Under review as a conference paper at ICLR 2026

SPECTRAL ANALYSIS OF MOLECULAR KERNELS:
WHEN RICHER FEATURES DO NOT GUARANTEE BET-
TER GENERALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding the spectral properties of kernels offers a principled perspective on
generalization and representation quality. While deep models achieve state-of-the-
art accuracy in molecular property prediction, kernel methods remain widely used
for their robustness in low-data regimes and transparent theoretical grounding.
Despite extensive studies of kernel spectra in machine learning, systematic spec-
tral analyses of molecular kernels are scarce. In this work, we provide the first
comprehensive spectral analysis of kernel ridge regression on the QM9 dataset,
molecular fingerprint, pretrained transformer-based, global and local 3D represen-
tations across seven molecular properties. Surprisingly, richer spectral features,
measured by four different spectral metrics, do not consistently improve accuracy.
Pearson correlation tests further reveal that for transformer-based and local 3D
representations, spectral richness can even have a negative correlation with per-
formance. We also implement truncated kernels to probe the relationship between
spectrum and predictive performance: in many kernels, retaining only the top 2%
of eigenvalues recovers nearly all performance, indicating that the leading eigen-
values capture the most informative features. Our results challenge the common
heuristic that “richer spectra yield better generalization” and highlight nuanced
relationships between representation, kernel features, and predictive performance.
Beyond molecular property prediction, these findings inform how kernel and self-
supervised learning methods are evaluated in data-limited scientific and real-world
tasks.

1 INTRODUCTION

Accurate molecular property prediction lies at the heart of modern molecular and materials-
discovery pipelines, where rapid estimation of properties can accelerate screening, design, and opti-
mization Bohacek et al.|(1996); Reymond|(2015));|Goh et al.|(2017); Kailkhura et al.|(2019); Shen &
Nicolaou! (2019); |Schapin et al.| (2023)); Kuang et al.| (2024). In molecular property prediction, two
major modeling paradigms have emerged: (i) neural network—based and (ii) kernel-based models.
Neural networks (NN) have advanced rapidly, driven by large datasets and architectures tailored to
molecules, such as graph neural networks (GNN) and equivariant NNs Jiang et al.[(2021); Le et al.
(2022); Ju et al.| (2023)). In contrast, traditional kernel methods excel in low-data regimes, offering
strong generalization capabilities that make them especially valuable for sample-efficient tasks such
as active learning and Bayesian optimization in material discovery |Griffiths et al.|(2023)); Ralaivola
et al. (2005); Bartok et al.[(2013); Khan et al.|(2023)). Their non-parametric nature enables them to
capture complex similarity structures without requiring extensive hyperparameter tuning or massive
training datasets. Kernel methods also underpin some of the most successful machine-learned inter-
atomic potentials Kamath et al.[|(2018); [Thant et al.| (2025)), enabling accurate predictions of atomic
forces and energies across diverse chemical systems.

Unlike NNs, which adapt features from data, kernel methods rely on fixed kernels tailored to spe-
cific representations Rasmussen & Williams| (2005). The design of effective molecular kernels is
particularly challenging: molecules may be represented using Cartesian or internal coordinates,
cheminformatics descriptors such as Morgan fingerprints, or graphs of atoms and bonds |Griffiths
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Figure 1: Molecular representation generation workflow compatible with kernel functions; (a) global
(¢(M)) and (b) local (¢¢(M)) molecular representations, where M represents a molecule.

et al.| (2023). Each choice defines a different notion of similarity, with graph kernels in particular
motivated by the notoriously hard graph isomorphism problem. More recently, pretrained molecular
embedding models based on GNNss or transformers have emerged as alternative molecular represen-
tations [Praski et al.| (2025]).

Traditionally, the quality of different molecular kernels is evaluated primarily by their fest-set per-
formance in particular downstream tasks. While informative, this evaluation overlooks deeper ques-
tions:

How well does a kernel capture the structure of the target function?
What does this reveal about the quality of molecular representations for downstream tasks?

Interestingly, machine learning theorists have also asked the same questions and answered with a
keyword: kernel spectrum. In recent years, due to the theory of the neural tangent kernel in over-
parameterized neural networks Jacot et al.|(2018)), machine learning theorists have reignited interest
in the performance guarantee of kernel methods Arora et al.|(2019), especially the ones that depend
on the kernel spectrumMallinar et al.|(2022); [Li et al.[(2023)); Barzilai & Shamir|(2024);|Cheng et al.
(2024b)). In parallel with advances in kernel theory, the field of self-supervised learning (SSL) has
already implemented model evaluation depending on the feature spectrum of the SSL model with
label-less data |Agrawal et al|(2022); (Garrido et al.[(2023)), with the heuristic to choose the model
with the richest feature spectrum and the belief that “richer features yield better generalization”.

Contribution In this work, we investigate whether the aforementioned theoretical insights are
applicable in the context of molecular chemistry. Our key contributions are:

* Comprehensive spectral analysis of molecular kernels. We present the first system-
atic spectral analysis of molecular kernels for molecular property prediction on the QM9
dataset, encompassing three global, three local, and three transformer-based encodings, as
well as extended connectivity fingerprint (ECFP) kernels. To our knowledge, we are also
the first to apply kernel ridge regression on pretrained transformer-derived features with
various kernels, achieving improved performance over the commonly used linear regres-
sion baseline.

* Correlation analysis. We compute four spectral metrics that quantify feature richness
and examine their relationship with the average R? score. Pearson correlation tests reveal
that richer features do not universally yield better performance; notably, for transformer-
based and local 3D representations, all spectral metrics even indicate a negative correlation,
challenging common assumptions in kernel theory and self-supervised learning (SSL).

* Implementation of truncated kernels. We extend the concept of truncated kernels from
Amini et al.| (2022)) to ECFP-based kernels, quantifying the fraction of eigenvalues required
to recover 95% and 99% of the original performance. Our results show that the top eigen-
values capture most of the important features, further questioning the general belief that
richer spectra necessarily improve generalization.

Organization The paper is structured as follows. In Section 2] we review the relevant background
and key concepts. Section [3] presents our experimental methodology and results. In Section ] we
discuss the novelty, limitations, and potential future directions of our work. Due to space constraints,
additional experimental results, analyses, and discussions are provided in the Appendix.



Under review as a conference paper at ICLR 2026

2 BACKGROUND

In molecular property prediction, the inputs are molecules M, discrete objects without an inherent
Euclidean representation. This necessitates the use of domain-specific representations, each induc-
ing a corresponding kernel that encodes molecular similarity.

Molecular Representation Molecular representations for kernel methods are typically grouped
into two categories: (i) global descriptors, which encode information about the entire molecule,
and (ii) local descriptors, which capture the environments surrounding individual atoms; see Fig. [T
for illustration. Beyond handcrafted descriptors, representation learning approaches, ranging from
autoencoders to natural language processing architectures, have also been developed in semi-
supervised and unsupervised settings, mapping string inputs into high-dimensional feature vectors
Praski et al.| (2025). In this work, we refer to 3D kernels as those, either local or global, that are
based on Cartesian coordinates. For more details, please refer to Section @

Kernel Ridge Regression A molecular kernel & maps any two molecules M;, and M into a
real number, and the kernel matrix K € R"*"™ with entries K;; = k(M;, M) is symmetric and
positive semi-definite. Note that such a kernel k is associated with a reproducing kernel Hilbert
space (RKHS) H = {3, a;k(M;,-) : a; € R} where its dot product is defined by the kernel:
(E(Mi, ), k(M;,))n = k(M;, M;). Now, we consider molecular property prediction: given a
training set of molecules with prediction objectives {(M,, y;)}"; C M x R, the predictor f can
be obtained via kernel ridge regression (KRR):

FM) =" aik(M;, M), )
=1

where o; = [(K + M) 7'y]; € R, K = [k(M;, M;)]}', € R, y = [yo, -+ ,y,] € R", and
A > 0 is the regularization constant. Kernel ridgeless regression is a special case where A = 0, in

such a case, the kernel could overfit the training data, benign, tempered, or catastrophic Mallinar
et al.[(2022).

Truncated Kernel Ridge Regression Since the RKHS # is typically infinite-dimensional, and
KRR inherently biases toward eigenfunctions associated with larger eigenvalues [Basri et al.| (2020),
it is natural to consider truncating the kernel spectrum by retaining only the top eigen-components.
Recently, this idea has been brought to supervised learning settings in the form of truncated kernel
ridge regression (TKRR)/Amini et al.|(2022). Formally, fix a training set { (M, y;) } , a truncation
level » < n, there exists a kernel k(") such that its kernel matrix K (") is the rank-r approximation
of the original kernel matrix K. In other words, if the original kernel matrix admits the eigen-
decomposition K = Y7 pipuy, u,, then the truncated kernel matrix is equal to

K™ = Z ukukukT. (2)
k=1

To obtain the TKRR predictor, we need to replace the kernel by its truncated version k(") in Eq.
From the computation perspective, the kernel matrix is readily given by K (") = > ohq kU uz as
in Eq. 2l However, its value k(") (M, M) on any new test point M is empirically intractable. To
overcome this hurdle, we introduce the approximated truncated kernel (15(”)),

EM (M, M) = [USTU;«k]i’

where U<, = (u} )p_, € R, k = (k(M;, M))"_; € R". Please refer to Section@]for the
properties of k),

Self-Supervised Learning The heuristic to choose the model with the richest feature spectrum
and the belief that “richer features yield better generalization” impacts the evaluation of model qual-
ity in the SSL context |/Agrawal et al.| (2022); |Garrido et al.| (2023)). In the kernel method, instead
of the spectrum of the covariance matrix of the features, one studies the empirical kernel spectrum,
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that is, the eigenvalues of the kernel matrices, and yields similar conclusions Mallinar et al.| (2022);
Cheng et al.| (2024a). Intuitively, richer features mean the feature vectors span into different direc-
tions in the ambient space, capturing as many possible details from the input. Formally, given a
spectrum {1, f2..., php }, p € NU {00} in decreasing order, |Agrawal et al.| (2022)); [Mallinar et al.
(2022) assume that the spectrum follow a power law: u; oc j~< for some o > 0, which can be
computed empirically from linear regression on the log-spectrum (log 11,); and its index j. Smaller
« indicates richer features. Alternatively, Huh et al.| (2023)); (Garrido et al.| (2023)) proposed using
spectral Shannon entropy (SSE) to measure feature richness; a higher SSE indicates richer features.
Other metrics like intrinsic dimension (ID) and stable rank (SR) are also commonly used in spectral
analysis [Ipsen & Saibaba) (2024). For detailed definitions, please refer to Section@

3 RESULT

In this paper, we evaluate kernel ridge regression for molecular kernels on the QM9 dataset |Ra-
makrishnan et al.| (2014}, a benchmark of ~134,000 small organic molecules containing up to nine
heavy atoms (C, O, N, F). The molecular properties in QM9 were computed using density functional
theory at the B3LYP/6-31G(2df,p) level. Our experiments focus on predicting the HOMO-LUMO
gap (Gap), internal energy at 0 K (Ug) and 298.15 K (Usgg), heat capacity (Cy ), enthalpy (AH),
Gibbs free energy (G) at 298.15 K, and zero-point vibrational energy (ZPVE).

Molecular Representations We evaluate kernels constructed from four distinct categories of
molecular representations.

1. Fingerprint-based: We use multiple kernels that rely on the ECFPs global representation,
e.g., Tanimoto, Dice, Otsuka, Sogenfrei, Braun-Blanquet, Faith, Forbes, Inner-Product,
Intersection, Min-Max, and Rand kernels. Kernels’ details in Section [A.T.1]

2. Pretrained transformer-based: We extract features from pretrained molecular transform-
ers (SELFIESTED, SELFormer, and MLT-BERT) with string-like input of molecules like
SELFIES, and build Gaussian, Laplacian, and linear kernels on top of the features; more
details in Section[A.1.2]

3. Global 3D descriptors: We employ representations that capture entire molecular geome-
try, such as Coulomb matrix (CM), bag of bonds (BOB), and SLATM, and build isotropic
Gaussian, Laplacian, and linear kernels on top of these representations; more details in

Section

4. Local 3D descriptors: We consider local structural descriptors that encode pairwise atomic
environments, including local SOAP Bartok et al.| (2013) and related local descriptors such
as FCHLI19 |Christensen et al. (2020) and ACSF Behler| (2011). A special note is that
linear kernels are not well-defined for local 3D descriptors, as these kernels are inherently
designed to compare molecules through pairwise local environment similarities for similar
atoms rather than global vector embeddings; more details in Section[A.2]

In particular, ECFPs were generated with RDKit (radius = 3, vector size = 2048), while FCHL19,
SLATM, and ACSF descriptors were computed using the QMLcode| library [Christensen et al.
(2017). SOAP representations were obtained with the DScribe package Himanen et al.| (2020);
Laakso et al.[(2023), using default Gaussian-type radial basis functions.

Hyperparameter Choice = The hyperparameters associated with the molecular representations
were kept fixed, as per Khan et al.|(2023), to ensure consistency in the representations. For Gaussian
and Laplacian kernels, the length scale parameter o, was restricted to values of 102 or 10* before
any training result. The regularization hyperparameter ) is tuned separately for each representation
through grid search combined with 5-fold cross-validation. The best configuration was then selected
based on the highest R? score on the validation set. Results presented in Table [I| correspond to test
sets of 10, 000 molecules, with all models trained on 5, 000 randomly selected molecules.

Spectral Metrics Given a kernel matrix K, we compute its empirical eigenspectrum g1, . . ., tin
and evaluate four spectral metrics to quantify its richness: polynomial decay rate (o |), spectral
Shannon entropy (SSE 1), intrinsic dimension (ID 1), and stable rank (SR 7). The arrows indicate
the direction corresponding to richer spectral features, with formal definitions provided in Section[C]


https://www.qmlcode.org/
https://singroup.github.io/dscribe/0.3.x/index.html
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In our experiments, we find that most kernel spectra are dominated by a single large leading eigen-
value (y11), followed by a sharply decaying tail (see Fig. [ and figures in Section [B.I). To more
accurately capture spectral richness, we also compute these four spectral metrics on truncated spec-
tra by removing the top three eigenvalues and restricting to the top 50% of the spectrum. These
truncated values are reported in parentheses in Table

Table 1: Comparison of spectral metrics and R? scores for kernel regression with different molecular
representations. The R? scores are computed on a test set of 10,000 random molecules (maximum
value 1; higher is better). The highest and second-highest averages for each molecular representation
type are shown in bold and underline, respectively. The four spectral metrics quantify the richness of
the kernel spectrum (direction indicated by arrows). Values in parentheses correspond to truncated
spectra, used to mitigate the effect of outliers. The symbols indicate, t : oo = 100, and § : oo = 10%.

Mol. Rep. Kernel al SSE 1 ID T SR 1 R?
Gap | Cv | AH | Uo | Uss | G | ZPVE | Avg
Tanimoto 0.7 (0.6) | 1693.5(1363.6) | 13.7 (62.8) 1.3(8.2) | 0.826 | 0.752 | 0.719 | 0.719 | 0.719 | 0.719 | 0.861 | 0.760
Dice 0.9 (0.8) 429.9 (798.2) 7.6 (42.2) 1.2(7.1) | 0.778 | 0.729 | 0.690 | 0.690 | 0.6901 | 0.690 | 0.842 | 0.733
Otsuka 0.9 (0.8) 427.1 (794.7) 7.6 (42.3) 1.2(7.1) | 0.773 | 0.712 | 0.664 | 0.664 | 0.664 | 0.664 | 0.836 | 0.711
Sogenfrei 0.5(0.5) | 3110.5(1851.8) | 40.5 (118.6) | 2.1(13.8) | 0.844 | 0.722 | 0.669 | 0.669 | 0.669 | 0.669 | 0.855 | 0.727
Braun-Blanquet | 0.9 (0.8) 423.5 (789.0) 7.5 (42.5) 1.2(7.1) | 0.756 | 0.666 | 0.544 | 0.544 | 0.544 | 0.544 | 0.820 | 0.631
ECEPs Faith 0.9 (0.8) 1.2 (782.8) 1.0 (41.9) 1.0(7.0) | 0.765 | 0.703 | 0.638 | 0.638 | 0.638 | 0.638 | 0.828 | 0.692
Forbes 0.9(0.8) 429.9 (798.2) 7.6 (42.2) 1.2(7.1) | 0.739 | 0.702 | 0.666 | 0.666 | 0.666 | 0.666 | 0.826 | 0.704
Inner-Product 0.9 (0.8) 423.5(789.0) 7.5 (42.5) 1.2(7.1) | 0.756 | 0.666 | 0.544 | 0.544 | 0.544 | 0.544 | 0.820 | 0.637
Intersection 0.9 (0.8) 1.1(782.8) 1.0 (41.9) 1.0(7.0) | 0.764 | 0.703 | 0.638 | 0.638 | 0.638 | 0.638 | 0.828 | 0.692
Min-Max 0.7 (0.6) | 1693.5(1363.6) | 13.7(62.8) | 1.3(82) | 0.826 | 0.752 | 0.719 | 0.719 | 0.719 | 0.719 | 0.861 | 0.760
Rand 0.9 (0.8) 1.1 (782.8) 1.0 (41.9) 1.0(7.0) | 0.765 | 0.703 | 0.638 | 0.638 | 0.638 | 0.638 | 0.828 | 0.692
Gaussian f 3.0(29) 1.0 (54.0) 1.0 (7.5) 1.0 (2.7) | 0.849 | 0.981 | 0.993 | 0.993 | 0.993 | 0.993 | 0.995 | 0.971
SELFIESTED | Laplacian | 0.9(0.5) | 13(14367) | 1.0@47.6) | 1.0(5.0) | 0.813 | 0.968 | 0.975 | 0.975 | 0.975 | 0.975 | 0.986 | 0.952
Linear 2.0 (10.0) 4.6 (55.8) 1.4 (7.8) 1.0 (2.7) | 0.817 | 0.971 | 0.981 | 0.981 | 0.981 | 0.981 | 0.988 | 0.957
] cassint | 2726 | 11@65) | 10(69) | 1.0(23) | 0.827 | 0.851 | 0.827 | 0.827 | 0.827 | 0.827 | 0.933 | 0.846
SELFormer Laplacian { 0.9 (0.5) 1.3 (1672.7) 1.0 (57.3) 1.0 (5.1) | 0.773 | 0.742 | 0.687 | 0.687 | 0.687 | 0.687 | 0.871 | 0.733
Linear 8.3(9.9) 4.8 (45.3) 1.4 (6.8) 1.0 (2.3) | 0.805 | 0.817 | 0.779 | 0.779 | 0.779 | 0.779 | 0.915 | 0.808
777777777 Gaussian | 40(18) | 1.0(169) | 1.040) | 10(1.9 | 0757 | 0.855 | 0.938 | 0.938 | 0.938 | 0.938 | 0.891 | 0.894
MLT-BERT Laplacian 1.1 (1.0) 4.7 (252.0) 1.3 (10.1) 1.0 (2.5) | 0.675 | 0.818 | 0.841 | 0.841 | 0.841 | 0.841 | 0.883 | 0.820
Linear { 9.3(5.3) 1.9 (16.0) 1.1 (4.0) 1.0(1.9) | 0.682 | 0.826 | 0.859 | 0.859 | 0.859 | 0.859 | 0.871 | 0.831
Gaussian f | 17(17) | 49 (103.9) 13(175) | 1.0(64) | 0598 | 0.967 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.936
CM Laplacian 1.5(1.5) 1.6 (275.0) 1.1 (27.6) 1.0(6.9) | 0.779 | 0.987 | 0.997 | 0.997 | 0.997 | 0.997 | 0.999 | 0.965
Linear 9.2(8.2) 1.8 (47.3) 1.1 (15.1) 1.0 (6.6) | 0.439 | 0.905 | 0.998 | 0.998 | 0.998 | 0.998 | 0.995 | 0.904
T ] cassint | 26235 | 90305 | 2.1(64) | 11(3.0) | 0.783 | 0.966 | 0.997 | 0.997 | 0.997 | 0.997 | 0.999 | 0.962
BOB Laplacian § 1.5(0.8) 1.6 (917.2) 1.1 (32.4) 1.0(42) | 0.891 | 0.994 | 0.996 | 0.996 | 0.996 | 0.996 | 1.000 | 0.981
Linear 10.4 (9.4) 3.1(16.4) 1.4 (5.0) 1.0(2.7) | 0.605 | 0.943 | 0.998 | 0.998 | 0.998 | 0.998 | 0.999 | 0.934
] Gaussiant [ 2928) | 12(198) | 1.0(5.3) | 1025 | 0.941 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 | 0.991
SLATM Laplaciant | 13(09) | 12(687.5) 10309 | 1.05.7) | 0934 | 0996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.999 | 0.988
Linear 4544 1.8 (15.7) 1.1 (4.7) 1.0(2.3) | 0.809 | 0.995 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 | 0.971
SOAP Gaussian 2.5(0.1) 1.0 (1737.8) 1.0 (24.2) 1.0(1.9) | 0.789 | 0.991 | 0.998 | 0.998 | 0.998 | 0.998 | 1.000 | 0.967
Laplacian 1.5(14) 1.0 (46.0) 0.865 | 0.997 | 0.998 | 0.998 | 0.998 | 0.998 | 1.000 | 0.979
b | Gwssinf [43@D [ 1072 70.876 | 0.997 | 0.997 | 0.997 [ 0.997 | 0.997 | 1.000 | 0.980
Laplacian 1.5(1.4) 1.1 (52.0) 0.883 | 0.998 | 0.997 | 0.997 | 0.997 | 0.997 | 1.000 | 0.981
o /;gs; " | Gaussint | 41(40) | 10@40) 70.888 | 0.996 | 0.998 | 0.998 | 0.998 | 0.998 | 1.000 | 0.982
Laplacian 1.3(1.3) 2.0 (51.3) 1.1(4.7) 1.0(1.9) | 0.861 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 1.000 | 0.977

Correlation Between Spectral Metrics and Performance To test whether spectral richness trans-
lates into improved predictive accuracy, we plotted scatter plots of the four (truncated) spectral
metrics against the averaged R? score across seven molecular properties (Fig. E]) We then quan-
tified these relationships using Pearson correlation tests, reporting correlation coefficients () and
95% confidence intervals in Table 2] Since the power-law decay parameter o decreases with richer
spectra, we report —a so that a positive correlation coefficient 7 consistently indicates a positive
relationship between spectral richness and predictive performance. The results show that the com-
mon SSL heuristic—"richer spectra yield better performance”—does not hold in general. Overall,
correlations are weak, often inconclusive, and many confidence intervals span zero. For ECFP ker-
nels, only the polynomial decay rate (—«) displays a significant positive correlation, while the other
metrics remain inconclusive. For transformer-based kernels, all correlations are negative but statis-
tically insignificant, suggesting no reliable pattern. Global 3D kernels exhibit mixed behavior: —a
points to a positive trend, but this is not confirmed by the other metrics. In contrast, local 3D kernels
show even the opposite: all four metrics show strong negative correlations, with SSE and ID being
statistically significant, indicating that greater spectral richness can actively hinder generalization.
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Figure 2: Test mean absolute error (MAE), computed on 10, 000 molecules, as a function of training
set size for three properties: (a) C'y, (b) Uggs, and (c) ZPVE. In all panels, results are shown for the
Laplacian kernel applied to three global representations (CM, BOB, and SELFIESTED; ¢, = 10%)
and one local representation (ACSF; o, = 100). Solid: Laplacian, and Dashed: Gaussian kernel.
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Figure 3: Kernel eigenvalue spectra with insets highlighting that nearly half of the eigenvalues are
close to zero (main plots) for different molecular representations. Results are shown for (a) ECFPs,
(b) SELFIESTED, and (c) local 3D descriptor-based kernels.

In summary, spectral richness alone is not a reliable predictor of downstream performance; its
impact depends critically on the choice of molecular representation.

Ablation on Training Size While the results in Table [T] are reported with a fixed training size of
Niin = 5,000, we also conducted an ablation study varying Nyi,. Fig. |Z|plots the mean absolute
error across different kernels and molecular properties. The results show a steady improvement in
test performance as Ny, increases to 10,000 and 20,000. We expect the observation of our spectral
analysis to persist for even larger training sizes.

Truncated Kernel Ridge Regression Moreover, we computed the TKRR (using the approximated
truncated kernel in Eq. [20] at each truncation level r, tuning the regularization parameter indepen-
dently for each case. We then record the truncation thresholds at which the performance recovers
95% and 99% of the original KRR R? score (see Table . Note that for many kernels, retaining

only the top 2% of eigenvalues recovers > 95% performance, indicating that the leading eigenvalues
capture the most informative features.
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Figure 4: Correlation between spectral metrics and average R? across molecular kernel categories.
Dotted lines indicate the best-fit linear trend for each category.
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Table 2: Pearson correlation coefficients () with 95% confidence intervals (CI) among the spectral
metrics —«, SSE, ID, and SR, which align with the notion of spectral richness, and average R2
across molecular kernel categories. Correlations whose 95% CI excludes zero are shown in bold.

Mol. Repr. —at SSE 1 IDt SRt

ECEP 7 0.624 0.582 0.414 0.334
95% CI | [0.039,0.891] [-0.027, 0.876] [-0.247,0.812] | [-0.333, 0.778]

7 -0.129 -0.259 -0.255 -0.100

Transformer-based

95% CI | [-0.731,0.585] | [-0.787,0.490] [-0.786, 0.493] | [-0.716, 0.604]

Global 3D 7 0.716 0.474 0.239 -0.373
95% CI | [0.098, 0.935] [-0.277, 0.866] [-0.505, 0.780] | [-0.831, 0.387]

Local 3D 7 -0.755 -0.955 -0.965 -0.559

95% CI | [-0.971, 0.146] | [-0.995,-0.638] | [-0.996, -0.711] | [-0.943, 0.463]

Table 3: Summary of Eigenvalue Truncation Thresholds to reach 95% and 99% of Maximum R2.
Global—Gaussian oy = 102, Laplacian oy = 10*; Local—Gaussian and Laplacian oy = 100.

Mol. Repr. Kernel Gap Cv AH Yo U298 ¢ ZPVE
95% 9%  95%  99% 95% 99% 95% 99% 95% 99% 95% 99% 95% 99%
Tanimoto 150 900 250 950 350 100.0 350 100.0 35.0 100.0 35.0 100.0 55 70.0
Dice 29 9.0 72 30.0 20.0 35.0 20.0 35.0 20.0 35.0 20.0 35.0 29 15.0
Otsuka 3.8 150 150 40.0 30.0 45.0 30.0 45.0 30.0 45.0 30.0 45.0 2.9 20.0
Sogenfrie 25.0 100.0 50.0 100.0 90.0 100.0 90.0 100.0 90.0 100.0 90.0 100.0 20.0 100.0
Bran-Blanquet 2.9 10.0 2.0 4.6 29 20.0 2.9 20.0 2.9 20.0 2.9 20.0 2.0 6.4
ECFP Faith 2.9 10.0 3.8 40.0 30.0 45.0 30.0 45.0 30.0 45.0 30.0 45.0 29 15.0
Forbes 45.0 7.2 4.6 30.0 10.0 50.0 10.0 50.0 10.0 50.0 10.0 50.0 2.9 8.1
Inner-Product 2.9 10.0 2.0 4.6 2.9 25.0 2.9 25.0 2.9 25.0 2.9 25.0 2.0 72
Intersection 29 15.0 38 40.0 30.0 45.0 30.0 45.0 30.0 45.0 30.0 45.0 29 15.0
Min-Max 150 90.0 250 95.0 35.0 100.0 35.0 100.0 35.0 100.0 35.0 100.0 5.5 70.0
Rand 2.9 10.0 3.8 40.0 30.0 45.0 30.0 45.0 30.0 45.0 30.0 45.0 2.9 15.0
Gaussian 15.0  50.0 2.0 15.0 2.9 25.0 2.9 25.0 2.9 25.0 2.9 25.0 2.0 9.0
SELFIESTED  Laplacian 55 50.0 2.0 15.0 2.9 25.0 2.9 25.0 2.9 25.0 29 25.0 2.0 10.0
Linear 55 15.0 2.0 8.1 38 15.0 3.8 15.0 3.8 15.0 3.8 15.0 2.0 4.6
7 7 7 7 Gaussian 72 250 150 400 200 450 200 450 200 450 200 450 64 250
SELFormer Laplacian 5.5 50.0 100  60.0 20.0 60.0 20.0 60.0 20.0 60.0 20.0 60.0 38 40.0
Linear 5.5 15.0 8.1 15.0 9.0 95.0 9.0 95.0 9.0 95.0 9.0 95.0 5.5 15.0
7 7 77 Gaussian 100 400 72 350 100 300 100 300 100 300 100 300 64 850
MLT-BERT Laplacian 150 450 150 450 20.0 65.0 20.0 65.0 20.0 65.0 20.0 65.0 72 40.0
Linear 2.9 4.6 2.9 4.6 2.9 4.6 2.9 4.6 2.9 4.6 2.9 4.6 2.0 40.0
Gaussian 20.0  55.0 29 30.0 2.0 29 2.0 29 2.0 29 2.0 29 2.0 29
CcM Laplacian 250 70.0 72 25.0 2.0 29 2.0 29 2.0 29 2.0 29 2.0 2.9
Linear 2.0 5.5 2.0 5.5 < 0.1 4.6 < 0.1 4.6 < 0.1 4.6 < 0.1 4.6 2.0 5.5
7 7 7 Gaussian 200 400 81 300 20 20 20 20 20 20 20 20 20 38
BOB Laplacian 10.0  50.0 2.9 9.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Linear 2.0 38 29 55 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
T 7 7 7 7 Gaussian 55 200 20 20 20 20 20 20 20 20 20 20 02 20
SLATM Laplacian 72 1000 2.0 5.5 2.0 4.6 2.0 4.6 2.0 4.6 2.0 4.6 2.0 2.0
Linear 10.0  20.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.1 2.0
SOAP Gaussian 75.0 350 85.0 75.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <0.1 <0.1
Laplacian 150 350 2.0 2.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 < 0.1 0.1
CFCHLio  Gassian 46 150 20 20 20 20 20 20 20 20 20 20 <01 OI
Laplacian 15.0  50.0 2.0 2.0 2.0 2.9 2.0 29 2.0 2.9 2.0 2.9 < 0.1 0.1
Cacsp Gaussan 1000300 20 29 20 20 20 20 20 20 20 20 <01 01
Laplacian 200 70.0 2.0 4.6 2.0 6.4 2.0 6.4 2.0 6.4 2.0 6.4 0.1 0.2

4 DISCUSSION

In this section, we discuss the main implications of our empirical findings for (i) kernel theory and
self-supervised learning, (ii) practical molecular-chemistry practice, and (iii) limitations and avenues
for future work.
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4.1 INSIGHTS FOR KERNEL THEORY AND SELF-SUPERVISED LEARNING

Fingerprint Kernel It is surprising to see that ECFP-based kernels are the only category showing
a slight positive correlation between spectral richness and predictive performance. This aligns with
the long-observed empirical fact that the Tanimoto kernel, the preferred kernel in cheminformatics,
often outperforms other ECFP-based kernels like Dice and Otsuka in downstream tasks. Our spec-
tral analysis provides a principled explanation: the key difference lies in the richness of the spectral
tail, with Tanimoto retaining more information in the lower-ranked eigenvectors (see Fig. [5). In
this narrow setting, the common SSL heuristic—"richer spectra yield better performance”—appears
to hold. However, this intuition breaks down when considering the Sogenfrei kernel, which pos-
sesses the richest spectrum among ECFP kernels but delivers only average performance. This might
suggest that ECFP-based kernels, being hand-designed, may be fundamentally different from SSL-
derived features: they already encode domain knowledge in the representation itself, so most relevant
information is concentrated in the top eigenvectors, making spectral richness less decisive.

Pretrained Transformers Moreover, for transformer-based kernels, where representations are
generated from models pretrained on large chemical corpora and then evaluated on unseen QM9
tasks in a setup analogous to SSL, the heuristic fails even more clearly: correlations are consistently
negative, albeit weak. For 3D global kernels, the evidence remains inconclusive. By contrast, 3D
local kernels show a strong and systematic negative correlation across all spectral metrics, with
Gaussian kernels often outperforming Laplacian kernels despite having a faster spectral decay. This
inversion of the heuristic highlights that spectral richness can, in fact, be detrimental, depending
on the kernel and representation. The underlying reason remains unclear, but it opens an intriguing
direction for both kernel theory and materials science.
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Figure 5: R? score for the heat capacity (Cy/) property as a function of truncation level (u(%) for (a)
selected ECFP-based kernels and (b) four various global (CM, BOB, SELFIESTED, MLT-BERT)
kernel and a single local (ACSF) kernel, all with a Gaussian kernel with o, = 100). Left sub-panel:
without regularization; right sub-panel: with regularization.

Regularization versus Truncation Regularization has long been a standard technique in machine
learning to mitigate overfitting to label noise. In kernel methods, it works by penalizing the use of
high-frequency eigenfunctions in fitting the data. Interestingly, truncation achieves a similar effect
by explicitly discarding the tail of the spectrum, thereby removing high-frequency components from
the hypothesis space. As shown in Fig. [5| and Figs. [IOHI2]in Section the performance of the
best ridgeless truncated KRR (left panel) is comparable to that of the fully regularized KRR (right
panel). This observation provides a possible explanation for why richer spectra may sometimes harm
generalization: additional eigenfunctions in the tail can facilitate overfitting rather than improve
predictive accuracy, and any regularization to avoid overfitting would harm the accuracy. Notably,
this phenomenon is not unique to ECFP-based kernels, but is also observed across other kernel
categories (see Section [B.2] for additional plots). To the best of our knowledge, there is currently
no theoretical work establishing a formal connection between truncation and regularization, making
this a promising direction for future research in machine learning theory.

4.2 INSIGHTS FOR MOLECULAR CHEMISTRY

First Comprehensive Results Pretrained molecular embedding models have recently attracted
significant interest in chemistry, particularly for small molecules, as they are increasingly adopted
for tasks such as drug design. Related work has applied pretrained embeddings in a kernel frame-
work for proteins; however, these efforts were limited to kernel construction without further spectral
analysis, such as ours. In contrast, this work is the first to explore a kernel-based framework built
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upon pretrained molecular embedding models for chemistry while also analyzing their spectral char-
acteristics.

Transformer-based Representations Previous work has mainly applied linear or MLP-based re-
gression to transformer-derived molecular representations Praski et al.| (2025), motivated by the
high dimensionality of embeddings, where kernel matrices often resemble their linearization—a
weighted sum of the covariance matrix, identity, and a rank-one term |El Karoui| (2010). In contrast,
we show that kernel ridge regression with a Gaussian kernel outperforms the linear baseline, in-
dicating that higher-order terms capture additional information beyond linear covariance. Notably,
SELFIESTED with a Gaussian kernel achieved the best performance. This suggests an alternative
way to evaluate SSL models—uvia spectral metrics derived from their kernel matrices—which we
leave for future work. We also evaluated ChemBERTa but found consistently weaker performance
than ECFP-based kernels. For instance, on QM9 with Gaussian/Laplacian kernels, R2 scores were
0.201/0.193 for GAP, 0.102/0.094 for Uy, and 0.247/0.249 for C'y,. Given its poor results, we omit
ChemBERTa from Table 1l

3D Descriptors The comparison between global and local 3D kernels, whose representations are
built on Cartesian coordinates, has sparked the latter development in molecular kernels [Thant et al.
(2025). However, we found that global 3D kernels are more susceptible to drastic effects in their
accuracy when hyperparameter search is found to be suboptimal, contrary to local 3D kernels. For
global 3D representations, SLATM consistently outperformed other descriptors regardless of kernel
choice; notably, even the linear kernel with SLATM surpassed the CM-based kernel in accuracy.
Finally, local 3D representations were found to be the most consistent across kernels and also deliv-
ered the overall highest scores, except in the case of SLATM combined with Gaussian or Laplacian
kernels, which remained competitive.

4.3  LIMITATIONS AND FUTURE WORK

Despite our systematic experiments and analyses, several limitations remain.

Data While our study is limited to QM9, this dataset remains one of the most widely adopted bench-
marks for molecular property prediction Ramakrishnan et al.| (2014)); Gilmer et al.| (2017); |Schiitt;
et al.| (2017); Wu et al|(2018)). Its ~134k molecules cover a chemically diverse space of small or-
ganics and provide DFT-computed properties across multiple thermodynamic and electronic targets,
which makes it an ideal controlled testbed for comparative studies. QM9 continues to serve as a
standard proxy in both kernel-based [Faber et al.| (2018); [Christensen et al.| (2020) and NN-based
approaches [Schiitt et al.| (2017); Thomas et al.| (2018)), precisely because it allows systematic ex-
ploration of representations and models without confounding experimental noise or inconsistencies
across datasets.

Representations and Kernels We did not include recent graph-based encoders such as GROVER
Rong et al| (2020) or hybrid approaches like Mol2Vec [Jaeger et al.| (2018)), which may reveal dis-
tinct spectral behaviors. Similarly, quantum-inspired kernels derived from molecular graph circuits
Schuld et al.|(2020); [Torabian & Krems| (2025) represent another promising direction for applying
our framework to evaluate the structure and capacity of emerging methods in chemistry and materi-
als science.

5 CONCLUSION

We presented the first systematic spectral analysis of molecular kernels for property prediction on
QMDO, spanning kernels with ECFP, pretrained transformer-based features, and global or local 3D
descriptors as inputs. Our results show that spectral richness is not a universal predictor of perfor-
mance: by the Pearson test, it correlates negatively with transformer-based and local 3D kernels and
remains inconsistent for global 3D and ECFP representations. The truncated kernels revealed that
in many kernels, retaining only the top 2% of the eigenvalues is often sufficient to recover 95% of
the original precision. These findings call into question the common heuristic that “richer spectra
yield better generalization.” More broadly, our study offers practical guidance for pairing molec-
ular representations with kernels and opens a new avenue for bridging spectral analysis between
self-supervised learning and kernel methods.
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Appendix

The appendix is organized as follows. Section[A]introduces the molecular representations and kernel
functions considered in this work, including fingerprint-based kernels, pretrained text-embedding
models, and Cartesian coordinate—based representations. As noted in the main text, we use the
term 3D kernels to refer to kernels derived from Cartesian coordinates, whether global or local.
Section [B] presents supplementary experimental results. Section [C] provides detailed definitions of
the four spectral metrics. Finally, Section [D|contains proofs omitted from the main text.

A MOLECULAR KERNELS

Here, we briefly summarize molecular kernels that are based on molecular representations, which
can broadly be divided into two categories:

Definition 1 (Global Molecular Representation). Let M denote a molecule and ¢ : M — R¢
be a function that maps a molecule to a d-dimensional vector of descriptors that summarize the
entire structure (e.g., fingerprints, Coulomb matrix eigenvalues, or learned embeddings by encoding
models).

Definition 2 (Local Molecular Representation). Let M denote a molecule composed of Na atoms,
where each atom is represented by zy containing Cartesian coordinates and nuclear information
such as atomic number. A local representation is given by a function ¢y : z; — R that encodes
atomic environments based on the arrangement of neighboring atoms. Examples include the Smooth
Overlap of Atomic Positions and many-body distribution functions.

Due to the existence of ¢ and ¢y, there are two main families of molecular kernels: global and local
molecular kernels.

Definition 3 (Global Molecular Kernel). A global molecular kernel is a positive-definite function
Egiobal 1 M; x M, — R defined as

kgloha/(Mian) = H(¢(M1),¢(M])), (3)

where k : R? x R? — R is a positive-definite kernel function comparing global descriptor vectors
computed with ¢.

A prominent example of a global kernel is obtained when ¢ is computed via extended connectivity
fingerprints (ECFPs) [Rogers & Hahn| (2010). ECFPs are fixed-length hashed descriptors generated
by iteratively encoding atom-centered circular neighborhoods (the Morgan algorithm) up to a pre-

defined radius 7. The resulting binary vector, ;' = ¢gcrp(M;) " = [1,0,1,--- ,1]T, captures the

2D molecular topology (and, optionally, chirality) in a global form. When using ¢gcpp(M) as the
descriptor, similarity can be quantified through fingerprint-specific kernels such as

2({111',13]')
il + [25]1°

<wi7wj>
i[5 + |5]5 — (24, 25)

kTanimo[o(Mi7Mj) = U; . s kDice(Mi,Mj) = U; . 4

where o is a kernel hyperparameter, = ¢rcrp(M), (x4, ;) = @, x;, and |z,|, is the p-norm
of the fingerprint vector. We present other ECFP-based kernels in Section

Another widely used class of global descriptors arises from data-driven molecular embeddings,
where ¢ is learned from large corpora of molecular strings such as SMILES or SELFIES. Examples
include models such as SELFIESTED, SELFormer, and MLT-BERT, which leverage transformer-
based language models to capture chemical semantics. Unlike discrete fingerprints, these embed-
dings yield continuous-valued feature vectors, enabling the use of standard isotropic kernels such
as Gaussian, Laplacian, or linear. Additional details of transformer-based global representations are
provided in Section

Beyond data-driven embeddings, global representations can also incorporate explicit geometrical
information. A classical example is the Coulomb Matrix (CM) Rupp et al.[(2012)), which encodes
pairwise Coulombic interactions between atoms. Other notable global descriptors include the bag of
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bonds (BoB) Hansen et al.|(2015)) and the spectrum of London and Axilrod—Teller—-Muto (SLATM)
Huang & von Lilienfeld| (2020). BoB, inspired by the bag-of-words algorithm in natural language
processing, extends the CM by grouping pairwise interactions into “bags” according to bond type.
SLATM, in contrast, is based on many-body expansions: it represents molecular structures by ap-
proximating atomic charge densities with Gaussian functions scaled by interatomic potentials. Ad-
ditional details of local kernels are provided in Section[A.T]

Although global descriptors capture holistic molecular information, they may struggle to generalize
across molecules with different sizes or conformations. Much of the recent work on molecular ker-
nel development has therefore focused on incorporating geometric information at the atomic level.
Local kernels address this by encoding atomic environments within a cutoff radius, making them
naturally suited to enforce invariances (e.g., translation, rotation, and permutation) and improving
transferability across chemical space. Prominent examples include the Smooth Overlap of Atomic
Positions (SOAP) [Bartok et al.[ (2013), Faber—Christensen—Huang-Lilienfeld (FCHL) |[Faber et al.
(2018)); |Christensen et al.|(2020), and many-body distribution functions (MBDF) |Khan et al.| (2023));
Khan & von Lilienfeld| (2024).

Definition 4 (Local Molecular Kernel). A local molecular kernel is a positive-definite function of
two molecules, defined as
Na; Na;
Kiocal(Mis M) = > g(Zu,, Zu,) w(¢e(z1,), elze,)), (5)
£i=12;=1

where zg, denotes the position and chemical identity of the {;-th atom in M,;, ¢, maps its local
chemical environment to a descriptor (e.g., SOAP, FCHLI19, ACSF), and k is a positive-definite
kernel function (such as Gaussian or Laplacian) that measures similarity between atomic environ-
ments. The function g(Zg 2o, ) compares atomic species, typically defined as a Kronecker delta on
the atomic numbers, i.e. g(Zg ;) = 0(Ze, = Zy,).

A.1 GLOBAL MOLECULAR KERNELS/REPRESENTATIONS

A.1.1 EXTENDED-CONNECTIVITY FINGER PRINTS

One of the most common global molecular representations is the extended-connectivity fingerprints
(ECFPs) Rogers & Hahn|(2010). Here is a list of some of the global molecular kernels based on the
ECFP representation,

(x1,x2) 2(x1, T2)
k : = 7 = kryiee = ———— =1 6
Braun-Blanquet max(|a:1|, |$2|)7 Dice |$1| + |CL'2| ( )
2(xq,x2) + d d{xy,
kFailh = %7 kForbes = |:L’<1|1<|>|.’Iii (7)
kInner—Product = <:131, :I)2> = $I$2, klmersection = <.’B1, :13‘2> + <(13/1, wl2> (8)
x|+ |9 — |1 — @ T, T
g = Nl mmal L @) ©)
|[z1] + 22| + |21 — @2 Ve + |22
do T, To) +d
kRogers-Tanimoto = <-7717 m2> 2| | + 2|-772| <x1a $2> + d07 kRand = < ! ;> (10)
2
Ti,T T, T
kRussel-Roa = Ma kSogenfei = < - 2> (11
n 1] + |2
(x1,x2) (1, 22)
Ksoaki-sneath = m] + 2|z2| — 3(z1, T2), Ktanimoto = 212+ 22| — (z1, z2) (12)

where:
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* x; is the global representation of the molecule using the ECFPs; x; = ¢gcrp(M;), for
example, z; = [1,0,1,---,1]T.

* (x;, ;) denotes the inner product.

* x is the bit-flipped vector of ;.

* |x;| represents the L; norms of ;.

* dy is the number of common zeros, and d is the dimension of the input vectors,

A.1.2 PRETRAINED MOLECULAR EMBEDDING MODELS

Pretrained molecular embedding models [Praski et al.| (2025) have become a standard approach for
molecular property prediction. These models are trained on large molecular corpora to produce
embedding vectors z € R?, which can then be used for downstream regression tasks. We briefly
describe the three pretrained transformer-based models used in our analysis:

e SELFIESTED: a BART-based encoder—-decoder model for SELFIES, with
358M parameters, 12 layers, and 16 attention heads |[Priyadarsini et al. (2025);
ibm/materials.selfies—-tedl

* SELFormer: a RoBERTa-style encoder-only model for SELFIES, with 86M parameters,
12 layers, and 4 attention heads |Yiiksel et al.|(2023). HUBioDatalab/SELFormer

e MLT-BERT: a BERT-style transformer model for sequence modeling, with
16M parameters, 8 layers, and 8 attention heads |[Zhang et al| (2022).
jonghyunlee/ChemBERT_ChEMBL_pretrained

* ChemBERTa: a RoBERTa-style encoder-only model for SMILES, with 10M parameters, 6
layers, and 12 attention heads (72 attention mechanisms in total) Chithrananda et al.|(2020).
Phando/chemberta-v2-finetuned-uspto-50k-classification

For these global text embedding models, denoted ¢y 1\, we evaluated three kernel functions: linear,
isotropic Gaussian, and isotropic Laplacian.

A.1.3 GLOBAL CARTESIAN COORDINATES MOLECULAR REPRESENTATIONS

CM Rupp et al.[(2012): CM is a global descriptor that encodes pairwise electrostatic interactions
between atoms:

o 05224 ifi=j 3
PT\EE i) 1
i
where where Z; is the atomic number of atom ¢ and R;; is the interatomic distance; R;; = |R; —

R;||. Despite its simplicity, CM is not invariant to atom indexing, which limits its generalization.
To ensure invariance to atom indexing, each molecule is represented via the eigenvalue spectrum of
its CM, sorted by descending absolute value. This diagonalized form is invariant to permutations,
translations, and rotations, and yields a continuous molecular distance metric even for molecules
with different numbers of atoms (using zero-padding).

Bag of Bonds (BoB) Hansen et al. (2015): The BoB descriptor is inspired by the bag-of-
words model from natural language processing, yielding rotational, translational, and permutation-
invariant molecular representations. BoB extends the Coulomb Matrix by grouping pairwise atomic
interactions into “bags” based on bond types, with each entry computed as Z;Z; /|R; — R;|. The
entries in each bag are sorted by magnitude and zero-padded for consistent vector length. While
effective for machine learning tasks, BoB cannot distinguish between homometric molecules.

Spectrum of London and Axilrod-Teller-Muto (SLATM) Huang & von Lilienfeld (2020):
LATM builds on many-body expansions to describe molecular structures. It models atomic environ-
ments by approximating charge densities with Gaussian functions scaled by interatomic potentials.
The representation captures one-body (atomic type), two-body (pairwise distances via a London-like
potential), and three-body (angles via the Axilrod—Teller—Muto potential) interactions. Each term
is binned into histograms to produce fixed-length atomic vectors, ensuring invariance to translation,
rotation, and permutation. SLATM supports both local (atomic-level) representations and global
ones formed by summing over atomic vectors, making it effective for a wide range of molecular
machine learning tasks.
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A.2 LOCAL MOLECULAR KERNELS
We considered three widely used local molecular kernels:

* Smooth Overlap of Atomic Positions (SOAP) Bartok et al.[(2013).
* Faber-Christensen—-Huang-Lilienfeld 2019 (FCHL19) Christensen et al.| (2020).
* Atom-Centered Symmetry Functions (ACSF) Behler| (2011).

As in prior works [Faber et al.| (2018)); |Christensen et al.| (2020); [Khan et al.| (2023); [Khan & von
Lilienfeld (2024}, local kernels are constructed using an element-matching function,

9(Zi, Z;) = 8(Zi = Z;),
so that, in Definition 4] only atoms of the same chemical species in molecules M; and M con-
tribute to the kernel evaluation. In our experiments, all Gaussian and Laplacian kernels built on local

representations follow this convention. The resulting local kernel takes the form

Na; NaJ

Fiocal (M, M) Z > 6(Ze = Zu,) K(¢e(z0), de(2,)) s (14)

li=10;=1

where ¢y (z,) denotes the local atomic descriptor (e.g., SOAP, FCHL19, or ACSF), and x is either
an isotropic Gaussian or Laplacian kernel.

B ADDITIONAL RESULTS

B.1 KERNEL EIGENVALUE SPECTRA

Figs.[6H9] are the eigenvalue spectra of various global and local kernels.

@), [ | ), [ ay—

—— Intersection

—— Forbes
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Figure 6: Kernel eigenvalue spectra with insets highlighting that nearly half of the eigenvalues are
close to zero (main plots) for different ECFP-based kernels.
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Figure 7: Kernel eigenvalue spectra with insets highlighting that nearly half of the eigenvalues are
close to zero (main plots) for (a) SELFormer-based and (b) MLT-BERT-based kernels.
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Figure 8: Kernel eigenvalue spectra with insets highlighting that nearly half of the eigenvalues are
close to zero (main plots) for (a) CM, (b) BOB, (c) SLATM global representations. For all, we
considered the Gaussian, Laplacian, and linear kernels.
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Figure 9: Kernel eigenvalue spectra with insets highlighting that nearly half of the eigenvalues are
close to zero (main plots) for (a) SOAP, and (b) FCHL19 3D local representations. For both, we
considered the Gaussian and Laplacian kernels.

B.2 TRUNCATION VERSUS NO TRUNCATION

Figs. represent the R? score, for a test set of 10,000 molecules, for various properties when
different truncation levels are considered. At each truncation level, all hyperparameters were opti-
mized. Fig. [T0]presents the results for four ECFP-based kernels , Fig. [T1] for four global represen-
tations (CM, BOB, SELFIESTED, and MLT-BERT), all using the Gaussian kernel, and Fig. @for
three local representations (CSOAP, FCHL19, ACSF), all using the Gaussian kernel.
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Figure 10: R? score for various properties as a function of truncation level for selected ECFP-based
kernels. Left and right subpanels only consider results without and with regularization, respectively.
(a) Gap, (b) AH, (c) Usgs, and (d) ZPVE.
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Figure 11: R? score for various properties as a function of truncation level for four global repre-
sentations and the Gaussian kernel with o, = 100. Left and right subpanels only consider results
without and with regularization, respectively. (a) Gap, (b) AH, (¢) Usgs, and (d) ZPVE.
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Figure 12: R? score for various properties as a function of truncation level for the three local rep-
resentations and the Gaussian kernel with o, = 100. Left and right subpanels only consider results
without and with regularization, respectively. (a) Gap, (b) AH, (c) Usgs, and (d) ZPVE.
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C SPECTRAL METRICS

Definition 5 (Power Law Decay or polynomial decay rate). Let {{u1, ft2, ..., tp}, p € NU {oo}
denote a non-increasing spectrum of positive values. We say the spectrum exhibits a power law
decay if there exists an exponent o« > 0 such that

[e3

122 O(j_ ) J:1727up (15)

The decay rate o can be estimated empirically by performing a linear regression on the log-log plot
of the spectrum, i.e., log j1; =~ —aclogj |Agrawal et al.|(2022)); Mallinar et al.|(2022).

Definition 6 (p-Stable rank). Suppose the integers m > n and the matrix A € R™*™ has singular
values s1(A) > sa(A) > ... > s,(A). For 1 < p < 00, the p-Schatten norm is defined to be

1Ally = /51(A)? + .. + sa(A)P. (16)
And the p-stable rank of the matrix A is defined to be
ar || Al
rp(A) = > a7
1A,

Definition 7 (Intrinsic dimension (ID) and stable rank (SR)). Note that the notation of p-stable rank
unifies the two metrics intrinsic dimension and stable rank, which are often used in ill-conditioned
matrices. In particular, we have

Al s1(A) + .+ 50 (A)

r(A) = 4], = (A = intrinsic dimension of A;
2
ro(A) = ||A||2§ = HAH5 = stable rank of A.
1AL, 1Al

In particular, the true rank of A is always an upper bound of r,,(A) for any p. In particular,
Proposition 8 (Remark 5.4 in [Ipsen & Saibabal (2024)). Suppose the integers m > n and p > q.
Then for any matrix A € R™*™ we have

1<ry,(A) <ry(A) < rank(A) < n. (18)

We notice that there is another measure of rank used in ML literature:

Definition 9 (Spectral Shannon Entropy (SSE), Definition 2.1 in [Huh et al.| (2023)). Suppose the

integers m > n and the matrix A € R™*™ has singular values s1(A) > s2(A) > ... > s,(A). Let
5:(A) & ﬁ be the normalized singular values such that 51(A) + ... + 5,(A) = 1.
The spectral entropy, or the effective dimension, of A is defined to be:

n

p(A) = exp(— Y 5i(A)log(5i(A))). (19)

=1
D PROOF

In this section, we present the proof which are omitted in the main text.

Theorem 10. With notation above, let f be the KRR predictor in Eq. and f (") the TKRR
predictor with truncation level r. Define

k" (M, M) = [U<, UL K], (20)

where U<, = (u}] )s_, € R™ " is the sub-matrix of the orthonormal matrix U € R™ ™. Then we
have

1. Foranyr < nandi,j, k") (M, M;) = le)i’Mj and hence [ (M;) = f)(M;) for
alli=1,...,n.
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2. For r = n and any i and any test point M, EM (M, M) = k™ (M;, M) and hence
F (M) = F (M) = f(M).

Proof. We use the standard notation in kernel theory: l;g?m = [I:;(”) (M, M)}, and analo-
gously for kx »,. The first statement comes from:

n n T
kf,?m =U,, Ul Kxa =UcUL Zﬂkuikuk = ZﬂkuikUgrU;uk = Zﬂkuikuk = kg?w
k=1 k=1 k=1

The second statement comes from:
k), = UU Tkx o = Kx o = ki,
O

In short, the above theorem establishes that for » < n (1) our approximated TKRR predictor f(")
coincides with the TKRR predictor f(") on the training set, and (2) for 7 = n it coincides with the

original KRR predictor f on any new test points. As an independent contribution, this result extends
the definition of TKRR beyond the original formulation in |Amini et al|(2022), which may be of
interest to kernel theorists.

THE USE OF LARGE LANGUAGE MODELS

In this work, we used large language models (LLMs) primarily as assistive tools to improve the clar-
ity, grammar, and presentation of the manuscript. LLMs were employed to polish writing, rephrase
sentences for readability, and ensure consistency in terminology. The use of LLMs did not influence
the scientific content or conclusions of the paper; their role was limited to language refinement.
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