for353

the final search to reduce additional noise. Full354

hyperparameter plots given in Appendix G.355

Searches 1 and 2 used a reduced version of Xfer-356

Bench to execute more trials quickly and prune the357

less promising hyperparameter ranges; neverthe-358

less, caution was exercised in pruning since scaling359

3While we did look for multivariate effects (i.e., hyperpa-
rameters that are not independent), we did not observe any
notable trends.

up XferBench could change optimal hyperparame- 360

ter values. The irregular number of trials per search 361

were due to executing as many trials as possible 362

within a certain time (rather than aiming for a par- 363

ticular number of trials). 364

4.2 Languages evaluated 365

We select three categories of languages to eval- 366

uate with XferBench: human languages, those 367

generated with the hyperparameter search dis- 368

cussed above, and extant emergent language cor- 369

pora from ELCC (Boldt and Mortensen, 2024a, 370

https://huggingface.co/datasets/bboldt/elcc, 371

CC BY 4.0). The primary goal is for the search- 372

derived languages to outperform all existing emer- 373

gent languages and get as close to human language 374

performance as possible. For the human languages, 375

we use a subset of the baselines provided in Boldt 376

and Mortensen (2024b). In particular, we use Man- 377

darin and Hindi because they were the best- and 378

worst-performing human languages, respectively, 379

and French and Arabic to round out the language 380

families represented. 381

For the search-derived languages, we selected 382

the three best languages from the final primary run 383

of hyperparameter search (Search 4) and evaluate 384
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Figure 4: Bar chart of XferBench scores on emergent
and human languages. XB 1–3 are emergent language
corpora derived from Search 4 and Entropy 1–3 from
Search 6e.

them on the full set of evaluation languages in Xfer-385

Bench. We additionally include the three highest386

entropy languages from the entropy-maximizing387

search (Search 6e, discussed further in Section 5.2).388

Finally, for the emergent language-based389

points of comparison, we select three of the best390

performing languages from ELCC. Most no-391

tably, this includes Yao+ (corpus-transfer-392

yao-et-al/coco_2014 (Yao et al., 2022))393

which performed far better than all other394

emergent languages on XferBench. Mu+395

(generalizations-mu-goodman/cub-reference396

(Mu and Goodman, 2021)) and Chaabouni+397

(ec-at-scale/imagenet-10x10 (Chaabouni et al.,398

2022)) were also included as more typical high-399

performing emergent languages on XferBench.400

4.3 Results401

Figure 4 shows 3 randomly seeded runs of the full402

XferBench score for each corpus. For the emergent403

languages from hyperparameter search, the models404

restored from checkpoints saved during the search,405

but the corpora were generated independently of406

the search. First, we see that the emergent lan-407

guages from the XferBench-based search (XB 1–3)408

outperform all other emergent languages and even409

the Hindi corpus. While it is indeed significant410

that these emergent languages outperform a human411

language corpus, this corpus is also an outlier, and412

the emergent languages are still relatively far from413

matching the performance of the rest of the human414

language corpora. Nevertheless, these figures show415

that the XB 1–3 languages achieve state-of-the-art 416

levels of similarity to human language. The corpora 417

from the entropy-based search (Entropy 1–3) per- 418

form well, comparably to Yao+, but significantly 419

worse than the XferBench-search languages. 420

5 Analysis 421

5.1 Importance of hyperparameters 422

Vocabulary size The most notable hyperparame- 423

ter trend we found was with vocabulary size, where 424

the best-performing languages had unique token 425

counts of on the order of 1000 and vocabulary sizes 426

closer to 10 000 (see Figure 10); that is, the model 427

could use up to 10 000 unique words but only uses 428

1000 after training. For reference, it is common 429

practice in emergent communication research to 430

use vocabulary sizes well under 100 (e.g., only 1 431

out of the 8 systems in ELCC produce corpora with 432

>70 unique tokens). 433

Scaling up Similarly to vocabulary size, we ob- 434

serve indications to scale up message length, neu- 435

ral network layer size, and task information (i.e., 436

number of attributes, values, and distractors): the 437

most human like emergent languages require longer 438

training, larger networks, and higher-information 439

tasks than are often used in the emergent commu- 440

nication literature. Along with vocabulary size, 441

these hyperparameter are most often trivial to ad- 442

just, meaning there is little reason not to adjust 443

standard practice in emergent communication re- 444

search to using hyperparameters in these ranges. 445

Learning rate Finally, in terms of raw impor- 446

tance with respect to XferBench score, learning 447

rate was most significant; this result is not sur- 448

prising as learning rate is significant in any deep 449

learning algorithm. Nevertheless, part of the dif- 450

ficulty with learning rate is that there is no one 451

best learning rate, and so performing at least some 452

hyperparameter tuning with learning rate will be 453

necessary for optimal performance. 454

Summary of recommendations We recommend 455

the following hyperparameters as a rule of thumb: 456

vocabulary size: 10 000, hidden layer size: 256, 457

embedding layer size: 128, message length: 20, 458

observation diversity: the higher the better (e.g., 459

612 ≈ 2 trillion unique observations), epochs: train 460

until task success plateau (not just until arbitrary 461

threshold), learning rate: tune on final setting. 462
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5.2 Entropy and XferBench463

The most striking correlation we observe in our464

experiments is between XferBench score and uni-465

gram token entropy, which is illustrated in Figure 1466

(Pearson’s r = −0.57 for Search 5r only). The467

emergent languages pictured are all those generated468

by Searches 4 and 5r, while the human languages469

are taken from Boldt and Mortensen (2024b). We470

see that low entropy languages tend to score poorly471

on XferBench while high scoring languages have472

higher entropy; this aligns with the observed corre-473

lation between XferBench and entropy in Boldt and474

Mortensen (2024a). Furthermore, this correlation475

follows the same trend we see in human languages476

with respect to entropy.477

Entropy’s lower bound In particular, we have478

illustrated a lower bound of low entropy–low Xfer-479

Bench score that describes both emergent and hu-480

man languages (the gray dashed line in Figure 1).481

This suggests that given a certain entropy, there is a482

hard limit on the performance XferBench that can483

be achieved. While further theoretical and empir-484

ical analysis would be required to verify that this485

a true lower bound, this aligns with the notion of486

language models as entropy-minimizers: Language487

models, in order to reduce the entropy on a target488

language, require a certain degree of entropy (i.e.,489

information) in the pretraining data. Hence, low-490

entropy, low-information pretraining data leads to491

low entropy reduction (higher cross-entropy) lan-492

guage models.493

Entropy minimization Looking again at Fig-494

ure 1, we also see that the high-entropy, high-495

XferBench quadrant (upper right) is also sparsely496

inhabited. In fact, emergent and human languages497

seem to lie primarily near the Pareto frontier of low-498

entropy, low-XferBench score mentioned above.499

This comes in contrast to the XferBench scores of500

a variety of synthetic languages (descriptions of501

which are given in Appendix E) which often do502

not demonstrate this Pareto efficiency, even for syn-503

thetic languages performing well on XferBench.504

This result is concordant with the related claim505

that entropy is “minimized” inside of emergent506

communication systems (Kharitonov et al., 2020;507

Chaabouni et al., 2021). Such work has shown508

that emergent communication systems tend to find509

Pareto efficient solutions in terms of maximizing510

task success and minimizing entropy (this corre-511

lation in the hyperparameter search is discussed512

briefly in Appendix F).513
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Figure 5: Accuracy versus XferBench for Search 5r.
Accuracy is measured as proportion of rounds for which
the correct observation is ranked in the top-1 percentile
among all distractors.

Optimizing on entropy directly The correlation 514

between entropy and XferBench naturally leads 515

to a potential performance improvement: Why not 516

use entropy as the hyperparameter objective instead 517

of XferBench? Entropy takes seconds to compute 518

instead of close to an hour. This is the experiment 519

performed in Search 6e which was successful in 520

producing languages with good XferBench scores 521

but which still performed significantly worse than 522

optimizing on XferBench directly (see Figure 4). 523

Given that the lower bound of entropy versus 524

XferBench score is tighter than the upper bound, it 525

is roughly the case that low entropy implies poor 526

XferBench performance, but high entropy does not 527

necessarily imply good XferBench performance. 528

Thus, the fact that the entropy-based search finds 529

good but not optimal emergent languages fits with 530

the earlier observation about bounds of entropy and 531

XferBench score. With these observations in mind, 532

a refinement to the hyperparameter search algo- 533

rithm would be to prune low-entropy trials before 534

running XferBench while fully evaluating the trial 535

on XferBench if has a high entropy. 536

Task success The correlation between task suc- 537

cess and XferBench score (Figure 5, Pearson’s 538

r = −0.40) is not as dramatic as with entropy. 539

Nevertheless, the negative correlation (better task 540

success, better XferBench score) matches the ex- 541

pectation that the realism of emergent language is 542

positively correlated with the efficacy of the lan- 543

guage. This relationship is a foundational assump- 544

tion of emergent communication techniques gen- 545

erally: the realism of simulation-derived language 546

comes, in part, from its development out of the 547

functional pressures to communicate. 548
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6 Discussion549

Similarity to human language The primary mo-550

tivation for optimizing emergent communication551

systems on XferBench is to create more human552

language-like emergent languages. In this way,553

this environment and the recommended hyperpa-554

rameters provide a better baseline environment for555

future emergent communication research to work556

from. This similarity to human language is criti-557

cal for nearly every application of emergent com-558

munication research, not only related to machine559

learning and NLP but also areas with more linguis-560

tic focus (Boldt and Mortensen, 2024c). Although561

XferBench quantifies a decidedly more deep learn-562

ing, data-driven notion of similarity, this account563

is complimentary with more explicitly linguistic564

notions of similarity to human language.565

For example, linguistic phenomena such as parts566

of speech fundamentally concern whole classes of567

words behaving predictably in a variety of envi-568

ronments. Thus, trivially small languages are not569

suitable for addressing such phenomena as there570

are not classes of words and no variety to gener-571

alize over. Even something as fundamental as the572

Zipfian distribution of words in human language573

presupposes a large vocabulary size (Zipf, 1949; Pi-574

antadosi, 2014). Furthermore, smaller-scale emer-575

gent languages are a greater risk for overfitting576

since the capacity of a neural network quickly en-577

ters the overparameterization regime when the lan-578

guage has as small vocabulary, message length, etc.579

(Gupta et al., 2020).580

Emergent properties The relationship between581

entropy, task success, and XferBench score demon-582

strated in the hyperparameter searches emphasizes583

the presence of truly emergent properties and pro-584

cesses in emergent communication: Neither en-585

tropy nor transfer learning performance are directly586

optimized for (cf. task success). Just as Pareto ef-587

ficient entropy has been found for task success in588

emergent languages (Kharitonov et al., 2020), we589

find some degree of Pareto efficiency with entropy590

and XferBench performance (and to a limited de-591

gree with task success and XferBench). What this592

shows is that the communicative pressures and in-593

formation theoretic considerations are a key ingre-594

dient in emergent language’s similarity to human595

language. Thus, task success and entropy serve as596

additional ways to reason about emergent language597

and how to apply it to human language. Neverthe-598

less, the limited correlation we find among these599

properties also tells us that emergent language is 600

not trivially explained by these factors either. 601

Future work On the front of creating more hu- 602

man language-like emergent languages, a next step 603

is to introduce new variations of the signalling 604

game, entirely new environments, or more sophisti- 605

cated neural architectures and optimize them on a 606

metric like XferBench in order to progress towards 607

the long-term goal of producing realistic emergent 608

languages for transfer learning. Because this pa- 609

per has wrung as much performance as is possible 610

from the basic signalling game environment, there 611

can be greater certainty that innovations producing 612

higher-performing languages are actually causing 613

the improvement. Otherwise, more trivial factors 614

like better learning rate tuning could become con- 615

founding variables. 616

As far as investigating the entropy minimization 617

pressure in emergent languages, further theoretical 618

work needs to build models and generate testable 619

hypotheses; theoretical models are the key to scien- 620

tific explanation beyond merely showing the exis- 621

tence of correlations. Nevertheless, this paper has 622

shown that hyperparameter turning can be an effec- 623

tive tool for producing a large variety of emergent 624

language that preclude hyperparameters being con- 625

founding variables. Such methods of generating 626

datasets will be invaluable in empirically testing 627

theoretical models of emergent language. 628

7 Conclusion 629

In this paper we have used hyperparameter search 630

to generate the most human language-like emer- 631

gent language to date, as quantified by XferBench. 632

Not only does this represent a step forward for us- 633

ing emergent languages as realistic synthetic data 634

for transfer learning but also provides insight into 635

how hyperparameters can be better addressed in 636

future emergent communication research. Finally, 637

the hyperparameter search reveals further impor- 638

tance of the role of entropy in emergent language. 639

High entropy appears to be a necessary condition 640

for good transfer learning performance while at the 641

same time, emergent language appears to minimize 642

entropy for a given level of transfer learning per- 643

formance. Furthermore, this entropy minimization 644

is not replicated in synthetic languages suggesting 645

that emergent language is more than just “synthetic 646

languages with extra steps”. 647
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Limitations648

In terms of finding the most human language-like649

emergent language, this study is limited in terms of650

the simplicity of the environment. A single round651

signalling game with a fixed sender and receiver652

and uniform, synthetic observations is a no-frills653

environment which, while good for stability and654

simplicity, is limited in the richness of information655

to be communicated, and as a result, the languages656

it can produce.657

Regrading the investigation of the link between658

entropy and XferBench score and task success, we659

were not able to build any theoretical models to660

scientifically test particular hypotheses about the661

relationships between the variables; instead, we662

are only able to offer empirical evidence that there663

are trends warranting further investigation. Finally,664

the recommendations we can given regarding the665

hyperparameters of emergent communication sys-666

tems are limited because hyperparameter search is667

relatively “messy”; it is geared toward maximizing668

performance more than uncovering generalizable669

trends. Additionally, we perform our experiments670

with a signalling game which provides only limited671

evidence for the behavior of emergent communica-672

tion systems with different tasks.673
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All Human Emergent

Basque 0.340 0.685 0.318
Danish 0.992 0.966 0.987
Finnish 0.971 0.968 0.969
Hebrew 0.967 0.967 0.977
Indonesian 0.988 0.952 0.983
Japanese 0.973 0.930 0.974
Kazakh 0.983 0.936 0.977
Persian 0.972 0.951 0.971
Romanian 0.985 0.945 0.982
Urdu 0.951 0.849 0.929

Table 2: R2 values for individual target XferBench lan-
guages predicting the full XferBench score. Human and
Emergent refer to the R2 value considering only the
human or emergent languages, respectively.
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A Correlation of Evaluation Languages778

One of XferBench’s chief weaknesses is its long779

runtime, taking 2 to 6 hours depending on the GPU780

used. Approximately 30% of that time is spent on781

the initial pretraining with the emergent language782

corpus, with the other 70% spent on finetuning and783

testing on the 10 downstream languages. We ob-784

serve from the XferBench scores on the emergent785

languages of ELCC and the human language base- 786

lines of Boldt and Mortensen (2024b) that 9 out of 787

the 10 evaluation languages are highly correlated 788

with each other, that is, the XferBench score on one 789

language is highly predictive of the overall Xfer- 790

Bench score. In particular, test cross-entropy on 791

Danish (da) alone can predict >95% of the varia- 792

tion of the overall XferBench score (i.e., the linear 793

regression has an R2 > 0.95). For this reason, in 794

the hyperparameter optimization trials, we com- 795

pute XferBench-da (XferBench evaluated on Dan- 796

ish only) which is around 3× faster than the full 797

XferBench; the final evaluation nevertheless uses 798

the full set of evaluation language for XferBench. 799

In Table 2, we show the R2 values derived from 800

training a linear model on just one of the target 801

language’s XferBench scores to predict the overall 802

XferBench score. The emergent languages are all 803

of the corpora from ELCC (Boldt and Mortensen, 804

2024a), and the human language corpora are the 805

baselines from the original XferBench paper (Boldt 806

and Mortensen, 2024b). R2 value corresponds 807

to the percent of the variance in the full Xfer- 808

Bench score explained by just the score (i.e., cross- 809

entropy) on that particular target language. We find, 810

strikingly enough, that all of the target languages, 811

with the exception of Basque, are highly correlated, 812

having R2 values above 0.95 all languages, and 813

greater than 0.80 even when considering human 814

languages alone. Danish, of all of the languages, 815

has the highest R2 value (>0.99), which is the 816

reason we select it as the sole target for a more 817

time-efficient variant of XferBench (which we term 818

XferBench-da). 819

B Hyperparameters Not Discussed 820

In this section we briefly discuss hyperparameters 821

that were tried but not not documented in the paper 822

or that were not investigated at all. We selected a 823

batch size of 32 based on comparing the compute 824

efficiency of different sizes. Larger batch sizes 825

could process more data faster but would not up- 826

date the parameters often enough. On the other 827

hand, smaller batch sizes would not process enough 828

data to maximize the utility of each update. Mixed 829

precision training was tested but not found to im- 830

prove runtime. For learning rate scheduling, we 831

found cosine annealing to be slightly more effec- 832

tive than no learning, but further schedules were 833

not investigated. Weight decay was investigated in 834

earlier experiment but found not to have a notice- 835

able effect. 836
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The implementation of the signalling game we837

used could also be optimized using REINFORCE838

to handle the discrete message, but we only tested839

with a Gumbel-Softmax layer as it is faster and840

more stable to optimize with. We did not vary the841

neural architecture beyond altering the number of842

units in the hidden and embedding layers; for exam-843

ple, we did not add additional layers, try different844

RNN cells (e.g., LSTM), or use transformers.845

C Full Table of Hyperparameters846

In Table 3, we show all of the hyperparameters847

selected for the searches and trials referenced in848

the paper.849

D Computing Resources Used850

Experiments were performed across about 20–30851

NVIDIA A6000 (or equivalent) GPUs (one trial852

per GPU) on an institutional cluster. We estimate853

approximately 5500 GPU-hours were used for all854

experiments directly related to this paper, including855

those not documented or directly referenced. The856

primary searches for the best-performing emergent857

languages on XferBench (Searches 1–4) took about858

1300 GPU-hours.859

E Synthetic Languages860

E.1 Definitions861

We use four probabilistic synthetic languages862

which span a large portion of the Chomsky hier-863

archy ranging from trivial to beyond context-free.864

All synthetic languages contain a unique begin- and865

end-of-sentence token in each utterance.866

Zipf-Mandelbrot Distribution The basis for our867

synthetic languages will be a Zipf–Mandelbrot dis-868

tribution, a generalization of Zipf’s law, where the869

unnormalized probability weight of the word wi is870

f(wi) =
1

(i+ β)α
, (1)871

where i is the 1-based index of the word, α con-872

trols the weight of the tail, and β shifts where the873

distribution starts (roughly speaking). Empirically,874

α = 1 and β = 2.7 have been found to be good875

approximations for human language and will be876

the default parameters of the distribution unless877

otherwise specified (Piantadosi, 2014).878

Bag of Words The simplest synthetic language879

we introduce is a bag-of-words language where880

each token in a sentence is sampled independently881

from the Zipf-Mandelbrot distribution. The length882

of the sentence is independent of the sampling 883

method, so in interest of simplicity, we sample 884

from a discrete uniform distribution. 885

Regular The simplest non-trivial language we 886

introduce is a regular language which partitions the 887

tokens uniformly at random into k different sets 888

(s1, . . . , sk), keeping their initial Zipf–Mandelbrot- 889

derived weight. Each sentence starts with a token 890

sampled from s1; each subsequent token is sampled 891

from the next class (si + 1) with probability c or 892

sampled from the same class (si). After sk, the 893

sentence terminates. Thus, the language is defined 894

by the regular expression 895

s+1 s
+
2 . . . s+k , (2) 896

where a+ = aa∗, si represents any token in the set 897

si, and appropriate BoS and EoS tokens are added. 898

Dyck-n Dyck-n can be thought of as “balanced 899

nested delimiters” (where the delimiters are the 900

same token) (Schützenberger, 1963). Each token 901

in the sentence is generated as follows: With prob- 902

ability p, a new token is sampled from the Zipf– 903

Mandelbrot distribution and pushed onto a stack 904

(the “opening delimiter”), and with probability 905

1−p, the token on top of the stack is popped off. A 906

sentence always begins with an “open” token and 907

ends when the stack is empty. An example of such 908

a sentence is (3, 1, 1, 2, 1, 1, 2, 3) which could be 909

illustrated as “{()[()]}”. 910

Shuffle Dyck-n Finally, we use Shuffle Dyck-n 911

as our last language which lies beyond context-free 912

in the Chomsky hierarchy Suzgun et al. (2019). 913

Technically speaking, this language should be 914

called Shuffle of n Distinct Dyck-1 Languages 915

since it is the result of randomly interleaving mul- 916

tiple Dyck-1 languages with distinct tokens. To 917

generate a sentence in Shuffle Dyck-n, we first fol- 918

low the same procedure as for Dyck-n but keep the 919

individual tokens separate. We then interleave the 920

separate strings by appending to the sentence uni- 921

formly at random from one of the individual strings 922

until they are empty. For example, if Dyck-n gener- 923

ated “{([()])[]}”, the separated strings would “{}”, 924

“(())”, and “[][]”, which could then be interleaved 925

into “{[}(()])”. 926

E.2 Hyperparameters 927

Each variation of the synthetic language maintains 928

the default values while varying a single hyperpa- 929

11



# |Trials| |Attrs.| |Vals.| |Distrs.| Temp. |Embed.| |Hidden| LR |Vocab| Length |Epochs|

1 578 [3, 7] [3, 7] [1, 127] [0.1, 10] [8, 128] [8, 128] [500µ, 50m] [10, 20k] [1, 40] 500
2 171 [5, 10] [5, 10] — [0.5, 4] [64, 512] [64, 512] [500µ, 5m] [300, 30k] — —
3 140 — — — — — — — — — [500, 5k]
4 282 [6, 20] 6 23 2 128 256 [1m, 3m] [500, 30k] — —
4.1 1 11 6 — — — — 1.79m 9721 16 1715
4.2 1 12 6 — — — — 1.86m 12496 22 1593
4.3 1 13 6 — — — — 1.74m 8096 18 1511
5r 411 [4, 20] [3, 10] [1, 127] [0.1, 10] [8, 512] [8, 512] [500µ, 10m] [2, 30k] [1, 40] [10, 3k]
6e 109 10 10 [63, 511] 2 32 32 2.7m 25k 15 5k
6e.1 1 — — 228 — — — — — — —
6e.2 1 — — 372 — — — — — — —
6e.2 1 — — 165 — — — — — — —

Table 3: All hyperparameters were treated as log-scale hyperparameters. |·| refers to cardinality. “—” means
unchanged from the previous run. µ, m, and k refer to the SI prefixes micro (×10−6), milli (×10−3), and kilo
(×103), respectively. 4.1 is the best-performing trial of Search 4 (and likewise for 4.2, 6e.1, etc.).

rameter. We vary the common hyperparameters as930

follows:931

Vocabulary size takes the values 10, 100, 1k, 5k,932

10k, 30k (default: 30k). A vocab size of 10 is933

incompatible with the Regular language and934

was skipped.935

Zipf–Mandelbrot α takes the values 0, 0.25, 0.5,936

1, 2, and 4 (default: 1).937

n tokens (in the whole corpus) takes the values 1k,938

10k, 100k, 1M, 5M, and 15M (default: 15M);939

this hyperparameter was not varied for the940

Unigram language.941

The Unigram language has an additional hyper-942

parameter stop probability which takes the values943

0.05, 0.1, and 0.2 (default: 0.1). The Regular lan-944

guage has two additional hyperparameters: repeat945

probability (c) which takes the values 0.2, 0.4, 0.5,946

and 0.6 (default: 0.4), and n classes which takes947

the values 5, 10, 20, and 40 (default: 10). The948

Dyck and Shuffle Dyck languages take the addi-949

tional hyperparameter open probability with values:950

0.2, 0.3, 0.4, 0.5, and 0.6 (default: 0.5); Shuffle951

Dyck is not generated with the value 0.6 due to952

implementation constraints.953

F Task Success and Entropy954

Previous work (Kharitonov et al., 2020; Chaabouni955

et al., 2021) has analyzed entropy minimization956

with respect to the amount of information or,957

roughly speaking, task success. We performed958

a brief analysis the relationship between entropy959

and accuracy (task success) shown in Figure 6.960

While we do find significant correlation (Pearson’s961

r = 0.57 for Search 5r), we would not characterize962
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Figure 6: Entropy versus accuracy for Search 5r.

it as any strict sort of entropy minimization. That 963

is, we observe many emergent languages which 964

are from the Pareto frontier of high accuracy and 965

low entropy. Hyperparameter search demonstrates 966

itself to be a powerful tool for investigating such 967

correlations since it is able to generate a wide vari- 968

ety of emergent languages with minimal additional 969

work from the researchers. Nevertheless, more in- 970

vestigation would have to be done on this front 971

to conclusively support or reject prior claims of 972

entropy minimization. 973

G Hyperparameter Scatter Plots 974

Figures 7 to 10 show the univariate scatter plots 975

for hyperparameter Searches 1–4. The y-axis is 976

XferBench-da score (or some smaller variation 977

thereof, for Searches 1 and 2), and the x-axis is one 978

of the hyperparameters varied for that search. Note 979

that other variables are not held constant while one 980

is varied; instead all hyperparameters are varied for 981

each trial. 982
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Figure 7: Objective values for Search 1 by individual hyperparameter.
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