
Warm-starting Push-Relabel

Sami Davies∗, Sergei Vassilvitskii†, Yuyan Wang†
∗UC Berkeley, †Google Research – New York

davies@berkeley.edu, {sergeiv,wangyy}@google.com

Abstract

Push-Relabel is one of the most celebrated network flow algorithms. Maintaining
a pre-flow that saturates a cut, it enjoys better theoretical and empirical running
time than other flow algorithms, such as Ford-Fulkerson. In practice, Push-Relabel
is even faster than what theoretical guarantees can promise, in part because of
the use of good heuristics for seeding and updating the iterative algorithm. How-
ever, it remains unclear how to run Push-Relabel on an arbitrary initialization
that is not necessarily a pre-flow or cut-saturating. We provide the first theoreti-
cal guarantees for warm-starting Push-Relabel with a predicted flow, where our
learning-augmented version benefits from fast running time when the predicted
flow is close to an optimal flow, while maintaining robust worst-case guarantees.
Interestingly, our algorithm uses the gap relabeling heuristic, which has long been
employed in practice, even though prior to our work there was no rigorous theoreti-
cal justification for why it can lead to run-time improvements. We then provide
experiments that show our warm-started Push-Relabel also works well in practice.

1 Introduction

Maximum flow is a fundamental problem in combinatorial optimization. It admits many algorithms,
from the famous Ford-Fulkerson algorithm [FF56] which employs augmenting paths, to recent
near-linear time scaling based approaches [CKL+22]. In practice, however, the Push-Relabel family
of algorithms remains one of the most versatile and is often the standard benchmark to which new
flow algorithms are compared [Wil19, CH09].

Designed by Goldberg and Tarjan [GT88], the core Push-Relabel algorithm (Algorithm 1) has
running time O(n2m), where n and m are the number of vertices and edges in the network. Given
the popularity of max-flow as a subroutine in large-scale applications [BK04, KBR07, Wil19], it is
no surprise that improving running times has been a subject of a lot of study, with multiple heuristic
methods being developed [JM+93, CG95, AKMO97, Gol08].

To complement these heuristics, researchers studied max-flow in the algorithms with predictions
framework (or learning-augmented algorithms) [MV22]. Two groups initiated the study and proved
that the running time of the Edmonds-Karp selection rule for Ford Fulkerson can be improved from
O(m2n) to O(m||f∗ − f̂ ||1), where f∗ is an optimal flow on the network and f̂ is a predicted
flow [DMVW23, PZ22]. These algorithms start the augmenting path algorithms from a feasible
flow obtained from the predicted flow, then bound the number of augmentations by the ℓ1-distance
between the predicted and maximum flows.

While these works have improved upon the cold-start, non learning-augmented versions, it is important
to note that they have improved upon sub-optimal algorithms for max flow. In this work, we show
how to warm-start Push-Relabel, whose cold-start version is nearly state-of-the-art for the maximum
flow problem. This directly addresses the challenge specified in [DMVW23] on bringing a rigorous
analysis for warm-starting non-augmenting path style algorithms. In the process of doing so, we
provide a theoretical explanation for the success of the popular gap relabeling heuristic in improving

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

the running time of Push-Relabel algorithms. Specifically, both the gap relabeling heuristic and our
algorithm maintain a cut with monotonically decreasing t-side nodes (see Section 1.2 for more),
which directly leads to improved running times for our version of Push-Relabel and the gap relabeling
heuristic. Lastly, we show that our theory is predictive of what happens in practice with experiments
on the image segmentation problem.

1.1 Preliminaries

Graph, flow and cut concepts. Our input is a network G = (V,E), where each directed edge e ∈ E
is equipped with an integral capacity ce ∈ Z≥0. Let |V | = n and |E| = m. G contains nodes s,
the source, and t, the sink. G is connected: ∀u ∈ V , there are both s− u and u− t paths in G. A
flow f ∈ Zm

≥0 is feasible if it satisfies: (1) flow conservation, meaning any u ∈ V \ {s, t} satisfy∑
(v,u)∈E fe =

∑
(u,w)∈E fe; (2) capacity constraints, meaning for all e ∈ E, fe ≤ ce. Our goal is

to find the maximum flow, i.e. one with the largest amount of flow leaving s.

We call f a pseudo-flow if it satisfies capacity constraints only. A node u ∈ V \ {s, t} is said
to have excess if it has more incoming flow than outgoing, i.e.,

∑
(v,u)∈E fe >

∑
(u,w)∈E fe;

analogously it has deficit if its outgoing flow is more than ingoing. We denote the excess and
deficit of a node u with respect to f as excf (u) = max{

∑
(v,u)∈E fe −

∑
(u,w)∈E fe, 0} and

deff (u) = max{
∑

(u,w)∈E fe−
∑

(v,u)∈E fe, 0}, where at most one can be positive. A pseudo-flow
can have both excesses and deficits, whereas a pre-flow is a pseudo-flow with excess only.

For a pseudo-flow f , the residual graph Gf is a network on V ; for every e = (u, v) ∈ E, Gf

has edge e with capacity c′e = ce − fe and a backwards edge (v, u) with capacity fe. Let E(Gf)
denote the edges in Gf . The value of a pseudo-flow f is val(f) =

∑
e=(s,u) fe, the total flow

going out of s. Notice that this is not necessarily equivalent to the total flow into t since flow
conservation is not satisfied. A cut-saturating pseudo-flow is one that saturates some s − t cut
in the network. Push-Relabel maintains a cut-saturating pre-flow; equivalently, there is no s − t
path in the residual graph of the pre-flow. We use δ(S, T) to denote an s− t cut between two sets
S and T . Note that the cut induced by any cut-saturating pseudo-flow f can be found by taking
T = {u ∈ V : ∃u− t path in Gf} (including t) and S = V \ T .

Prediction. The prediction that we will use to seed Push-Relabel is some f̂ ∈ Zm
≥0, which is a set of

integral values on each edge. Observe that one can always cap the prediction by the capacity on every
edge to maintain capacity constraints, so throughout this paper we will assume f̂ is a pseudo-flow. It
is important to note that our predicted flow is not necessarily feasible or cut-saturating, and part of
the technical challenge is making use of a good predicted flow despite its infeasibility.

Error metric. We measure the error of a predicted pseudo-flow f̂ on G. The smaller the error is,
the higher quality the prediction is, and the less time Push-Relabel seeded with f̂ should take. A
pseudo-flow becomes a maximum flow when it is both feasible and cut-saturating. Hence, the error
measures how far f̂ is from being cut-saturating while being feasible. We say that a pseudo-flow f̂ is
σ far from being cut-saturating if there exists a feasible flow f ′ on Gf̂ where val(f ′) ≤ σ and f̂ + f ′

is cut-saturating on G (though the cut does not have to be a min-cut). To measure how far f̂ is from
being feasible, we sum up the total excesses and deficits. In total we use the following error metric:

Definition 1. For pseudo-flow f̂ on network G, the error of f̂ is the smallest integer η such that (1) f̂
is η far from being cut-saturating and (2)

∑
u∈V \{s,t} excf̂ (u) + deff̂ (u) ≤ η.

If η = 0, f̂ is the max-flow and the cut that is saturated is the min-cut. The previously studied error
metric for predicted flows, such as by [DMVW23] and [PZ22], was ||f∗− f̂ ||1, for any max-flow f∗.

PAC-learnability is the standard to justify that the choice of prediction and error metric are reasonable.
Flows are PAC-learnable with respect to the ℓ1-norm [DMVW23]. Our results hold replacing our
error metric with the ℓ1-norm because our metric provides a more fine-grained guarantee than the
ℓ1-norm (i.e., if a prediction f̂ has error η, then η ≤ ||f∗ − f̂ ||1). Thus we can omit any theoretical
discussion of learnability. We present this work with respect to our error metric as we find the ℓ1
error metric to be unintuitive, as it is not really very descriptive of how good a predicted flow is.

2

Push-Relabel. The “vanilla” Push-Relabel algorithm maintains a pre-flow and set of valid heights
(also called labels) on nodes. Heights h : V → Z≥0 are valid for f if for every edge (u, v) ∈ E(Gf)
with positive capacity, h(u) ≤ h(v) + 1, and if h(s) = n and h(t) = 0. An edge (u, v) ∈ E(Gf) is
called admissible if h(u) = h(v)+1 and c′(u,v) > 0, which means we can push flow from u to v. The
algorithm starts with f init, where f init

e = ce for all e = (s, u) and otherwise f init
e = 0. It then pushes

flow on admissible edges (u, v) for u with excess flow when possible, and otherwise the algorithm
updates the heights. See Algorithm 1.

Algorithm 1 Push-Relabel

Input: Network G
Define fe = ce for e = (s, u) and fe = 0 for all other e
Define h(u) = 0 for all u ∈ V \ {s} and h(s) = n
Build residual network Gf

while ∃ node u with excf (u) > 0 do
if ∃ admissible (u, v) ∈ E(Gf) with f(u,v) < c(u,v) then

Update f by sending an additional flow value of min{excf (u), c′(u,v)} along (u, v)

Update Gf accordingly
else update h(u) = 1 +minv:(u,v)∈E(Gf) h(v)

Output: f

All heights in Push-Relabel are bounded.
Lemma 1. For a pre-flow f on network G, every node u with excf (u) > 0 has a path in Gf

to s. Further, for d(u, v) the length of the shortest path from u to v in Gf , any valid heights in
Push-Relabel (Algorithm 1) satisfy h(u) ≤ h(v) + d(u, v). For all u ∈ V , h(u) ≤ h(s) + n = 2n.

At any point of the algorithm, the s− t cut maintained can be found using the heights.
Lemma 2. For a pseudo-flow f with valid heights h on network G, let θ be the smallest positive
integer such that θ /∈ {h(u)}u∈V . Then sets S = {u ∈ V : h(u) > θ} and T = {u ∈ V : h(u) < θ}
form a cut saturated by f .

We call this cut induced by the heights. Indeed, such a threshold θ can be found because {h(u)}u∈V

has at most n different values, but h(s) = n and h(t) = 0, so among the n+ 1 values {0, 1, . . . , n},
at least one is not in the set. Note that δ(S, T) is a saturated cut by definition of valid heights. A
saturated cut can also be defined by whether a node can reach the sink in the residual graph.
Lemma 3. For any pseudo-flow f on network G, let T be all nodes that can reach t in Gf (including
t) and S = V \ T . If s ∈ S, then δ(S, T) is a saturated s− t cut.

Lemmas 2 and 3 apply to all pseudo-flows, whereas vanilla Push-Relabel must take a pre-flow as
input. Before this work, it was unclear how to seed Push-Relabel with anything other than f init.

With the gap relabeling heuristic, whenever there is some integer 0 < θ < n with no nodes at height
θ, then nodes with height between θ and n have their height increased to n. See Algorithm 2.

1.2 Technical contribution

We first study Push-Relabel with the gap relabeling heuristic when seeded with a prediction that is a
cut-saturating pre-flow with error η. We prove Algorithm 2 finds an optimal solution in time O(η ·n2).
The running time also holds for cold-start versions of the algorithm when the max-flow/min-cut value
is known to be bounded by η. This is (1) the first theoretical analysis of the gap relabeling heuristic,
and, (2) the first result showing a running time bounded by the volume of the cut in Push-Relabel.
While Ford-Fulkerson admits a naive running time bound of O(η ·m) when the max-flow value is at
most η, an analogous claim was not previously known for Push-Relabel.

The algorithm maintains a cut whose t-side is monotonically decreasing (i.e., it moves nodes on the
t-side of the cut to the s-side, but not the other way around), and resolves excess on the t-side by
routing excess flow to t, or updating the cut so the excess node is on the s-side of the new cut. The
same insight will be used in our warm-started version of Push-Relabel seeded with any pseudo-flow.

Our main result applies in the general setting where the prediction is any pseudo-flow.

3

def
s t

exc

…… exc def

exc

……

def

s t
exc

…… exc def……def def

def

s t
exc

…… exc def……
s t

…… ……

Phase 2(a): Resolve excess on t-side, move cut. Phase 2(b): Resolve deficit on s-side, move cut. Min-cut found at end of phase.

Phase 3: Maintain cut, fix excess/deficit within s- and t- side. End: No excess/deficit left. Both min-cut and max-flow are now found.

Figure 1: An illustration of warm-start Push-Relabel, seeded with a cut-saturating pseudo-flow. The
red curve denotes the cut. The black arrows denote the existing flows, whereas the red arrows denote
the flows sent in each phase to resolve excess/deficits.

Theorem 1. Given a predicted pseudo-flow f̂ with error η on network G, there exists a warm-start
version of Push-Relabel that obtains the minimum cut in time O(η · n2).

Our warm-start version of Push-Relabel that is seeded with a general pseudo-flow has several phases.
In the first phase, we show that one can modify the prediction to be a cut-saturating pseudo-flow. We
begin the second phase by routing flow within the two sides of the cut induced by the pseudo-flow to
resolve some of the excess and deficit. The maintained cut gradually changes as we send flow from
node to node, and push certain nodes to different sides of the cut. We continue changing the cut until
all excess nodes end up on the s-side of the cut and all deficit nodes end up on the t-side of the cut.
This “swapping" procedure between excess and deficits nodes between the s- and t- sides of the cut
is our biggest technical innovation. Either the excesses are resolved within the t-side of the cut, or we
find a new cut between the t-side excess nodes and the t-side deficit nodes plus t. We modify the cut
in G accordingly to separate all excess from the t-side, which also results in a cut whose t-side is
monotonically decreasing—an interesting point which also occurs in the cut maintained by the gap
relabeling heuristic. A mirrored version of this process is performed on the s-side of the cut.

In the final phase, we have a new cut-saturating pseudo-flow with all excess nodes on the s-side of
the cut and all deficit nodes on the t-side of the cut. This cut is actually a min-cut. On the s-side, the
excess nodes send flow to the source, and on the t-side, the sink sends flow to deficit nodes (hence
removing existing flows). The result is a max-flow. See Figure 1 for an illustration of phases 2 and 3.

In Section 4, we run our warm-start Push-Relabel compared to a cold-start version. We see that the
warm-start improves over the cold-start by a larger percentage as the size of the image increases.

Our work identifies that there is a monotonic property in the cuts when Push-Relabel is implemented
with the gap relabeling heuristic that directly results in faster running time when the value of the
max flow/min cut is small (Corollary 1). While such a result was known for Ford-Fulkerson, this
was not known for Push-Relabel prior to our work. We leave as an open direction whether this
monotonic property may have further theoretical importance in improving Push-Relabel analyses on
more general classes of networks.

The running time of warm-start Push-Relabel is O(n2η), while the running time of warm-start
Edmonds-Karp is O(mη) [DMVW23]. We do not believe that the bound for warm-start Push-
Relabel being no faster than that of warm-start Edmonds-Karp is a weakness in our analysis, but is
instead an artifact of the community’s lack of understanding on why Push-Relabel performs so much
better in practice than its theoretical bounds guarantee. Improving our theoretical understanding of
algorithms that do well in practice (like Push-Relabel or the Simplex Method) is one of the pillars of
the field of beyond worst-case analysis [Rou21]. Researchers have long suspected that there should
be a way to parameterize instances or use practical heuristics to justify why Push-Relabel is so much
better in practice than its theoretical worst-case bound would suggest [CG95, Hoc08, CM99].

2 Gap Relabeling Push-Relabel: Cold- and Warm-Start

We briefly overview the performance of Push-Relabel with the gap relabeling heuristic (Algorithm
2) when given a cut-saturating pre-flow f , and tie the running time to the error of f . Proofs in this
section are deferred to Appendix A.2, as their more involved analogs are in Section 3.

4

Algorithm 2 Warm-start Push-Relabel with Gap Relabeling
Input: Network G, a cut-saturating pre-flow f
Construct residual network Gf with capacity c′

Run Algorithm 4 (see Appendix A.1) on G and f , obtain valid heights h and initial cut (S, T)
Initialize θ = min{z ∈ Z>0 : ∄u ∈ T with z = h(u)}
while ∃u ∈ T with excf (u) > 0 do

if ∃v ∈ T such that (u, v) is admissible in Gf then
Update f by sending an additional flow value of min{excf (u), c′(u,v)} along (u, v)

Update Gf accordingly
else

Raise the height of u to be h(u) = minv:(u,v) h(v) + 1
Update θ = min{z ∈ Z>0 : ∄u ∈ T with z = h(u)}
for p ∈ T with h(p) > θ do

Remove p from T , add p to S
Update p’s height to h(p) = n

Take Gf as input and run Algorithm 1 on it to fix excesses, outputs flow f∗

Return flow f + f∗ and the cut δ(S, T) it maintains

Algorithm 2 begins by running Algorithm 4 as a subroutine to find the cut saturated by f and define
valid heights for f which also induce that cut. Algorithm 4 runs a BFS in the residual graph to find
all nodes that have a path to t and names this set T . The other nodes belong to S. By Lemma 3 the
cut δ(S, T) is saturated by f . In the main WHILE loop, the algorithm maintains the cut δ(S, T) such
that all heights in T compose a series of consecutive numbers starting from 0. The cut only changes
when a node is relabeled in a way that results in a break in the series of consecutive heights starting
from 0 in T , where the smallest missing height (the node’s height before relabeling) is denoted by θ.
The algorithm then removes all nodes from T with height bigger than θ; importantly, these nodes will
never enter T again. The WHILE loop terminates when T has no excess, thus finding the min cut.

Lemma 4. Let f be a pre-flow saturating cut δ(S, T) on network G. If there are no excess nodes in
T , then all excess in S can be sent back to s without crossing the cut, implying δ(S, T) is a min-cut.

We show that the running time is tied to η, which, in this case, is the total excess in f .

Theorem 2. Given a cut-saturating pre-flow f with error η on network G, Algorithm 2 finds a
max-flow/min-cut in running time O(η · n2).

Although Algorithm 2 is presented as being seeded with an existing pre-flow, the same bound applies
to the cold-start gap relabeling Push-Relabel when the min-cut of G is at most η. One only has to
seed it with f init as in Algorithm 1, which saturates the cut δ({s}, V \ {s}). This will be useful in
Section 3, as we repeatedly use Algorithm 2 as a subroutine on networks with small min-cut.

Corollary 1. If network G is known to have a max-flow/min-cut value of at most η, one can use
Algorithm 2 to obtain a max-flow and min-cut for G in running time O(η · n2).

3 Warm-starting Push-Relabel with General Pseudo-flows

We extend the results in Section 2 to when the given prediction is a general pseudo-flow f̂ as opposed
to a cut-saturating pre-flow, i.e., f̂ may not be cut-saturating and may have deficit nodes. The first
phase of our algorithm computes η and augments f̂ by finding an s− t flow to add to f̂ so that the
resulting pseudo-flow saturates a cut. We defer discussion of this pre-processing phase to Appendix
A.2 (see Lemma 8 and Algorithm 5). Once we have a cut-saturating pseudo-flow f and η, we are
ready to define the accompanying heights and cut using Algorithm 4. Note that the initial cut with
two sides T0 = {u ∈ V : ∃u− t path in Gf} and S0 = V \ T0 is by definition the same cut as that
induced by the heights (as in Lemma 2).

We update the pseudo-flow so that it always maintains a saturated cut, but eventually, the nodes with
excess and the nodes with deficit are separated by the saturated cut. This is a generalization of what
happens in Algorithm 2, where we transfer all excess nodes to the s-side of the cut. Here, we transfer

5

Algorithm 3 Moving all excess to the s-side of the cut

Input: Network G, a cut saturating pseudo-flow f , and error η
Run Algorithm 4, get output heights h
Let T0 = {u ∈ V : ∃u− t path in Gf} and S0 = V \ T0

Build the residual Gf

Build G′ on copy of Gf [T0] plus {s∗, t∗}
for excess node u ∈ T0 \ {t} do

Add edge (s∗, u) with capacity excf (u)
for deficit node v ∈ T0 do

Add edge (v, t∗) with capacity deff (u)
Add edge (t, t∗) with capacity η + 1
Let f init

(s∗,u) = c(s∗,u) for all (s∗, u), and all other f init
e = 0

Run Algorithm 2 on G′ and f init, outputs f ′ and T ′
0, T ′′

0
for all copies of e = (u, v) ∈ E(Gf) where f ′

e > 0 do
Update fe ← fe + f ′

e

Output: Flow f and cut parts S0 ∪ T ′
0 and T ′′

0

all excess to the s-side, and all deficit to the t-side of the cut. Interestingly, we observe that this is the
sufficient condition for the pseudo-flow to saturate a min-cut. Lemma 5 extends Lemma 4.

Lemma 5. For a cut-saturating pseudo-flow f for a network G, let δ(S, T) be a cut it saturates. If
all nodes in T have no excess and all nodes in S have no deficit, then the cut is a minimum cut.

To prove Lemma 5, we use the following result from [DMVW23]:

Lemma 6 (Lemma 5 [DMVW23]). Given any pseudo-flow f for G, every excess node has a path in
Gf to either a deficit node or s; every deficit node has a path in Gf from either an excess node or t.

Proof of Lemma 5. In Gf , by Lemma 6, every excess node u in S must have a path to either a deficit
node or s. Since f currently saturates δ(S, T), the path cannot go across this cut and reach T , where
all the deficits are. Therefore, u has a path back to s within set S. Similarly, for every deficit node
v ∈ T there is a path that starts with either an excess node or t and ends with v. Again, since the cut
δ(S, T) is already saturated, the path must be within T , hence can only be from t to v. It follows that
we can send all excess to s and send flow from t to all deficit nodes until the pseudo-flow becomes
a feasible flow. Notice that δ(S, T) remains saturated in this process, hence the resulting flow is
max-flow and δ(S, T) is min-cut.

By Lemma 5, it is sufficient to find a pseudo-flow and accompanying saturated cut where the excess
nodes are all on the s-side and the deficit nodes are all on the t-side. We focus on the t-side of the cut,
and show that the same can be done for the s-side by considering the backwards network.

Moving excess to the s-side. To resolve excess on the t-side, we solve an auxiliary graph problem.
The goal is to send the maximum amount of flow from excess nodes to either deficit nodes or t within
the t-side (currently denoted T0). If the max-flow in this problem matches the total excess in T0,
all excess can be resolved locally and only deficits remain; otherwise, the max-flow solution on the
auxiliary graph also provides us with a min-cut that “blocks” excess nodes from deficit nodes and t.
This cut will become the new cut maintained by the pseudo-flow after adding the auxiliary flow to it.

To construct the auxiliary G′, take the induced subgraph Gf [T0], and add a super-source and -sink s∗

and t∗ to it. Add edges (s∗, u) with capacity excf (u) for every excess node u ∈ T0; add edges (v, t∗)
with capacity deff (v) for every deficit node v ∈ T0; and add an edge (t, t∗) with capacity η + 1.

When we run cold-start Push-Relabel (Algorithm 2) on G′, it outputs a flow f ′ and the s∗ − t∗ cut
δ(T ′

0, T
′′
0). Note that t ∈ T ′′

0 , since (t, t∗) has capacity η + 1 and cannot be in the min cut which is
bounded by η by definition. Any s∗ − t∗ path p in G′ along which f sends δ units of flow exactly
identifies nodes u and v (where (s∗, u) ∈ p and (v, t∗) ∈ p) for which δ units of flow can be sent
from u to v along the interior of p in Gf . We can send flow as indicated by f ′ to update f (Algorithm
3). We obtain the following guarantee.

6

Claim 1. In Algorithm 3, the output pseudo-flow f saturates the cut δ(S0 ∪ T ′
0, T

′′
0), and all excess

nodes are in S0 ∪ T ′
0. Moreover, the total excess and deficit in G has not increased.

Proof of Claim 1. Let fold denote the input to Algorithm 3. The fact that the output f saturates
the cut δ(S0 ∪ T ′

0, T
′′
0) immediately follows from the fact that f ′ saturated the cut δ(T ′

0, T
′′
0) in G′.

Indeed, all edges from T ′
0 to T ′′

0 are now saturated and all edges from T ′′
0 to T ′

0 have no flow. All
edges from S0 to T ′′

0 are already saturated in the old flow fold and remain so after adding f ′ since its
flows are locally within T0. For the same reason, all edges from T ′′

0 back to S0 still have no flow.

Now, we consider the total excess and deficit. First note that the nodes that have excess/deficit with
respect to the updated pseudo-flow f are a subset of the nodes that had excess/deficit with respect to
fold, and the excess/deficit of a node is clearly never increased. Assume for sake of contradiction
there is an excess node u ∈ T ′′

0 . Then u had excess with respect to fold too, so there is an edge
(s∗, u) that had capacity excfold(u) in G′ but was not saturated by f ′. Further, since a min-cut in G′

is δ(T ′
0, T

′′
0), it must be that u can reach t in G′. This means that in G′ there is a path with positive

remaining capacity between s∗ and t∗, contradicting the fact that f ′ was a max-flow in G′.

By Claim 1, the updated f satisfies the conditions of Lemma 7 by taking S∗ = S0 ∪T ′
0 and T ∗ = T ′′

0 .
The running time in Lemma 7 follows by applying Corollary 1 on G′. Thus we have the following.

Lemma 7. Let f be a pseudo-flow for network G with error η saturating cut δ(S0, T0). Algorithm 3
finds a new cut-saturating pseudo-flow in time O(η · n2) that (i) saturates an additional s − t cut
δ(S∗, T ∗), (ii) has no excess nodes in T ∗, and (iii) has total excess and deficit still bounded by η.

We can do a similar procedure for the s-side of the cut, this time removing deficit nodes. This is the
backward process of what happens to the t-side, and can be done by reversing the graph edges and
flows and running Algorithm 3 on the reversed network; see Appendix A.2 and Algorithm 6.

Corollary 2. Let f be a pseudo-flow for network G with error η that saturates cut δ(S0, T0). One
can update f in time O(η · n2) so that all flow in T0 remains unchanged, but now f saturates a cut
δ(S∗, T ∗) and there are no deficit nodes in S∗.

Coping with unknown η Algorithm 3 assumes η is given. When η is not know, we can run
Algorithm 3 iteratively with a guess for η and double the guess each iteration. We initialize by
guessing that η = 1. Run Algorithm 3 on an auxiliary graph, which is just the residual graph plus a
new source node s∗ with a single edge (s∗, s) of capacity η that is saturated upon initialization. If
Algorithm 3 returns the cut (s∗, s), we have augmented the pseudo-flow f with an s− t flow of η,
but have not found an s − t cut yet. Double η, change both the capacity and flow on (s∗, s) to be
the new η, and run Algorithm 3 again. Repeat this until we have found an s− t cut. The initial f is
between [η2 , η] away from being cut-saturating, and the whole procedure has O(η · n2) running time.
See Algorithm 5 for more details.

Summarizing this section, we prove our main theorem.

Proof of Theorem 1. Given a predicted pseudo-flow f̂ with error η on network G, Lemma 8 proved
that Algorithm 5 finds a cut-saturating pseudo-flow f for G with error η in time O(η · n2). To find a
min-cut, Lemma 5 shows that it is enough to find a pseudo-flow saturating a cut so that the t-side of
the cut contains no excess and the s-side of the cut contains no deficit.

By Lemma 7, we can run Algorithm 3 seeded with f on G to obtain an updated cut-saturating
pseudo-flow with no excess on the t-side of the maintained cut in time O(η · n2). Then, Algorithm 3
can be run on the backwards network B, and from Corollary 2, the updated cut-saturating pseudo-flow
now has no excess on the t-side of the cut and no deficit on the s-side.

The last phase can be left out if only the min-cut is desired. Suppose the min-cut is δ(S, T). By the
proof of Lemma 5, to obtain a max-flow we only need to send all excess flow back to s, and send
flow from t to every deficit node. Label all nodes in S with height n and all nodes in T with height 0.
Then run Algorithm 2 to fix all excess in S. The algorithm will only send flow back to s, since there
is no way to cross the cut δ(S, T). Then reverse the graph and flow, and run Algorithm 2 to fix the
excess in the reversed graph, which exactly correspond to the deficit nodes in the original graph.

7

(a) Birdhouse (b) Head (c) Shoe (d) Dog

Figure 2: The cropped and gray-scaled images from Figure 4 (copy from Figure 2 in [DMVW23]).

4 Empirical Results

In this section, we validate the theoretical results in Sections 3. To demonstrate the effectiveness of our
methods, we consider image segmentation, a core problem in computer vision that aims at separating
an object from the background in a given image. It is common practice to re-formulate image
segmentation as a max-flow/min-cut optimization problem (see for example [BJ01, BK04, BFL06]),
and solve it with combinatorial graph-cut algorithms.

The experiment design we adopt largely resembles that in [DMVW23], which studied warm-starting
the Ford-Fulkerson algorithm for max-flow/min-cut. As in previous work, we do not seek state-
of-the-art running time results for image segmentation. Our goal is to show that on real-world
networks, warm-starting can lead to significant run-time improvements for the Push-Relabel min-cut
algorithm, which claims stronger theoretical worst-case guarantees and empirical performance than
the Ford-Fulkerson procedures. We highlight the following:

• Our implementation of cold-start Push-Relabel is much faster than Ford-Fulkerson on these
graph instances, enabling us to explore the effects of warm-starting on larger image instances.
This improved efficiency results from implementing the gap labeling and global labeling
heuristics, both known to boost Push-Relabel’s performance in practice. The actual running
time scales with η better than the theoretical O(n2η) bound. This is not totally surprising,
as Push-Relabel is known to often enjoy subquadratic running time despite the bound.

• As we increase the number of image pixels (i.e., the image’s resolution), the size of the
constructed graph increases and the savings in time becomes more significant.

• Implementation choices (such as how to learn the seed-flow from historical graph instances
and their solutions) that make the predicted pseudo-flow cut-saturating and that reroute
excesses and deficits are crucial to the efficiency of warm-starting Push-Relabel.

Datasets and data prepossessing Our image groups are from the Pattern Recognition and Image
Processing dataset from the University of Freiburg, and are titled BIRDHOUSE, HEAD, SHOE, and
DOG. The first three groups are .jpg images from the Image Sequences1 dataset. The last group, DOG,
was a video that we converted to a sequence of .jpg images from the Stereo Ego-Motion2 dataset.

Each of the image groups consists of a sequence of photos of an object and its background. There
are slight variations between consecutive images in a sequence, which are the result of the object
and background’s relative movements or a change in the camera’s position. These changes alter
the solution to the image segmentation problem, but the effects should be minor when the change
between consecutive images is minor. In other words, we expect an optimal flow and cut found on an
image in a sequence to be a good prediction for the next image in the sequence.

From each group, we consider 10 images and crop them to be either 600× 600 or 500× 500 pixel
images, still containing the object, and gray-scale all images. We rescale the cropped, gray-scaled
images to be N × N pixels to produce different sized datasets. Experiments are performed for
N ∈ {30, 60, 120, 240, 480}. In the constructed graph, we have |V | = N2 + 2. Every graph is
sparse, with |E| = O(|V |), hence both |V | and |E| grow as O(N2). Detailed description of raw data
and example original images can be found in Appendix B (Table 3, Figure 4).

1https://lmb.informatik.uni-freiburg.de/resources/datasets/sequences.en.html
2https://lmb.informatik.uni-freiburg.de/resources/datasets/StereoEgomotion.en.html

8

Figure 3: Cuts (red) on images chronologically evolving from the 240× 240 pixel images from BIRDHOUSE.

Graph construction As in [DMVW23], we formulate image segmentation as a max-flow/min-cut
problem. The construction of the network flow problem applied in both our work and theirs is
derived from a long-established line of work on graph-based image segmentation; see [BFL06]. The
construction takes pixels in images to be nodes; and a penalty function value which evaluates the
contrast between the pigment of any neighboring pixels to be edge capacity. We leave details on
translating the images to graphs on which we solve max-flow/min-cut to Appendix B.

Implementation details in warm-start Push-Relabel Throughout the experiments, whenever the
Push-Relabel subroutine is called on any auxiliary graph, it is implemented with the gap relabeling
heuristic, as shown in Algorithm 2, and the global relabeling heuristic, which occasionally updates
the heights to be a node’s distance from t in the residual graph. These heuristics are known to improve
the performance of Push-Relabel. As a tie-breaker for choosing the next active node to push from, we
choose the one with highest height, which is known to improve the running time of Push-Relabel. We
found the generic Push-Relabel algorithm without these heuristics to be slower than Ford-Fulkerson.

All images from the same sequence share the same seed sets. The constructed graphs are on the same
sets of nodes and edges, but the capacities on the edges are different. The first image in the sequence
is solved from scratch. For the second image in the sequence, we reuse the old optimal flow and cut
from the first image one, then for the ith image in the sequence, we reuse the optimal flow and cut
from the i− 1st image. We reuse the old max-flow on the new network by rounding down the flow
on edges whose capacity has decreased, hence producing excesses and deficits, and pass this network
and flow to the warm-start Push-Relabel algorithm in Section 3.

To find a saturating cut, instead of sending flow from s to t as suggested in Algorithm 5, we reuse the
min-cut on the previous image δ(S0, T0) and send flow from S0 to T0 that originates from either s or
an excess node, and ends at either t or a deficit node. We experimented with a few different ways of
projecting the old flow to a cut-saturating one on the new graph. The way we implemented was by
far the most effective, although it shares the same theoretical run-time as Algorithm 5.

The graph-based image segmentation method finds reasonable object/background boundaries. Figure
3 shows an example of how the target cut could evolve as the image sequence proceeds. Even with
the same set of seeds, the subtle difference in images could lead to different min-cuts that need to be
rectified. However, the hope is that the old min-cut bears much resemblance to the new one, hence
warm-starting Push-Relabel with it could be beneficial. See Appendix B for other examples.

In our experiments, η is estimated by computing both the total excess/deficit. Typically this is a loose
bound, but it suffices for our purpose.

Results Table 1 shows average running times for both Ford-Fulkerson in [DMVW23] and Push-
Relabel. The “N/A” marks overly long run-time (>1 hour), at which point we stop evaluating the
exact run-time.

These results show warm-starting Push-Relabel, while slightly losing in efficiency on small images,
greatly improves in it on large ones. As for the scaling of run-time with growing data sizes, both cold-
and warm- start’s running time increases polynomially with the image width n, but warm-start scales
better, and as n increases to 480, it gains a significant advantage over cold-start. Despite the different
warm-start theoretical bounds (O(η|V |2) for Push-Relabel versus O(η|E|) for Ford-Fulkerson), in
practice both warm-start algorithms scale similarly as the dataset size grows. Additionally, one
can see Push-Relabel greatly outperforms on the same image size, allowing us to collect run-time

9

Table 1: Average run-times (s) of cold-/warm-start Ford Fulkerson (FF) and Push-Relabel (PR)
Image Group FF cold-start FF warm-start PR cold-start PR warm-start

BIRDHOUSE 30× 30 0.80 0.51 0.05 0.06
HEAD 30× 30 0.62 0.43 0.05 0.05
SHOE 30× 30 0.65 0.39 0.07 0.06
DOG 30× 30 0.69 0.32 0.10 0.11

BIRDHOUSE 60× 60 8.22 3.25 0.30 0.45
HEAD 60× 60 9.36 4.10 0.50 0.50
SHOE 60× 60 8.09 3.04 0.69 0.47
DOG 60× 60 21.91 6.73 0.76 0.95

BIRDHOUSE 120× 120 109.06 37.31 5.42 4.98
HEAD 120× 120 101.79 28.43 5.90 5.92
SHOE 120× 120 98.95 30.44 6.44 3.74
DOG 120× 120 190.36 38.08 6.76 6.38

BIRDHOUSE 240× 240 NA 400.19 60.67 55.68
HEAD 240× 240 NA 374.79 32.46 31.00
SHOE 240× 240 NA 338.05 69.29 35.57
DOG 240× 240 NA 459.48 73.76 52.42

BIRDHOUSE 480× 480 NA NA 604.54 502.58
HEAD 480× 480 NA NA 365.25 285.75
SHOE 480× 480 NA NA 756.77 364.42
DOG 480× 480 NA NA 834.63 363.41

statistics on images of sizes up to 480× 480 pixels, which we could not do with implementations of
Ford-Fulkerson, due to its slow run-time.

Table 2 shows how the running time of warm-start Push-Relabel breaks down into the three phases
described in Section 3: (1) finding a cut-saturating pseudo-flow; (2) fixing excess on t-side; (3) fixing
deficits on s-side. Note phase (1) takes the most time, but results in a high-quality pseudo-flow, in
that it takes little time to fix the excess/deficits appearing on the “wrong” side of the cut.

Table 2: Running time of warm-start Push-Relabel break down, on BIRDHOUSE
Size 30× 30 60× 60 120× 120 240× 240 480× 480

Total 0.06 0.45 4.98 55.68 502.58
Saturating cut 0.04 0.34 4.17 46.25 431.49

Fixing t excesses 0.01 0.09 0.53 5.29 64.01
Fixing s deficits 0.01 0.02 0.27 4.13 7.08

5 Conclusions

We provide the first theoretical guarantees on warm-starting Push-Relabel with a predicted flow,
improving the run-time from O(m · n2) to O(η · n2). Our algorithm uses a well-known heuristics
in practice, the gap relabeling heuristic, to keep track of cuts in a way that allows for provable
run-time improvements. One direction of future work is extending the approaches in this work to
generalizations of s-t flow problems, for instance, tackling minimum cost flow or multi-commodity
flow. A different line of work is to develop rigorous guarantees for other empirically proven heuristics
by analyzing them through a lens of predictions, providing new theoretical insights and developing
new algorithms for fundamental problems.

10

References
[AKMO97] Ravindra K Ahuja, Murali Kodialam, Ajay K Mishra, and James B Orlin. Computational

investigations of maximum flow algorithms. European Journal of Operational Research,
97(3):509–542, 1997.

[BFL06] Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient nd image segmentation.
International journal of computer vision, 70(2):109–131, 2006.

[BJ01] Yuri Y Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary & region
segmentation of objects in nd images. In Proceedings eighth IEEE international
conference on computer vision. ICCV 2001, volume 1, pages 105–112. IEEE, 2001.

[BK04] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE transactions on pattern
analysis and machine intelligence, 26(9):1124–1137, 2004.

[CG95] Boris V Cherkassky and Andrew V Goldberg. On implementing push-relabel method
for the maximum flow problem. In International conference on integer programming
and combinatorial optimization, pages 157–171. Springer, 1995.

[CH09] Bala G Chandran and Dorit S Hochbaum. A computational study of the pseudoflow
and push-relabel algorithms for the maximum flow problem. Operations research,
57(2):358–376, 2009.

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 612–623. IEEE, 2022.

[CM99] Joseph Cheriyan and Kurt Mehlhorn. An analysis of the highest-level selection rule in
the preflow-push max-flow algorithm. Information Processing Letters, 69(5):239–242,
1999.

[DMVW23] Sami Davies, Benjamin Moseley, Sergei Vassilvitskii, and Yuyan Wang. Predictive
flows for faster ford-fulkerson. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 7231–7248. PMLR, 23–29 Jul 2023.

[FF56] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8:399–404, 1956.

[Gol08] Andrew V Goldberg. The partial augment–relabel algorithm for the maximum flow
problem. In European Symposium on Algorithms, pages 466–477. Springer, 2008.

[GT88] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM (JACM), 35(4):921–940, 1988.

[Hoc08] Dorit S Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow
problem. Operations research, 56(4):992–1009, 2008.

[JM+93] David S Johnson, Catherine C McGeoch, et al. Network flows and matching: first
DIMACS implementation challenge, volume 12. American Mathematical Soc., 1993.

[KBR07] Vladimir Kolmogorov, Yuri Boykov, and Carsten Rother. Applications of parametric
maxflow in computer vision. In 2007 IEEE 11th International Conference on Computer
Vision, pages 1–8. IEEE, 2007.

[MV22] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Commu-
nications of the ACM, 65(7):33–35, 2022.

[PZ22] Adam Polak and Maksym Zub. Learning-augmented maximum flow. arXiv preprint
arXiv:2207.12911, 2022.

11

[Rou21] Tim Roughgarden. Beyond the worst-case analysis of algorithms. Cambridge University
Press, 2021.

[Wil19] David P Williamson. Network flow algorithms. Cambridge University Press, 2019.

12

A More Discussion on Warm-starting Push-Relabel

We include some more insights and details on warm-starting Push-Relabel, including omitted proofs
and algorithms from the main body.

A.1 Omitted algorithms

Algorithm 4 is used throughout the paper to obtain valid heights on a cut-saturating pseudo-flow. It is
essentially just a BFS procedure from the sink, where nodes that can reach the sink have height equal
to their shortest distance to the sink in the residual graph, and nodes that cannot reach the sink have
height n.

Algorithm 4 Define Heights

Input: Network G, a cut-saturating pseudo-flow f
Define h(s) = n, h(t) = 0
Run BFS in Gf

Let T = {u ∈ V : ∃u− t path in Gf}
Let S = V \ T
for all u ∈ S do

Let h(u) = n

for all u ∈ T do
Let h(u) be the shortest path length from u to t in Gf

Output: Valid heights h, and cut parts S and T

The following is a straightforward pre-processing algorithm. Given a pseudo-flow f̂ , it finds a
cut-saturating pseudo-flow and computes the value of the error η.

Algorithm 5 Find a Cut-saturating Pseudo-flow and Compute η∗

Input: Network G, a pseudo-flow f̂
Initialize η = 1
Build G′: a copy of G plus a super-source s∗ and edge (s∗, s)
Initialize C = δ(s∗, V)
while C = δ(s∗, V) do

Update the capacity of (s∗, s) in G′ to be η, and let f̂(s∗,s) = η

Run Algorithm 3 with inputs G′ and f init = f̂ , call output flow f ′ and output cut δ(S, T)
Update C ← δ(S, T)
if the current cut C = δ(s∗, V) then

Update η ← 2η.
Let η = f(s∗,s), delete s∗ and (s∗, s) from G.
Output: f and η

The mirror version of Algorithm 3 is below.

A.2 Omitted proofs

Proof of Lemma 3. Fix u ∈ S, v ∈ T . Since v can reach t and u cannot, any edge (u, v) from S to
T in G must be saturated by f , and any edge (v, u) from T to S in G must have no flow. This is
because if either of these were not true, the edge (u, v) in Gf would have positive capacity, allowing
u to reach t. Hence δ(S, T) is saturated by f .

Proof of Lemma 4. It is known from the proof of the vanilla Push-Relabel algorithm that all excess
nodes in a pre-flow must have a path back to s; see Lemma 1. When f saturates δ(S, T), such a path
cannot go from S to T , so the path must be within S. The last two lines of Algorithm 2 will resolve
the excesses without effecting the saturated cut. So we have a feasible flow saturating a cut, meaning
the flow is a max-flow and the cut is a min-cut.

13

Algorithm 6 Moving all deficit to the t-side of the cut

Input: Network G, a pseudo-flow f with error η that saturates the cut δ(S0, T0)
Build the residual Gf

Build G′ on copy of Gf [S0] plus {s∗, t∗}
for excess node u ∈ S0 do

Add edge (s∗, u) with capacity excf (u)
for deficit node v ∈ S0 \ {s} do

Add edge (v, t∗) with capacity deff (u)
Add edge (s∗, s) with capacity η + 1 (or other number sufficiently large)
Let f init

(s∗,u) = c(s∗,u) for all (s∗, u) and f init
(s∗,s) = c(s∗,s), and all other f init

e = 0

Run Algorithm 2 on G′ and f init, outputs f ′ and S′
0, S′′

0
for all copies of e = (u, v) ∈ E(Gf) where f ′

e > 0 do
Update fe ← fe + f ′

e

Output: Flow f and cut parts S′
0 and S′′

0 ∪ T0

Proof of Theorem 2. The algorithm first works to resolve excess in T , possibly moving nodes from
T to S to do so. Once all excess is in S, correctness follows from Lemma 4. Note that the conditions
of Lemma 4 are satisfied since by Lemma 3 the cut output by Algorithm 4 is saturated by f .

To bound the running time of Algorithm 2, we use a potential function argument that is different from
that in the standard Push-Relabel analysis.

We first bound the running time of the main WHILE loop that terminates when all excess is contained
in S and the min-cut is found. We define the potential function Φ(T) =

∑
u∈T excf (u) · h(u). The

operations involved change the value of Φ(T) in the following way.

– Saturated/Unsaturated push: In either case, at least one unit of excess flow is pushed from a higher
height to a lower height, since for edge (u, v) to be admissible, h(u) = h(v) + 1. Therefore, Φ(T)
decreases by at least 1.

– Relabeling a node to open up new admissible edges: Any such relabeling operation increases Φ(T).
However, the total of all of these increases is at most η · n2. The η term upper bounds the possible
excess at any node, whereas the n2 term is because any node’s (of which there are at most n) height
only ever increases, and the height cannot increase beyond n before it must leave T permanently.

– Removing a node from T by relabeling it to n: Decreases Φ(T).

Note that upon each operation of relabeling, the additional cost related to detecting the threshold
value θ is O(1) since we can maintain, for each value between 0 and current θ, the number of nodes
labeled with this height. Relabeling can only break the consecutive series if a node is the only node
with this height value; hence this value will become the new θ and we remove from T all nodes with
heights above it.

Hence the total running time before finding the min-cut is bounded by O(η · n2).

To bound the time for finding the max-flow, notice that the total excess in G only decreases, so when
we start to route excesses in S to s, the total excess is also bounded by η. The same potential function
argument can be used to prove it also takes O(η · n2) time to resolve all excess in S, though using
the fact that in Push-Relabel, heights are always bounded by 2n (see Lemma 1).

Proof of Corollary 1. Create an auxiliary graph G′ by taking a copy of G and adding a super-source
s∗ and an edge (s∗, s) with capacity η. Create a pre-flow f init on G′ by saturating (s∗, s) and letting
fe = 0 on all other edges in G′. Now run Algorithm 2 with inputs G′ and f init. The initial (and
maximum) excess in G′ was η, and so the run-time is bounded by O(η · n2), as in the proof of
Theorem 2.

Proof of Corollary 2 . We will build the reverse network of G, call it B (for backwards). The network
B consists of a copy of G but all of the edges go the opposite direction. More specifically, for every
node u ∈ V (G) there is a mirror node u′ in B, and for every edge e = (u, v) ∈ E(G) with capacity

14

ce, there is a mirror edge e′ = (v′, u′) ∈ E(B) with capacity ce. Note that the source s in G is
mirrored to the sink s′ in B, whereas the sink t in G is mirrored to the source t′ in B.

We can reverse any pseudo-flow f on G to be another pseudo-flow f ′ on B, where for all e ∈ E(G),
f ′
e′ = fe. Notably, f and f ′ saturate the same cut, and we observe excf (u) = deff ′(u′) and

deff (u) = excf ′(u′).

Suppose we have a pseudo-flow f that saturates cut δ(S0, T0) in G with no excess nodes in T0. Then
in the backwards network B, f ′ saturates δ(T ′

0, S
′
0), where T0 (resp. S0) is all mirror nodes p′ for

such p ∈ T0 (resp. S0). Now S′
0 becomes the sink-side of the cut. In B, we can send flow from

excess nodes and s′ to deficit nodes within S′
0, and this can be done by running Algorithm 3 on B.

The true algorithm in G is Algorithm 6, as it is just the mirror image of Algorithm 3, though we may
skip the execution of Algorithm 4, as we already know the cut. This flow, when reversed back into
G, is the maximum amount of flow that can go from excess nodes and s to deficit nodes in Gf [S0].
After adding this reversed flow to f , the result is a cut-saturating pseudo-flow for G, where there is
no deficit on the s-side of the cut. Observe that there is no excess or deficit created on either side of
the cut in the process.

A.3 Pre-processing the pseudo-flows

Given a pseudo-flow, the first phase is to pre-process f̂ into a cut-saturating pseudo-flow on G and to
compute η. See Algorithm 5.

We create the auxiliary graph G′ as in Algorithm 5, and then run the gap-relabeling Push-Relabel
on G′ (together with the standard initializing pre-flow) to find a minimum cut between s∗ and t and
obtain a flow f ′. Corollary 1 bounds the Push-Relabel run-time in this case. Adding f ′ to f̂ creates a
cut-saturating pseudo-flow. The next lemma proves the output of this algorithm satisfies the desired
properties and that the algorithm runs in time O(η · n2).

Lemma 8. Suppose f̂ is a predicted pseudo-flow with unknown error η for network G. Then
Algorithm 5 computes η and finds a cut-saturating pseudo-flow f for G with error η in time O(η ·n2).

Proof. In the residual graph Gf̂ , the min-cut is bounded by η, since it is at most η far from being
cut-saturating. Therefore, we can apply Corollary 1 to Gf̂ and obtain an optimal flow f ′ on Gf̂ in

O(η · n2) running time. The flow we desire is fe = f ′
e + f̂e for all e ∈ E. It is cut-saturating for

G by the optimality of f ′ on Gf̂ . Further, it is a pseudo-flow since f ′ does not have any excess or

deficit in Gf̂ and clearly f ′
e + f̂e ≤ ce for all e ∈ E.

We turn our attention to the error value computed by Algorithm 5. Let η∗ be the true unknown value.

Note that in the auxiliary graph G′ constructed in Algorithm 5, if the current value of η can be
sent from s∗ to t, there exists a s− t flow of η in the residual graph; meaning when Push-Relabel
terminates the s∗ − t cut we will find is just the edge η. This is a certificate that η∗ ≥ η. We double
values of η until we find some value where the cut in G′ is no longer (s∗, s). This is a certificate that
η∗ ≤ η. Given an upper bound and lower bound on η∗, one can run binary search in this range and
continue using the cut-based certificates to further limit the range in which η∗ lies, until it is found
exactly.

Notably, one can also run Algorithm 2 and terminate it upon finding the min-cut, in which case f ′

will be a pre-flow on Gf̂ , and the resulting f = f ′ + f̂ will have total excess bounded by 2η. In fact,
one can do this in other steps of the algorithm as well, if the goal is only to find a min-cut, and only
lose an additional constant factor in the running time; see Appendix A.4. As discussed, in practice
one may wish to use a predicted cut instead of finding a cut-saturating pseudo-flow as in Algorithm 5.

By Definition 1, if a pseudo-flow f̂ is σ far from cut-saturating it means augmenting it by another
flow f with value at most σ can saturate some cut. Let this cut be δ(S, T). Another way to look at

15

this is, within f̂ , the total flow passing through the cut δ(S, T) satisfies:∑
u∈S,v∈T

f̂(u,v) −
∑

u∈S,v∈T

f̂(v,u) ≥
∑

u∈S,v∈T

c(u,v) −
∑

u∈S,v∈T

c(v,u) + σ.

Apart from solving max-flow in the residual graph to saturate this cut, there may be other options to
create a cut-saturating pseudo-flow. For example, the η bound on error does not directly tell us where
this cut is. However, if a practitioner can “guess” a good enough cut δ(S, T) from past problem
instances, such a pseudo-flow can also be obtained simply by saturating all edges (u, v) ∈ δ(S, T)
and removing the flow on all backward edges. The downside is that such a practice will transfer the
error on that particular cut to the total excess and deficit on nodes incident to the cut. Overall, there
may be a trade-off where one can omit Algorithm 5 in lieu of using a predicted cut, but at the cost of
having to fix more excess and deficit in later steps.

A.4 Early termination of auxiliary Push-Relabel upon finding min-cut

We mentioned that one can choose to quit the Push-Relabel algorithm on auxiliary graphs whenever a
cut is found. The resulting pseudo-flow, although violating flow conservation constraints, can still
be added to the initial pseudo-flow. We give a brief analysis of how this effects the execution of the
algorithm.

The pseudo-flow is constructed in three places:

1. In Algorithm 5, where we saturate a cut;
2. In Algorithm 3, where we push flow from t-side excess nodes to deficit nodes and t;
3. In Algorithm 6, where we push flow from s-side excess nodes and s to deficit nodes.

Notice this simple fact:
Claim 2. For pseudo-flows f, f ′, and f ′′ where f = f ′+f ′′ (without violating capacities constraints),
we have:∑

u

(excf (u) + deff (u)) ≤
∑
u

(excf ′(u) + deff ′(u)) +
∑
u

(excf ′′(u) + deff ′′(u))

In Step 1, Algorithm 2 starts with finit with excess η, hence the resulting pre-flow also has at most η
excess, and adding this pre-flow without restoring it to a max-flow may increase the excess by η. In
Step 2, the initial flow in G′ also has total excess of at most

∑
u∈T0

excf̂ (u) ≤ η, so at the end of
Algorithm 3 the total excess also increases by this much. In Step 3, correspondingly the maximum
increase is

∑
u∈S0

deff̂ (u) ≤ η. To sum up, early termination in the auxiliary networks after finding
the min-cut increases the total error by O(η), and therefore has the same run-time bound up to a
constant factor.

B More on Experiments

B.1 Omitted Tables and Figures for Experiments

Table 3 contains a detailed description of each of the four image groups, their original size in the raw
dataset, the cropped grey-scaled image size, the foreground/background they feature, etc.

Table 3: Image groups’ descriptions (copy of Table 1 from [DMVW23])
Image Group Object, background Original size Cropped size
BIRDHOUSE wood birdhouse, backyard 1280, 720 600, 600

HEAD a person’s head, buildings 1280, 720 600, 600
SHOE a shoe, floor and other toys 1280, 720 600, 600
DOG Bernese Mountain dog, lawn 1920, 1080 500, 500

Figure 4 gives one example of raw images from each image group.

In the main body, Figure 3 shows examples of cuts found in some images from the BIRDHOUSE
image sequence. Figure 5, 7, 6 show example cuts from the other image groups.

16

(a) Birdhouse (b) Head

(c) Shoe (d) Dog

Figure 4: Instances of images from each group (copy of Figure 1 from [DMVW23]).

Figure 5: Cuts (red) on images chronologically evolving from the 240× 240 pixel images from DOG.

B.2 More On the Graph Construction

We take as input an image on pixel set V , and two sets of seeds O,B ⊆ V . The seed set O contains
pixels that are known to be part of the object, while the seed set B contains pixels that are known
to be part of the background. The intensity or gray scale of pixel v is denoted by Iv. We say that
two pixels are neighbors if they are either in the same column and in adjacent rows or same row and
adjacent columns. Intuitively, if neighboring pixels have very different intensities, we might expect
one to be part of the object and one to be part of the background. For any two pixels p, q ∈ V , a
solution that separates them, i.e., puts one pixel in the object and the other one in the background,
incurs a penalty of βp,q. For neighbors p and q, βp,q = C exp(−(Ip − Iq)

2/(2σ2)), for C a large
constant, otherwise the penalty is 0. Note that the quantity βp,q gets bigger when neighbors p and q
have stronger contrast.

A segmentation solution seeded with O and B labels each pixel as either being part of the object
or part of the background, and the labeling must be consistent with the seed sets. Let J denote the
object pixels for a fixed segmentation solution. Then the boundary-based objective function is the
sum of all of the penalties maxJ

∑
p∈J,q/∈J βp,q, for J with O ⊆ J,B ⊆ V \ J . As in the definition,

a positive penalty cost is only incurred on the object’s boundary. The goal is to minimize the total

Figure 6: Cuts (red) on images chronologically evolving from the 240× 240 pixel images from HEAD.

17

Figure 7: Cuts (red) on images chronologically evolving from the 240× 240 pixel images from DOG.

penalty, which is in turn maximizing the contrast between the object and background, for the given
object and background seed sets.

Solving this maximization problem is equivalent to solving the max-flow/min-cut problem on the
following network. There is a node for each pixel, plus the object terminal s and the background
terminal t. As notation suggests, s is the source of the network and t is the sink. The edge set on the
nodes is as follows: (1) for every v ∈ O add edge (s, v) with capacity M , for M a huge enough value
that it is never saturated in any optimal cut; (2) for every u ∈ B add edge (u, t), again with capacity
M ; (3) for every pair of nodes p, q ∈ V , add edges (p, q) and (q, p) with capacity βp,q . If an image is
on n× n pixels, note that the graph is sparse with |V | = O(n2) nodes and |E| = O(n2) edges.

In our experiments, all βp,q’s are rounded down to the nearest integer, so that capacities are integral.
Since βp,q ≤ C by definition, it suffices for us to let M = C|V |2.

B.3 Other Settings

We have discussed how to cope with unknown η in Algorithm 5 by using a doubling search from an
initial guess η = 1 in order to guarantee the O(η|V |2) time bound. However, in practice, we have
discovered that this is not absolutely necessary. One can use other surrogates for η as long as they
prove an effective upper bound on the error. In our experiments, η is estimated by computing both
the total excess/deficit induced by rounding down the flow, and the σ (in the “σ away from being
cut saturating” notion) by using the old cut in the previous image in the sequence. Typically this is a
loose bound, but it suffices for our purpose.

In these experiments the real error η of the given predicted flow could be high. For example, on a
sequence of 10 images of size 60×60 from the group DOG. The average total excess/deficit accounts
for 69% of the real min cut, whereas the σ, computed a posteriori using the min cut, accounts for about
23%. The results should be read together with the measured error metric value in [DMVW23] under
the same experiment designs. Our η is not negligible but still boosts Push-Relabel’s performance with
warm-starting, despite the dependency of the theoretical bound on η. This is typical — algorithms in
practice often run much faster than their theoretical bounds. In [DMVW23], the empirical prediction
errors (see, e.g., Table 5 in their Appendix) are at similar levels, and can be even higher than the max-
flow value. As is discussed in their paper, the savings in running time results from the augmenting
paths routing excess to deficit being much shorter than the source-sink augmenting paths; hence the
performance goes beyond the theoretical O(mη). Excesses/deficits are big in our setting, too, but
the initialized pseudo-flow is already quite close to being cut-saturating. This might account for the
speed-up we obtain.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 1.2, Section 3, Section 4
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Any assumptions for the theoretical results are within the appropriate theorem
statements. Empirically, we discuss limitations/ scope of graph cuts for image segmentation
in the beginning of 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19

Answer: [Yes]

Justification: All Theorems and Lemmas are proved either in the main body or the appen-
dices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

We describe the experiment setup in detail in Section 4, and in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We used public datasets. Links to download the datasets are given in the paper.
Code is uploaded in the supplementary files.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Explained both in Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: explained statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Explained in both main body and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Code of Ethics has been reviewed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Preliminaries
	Technical contribution

	Gap Relabeling Push-Relabel: Cold- and Warm-Start
	Warm-starting Push-Relabel with General Pseudo-flows
	Empirical Results
	Conclusions
	More Discussion on Warm-starting Push-Relabel
	Omitted algorithms
	Omitted proofs
	Pre-processing the pseudo-flows
	Early termination of auxiliary Push-Relabel upon finding min-cut

	More on Experiments
	Omitted Tables and Figures for Experiments
	More On the Graph Construction
	Other Settings

