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ABSTRACT

Mapping neural activity to behavior is a fundamental goal in both neuroscience
and brain-machine interfaces. Traditionally, at least three-dimensional (3D) latent
dynamics have been required to represent two-dimensional (2D) movement tra-
jectories. In this work, we introduce Neural Manifold Regularization (NMR), a
method that embeds neural dynamics into a 2D latent space and regularizes the
manifold based on the distances and densities of continuous movement labels.
NMR pulls together positive pairs of neural embeddings (corresponding to closer
labels) and pushes apart negative pairs (representing more distant labels). Ad-
ditionally, NMR applies greater force to infrequent labels to prevent them from
collapsing into dominant labels. We benchmarked NMR against other dimension-
ality reduction techniques using neural activity from four signal modalities: sin-
gle units, multiunit threshold crossings, unsorted events, and local field potentials.
These latent dynamics were mapped to three types of movements: stereotyped
center-out reaching and natural random target reaching in monkeys, as well as at-
tempted handwriting in a paralyzed patient. NMR consistently outperforms other
methods by over 50% across four signal modalities and three movement types,
evaluated over 68 sessions. Our code is uploaded.

1 INTRODUCTION

Ongoing breakthroughs in neural recording technologies have led to an exponential increase in the
number of simultaneously recorded neurons. To interpret this high-dimensional neural data, mani-
fold analysis has emerged as a promising population-level technique in both neuroscience (Cunning-
ham & Yu, 2014; Jazayeri & Ostojic, 2021) and cognitive science (Beiran et al., 2023; Jurewicz et al.,
2024). Analyzing neural manifolds helps to illuminate representations in both biological (Gardner
et al., 2022; Hermansen et al., 2024) and artificial (Cohen et al., 2020; Chung & Abbott, 2021;
Wang & Ponce, 2021; Dubreuil et al., 2022) neural networks. Because neural population dynamics
are high-dimensional, dimensionality reduction methods are necessary to visualize low-dimensional
latent dynamics. However, there is a trade-off between representation capacity and dimensionality.

Classical dimensionality reduction methods like principal components analysis (PCA) require eight
to fifteen dimensions to represent a simple and stereotyped eight-direction center-out reaching task
(Gallego et al., 2020; Gallego-Carracedo et al., 2022). Using the same dataset, state-of-the-art
(SOTA) dimensionality reduction methods achieve even better performance using only four dimen-
sions (Zhou & Wei, 2020; Schneider et al., 2023). However, since only 3D spaces are directly
visible, these studies have to either display the four dimensions in two separate figures (Zhou &
Wei, 2020) or manually remove one dimension (Schneider et al., 2023) to visualize the data. In both
cases, further reducing the dimensionality of these low-dimensional latent dynamics is necessary. In
a 3D latent space, eight groups of latent dynamics are clearly visible. Unfortunately, the reaching
trajectories cannot be identified from the latent dynamics, even when the latent dynamics are trained
to align with reaching trajectories (Schneider et al., 2023).

Many hand movement trajectories, such as center-out reaching, random target reaching (O’Doherty
et al., 2017; Lawlor et al., 2018), and handwriting (Willett et al., 2021), occur within a 2D physical
space. Arguably, the ultimate goal of dimensionality reduction methods is to reveal—either unsu-
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pervised or supervised—2D latent dynamics that are well-aligned with, or even indistinguishable
from, movement trajectories. However, a 2D latent space has significantly less representational ca-
pacity than a 3D latent space. For body movements within 2D physical spaces like open field arenas,
W-shaped mazes, figure-8 mazes, or radial arm mazes, previous dimensionality reduction methods
such as Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) require
a 3D latent space to avoid overlap in their latent dynamics (Gardner et al., 2022; Tang et al., 2023;
Yang et al., 2024). To our knowledge, no studies have demonstrated the successful use of 2D latent
dynamics to represent 2D movement trajectories.

Here, we focus on neural-behavioral analysis, particularly hand movements, which have been exten-
sively studied. We chose hand movement tasks as a testbed for dimensionality reduction methods
because: 1) multi-channel recordings provide the necessary high-dimensional data for dimensional-
ity reduction, 2) the diversity of hand movement tasks enables testing different types of task labels,
3) long-term recordings across months and years allow for testing model consistency, 4) a variety
of neurophysiological signal types are available, and 5) public open-source datasets enable bench-
marking of models against each other.

2 RELATED WORK AND OUR CONTRIBUTIONS

There are at least five categories of dimensionality reduction methods:

Linear methods: These include techniques like PCA, jPCA (Churchland et al., 2012), demixed PCA
(dPCA) (Kobak et al., 2016), and preferential subspace identification (PSID) (Sani et al., 2021).
PCA captures the majority of variance in the data, jPCA reveals rotational dynamics in monkey
reaching, dPCA further isolates task-related components, and PSID can extract latent dynamics that
predict motion during reach versus return epochs.

Nonlinear methods: Techniques such as UMAP and t-distributed stochastic neighbor embedding
(t-SNE) (Van der Maaten & Hinton, 2008) are widely used in biological data, such as identifying
different neuron cell types (Lee et al., 2021). While these methods can reveal distinct identities, they
often collapse temporal dynamics that resemble neural activity. UMAP, when combined with labels,
has been used for dimensionality reduction (Schneider et al., 2023; Zhou & Wei, 2020).

Generative methods using recurrent neural networks (RNNs): Models such as fLDS (Gao et al.,
2016), latent factor analysis via dynamical systems (LFADS) (Pandarinath et al., 2018), AutoLFADS
(Keshtkaran et al., 2022), and RADICaL (Zhu et al., 2022) have been shown to better model single-
trial variability in neural spiking activity compared to PCA. However, these methods often rely on
restrictive explicit assumptions about the underlying data statistics.

Label-guided generative methods using VAEs: Methods such as Poisson identifiable VAE (pi-
VAE) (Zhou & Wei, 2020), SwapVAE (Liu et al., 2021), and targeted neural dynamical modeling
(TNDM) (Hurwitz et al., 2021; Kudryashova et al., 2023) fall into this category. For instance, pi-
VAE uses eight reaching directions as labels to structure the latent embeddings, resulting in eight
well-separated latent dynamics in M1.

Contrastive learning methods: Recently, contrastive learning has been introduced for learning robust,
generalizable representations of neural population dynamics. Examples include CEBRA (Schneider
et al., 2023) and Mine Your Own vieW (MYOW) (Azabou et al., 2021). When trained with hand
trajectories, CEBRA demonstrates the most disentangled latent dynamics compared to pi-VAE and
AutoLFADS; however, these latent dynamics are not aligned with the actual hand trajectories.

Our specific contributions are as follows:

1. Introduction of Neural Manifold Regularization (NMR): We propose NMR, a dimensionality
reduction method that regularizes latent neural embeddings based on label distances and densities.
NMR leverages the continuous nature of movement labels to extract disentangled neural manifolds
and addresses label imbalance by applying a pushing force inversely related to the frequency of rare
labels.

2. Simplification of contrastive regularizer (ConR) loss: NMR replaces the InfoNCE (noise-
contrastive estimation) loss used in the CEBRA (Schneider et al., 2023) with a significantly sim-
plified version of the ConR loss (Keramati et al., 2023). The original ConR loss involved six hy-
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perparameters that required fine-tuning for each session. Our modified ConR loss simplifies this by
reducing it to a single temperature hyperparameter. While the original ConR loss showed marginal
improvements of less than 5% over previous models, our modified version outperforms CEBRA by
over 50% in most sessions.

3. Comprehensive evaluation across modalities and movements: We evaluate NMR against CEBRA
and pi-VAE using four modalities of neurophysiological signals and three types of movements. To
our knowledge, no previous studies have evaluated dimensionality reduction techniques on LFP
signals or attempted to visualize latent dynamics in the context of imagined movements. NMR
consistently outperforms other SOTA models under all conditions.

4. Stability and generalizability across time and monkeys: We assess the stability of our models
across months using the same training parameters, as well as their generalizability across monkeys.
NMR demonstrates the highest stability over time and superior decoding performance across mon-
keys, even when using the same set of parameters.

3 MODEL

3.1 MOTIVATION: CONTINUOUS AND IMBALANCED LABELS IN CONTRASTIVE LEARNING

Contrastive learning involves three types of samples: an anchor (or reference sample), positive sam-
ples, and negative samples. Positive samples, also known as augmented samples, share the same
label as the anchor but are generated by applying transformations to the anchor, such as rotation,
flipping, cropping. This characteristic aligns contrastive learning with self-supervised learning, even
when labels are used during training. For time-series data, such as neural dynamics, positive (or
augmented) samples are often created by selecting time-offset samples from the anchor, preserving
temporal relationships. The goal of contrastive learning is to train the model to bring positive sam-
ples closer to the anchor in the latent space while pushing negative samples farther away, effectively
learning representations that capture meaningful similarities and distinctions.

The contrastive learning-based method CEBRA outperforms other dimensionality reduction tech-
niques for neural-behavior data analysis. However, it has two key limitations when applied to con-
tinuous behavioral data, such as movements. First, CEBRA does not take advantage of the fact that
movements are continuous; instead, it treats movement locations or velocities as discrete classes,
similar to how images are handled (Fig 1b). Second, CEBRA fails to account for the highly im-
balanced distribution of movement positions or velocities (Fig 1a-c). In each reach trial, velocities
are near zero, and hand positions are close to the center (0, 0) at the start and end of movements,
while large velocities or distant hand positions are rare. Such imbalanced distributions are common
in real-world data (Yang et al., 2021) and differ significantly from manually curated and balanced
datasets like ImageNet (Deng et al., 2009).

3.2 MODIFIED AND SIMPLIFED LOSS FUNCTION FROM CONR

Our loss function was modified from the original ConR, which has six hyperparameters. First, there
is the temperature τ for regularizing feature similarity, which we kept as the only hyperparameter
in our studies. Second, the distance threshold ω determines whether paired samples are positive or
negative; we replaced this with the median value of pairwise distances (Fig 1e). Third, the pushing
power η, which should depend on the sample distribution, was manually assigned in their code for
all datasets; we removed this parameter. Fourth, there was an additional temperature e used for
regularizing label distance in their code, which was not mentioned in the paper. We unified this by
using the same temperature τ mentioned earlier. Fifth and sixth were α and β, used for regularizing
the regression and contrastive losses, respectively. Since we did not compute the regression loss, we
removed these two hyperparameters as well. In summary, we only used the single hyperparameter
τ , and our model performed well and robustly across the 68 sessions of data we evaluated.

Our NMR model utilizes the same feature encoder as CEBRA, ensuring that the extracted neural
embeddings are identical in both models. To integrate the ConR loss into CEBRA, we also modified
the data sampling strategy. In CEBRA, each training epoch consists of three batches of samples:
anchor, positive, and negative. The positive batch is created with a fixed time offset (e.g., 1 or 10
ms) from the anchor, while the negative batch is uniformly sampled from the entire time series.
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To compute the ConR loss, we utilize the same anchor and positive batches extracted by CEBRA.
The samples in the positive batch will be classified as positive, negative, or discarded (Fig. 1d),
depending on the difference between the ground truth and predicted labels, as well as the threshold
for label distance (details provided in the next section). While CEBRA only requires continuous
labels once to determine the indices of the positive batch, NMR retains the continuous labels and
reuses them in the ConR loss. The negative batch and its indices are no longer needed.

It is important to note that NMR does not alter the neural embeddings or labels, nor does the modified
sampling strategy introduce any additional neural data or labels. The improvements in the model’s
performance are solely attributed to the design of the loss function.

b CEBRACenter-out reachinga NMR

Imbalanced distribution

Continuous labels

entangleddiscrete

  r2=0.96

c

0 13

-13

30k

20k

10k

0

X and Y coordinates

true: 52%
shuffle: 15% 

|coord|<2

|coordinates distances|

true
anchor i

positive pairs Ni 

pred.
no negative pair

pred.

pred.

negative pair Ni negative pair Ni 

d e

negative 
emb. vn 

+ 

--

anchor 
emb. vi

𝞽
Only one hyper-
parameter

inverse freq.

|coord. distances|

0 10 20 30

distances 
threshold

disentangledcontinuous

60k

40k

20k

0

i

f

Figure 1: NMR introduces a novel loss function to map 2D latent dynamics with 2D stereotyped
hand movements. a A monkey performs a center-out reaching task in eight equally spaced directions
(modified from Perich et al. (2018)). All reaches start from the center, located at the (0, 0) X-Y coor-
dinates. The slower speed at the beginning of the movement and the central starting point contribute
to a highly imbalanced distribution of coordinates around (0, 0). The shuffled data histogram shows
the same number and range of values as the true coordinates but follows a uniform distribution. b
Previous models like CEBRA extract movement-related but largely uncorrelated latent dynamics at
low dimensionality, resulting in neural trajectories forming eight discrete, entangled lines (original
figures). In contrast, NMR yields nearly perfect 2D latent dynamics. using the same neural data and
movement labels. c The count (Y-axis, left) and inverse frequency (Y-axis, right) of pairwise dis-
tances between X and Y coordinates. Only 10 percent of the coordinates from the figure above are
shown. d Smooth gradients of blue represent continuous labels. e The distance threshold is set to the
median of all absolute coordinate distances in each batch. Since half the data have distances less than
2, potential negative samples will exist outside the gray circle. f The pushing force between anchor
embeddings and negative embeddings in the feature space is determined by the inverse frequency of
label distances, the label distances, and the sole hyperparameter in our model: temperature. Fig 8
demonstrates the stability of 2D latent dynamics and latent dynamics revealed by PCA.

3.3 NEW LOSS FUNCTION FOR CEBRA

Although NMR does not alter the neural embeddings in the anchor and positive batches or introduce
new labels, it predicts labels using linear regression based on the anchor batch and its labels. Fig.
1d illustrates how positive and negative pairs are selected based on true labels (1st row), predicted
labels (2nd to 4th rows), and the distance threshold (horizontal line below the 1st row). Samples
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with distances to an anchor below a specified threshold (1st row, colorbar within the horizontal line)
are classified as positive pairs, regardless of their predicted labels. Samples far from the anchor (2nd
to 4th rows, six colorbars outside the horizontal line) are either discarded (2nd and 3rd rows) or
classified as negative pairs (4th row), depending on their predicted labels. Samples in the 2nd and
3rd rows are discarded because their predicted labels (represented by very dim or dark blue colors)
are far from the anchor, irrespective of whether the prediction is correct (2nd row) or incorrect
(3rd row). In contrast, samples in the 4th row are considered negative pairs because their predicted
labels (medium blue) are closer to the anchor than the threshold, i.e., distant samples have been
mispredicted as nearby samples. Similar to the original ConR loss, the label distance is calculated
using the L1 distance, which is the sum of the absolute differences between the X-coordinates,
Y-coordinates, and hand reach angles of any paired labels.

Let d(·, ·) represent the distance measure between two labels. The ground truth sample label is y
and predicted sample label is ŷ. For each anchor sample i, the positive samples are those that satisfy
d(yi, yp) < d̂, the negative samples are those that satisfy d(yi, yn) > d̂ and d(ŷi, ŷn) < d̂, where d̂
is the median of all pairwise distance shown in Fig 1e.

Let’s denote vi, vp, and vn as the neural embeddings of corresponding true labels of yi, yp, and

yn. N+
i is the number of positive samples, N−

i is the number of negative samples. K+
i = {vp}

N+
i

p

is the set of embeddings from positive samples, K−
i = {vn}

N−
i

n is the set of embeddings from
negative samples. sim(·, ·) is the similarity measure between two feature embeddings (e.g. negative
L2 norm). For each anchor i whose neural embedding is vi, true label is yi, and loss is:

L =
1

N+
i

∑
vj∈K+

i

− log
exp(sim(vi, vj)/τ)∑

vp∈K+
i
exp(sim(vi, vp)/τ) +

∑
vn∈K−

i
Si,n exp(sim(vi, vn)/τ)

(1)

where τ is a temperature hyperparameter and Si,n is a pushing weight for each negative pair shown
in Fig 1f:

Si,n =
1

pd(yi,yn)
exp(d(yi, yn)τ) (2)

where 1
pd(yi,yn)

is the inverse frequency of labels distances distribution shown in Fig 1c. Together,
our simplified loss function does not introduce any additional hyperparameters, which could com-
plicate model training.

4 EXPERIMENTS

Two common ways to evaluate dimensionality reduction methods are: (1) the qualitative direct vi-
sualization of the revealed latent dynamics, and (2) the quantitative decoding performance of task
variables using a decoder. The decoding performance is measured by the explained variance (r²)
between the ground truth and the decoded movement trajectories. Although better decoding perfor-
mance can be achieved with complex decoders, we choose to enforce a linear mapping across the
three methods to prevent excessively complex decoders from compensating for poor latent dynam-
ics estimation (Pei et al., 2021). Decoding performance is a metric but not the ultimate goal!
Therefore, our dimensionality reduction method combined with a linear regression decoder should
not be compared with other decoders.

We evaluated NMR against the self-supervised learning-based models CEBRA and pi-VAE. These
models were chosen because they (1) represent two categories—contrastive and generative—of
dimensionality reduction methods that have achieved SOTA performance; (2) have released their
code and use publicly available datasets; and (3) benchmark against previous models such as PCA,
UMAP, fLDS, LFADS, AutoLFADS, and others. We evaluated all three models using the same
neural data and movement labels. To eliminate bias from using data from a single session in a
single brain area—where pi-VAE and CEBRA were previously tested—we conducted experiments
across a total of 68 sessions. These experiments involved neural signals from four modalities: M1,
PMd, and S1 in monkeys, and the precentral gyrus in humans. Importantly, we included three dif-
ferent movement tasks in our evaluation.
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4.1 NMR EXPLAINS THE LARGEST AND MOST CONSISTENT VARIANCE OF STEREOTYPED
MOVEMENTS USING SINGLE NEURON DATA

Our initial focus was on classical stereotyped center-out reaching tasks, similar to the task in Fig
1, but with neural data from the motor cortex (M1) and premotor cortex (PMd) instead of the so-
matosensory cortex (S1). We found that NMR significantly outperformed hyperparameter-optimized
CEBRA and pi-VAE models by a large margin (M1: 0.88 vs 0.48 vs 0.43; PMd: 0.9 vs 0.53 vs 0.37,
median values, Fig 2). The performance difference between NMR and CEBRA was statistically sig-
nificant (M1, t = 14.9, p = 6.3e-10; PMd, t = 16.8, p = 1e-8; paired t-test with multiple comparisons
correction), as was the difference between NMR and pi-VAE (M1, t = 9.7, p = 2.4e-7; PMd, t =
9.8, p = 2.8e-6). Importantly, NMR exhibited less variability across sessions (M1, 0.03; PMd, 0.02,
standard deviation) compared to both CEBRA (M1, 0.1; PMd, 0.06) and pi-VAE (M1, 0.18; PMd,
0.18). Multiple runs with different parameters within the same session showed that CEBRA is more

MonkeyM C

M1 PMd

r2
NMR
CEBRA
pi-VAE

MonkeyM C

Figure 2: NMR consistently outperforms CEBRA and pi-VAE across different brain areas, monkeys,
and hemispheres. The Y-axis displays the explained variance, while the X-axis shows the session
dates (formatted as YYYYMMDD) for 16 sessions in M1 and 10 sessions in PMd. Data from six
sessions in 2014 (M1 or PMd) are from Monkey M, four sessions in 2015 (M1) are from the right
hemisphere of Monkey C, and six sessions in 2016 (M1 or PMd) are from the left hemisphere of
Monkey C. Task labels represent hand velocity. The best hyperparameters were chosen when eval-
uating the CEBRA and pi-VAE models. Model parameters were kept fixed across all 28 sessions.
Figs 910 illustrate the hyperparameter search and stability of the CEBRA and pi-VAE models, re-
spectively, while Fig 11 shows the results using 3D CEBRA and pi-VAE models.

robust than pi-VAE (Figs 910), consistent with previous findings from the CEBRA paper. Since
CEBRA and pi-VAE typically perform better at higher dimensionality, we also compared 2D NMR
with 3D CEBRA/pi-VAE (i.e., without further dimensionality reduction using PCA on the original
3D output). The results remained similar (Fig 11). In summary, NMR explained the largest variance
of hand movements and demonstrated the most consistent performance across sessions.

4.2 NMR ACHIEVES SUPERIOR DECODING PERFORMANCE WITHIN AND ACROSS
SESSIONS, SUBJECTS, AND YEARS

Since NMR explains the largest movement variance (r²) across all sessions in both M1 and PMd,
we further investigated whether the latent dynamics aligned with movements in one session could
be utilized to decode movements in other sessions or even across different subjects. Fig 3 shows
the within-session decoding performance (values on the diagonal) and cross-session decoding per-
formance (values off the diagonal) for the three models. Consistent with the explained variance
results, NMR significantly outperformed CEBRA (t = 11.5, p = 2.4e-8, paired t-test with multiple
comparisons correction) and pi-VAE (t = 6.2, p = 5e-5) in decoded variance within sessions.

The performance gap was even more pronounced for cross-session decoding, with NMR performing
nearly twice as well as CEBRA (t = 18.5, p = 1.5e-47) and six times better than pi-VAE (t = 21, p
= 1.4e-55). Additionally, CEBRA almost tripled the performance of pi-VAE (t = 9.6, p = 3.6e-18).
These results are consistent with the smaller cross-session standard deviation observed in Fig 2.
Similar decoding results were also observed in PMd (Fig 12). In summary, the low-dimensional,
high-performance, and stable movement-aligned latent dynamics revealed by NMR enable effective
neural decoding across sessions and even across different subjects.
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NMR CEBRA pi-VAE
dia: 0.78, off-dia: 0.59 dia: 0.45, off-dia: 0.32 dia: 0.41, off-dia: 0.12Monkey

M

C

Figure 3: Within- and across-session movements decoding performance (r²) in M1 for Monkey M
and C. Fig 12 shows the decoding results in PMd.

4.3 DIMENSIONALITY REDUCTION USING BANDS OF LOCAL FIELD POTENTIAL SIGNALS

Dimensionality reduction methods have predominantly been evaluated on single-neuron data, ei-
ther through neurophysiological recordings or calcium imaging. However, numerous studies have
demonstrated that local field potential (LFP) signals contain movement-related information and can
achieve comparable decoding performance to single-neuron data. To explore this further, we tested
three models using the LFP signals that accompanied the previous single-neuron recordings.

LMPa
0.5 - 4 Hz
4 - 8 Hz
8 - 12 Hz
12 - 25 Hz
25 - 50 Hz
50 - 100 Hz
100 - 200 Hz
200 - 400 Hz
X-vel.
Y-vel.

MonkeyM C

r2

b

MonkeyM C

M1
LMP
12 - 25 Hz
200 - 400 Hz

NMR
CEBRA PMd

Figure 4: Dimensionality reduction on LFPs. a Seven LFP bands along with X- and Y-velocity in
three example channels. Error bars represent the standard error of the mean across all trials in this
session (Monkey C, 20161014, M1). b The explained variance (r²) of the model is shown across
all sessions in M1 (left) and PMd (right) for three LFP bands: LMP, 12-25 Hz Beta band, and 200-
400 Hz Gamma band. Figs 13 and 14 show the hyperparameter tuning of the two models and the
decoding performance on test trials, respectively.

We first examined whether different bands of LFP signals were modulated by movement (Fig 4a).
As expected, movement onset, occurring approximately 300 ms after the go cue, evoked ampli-
tude changes in several LFP bands. Notably, LFP bands across different channels showed dis-
tinct modulations, a prerequisite for population decoding and for revealing latent dynamics from
high-dimensional neural data. The local motor potential (LMP), which consists of unfiltered and
smoothed LFP signals, exhibited the most diverse movement modulation across all channels. We
then evaluated the explained variance (Fig 4b) and decoding performance (Fig 14) of NMR and CE-
BRA across 28 sessions in three representative LFP bands. The results showed that performance was
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LFP band-dependent: the LMP and high-frequency band (200-400 Hz) significantly outperformed
the middle-frequency band (12-25 Hz). Furthermore, NMR outperformed CEBRA across all three
bands—LMP (0.79 vs 0.46), Gamma (0.74 vs 0.44), and Beta (0.36 vs 0.22)—with statistically sig-
nificant differences (t = 6.8, 7.8, and 3.1; p = 1.8e-5, 3.8e-6, and 0.002, paired t-test with multiple
comparisons correction) in both M1 and PMd. However, we observed some variability. NMR’s per-
formance dropped below CEBRA in certain bands and sessions (e.g., LMP in Monkey C, 20161006,
M1). In contrast to the results with single-neuron data, NMR showed greater variability across ses-
sions (0.15 vs 0.11, 0.2 vs 0.09, 0.23 vs 0.17). Despite this, the overall performance of LFP signals
was only slightly lower than that of single-neuron data. In summary, NMR outperforms CEBRA
even when using LFP signals, though it exhibits more variability across sessions.

4.4 NMR OUTPERFORMS OTHER MODELS ON NATURAL MOVEMENTS USING BOTH
SINGLE-NEURON AND UNSORTED EVENTS DATA

Our previous evaluation, while exhaustive, focused primarily on stereotyped movements. It is im-
portant to assess how NMR performs in natural movements without predefined target locations. To
address this, we benchmarked three models in a task involving restricted natural movements, where
target locations appeared randomly on a 9 x 9 grid on the screen (Fig 5a). In this task, there is no
delay period, and trials have variable lengths with almost no overlap in movement trajectories (Fig
5b). Each recording channel contained one or more sorted single units as well as unsorted remain-
ing events (Fig 5c). Surprisingly, both sorted single units and unsorted events were able to uncover
movement (velocity)-aligned 2D latent dynamics (Fig 5d).

single units 

a b

c d

e

f

Hand velocities9 x 9 Grid

NMR
CEBRA
pi-VAE

unsorted events

sorted single units 

execution time

r2

r2

sec.

unsorted events

single units 

unsorted events

Figure 5: Dimensionality reduction on natural movements using data from single units and unsorted
events. a Three example movement trials in a 9 x 9 grid on a computer screen (modified from
Keshtkaran et al. (2022)). b Hand velocities for all reaching movements, with different colors repre-
senting different angles. Data are from session indy 20170124 01. c Four sorted single units and the
remaining unsorted events from one channel. d 2D latent dynamics revealed by NMR using both
sorted and unsorted data modalities. e Explained variance for three models across 37 sessions using
sorted single units (top) and unsorted events (bottom). f Execution time for NMR and CEBRA, with
pi-VAE excluded for comparison since it runs on the CPU instead of the GPU. Figs 151617 show
findings with different hyperparameters, decoding performance for test trials with 3D models, and
execution time under varying conditions, respectively.

We benchmarked the three models across 37 sessions over a span of 10 months in one monkey.
Consistent with the results from 28 sessions in the center-out reaching task, NMR outperformed
CEBRA and pi-VAE by a large margin in all sessions for both sorted single units (0.82, 0.55, and
0.45) and unsorted events (0.65, 0.36, and 0.25) (Fig 5e). Hyperparameter tuning across all 37
sessions for all three models further supported these conclusions (Fig 15). We observed consistent
results on the test trials and when using 3D versions of CEBRA and pi-VAE models (Fig 16). Since
CEBRA computes the distance between an anchor and all samples in the batch, while NMR does
not compute distances for predicted labels that deviate from the true labels, we hypothesized that
NMR would have more efficient computing than CEBRA. Supporting this hypothesis, we found
that execution time across sessions was significantly shorter for NMR compared to CEBRA, both
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for single units (119 vs 163 seconds, t = 12, p = 3e-14) (Fig 5f) and for unsorted events (149 vs 166
seconds, t = 3.5, p = 0.001) (Fig 17a). This result held true under different hyperparameters for both
models (Fig 17b, c). In summary, NMR demonstrates superior performance for natural movements
using data from both single units and unsorted events.

In the previous task, natural movements on a 9 x 9 grid involved unpredictable yet predefined target
locations. However, in more realistic scenarios, a target can appear anywhere. To simulate this, we
further evaluated the three models on a free natural movements task, where the target could appear at
any location on the screen (Fig 6a). NMR revealed 2D latent dynamics that were better aligned with
both hand velocity and direction compared to CEBRA (0.88 vs 0.79, Fig 6b). We ran 20 evaluations
to compare the performance and stability of the models. Consistent with previous findings, NMR
achieved the highest performance (0.79, 0.58, and 0.56) in explaining hand velocities and exhibited
the smallest variability across runs (0.002, 0.004, and 0.117) (Fig 6c). Similar trends were observed
in the test trials, where NMR showed higher performance (0.77, 0.65, and 0.53) and lower variability
(0.005, 0.006, and 0.109) (Fig 18). Additionally, NMR had a shorter execution time compared to
CEBRA (146 vs 165 seconds, t = 3.5, p = 0.0025, Fig 18).

A: Monkey: indy Date: 20160426 total trials: 827

F: temp of 0.065 for NMR 

SU1 311 spikes unsorted 13393 eventschannel 11a b c9 x 9 grid

Hash
unsorted SU

Supplementary figures
1st vs 2nd run (zoom in)

unsorted

SU

Explained variance (80%)>>>purpose of this figure is to compare SU vs Hash across 
temperature
Also show the temperature is independent from specific session

Supplementary  Decoding (20%)

Averaging of 
two group traces from 0.05-0.06-0.07-0.08
>>>zoom in of flatten part
One color for SU, one color for Hash
|run#1 - run#2|/run#1 + run#2
0.055, 0.06, 0.065
Compare SU vs Hash, R#1 vs R#2 in SU

Random locationa b
c

Hand velocity CEBRANMR c Consistency (20 runs)

CEBRANMR pi-VAE

r2

Figure 6: Dimensionality reduction on natural movements with random target locations. a A monkey
was trained to perform sequences of four reaches to randomly placed target locations (modified from
Safaie et al. (2023)). The colors of each reaching trial indicate the angles. b 2D latent dynamics
revealed by NMR and CEBRA. c Explained variance of hand velocities by three models across 20
runs. Fig 18 provides additional details on decoding performance and execution time.

4.5 NMR MAPS LATENT DYNAMICS TO ATTEMPTED CENTER-OUT HANDWRITING

The datasets evaluated so far come from 67 sessions across three different hand-reaching tasks in
four macaque monkeys. However, two key questions remain: Can NMR work for attempted or imag-
ined reaching instead of physical hand movements? And how does it perform outside of monkeys?
To address these questions, we focused on a dataset involving attempted center-out handwriting in
16 directions by a paralyzed patient. One significant challenge in this task is the absence of mea-
surable hand or finger position data, as the participant must imagine movement trajectories while
following on-screen instructions (Fig 7a). During the task, multiunit threshold crossing data were
recorded from the hand knob area. Remarkably, NMR successfully revealed single-trial latent dy-

a b 2D latent dynamics revealed by NMR c Explained var. 

Position

Attempted center-out handwriting

r2

CEBRANMR pi-VAE

Figure 7: Dimensionality reduction on handwriting attempts in 16 directions. a A participant at-
tempted to handwrite in 16 directions, following instructions displayed on a monitor. Neural record-
ings were made from two 96-channel Utah arrays implanted in the hand knob area of the precentral
gyrus (modified from Willett et al. (2021)). b Single-trial and trial-averaged latent dynamics were
revealed by NMR. c Explained variance of hand velocities across three models after 20 runs. Fig 19
shows hyperparameter tuning, and Fig 20 provides further comparison results.
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namics without any overlap in trials that were 22.5 degrees apart (Fig 7b). The averaged 2D latent
dynamics closely matched the imagined movement trajectories (r² = 0.96, based on hand positions).
We optimized the hyperparameters of the three models before evaluating them across 20 runs (Fig
19). Consistent with the results obtained using actual hand positions, NMR also revealed aligned
trajectories when trained on hand velocities (Fig 20a). While NMR outperformed both models, CE-
BRA showed better performance than pi-VAE but still lagged behind NMR (0.78, 0.59, and 0.23,
Fig 7c). We observed similar results in the test trials and with the 3D versions of the CEBRA and
pi-VAE models (Fig 20b). Consistent with earlier findings, NMR also had a shorter execution time
compared to CEBRA (Figure 20c). Overall, NMR reveals the most aligned latent dynamics for
attempted handwriting and shows strong potential for applications in brain-machine interfaces.

5 DISCUSSION

A benchmark of NMR against CEBRA and pi-VAE across multiple brain areas, four modalities of
neural signals, and three movement tasks demonstrates NMR’s superior performance in uncovering
latent dynamics. One of the key strengths of NMR is its ability to extract nearly identical latent
dynamics across different brain areas and over extended periods. This capability opens new avenues
for both fundamental neuroscience research and brain-machine interface (BMI) applications. Pre-
vious studies by Gallego et al. (2020) and Safaie et al. (2023) revealed preserved latent dynamics
across time and subjects performing similar behaviors using the PCA method. However, the latent
dynamics revealed by NMR (as shown in Figs 1567) are significantly more informative than those
uncovered by PCA. We believe NMR will help neuroscientists probe the stability of latent dynamics
under various conditions. For BMI applications, we demonstrate that NMR, combined with a simple
linear decoder, can predict hand movements across years, subjects, and hemispheres. This capability
allows for training latent dynamics within and between subjects, enabling the prediction of move-
ments in other subjects. The linear decoder’s lack of hyperparameters is an additional advantage.
Furthermore, NMR also revealed almost perfectly aligned 2D latent dynamics in a paralyzed human
patient, further highlighting its potential for use in BMI applications for humans.

If the ultimate goal of a dimensionality reduction method is to align latent dynamics with any move-
ments, then NMR is still far from achieving this. For the three movement tasks evaluated in this
study, the movement trajectories are relatively simple. For complex movements like handwriting
characters such as ”m” or ”k” (Willett et al., 2021), the latent dynamics will collapse. We believe
this is due to the calculation of label distance; geodesic distance might be more suitable than Man-
hattan or Euclidean distance. Furthermore, we consider speech (Silva et al., 2024)—which involves
coordinated movements of the jaw, tongue, lips, and larynx—to be one of the most challenging
movement tasks. We believe it is still feasible to reveal the latent dynamics, though they are un-
likely to be 2D, if the label distance of articulatory kinematic trajectories (AKTs) (Chartier et al.,
2018) can be quantified. A model may need to reduce the dimensionality of both AKTs (coordinated
movements in 13 dimensions) and neural dynamics.
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A APPENDIX

A.1 CODE

Operating system: Ubuntu, GPU: NVIDIA RTX A5000, RAM: 42 GB.

We have uploaded all of our code, including the modified loss function, preprocessing scripts, and
figure generation code. All parameters and hyperparameters for our models are either presented in
the seven main figures or the thirteen supplementary figures. Additionally, since all training was
done in Jupyter Notebook, the hyperparameters are also saved there.

Please note that the input data for both NMR and CEBRA are identical. The pi-VAE model used
20% of the trials for validation. pi-VAE was executed on a CPU due to issues with an older version
of TensorFlow, which is why we did not compare its execution time with that of NMR and CEBRA.

A.2 DATASETS

We have evaluated in a total of 1+28+37+1+1+=68 sessions.

Eight direction center-out reaching (Fig 1): 1 monkeys, 1 sessions The neural data was recorded
from Somatosensory cortex. The data will be downloaded in the CEBRA software pakcage auto-
matically.

Eight direction center-out reaching (Fig 234): 2 monkeys, 28 sessions

https://datadryad.org/stash/dataset/doi:10.5061/dryad.xd2547dkt

This data is released accompanying this paper Gallego-Carracedo et al. (2022):

https://elifesciences.org/articles/73155#data

The data is Matlab format and we extract following information: tgtDir (Target direction, radians
for Monkey Chewie and Mihali), idx-goCueTime (The time go Cue is one), vel(XY velocities), M1-
spikes for both Chewie 2015 and Chewie 2016, and PMd-spikes only for Chewie 2016. The time
bin is 30ms and we extract all the spikes after each go Cue. We extracted 40 bins for both monkeys.
We smoothed the discrete spike count in the Matlab using a Gaussian kernel. The standard deviation
is 1.5 and kernel size is six standard deviations. We keep all the trials and neurons.

Natural movements in 9 x 9 Grid (Fig 5) (O’Doherty et al., 2017):1 monkey, 37 sessions

https://zenodo.org/records/583331

Natural movements with random targets (Fig 6) (Lawlor et al., 2018): 1 monkey, 1 session

https://crcns.org/data-sets/motor-cortex/pmd-1/about-pmd-1 We used
the first session of Monkey MM that performed 496 trials of reaching tasks. There are 67 neurons
in M1 and 94 neurons in PMd.

Human Handwriting (Fig 7) (Willett et al., 2021): 1 patients, 1 session

https://datadryad.org/stash/dataset/doi:10.5061/dryad.wh70rxwmv
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r2=0.9671

r2=0.9595

r2=0.9549

r2=0.9506

r2=0.9639

Hand positionsa

b

Figure 8: Single-trial and averaged latent dynamics across six runs by NMR (a) and PCA (b). One
of the panels in a is used in Figure 1. Parameters: Temperature = 0.045, epochs = 20,000, learning
rate = 0.001.
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Hyperparameter tuning of temperature (coarse) and iterations

Hyperparameter tuning of temperature (fine)
b

c

a

Stability of the CEBRA model across two different iterations

5,000
10,000

80% Train trials 20% Test trials

Figure 9: Hyperparameter tuning and stability of CEBRA. a. Hyperparameter search across five dif-
ferent iterations and six different temperatures. The evaluated session is from Monkey C (20161014,
M1). b. A finer hyperparameter search at 10,000 iterations. c. Explained variance (left) and decoded
variance (right) at two different iteration numbers across 14 sessions in M1.
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Hyperparameter tuning of temperature and iterations (batch size = 200) 

b

c

a

Stability of the pi-VAE model across different iterations and runs @ M1
80% Train trials 20% Test trials

Hyperparameter tuning of temperature and iterations (batch size = 512) 

d Stability of the pi-VAE model across three iterations @ PMd

Figure 10: Hyperparameter tuning and stability of pi-VAE. a. Hyperparameter search across four
different iterations and four different learning rates. The evaluated session is from Monkey C
(20161014, M1). b. Similar search, but using a larger batch size. c. Explained and decoded vari-
ance under different iteration numbers and across multiple runs. Note that the performance shows a
similar trend across sessions but has larger variability within each session. d. Similar to panel c, but
models are evaluated in PMd.
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M1 PMd

r2

NMR
CEBRA
pi-VAE

20% test trials of 2D models

80% train trials of 3D CEBRA/pi-VAE

80% test trials of 3D CEBRA/pi-VAE

a

b

c

Figure 11: Test trial performance and 3D model comparison. Same format as Figure 2, but for held-
out 20% test trials using 3D CEBRA and pi-VAE models. a. Decoded r² across sessions in M1 and
PMd using 2D models. b. Explained r² and c. Decoded r² for 2D NMR compared to 3D CEBRA
and 3D pi-VAE models.

NMR CEBRA pi-VAE
dia: 0.71, off-dia: 0.45 dia: 0.45, off-dia: 0.35 dia: 0.34, off-dia: -0.49Monkey

M

C

Figure 12: Decoding results in PMd, following the same format as Fig 3. The t-statistics and p-values
for the diagonal values are 10.1821 and 1.9e-06 (NMR vs CEBRA), 5.0372 and 1.1e-03 (NMR vs
pi-VAE), 1.8407 and 0.2783 (CEBRA vs pi-VAE). The t-statistics and p-values for the off-diagonal
values are 6.5845 and 3.0e-09 (NMR vs CEBRA), 6.2945 and 1.3e-08 (NMR vs pi-VAE), 5.7219
and 2.0e-07 (CEBRA vs pi-VAE).
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NMR Gamma Band: hyperparameter tuning of temperature and iterations

b

a

CEBRA LMP Band: hyperparameter tuning of temperature and iterations

CEBRA Gamma Band: hyperparameter tuning of temperature and iterations

Figure 13: Hyperparameter tuning for two models. a. Explained variance across four iterations and
eight temperatures in the high Gamma band (200-400 Hz) for NMR. b. Similar tuning results for
CEBRA in the LMP (smoothed LFP signals) and Gamma bands.

MonkeyM C

r2

MonkeyM C

M1 PMd
LMP
12 - 25 Hz
200 - 400 Hz

NMR
CEBRA

20% test trials

Figure 14: Decoding performance on held-out test trials, following the same format as Fig 4.
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80% Train 20% TestNMRa

b

c

CEBRA

pi-VAE

Figure 15: Explained variance under different hyperparameters. a. Variance results for four different
learning rates, smaller batch sizes (256 vs. 512), and fewer iterations (5,000 vs. 10,000). b. Results
for three different learning rates. c. Comparison between two runs using the same learning rate but
higher iterations (200 vs. 100) and a much lower learning rate.

Single-unit Spike Multi-unit Hash

r2

NMR
CEBRA
pi-VAE

20% test trials of 2D models

80% train trials of 3D CEBRA/pi-VAE

80% test trials of 3D CEBRA/pi-VAE

a

b

c

Figure 16: Decoding performance for test trials (a) and 3D CEBRA/pi-VAE models (b, c).
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a

b

c CEBRA: Single-unit spike 

NMR: Single-unit spike 

NMR vs CEBRA: Multi-unit Hash 

Figure 17: Execution time for NMR and CEBRA models. a. Same format as Figure 5f, but for
unsorted events. b. Comparison of execution times for four different learning rates, smaller batch
sizes, and fewer iterations. c. Execution time results for three different learning rates.

Consistency (20 runs) of 20% Test Trials

r2

 Execution time

Figure 18: Model decoding performance in the testing trials and execution times.
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NMR

CEBRA

pi-VAE

a

b

c

Figure 19: Hyperparameter search and runtime of NMR (a), CEBRA (b), and pi-VAE (c) models

a

CEBRA

pi-VAE

b

c

d

80% Train 20% TestNMR

3D CEBRA & pi-VAE 3D CEBRA & pi-VAE

Figure 20: 2D latent dynamics of the three models and performance across different conditions. a.
2D latent dynamics in training trials (left) and held-out test trials (right). b. Explained variance of
hand velocities in training and test trials at two sets of iterations. c. Similar analysis for 3D CEBRA
and pi-VAE models. d. Execution time comparison between NMR and CEBRA at two different
iteration levels.
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