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Abstract

The need for regression models to predict circu-
lar values arises in many scientific fields. In this
work we explore a family of expressive and inter-
pretable distributions over circle-valued random
functions related to Gaussian processes targeting
two Euclidean dimensions conditioned on the unit
circle. The resulting probability model has con-
nections with continuous spin models in statistical
physics. Moreover, its density is very simple and
has maximum-entropy, unlike previous Gaussian
process-based approaches, which use wrapping
or radial marginalization. For posterior inference,
we introduce a new Stratonovich-like augmenta-
tion that lends itself to fast Markov Chain Monte
Carlo sampling. We argue that transductive learn-
ing in these models favors a Bayesian approach to
the parameters. We present experiments applying
this model to the prediction of (i) wind directions
and (ii) the percentage of the running gait cycle
as a function of joint angles.

1. Introduction
Directional or circular data arises in many areas of science,
including astronomy, biology, physics, earth science and
meteorology. Since such data is supported on compact
manifolds such as tori or (hyper)spheres, it is generally inap-
propriate to apply to them standard statistical methods, de-
signed for observations with more familiar supports like Rd.
For general article-length reviews of probability models
for directional data see (Jupp & Mardia, 1989; Lee, 2010;
Pewsey & Garcı́a-Portugués, 2021) and for book-length
treatments see (Mardia & Jupp, 1999; Jammalamadaka &
Sengupta, 2001; Pewsey et al., 2013; Ley & Verdebout,
2017; 2018).
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In this work we explore a model to perform non-parametric
Bayesian regression over circular data. The model is in-
troduced in Section 2, inference and learning are studied
in Section 3 and Section 4, related works are reviewed
in Section 5, followed by some examples in Section 6 and
conclusions in Section 7.

2. The von Mises Quasi-Process
Consider a regression problem where a set of circular
variables {θi}ni=1 are observed at input locations {xi}ni=1.
Our goal is to predict new values {ϕi}mi=1 at unseen lo-
cations {x∗

i }mi=1. A typical application is in geostatistics,
where one wants to predict the direction of wind or ocean
waves.

A prior for both the unobserved and observed variables, φ =
[ϕ,θ] can be obtained from a Gaussian Process (GP) over
d = m + n 2D Euclidean random functions (f1,i, f2,i) ∈
R2, where f1,i and f2,j are uncorrelated for all i, j and
share the same covariance matrix Kij = k(xi, xj) with
inverse Mij = (K−1)ij with i, j = 1 . . . d. The density is

p(f1, f2|x) ∝ exp

{
−1

2
(f1 − µ1)

⊤M(f1 − µ1)

−1

2
(f2 − µ2)

⊤M(f2 − µ2)

}
, (1)

where µi = µi1d for i = 1, 2 with 1d a vector of 1’s,
i.e., a constant mean for each target coordinate. Using
polar coordinates (f1,i, f2,i) = (ri cos(φi), ri sin(φi)) and
conditioning on ri = 1 yields

p(φ|x) ∝ exp

−1

2

d∑
i,j=1

Mij cos(φi − φj)

+κ

d∑
i=1

cos(φi − ν)

}
, κ > 0, (2)

where κ and ν in (2) are simple functions of µ1, µ2 and M ,
but we treat them in (2) as independent parameters. In
Euclidean space GPs it is common to set µ1 = µ2 = 0,
subtract from the data the empirical average and let the
covariance kernel fully specify the process. But doing so
would lead to κ = 0, which implies a uniform distribution
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for the marginal of each variable φi in (2). Unfortunately
there is no simple transformation of circular data that ren-
ders it uniformly distributed on the circle, and therefore in
general we must keep κ > 0. We call the model (2) a von
Mises Quasi-Process (vMQP) to stress the connection with
Gaussian processes, although this is not a stochastic process,
as explained in Section 4.

Let us split now the variables in (2) into φ = [ϕ,θ], where
ϕ ∈ [0, 2π]m are the unobserved variables and θ ∈ [0, 2π]n

are observed. The posterior distribution of ϕ, obtained
from (2) (up to a constant factor) by setting constant θ, is

p(ϕ|θ,x) ∝ exp {ρc · cos(ϕ) + ρs · sin(ϕ) (3)

−1

2
cos(ϕ)⊤Q cos(ϕ)− 1

2
sin(ϕ)⊤Q sin(ϕ)

}
where we defined

ρc = −Mϕθ cos(θ) + κ cos(ν)1m (4)
ρs = −Mϕθ sin(θ) + κ sin(ν)1m (5)
Q = Mϕϕ (6)

with 1m is an m dimensional vector of 1’s, and

M ≡
[
Mϕϕ Mϕθ

Mθϕ Mθθ

]
∈ R2d×2d. (7)

In the machine learning literature, the distribution (3) was
studied previously in (Navarro et al., 2017), which showed
that this is a maximum entropy distribution with fixed first
circular moments and proposed its use for circular regres-
sion. But the practical exploitation of this model has been
hindered by the lack of effective methods to (i) sample effi-
ciently, and (ii) learn the parameters (κ, ν and those of the
kernel). In this work, we address both of these challenges
in Sections 3 and 4, respectively.

3. Sampling circular variables
Unlike Gaussian processes, closed-form expressions for the
posterior mean and variance of the distribution (3) are not
available, thus the need for an efficient sampling approach.
Note that this is not a big limitation, since even in standard
GPs, many quantities of interest, such as expectations of
nonlinear functionals, require posterior samples for their
estimation (Wilson et al., 2020; 2021).

Our method starts by noting that Q ∈ Rm×m in (3) is
positive definite, since it is a submatrix of M. Let λ ∈ R
be a number bigger than all the eigenvalues of Q. Define
now a diagonal matrix D = λIm, where Im is the identity
matrix, such that D−Q is positive definite and can thus be
Cholesky decomposed as

A⊤A = D −Q. (8)

The key idea is to use A to augment (3) with a pair of
Gaussian random variables z1, z2 ∈ Rm with densities

p(z1|ϕ) = N (z1;A cos(ϕ), Im) (9)
p(z2|ϕ) = N (z2;A sin(ϕ), Im) . (10)

Multiplying (3) by both densities in (9)-(10) we get the
augmented distribution

p(z,ϕ) = p(ϕ)p(z1|ϕ)p(z2|ϕ)
∝ exp

{
(ρ⊤

c + z⊤1 A) cos(ϕ)

+(ρ⊤
s + z⊤2 A) sin(ϕ)− 1

2
z⊤z

}
, (11)

where we denoted z = [z1, z2] and omitted the conditioning
variables (θ,x) to simplify the notation. Importantly, the
terms quadratic in [cos(ϕ), sin(ϕ)] in the exponent of (3)
have canceled in (11). This linearization of the trigono-
metric dependence in the exponent is similar to the Hub-
bard–Stratonovich transformation in field theory (Altland
& Simons, 2010), and in machine learning has been simi-
larly applied to interacting log-quadratic binary variables
in (Martens & Sutskever, 2010; Zhang et al., 2012; Ost-
meyer et al., 2021).

Since integrating out z in (11) gives back the original dis-
tribution (3), sampling from (11) and keeping only the ϕ
samples yields samples from (3). The advantage of the aug-
mented form is twofold. First, we have found that Hamil-
tonian Monte Carlo (Neal et al., 2011) applied to (11) has
better mixing properties than applied to (3). Secondly, the
augmented distribution (11) lends itself to using a simple
Gibbs sampler that alternates between

1. Sample z|ϕ from (9)-(10) by sampling ε ∼ N (0, I2m)
and setting [

z1
z2

]
=

[
A cos(ϕ)
A sin(ϕ)

]
+ ε (12)

2. Sample ϕ|z from

p(ϕ|z) ∝
m∏
i=1

exp(ai cos(ϕi − γi)) , (13)

where we defined

ai =
√

b2c,i + b2s,i tan(γi) =
bs,i
bc,i

, (14)

and bc,i and bs,i are the components of

bc = ρ⊤
c + z⊤1 A bs = ρ⊤

s + z⊤2 A . (15)

The distribution (13) is a product of independent one-
dimensional von Mises distributions, and can be sampled
from efficiently using rejection-sampling (Best & Fisher,
1979), as implemented in standard packages.
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4. Learning the parameters
Our learning objective is determined by the fact that, un-
like standard Gaussian (Williams & Rasmussen, 2006) or
t-processes (Shah et al., 2014), von Mises Quasi-Processes
are not consistent under marginalization. Recall that we
observe θ at locations x and are interested in predictions ϕ
at x∗. Let us express the normalized distribution (2) as

p(ϕ,θ|x,x∗, w) =
e−U(φ|w)

Z[w]
φ = [ϕ,θ] (16)

where

U(φ|w) =1

2

d∑
i,j=1

Mw,ij cos(φi − φj) (17)

− κ

d∑
i=1

cos(φi − ν),

Z[w] =

∫
ddφe−U(φ|w), (18)

and w indicates the parameters we want to learn. Since ϕ
are latent variables, maximum likelihood corresponds to

ŵ = argmax
w

log

∫
dϕ p(ϕ,θ|x,x∗, w). (19)

In standard Gaussian or t-processes, the above expression
would reduce to

ŵ = argmax
w

log p(θ|x, w), (20)

i.e., the test locations x∗ disappear upon marginalization
of ϕ. But this is not the case in our model,1 and therefore,
we must fix the test locations x∗ at training time, a setting
known as transductive learning (Vapnik, 2006).

The gradient of the learning objective (19) is

∇w log

∫
dϕ p(ϕ,θ|x,x∗, w) = (21)

− Ep(ϕ|θ,x,x∗,w)[U(ϕ,θ)] + Ep(ϕ′,θ′|x,x∗,w)[U(ϕ′,θ′)],

where we used the notation U(φ|w) = U(ϕ,θ). This is
the standard contrastive divergence gradient in the presence
of latent variables, similar to that used to train Restricted
Boltzmann Machines (RBMs) (Carreira-Perpinan & Hinton,
2005). But, unlike the latter case, we have found in experi-
ments, using MCMC estimates for the expectations in (21),
that this approach is utterly ineffective, arguably due to two
differences. First, unlike RBMs, we only learn a small num-
ber of parameters (e.g. just three or four parameters in the

1Note that since models with different number of prediction
locations are not related via marginalization, the Kolmogorov
extension theorem (Durrett, 2019) does not apply and this prevents
us from calling these models processes.

examples in Section 6), and thus small amounts of noise or
bias in the gradient estimation have potentially deleterious
effects. Second, again unlike RBMs, the number of latent
variables m in our case can be much higher than the number
of observed variables n, and thus capturing the difference
between the two terms in (21) might require impractically
large numbers of Monte Carlo samples.

4.1. A fully Bayesian approach

To avoid the problems mentioned above, we resort instead
to a fully Bayesian approach. We are interested in sam-
pling from the joint posterior of parameters and unobserved
variables,

p(ϕ, w|θ) ∝ p(ϕ,θ|w)p(w) (22)

where p(w) is a prior distribution and we omit from now
on the conditioning locations (x,x∗). Using block Gibbs
sampling, the conditional p(ϕ|θ, w) is sampled with the
method of Section 3. On the other hand, sampling from the
conditional

p(w|φ) ∝p(w)
f(φ|w)
Z[w]

, φ = [ϕ,θ], (23)

where we defined

f(φ|w) = exp [−U(φ|w)] , (24)

is challenging, because we lack a closed-form expression for
the normalization constant Z[w]. Several algorithms have
been developed to tackle this problem (see Park & Haran
(2018) for a review). In the following, we review the Ex-
change and Double Metropolis-Hastings algorithms (Mur-
ray et al., 2006; Liang, 2010).

The Exchange and Doubly Metropolis-Hastings algo-
rithms. The Exchange algorithm (Murray et al., 2006),
inspired by (Møller et al., 2006), starts by augmenting (23)
with a freely-chosen proposal distribution q(w′|w) over new
parameters w′ and a fictitious data point ξ ∈ [0, 2π]d gener-
ated by w′ on the full space (observed and unobserved),

p(w,w′, ξ|φ) = p(w|φ)q(w′|w)f(ξ|w
′)

Z[w′]
, (25)

∝ p(w)q(w′|w)f(φ|w)
Z[w]

f(ξ|w′)

Z[w′]
. (26)

One now samples from this joint distribution by alternating
between two Monte Carlo moves:

1. Sample w′ ∼ q(w′|w) and then ξ ∼ f(ξ|w′)/Z[w′].

2. Propose to exchange w ↔ w′ and accept with
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Metropolis-Hastings (MH) probability

max

(
1,

p(w′, w, ξ|φ)
p(w,w′, ξ|φ)

)
=

max

(
1,

p(w′)q(w|w′)f(φ|w′)f(ξ|w)
p(w)q(w′|w)f(φ|w)f(ξ|w′)

)
, (27)

where, remarkably, Z[w] and Z[w′] cancel mutually.

If exact sampling of ξ in Step 1 is difficult, as in our model,
it was suggested in (Liang, 2010) to approximate an exact
sample by running long enough a Markov chain targeting
p(ξ) ∝ f(ξ|w′), an approach dubbed Double Metropolis-
Hastings. Note that if we knew the normalization constant
Z[w] in (23), we could just sample a proposal from q(w′|w)
and accept it with MH probability

max

(
1,

p(w′)q(w|w′)f(φ|w′)Z[w]

p(w)q(w′|w)f(φ|w)Z[w′]

)
. (28)

Equation (27) in the Exchange algorithm corresponds in-
stead to replacing the ratio of normalizing constants in (28)
with a one-sample importance sampling approximation

Z[w]

Z[w′]
≃ f(ξ|w)

f(ξ|w′)
ξ ∼ f(ξ|w′)/Z[w′] . (29)

5. Related works
Relation to statistical physics

Distributions of the type (3) are known in statistical physics
as XY- or O(2)-models, with the angles ϕi being a con-
tinuous generalization of the {±1} spins of Ising models.
The case when the ϕi’s are located in a d-dimensional reg-
ular lattice and Q has a sparse structure, with non-zero
entries only between nearest-neighbours, has been intensely
researched since the 1960s (Friedli & Velenik, 2017), in
particular for d = 2. Although physicists have developed
several specialized algorithms to sample from XY-models,
their efficiency depends on sign or sparsity properties of
the Q matrix absent in our Bayesian regression setting, char-
acterized by unsigned, dense Q matrices. For example,
cluster flipping algorithms perform well in the 2D lattice
ferromagnetic regime (Wolff, 1989) (when non-zero en-
tries of Q are negative), but fail for spin-glasses (Kessler &
Bretz, 1990) (when non-zero entries of Q have both signs),
the relevant case for us. Worm algorithms (Prokof’ev &
Svistunov, 2001; Wang, 2005) rely on the lattice nearest-
neighbour topology, absent in our case with dense Qs. Fi-
nally, a piecewise-deterministic Monte Carlo sampler for
the XY-model (Michel et al., 2015; Michel, 2016), with
exactly-solvable event times, is inefficient for non-sparse Q
since the times between consecutive events tend to zero as
the number of non-zero elements in Q grows.

Other circular models from Gaussian processes.

Gaussian process-like models for this task have been ob-
tained in the past by starting from a GP in an Euclidean
target space and applying a transformation to yield a dis-
tribution in circular space. The most popular approaches
are wrapping and projecting (Jona-Lasinio et al., 2018).
The wrapping approach consists of imposing an equiva-
lence structure on the target space, namely yi ≃ yi + 2πk
for k ∈ Z for all i. The projecting approach consid-
ers a 2d-dimensional space similar to (1), and after ex-
pressing the target in polar coordinates, (f1,i, f2,i) =
(ri cos(φi), ri sin(φi)) it marginalizes the radial compo-
nents ri. Both approaches have been extensively explored
in the literature. In both cases, the resulting probability den-
sities lack a simple form such as (2), but the normalization
constant is known since it is inherited from the original GP.

Wrapped distributions necessarily require approximations
due to infinite sums implicit in their definition and are of-
ten truncated at the third harmonic (Mardia & Jupp, 1999).
More recently, adaptive truncation schemes (Jona-Lasinio
et al., 2012) and modelling the truncation point as a latent
variable (Jona-Lasinio et al., 2014) were suggested to alle-
viate the approximation errors caused by truncation. Fully
Bayesian approaches, using variations of Gibbs samplers
for learning and inference have been developed both for
the wrapped approach in (Ferrari, 2009; Jona-Lasinio et al.,
2018; Jona Lasinio et al., 2020; Marques et al., 2022), and
for the projecting approach in (Nuñez-Antonio & Gutiérrez-
Peña, 2005; Nuñez-Antonio et al., 2011; Nuñez-Antonio
& Gutiérrez-Peña, 2014; Hernandez-Stumpfhauser et al.,
2017; Jona-Lasinio et al., 2018; Jona Lasinio et al., 2020;
Zito & Kowal, 2023). On the other hand, the conditioning
approach of the present paper, despite the attractive simplic-
ity of its density, seems to have remained unexplored since
its proposal in (Navarro et al., 2017), where a variational
approach to inference and learning was suggested.

6. Experiments
6.1. Wind directions in Germany

In this experiment, we considered the problem of predict-
ing wind directions at selected locations based on spatial
proximity. We used data publicly available on the web-
site of the German weather service (Deutcher Wetterdienst
(DWD)), which consists of measurements collected at 260
weather stations every 10 minutes. We considered the same
stormy weather period studied in (Marques et al., 2022),
from September 23 to October 2, 2019. As in (Marques
et al., 2022), the training and test data were circularly av-
eraged over the entire time period. We only considered the
spatial location as a the covariate, and used an exponential
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Figure 1: Left: Circular mean of the wind directions in 260 weather stations in Germany, randomly split between 208
train and 52 test locations. The predictions from the von Mises model are indicated on the test locations. Right: Predicted
circular variance over a uniform grid of 25× 25 points. Both figures best seen in color.

Table 1: Prediction of wind directions on test locations

METHOD CRPS↓
WRAPPED GP 0.1363
PROJECTED GP 0.0205
VMQP 0.0254

covariance kernel of the form

K(xi,xj) = σ2 exp

(
−||xi − xj ||2

2l2
−
)
, (30)

with i, j = 1 . . . 260, with two parameters (σ2, l2). Here xi

is the 2D location of each weather station (longitude and
latitude). We note that our model is admittedly too simple,
and other variables variables such as humidity, temperature,
altitude, etc. should be used in more realistic models.

We randomly split the data between 208/52 train/test lo-
cations. Figure 1 (Left) shows the circular mean of
the training, test and predicted wind directions, while
Figure 1 (Right) shows the predicted circular variance.
We compared the predictions from our model with both
wrapped and projected GPs, using the implementations
of the CircSpaceTime R package (Jona Lasinio et al.,
2020). All the predictions were evaluated against the test
data using the circular continuous ranked probability score
(CRPS) (Grimit et al., 2006). The results, presented in Ta-
ble 1, show that the von Mises Quasi-Process yields a score

very similar to the projected GP, and both are better than the
wrapped GP.

6.2. Percentage of running gait cycle from joints angles

When a human runs, the positions of lower-limb joints go
through a recurrent trajectory known as the gait cycle, il-
lustrated in Figure 2 (Left). The joints’ positions along the
cycle are described by three joint angles, which are criti-
cal for understanding the neuromechanics and energetics
of human locomotion (Winter, 1983). From an applied
science perspective, joint angles and knowledge of phases
in the running cycle are used to guide control software in
both exoskeletons (Gad et al., 2022) and controllers for
commercial devices, such as ATLAS (Sanz-Merodio et al.,
2014), ReWalk (Esquenazi et al., 2012), as well as prosthe-
ses (Markowitz et al., 2011; Sup et al., 2008).

In this experiment, we consider the task of predicting the
phase in the running gait cycle, measured as a percentage
t ∈ [0, 100], as a function of the joint angles. Since t is a cir-
cular variable, the von Mises Quasi-Process provides an ap-
propriate prediction model. We used data from (Shkedy Ra-
bani et al., 2022), who collected data from 16 healthy adults,
while running on treadmill at several surface gradients.2

See (Shkedy Rabani et al., 2022) for more details about the
experimental protocol. The data consists of values of the

2The surface gradient is 100× tangent of inclination angle,
and is indicated with a % symbol.
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Figure 2: Left: Phases of the running gait cycle, defined w.r.t. the right leg of the figure. The cycle begins and ends with the
initial contact (IC) of the right leg. The toe-off point is indicated as TO. Image from (Howard, 2016). Right: Definition of
the three joint angles used to predict the location in the gait cycle. The angles are defined over the sagittal plane.

three angles defined in Figure 2 (Right), estimated at 100
values of the percentage t ∈ {1, 2 . . . 100} from individuals
running at five surface gradients s ∈ {0%,±5%,±10%}.
We used four gradients s ∈ {±5%,±10%} for training,
yielding 400 training points. Testing was performed on
triplets of angles measured at surface gradient s = 0% at 20
points uniformly selected along the gait cycle. Training data
for s = ±10% are shown in Figure 3. The vertical line at
40% of the cycle indicates approximately the toe-off point,
see Figure 2 (Left).

In this experiment we assumed κ = 0 (see eq.(2)), because
the training set contains points located uniformly along the
full cycle of t, and thus there is no concentrated direction.
We used an anisotropic exponential kernel of the form

K((ai, si), (aj , sj)) i, j = 1 . . . 420, (31)

= σ2 exp

(
−||ai − aj ||2

2l2
− (si − sj)

2

2g2

)
,

Here ai is a three-dimensional vector containing the three
joint angles and si ∈ {0,±5,±10} indicates the surface
gradient.

At test time, we are given 20 measurements of the three
joint angles, with each measurement performed at a differ-
ent point in the gait cycle of humans running at zero surface
gradients. Figure 4 shows the results, showing a high accu-
racy in the prediction of the gait cycle percentage. Note that
the predictions are better after the toe-off point. The error
bars are proportional to the circular variance of each point.

7. Conclusions and outlook
In this work we explored a general model for Bayesian
non-parametric regression of circular variables, for which
we explored efficient MCMC techniques for learning and

Figure 3: Data examples for the gait percentage experiment.

Figure 4: Predictions vs. test values of cycle percentage, for
20 measurements of the joint angles at zero gradient.
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inference. Note that both the theoretical and experimental re-
sults presented assume noiseless data. Relevant future work
includes incorporating noise models, exploring the augmen-
tation from Section 3 in statistical physics XY-models for
which current approaches are not efficient (Michel, 2016)
(e.g. glassy regimes or 3D lattices) and exploring parameter
learning using score matching (Vértes & Sahani, 2016).
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