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Abstract

Global stability and robustness guarantees in learned dynamical systems are essen-
tial to ensure well-behavedness of the systems in the face of uncertainty. We present
Extended Linearized Contracting Dynamics (ELCD), the first neural network-based
dynamical system with global contractivity guarantees in arbitrary metrics. The
key feature of ELCD is a parametrization of the extended linearization of the
nonlinear vector field. In its most basic form, ELCD is guaranteed to be (i) globally
exponentially stable, (ii) equilibrium contracting, and (iii) globally contracting
with respect to some metric. To allow for contraction with respect to more general
metrics in the data space, we train diffeomorphisms between the data space and
a latent space and enforce contractivity in the latent space, which ensures global
contractivity in the data space. We demonstrate the performance of ELCD on the
high dimensional LASA, multi-link pendulum, and Rosenbrock datasets.

1 Introduction

Due to their representation power, deep neural networks have become a popular candidate for
modeling continuous-time dynamical systems of the form

ẋ =
dx

dt
= f(x), (1)

where f(x) is an unknown (autonomous) vector field governing a dynamical process. Beyond
approximating the vector field f , it is desirable to ensure that the learned vector field is well-behaved.
In many robotic tasks like grasping and navigation, a well-behaved system should always reach
a fixed endpoint. Ideally, a learned system will still stably reach the desired endpoint even when
pushed away from demonstration trajectories. Additionally, the learned system should robustly reach
the desired endpoint in the face of uncertainty. In tasks such as manufacturing, animation, and
human-robot interaction, functionality and safety require the learned system must smoothly follow a
specific trajectory to its target.

To enforce stability guarantees, a popular approach has been to ensure that the learned dynamics
admit a unique equilibrium point and have a Lyapunov function, e.g. [30]. While popular, approaches
based on Lyapunov functions typically struggle to provide general robustness guarantees since global
asymptotic stability does not ensure robustness guarantees in the presence of disturbances. Indeed,
input-to-state stability of global asymptotically stable dynamical systems needs to be separately
established, e.g., see Chapter 5 in [21].

To ensure robustness and to allow for smooth trajectory following, there has been increased interest
in learning contracting dynamics from data [6]. A dynamical system is said to be contracting if any

∗Corresponding author: sjaffe@ucsb.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



two trajectories converge to one another exponentially quickly with respect to some metric [27]. If a
learned contracting system that admits a demonstration trajectory is pushed off that trajectory, it will
follow a new trajectory that exponentially converges to the demonstration trajectory. Additionally,
if a system is contracting, it is exponentially incrementally input-to-state stable [39]. If the system
is autonomous, it also admits a unique equilibrium, is input-to-state stable, and has two Lyapunov
functions that establish exponential stability of the equilibrium [9]. Since establishing contractivity
globally requires satisfying a matrix partial differential inequality everywhere, prior works have
focused on establishing contractivity in the neighborhood of training data [35, 36].

1.1 Related Works

Stable, but not necessarily contracting dynamics. Numerous works have aimed to learn stable
dynamical systems from data including [7, 15, 22, 30, 32, 40, 45]. In [22], the authors introduce
the Stable Estimator of Dynamical Systems (SEDS), which leverages a Gaussian mixture model to
approximate the dynamics and enforce asymptotic stability via constraints on learnable parameters.
In [30], the authors jointly learn the dynamics and a Lyapunov function for the system and project the
dynamics onto the set of dynamics which enforce an exponentially decay of the Lyapunov function.
This projection is done in closed-form and establishes global exponential convergence of the dynamics
to the origin. In [40], the authors introduce Imitation Flow where trajectories are mapped to a latent
space where states evolve in time according to a stable SDE. In [32], Euclideanizing Flows is
introduced where the latent dynamics are enforced to follow natural gradient dynamics [2]. A similar
approach is taken in [45] where additionally collision avoidance is considered.

Existing works on learning contracting dynamics. Learning contracting vector fields from demon-
strations has attracted attention due to robustness guarantees [6, 33, 35, 37, 39]. In [33], the dynamics
are defined using a Gaussian mixture model and the contraction metric is parametrized to be a
symmetric matrix of polynomial functions. Convergence to an equilibrium is established using
partial contraction theory [41]. In [35], the dynamics are defined via an optimization problem over a
reproducing kernel Hilbert space; the dynamics are constrained to be locally contracting around the
data points, i.e., there may be points in state space where the dynamics are not contracting. In [37]
and [39], the authors study controlled dynamical systems of the form ẋ = f(x, u), where u is a con-
trol input and train neural networks to find a feedback controller such that the closed-loop dynamics
are approximately contracting, i.e., contractivity is not enforced but instead lack of contractivity is
penalized in the cost function.

Recent work, [6], has proposed a Neural Contractive Dynamical System (NCDS) which learns a
dynamical system which is explicitly contracting to a trajectory. NCDS parametrizes contracting
vector fields by learning symmetric Jacobians and performing line integrals to evaluate the underlying
vector field. NCDS is computationally costly because of this integration. Additionally, the Jacobian
parametrization used is overly restrictive, because not all contracting vector fields have symmetric
Jacobians. Constraining the vector field to have symmetric Jacobian is equivalent to enforcing that
the vector field is a negative gradient flow and contracting with respect to the identity metric [42].
For scalability to higher dimensions, NCDS leverages a latent space structure where an encoder maps
the data space to a lower-dimensional space and enforces contracting dynamics in this latent space.
Then a decoder “projects" the latent-space dynamics to the full data space. It is then argued that on
the submanifold defined by the image of the decoder, the dynamics are contracting.

1.2 Contributions

In this paper, we present a novel model for learning deep dynamics with global contraction guarantees.
We refer to this model as Extended Linearized Contracting Dynamics (ELCD). To the best of our
knowledge, ELCD is the first model to ensure global contraction guarantees. To facilitate the
development of this model, we provide a review of contracting dynamics and extended linearization
of nonlinear dynamics. Leveraging extended linearization, we factorize our vector field as f(x) =
A(x, x∗)(x− x∗), where x∗ is the equilibrium of the dynamics. We enforce negative definiteness
of the symmetric part of A(x, x∗) everywhere and prove (i) global exponential stability of x∗, (ii)
equilibrium contractivity of our dynamics to x∗, and (iii) using a converse contraction theorem,
contractivity of the dynamics with respect to some metric.
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Since negative definiteness of the symmetric part of A is not sufficient to capture all contracting
dynamics, we introduce a latent space of equal dimension as the data space and learn diffeomorphisms
between the data space and this latent space. The diffeomorphisms provide additional flexibility in
the contraction metric and allow learning of arbitrary contracting dynamics compared to those which
are solely equilibrium contracting.

Our example in Section 3.4 provides theoretical justification for why the diffeomorphism and the
learned contracting model must be trained jointly. In summary, if the diffeomorphism is trained first,
and transforms the data to a latent space, the model class may not be expressive enough to accurately
represent the true latent dynamics. If the diffeomorphism and dynamics are trained simultaneously,
this limitation is overcome. This is in contrast to [6] which trains the diffeomorphism independently
as a variational autoencoder and then trains the model after on the transformed data.

Our model, ELCD, directly improves on NCDS in several ways. We parameterize the vector field
directly instead of parametrizing its Jacobian. Doing so prevents us from needing to integrate the
Jacobian to calculate the vector field and thus speeds up training and inference. ELCD is also more
expressive than NCDS because it can represent vector fields with asymmetric Jacobians. Additionally,
ELCD is guaranteed to be contracting to an arbitrary equilibrium point, either selected or learned, at
all training steps. NCDS, in contrast, must learn the equilibrium point over the course of training.
Additionally, NCDS learns an encoder and decoder for a lower-dimensional latent space and thus can
only be contracting on the submanifold defined by the image of the decoder. From initial conditions
that are not on this submanifold, NCDS may not exhibit contracting behavior. In contrast, since
the latent space of ELCD is of the same dimension as the data space, we train diffeomorphisms
that ensure global contractivity in the data space. ELCD exhibits better performance than NCDS
at reproducing trajectories from the LASA [26], n-link Pendulum, and Rosenbrock datasets. We
additionally compare against the Euclideanizing Flow [32], and Stable Deep Dynamics [30] models.

2 Preliminaries

We consider the problem of learning a dynamical system ẋ = f(x) using a neural network that ensures
that the dynamics are contracting in some metric. Going forward, we denote by Df(x) = ∂f

∂x (x)
the Jacobian of f evaluated at x. To this end, we define what it means for a dynamical system to be
contracting.
Definition 1. A contracting dynamical system is one for which any two trajectories converge
exponentially quickly. From [27], for a continuously differentiable map f : Rd → Rd, the dynamical
system ẋ = f(x) is contracting with rate c > 0 if there exists a continuously-differentiable matrix-
valued map M : Rd → Rd×d and two constants a0, a1 > 0 such that for all x ∈ Rn, M(x) =
M(x)⊤ and a0Id ⪰M(x) ⪰ a1Id and additionally satisfies for all x

M(x)Df(x) +Df(x)⊤M(x) + Ṁ(x) ⪯ −2cM(x). (2)

The map M is called the contraction metric and the notation Ṁ(x) is shorthand for the n × n

matrix whose (i, j) entry is Ṁ(x)ij = ∇Mij(x)
⊤f(x). A central result in contraction theory is that

any dynamical system ẋ = f(x) satisfying (2) has any two trajectories converging to one another
exponentially quickly [27, 29, 39]. Specifically, there exists L ≥ 1 such that any two trajectories
x1, x2 of the dynamical system satisfy

∥x1(t)− x2(t)∥2 ≤ Le−ct∥x1(0)− x2(0)∥. (3)

In other words, contractivity establishes exponential incremental stability [4].

We note that any contracting dynamical system enjoys numerous useful properties including the
existence of a unique exponentially stable equilibrium and exponential input-to-state stability when
perturbed by a disturbance. We refer to [27] for more useful properties of contracting dynamical
systems and [9] for a recent monograph on the subject.

The problem under consideration is as follows: given a set of demonstrations D = {(xi, ẋi)}ni=1

consisting of a set of n state, xi ∈ Rd, and velocity, ẋi ∈ Rd, pairs, we aim to learn a neural network
f(xi) = ẋi that parametrizes a globally contracting dynamical system with equilibrium point x∗,
such that f(x∗) = 0. In essence, this task requires learning both the vector field and the contraction
metric, M such that they jointly satisfy (2).
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2.1 Contracting Linear Systems

Suppose we assumed that the dynamical system we aimed to learn was linear, i.e., ẋ = Ax for some
matrix A ∈ Rd×d and we wanted to find a contraction metric M which we postulate to be constant
M(x) :=M for all x. The contraction condition (2) then reads

M(A+ cIn) + (A+ cIn)
⊤M ⪯ 0, (4)

which implies that A has all eigenvalues with Re(λ(A)) ≤ −c, see Theorem 8.2 in [18]. In other
words, for linear systems, contractivity is equivalent to stability.

Although the condition (4) is convex inM at fixedA, the task of learning both (A,M) simultaneously
from data is not (jointly) convex. Instead, different methods must be employed such as alternating
minimization. A similar argument is made in [30] in the context of stability and here we show that
the same is true of contractivity.

2.2 Contractivity and Exponential Stability for Nonlinear Systems

In the case of nonlinear systems, contractivity is not equivalent to asymptotic stability. Indeed,
asymptotic stability requires finding a continuously differentiable Lyapunov function V : Rd → R≥0

which is positive everywhere except at the equilibrium, x∗, and satisfies the decay condition

∇V (x)⊤f(x) < 0, ∀x ∈ Rd \ {x∗}. (5)

One advantage of learning asymptotically stable dynamics compared to contracting ones is that the
function V is scalar-valued, while the contraction metric M is matrix-valued. A disadvantage of
learning asymptotically stable dynamics compared to contracting ones is that we are required to know
the location of the equilibrium point beforehand and no robustness property of the learned dynamics is
automatically enforced. To this end, there are works in the literature that enforce an equilibrium point
at the origin and learn the dynamics and/or the Lyapunov function under this assumption [30]. In the
case of contractivity, existence and uniqueness of an equilibrium point is implied by the condition (2)
and it can be directly parametrized to best suit the data.

3 Methods

3.1 Motivation

The motivation for our approach comes from the well-known mean-value theorem for vector-valued
mappings, which we highlight here.
Lemma 2 (Mean-value theorem (Proposition 2.4.7 in [1])). Let f : Rd → Rd be continuously
differentiable. Then for every x, y ∈ Rd,

f(x)− f(y) =
(∫ 1

0

Df(τx+ (1− τ)y)dτ
)
(x− y). (6)

If y = x∗ satisfies f(x∗) = 0, then the continuously differentiable map f admits the factorization

f(x) = A(x, x∗)(x− x∗), where (7)

A(x, x∗) =

∫ 1

0

Df(τx+ (1− τ)x∗)dτ. (8)

This factorization is referred to as extended linearization in analogy to standard linearization, i.e.,
for x close to x∗, f(x) ≈ Df(x∗)(x − x∗). We remark that when d ≥ 2, extended linearization
is not unique, and for a given f , there may exist several A such that f(x) = A(x, x∗)(x− x∗). In
other words, (8) showcases one valid choice for A such that this factorization holds. Indeed, this
nonuniqueness has been leveraged in some prior works, e.g. Section 3.1.3 in [39], to yield less
conservative contractivity conditions.

Since we know that a contracting vector field admits a unique equilibrium point, x∗, we restrict our
attention to learning a matrix-valued mapping A : Rd × Rd → Rd×d and ensuring that this mapping

4



has enough structure so that the overall vector field satisfies the contraction condition (2) for some
contraction metric M . This task is nontrivial since f(x) = A(x, x∗)(x− x∗) implies that

Df(x) = A(x, x∗) +
∂A

∂x
(x, x∗)(x− x∗), (9)

where ∂A
∂x : Rd × Rd → Rd×d×d is a third-order tensor-valued mapping. In what follows, we will

show that a more simple condition will imply contractivity of the vector field. Namely, negative
definiteness of the symmetric part of A(x, x∗) will be sufficient for contractivity of the dynamical
system ẋ = A(x, x∗)(x− x∗).

3.2 Parametrization of A(x, x∗)

We show a simple example of our model, the Extended Linearized contracting Dynamics (ELCD).
Let x ∈ Rd be the state variable and f : Rd → Rd be a vector field with equilibrium point x∗. As
indicated, we parametrize our vector field by its extended linearization

ẋ = f(x) = A(x, x∗)(x− x∗), (10)

where now
A(x, x∗) = −Ps(x, x∗)⊤Ps(x, x∗)

+ Pa(x, x
∗)− Pa(x, x

∗)⊤ − αId
(11)

Ps, Pa : Rd × Rd → Rd×d are neural networks, Id is the d-dimensional identity matrix, and α > 0
is a constant scalar. Note that the symmetric part of A(x, x∗) is negative definite since

A(x, x∗) +A(x, x∗)⊤

2
= −Ps(x, x∗)⊤Ps(x, x∗)− αId

and Ps(x, x∗)⊤Ps(x, x∗) is guaranteed to be positive semidefinite.

We prove that a vector field parametrized this way is guaranteed to be (i) globally exponentially
stable, (ii) equilibrium contracting as defined in [10], and (iii) contracting in some metric. The key
tools are partial contraction theory [41] and a converse contraction theorem.
Theorem 3 (Equilibrium Contraction and Global Exponential Stability). Suppose the dynamical
system ẋ = f(x) is parametrized as f(x) = A(x, x∗)(x− x∗) where A(x) is as in (11). Then any
trajectory x(t) of the dynamical system satisfies

∥x(t)− x∗∥2 ≤ e−αt∥x(0)− x∗∥2. (12)

Proof. We use the method of partial contraction as in [41]. Let x(t) be a solution to ẋ(t) =
A(x(t), x⋆)(x(t) − x∗) with initial condition x(0) = x0. Then, define the time-varying virtual
system

ẏ(t) = A(x(t), x∗)(y(t)− x∗). (13)
We will establish that this virtual system is contracting in the identity metric, i.e., (2) is satisfied with
M(x) = Id. We see that the Jacobian for this virtual system is simply A(x(t), x∗) and

A(x(t), x∗) +A(x(t), x∗)⊤ = −2Ps(x(t), x
∗)⊤Ps(x(t), x

∗)− 2αId
⪯ −2αId.

In other words, in view of (3), and since M(x) = Id, any two solution trajectories y1(t) and y2(t) of
the virtual system satisfy

∥y1(t)− y2(t)∥2 ≤ e−αt∥y1(0)− y2(0)∥2.

Note that we can pick one trajectory to be y1(t) = x∗ for all t and we can pick y2(t) = x(t). Since
x0 was arbitrary, this argument establishes the claim.

Clearly, the bound (12) implies exponential convergence of trajectories of the dynamical system (10)
to x∗. Moreover, this bound exactly characterizes equilibrium contractivity, as was defined in [10].
Notably, using the language of logarithmic norms, Theorem 33 in [10] establishes a similar result to
Theorem 3 without invoking a virtual system.
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Note that although Theorem 3 establishes global exponential stability and equilibrium contraction, it
does not establish global contractivity. Indeed, the contractivity condition (2) is not guaranteed to
hold with M(x) = Id without further assumptions on the structure of A(x, x∗) in (10). Remarkably,
however, due to a converse contraction theorem of Giesl, Hafstein, and Mehrabinezhad, it turns out
that one can construct a state-dependent M such that the dynamics are contracting. Specifically,
since trajectories of the dynamical system satisfy the bound (12), for any matrix-valued mapping
C : Rd → Rd×d with C(x) = C(x)⊤ ≻ 0 for all x, the matrix PDE

M(x)Df(x) +Df(x)⊤M(x) + Ṁ(x) = −C(x) (14)

admits a unique solution for each x [16]. In other words, the uniqueM solving this matrix PDE serves
as the contraction metric and will satisfy (2) with suitable choice for c. The following proposition
provides the explicit solution for M in terms of the solution to the matrix PDE.

Proposition 4 (Theorem 2.8 in [16]). Let C : Rd → Rd×d be smooth and have C(x) = C(x)⊤ be a
positive definite matrix at each x. Then M : Rd → Rd×d given by the formula

M(x) =

∫ ∞

0

ψ(τ, x)⊤C(ϕ(τ, x))ψ(τ, x)dτ, (15)

is a contraction metric for the dynamical system (10) on any compact subset containing x∗, where
τ 7→ ϕ(τ, x) is the solution to the ODE with ϕ(0, x) = x and τ 7→ ψ(τ, x) is the matrix-valued
solution to

Ẏ = Df(ϕ(t, x))Y, Y (0) = Id. (16)

While it is challenging, in general, to compute the metric (15), numerical considerations for approx-
imating it arbitrarily closely are presented in [17]. In practice, one would select C(x) = Id and
evaluate all integrals numerically. For ELCD, unless one directly needs to know the contraction
metric for application purposes, it is not required to compute the contraction metric at any point
during either training or inference.

We remark that our parametrization for A in (11) is similar to the parametrization for the Jacobian
of f that was presented in [6]. There are however a few key differences. Notably, A(x, x∗) may be
asymmetric while the Jacobian in equation (3) in [6] is always symmetric. Notably, since the Jacobian
in [6] is symmetric and negative definite, the vector field ẋ = f(x) is a negative gradient flow,
ẋ = −∇V (x), for some strongly convex function V . On the contrary, our dynamics (10) can exhibit
richer behaviors than negative gradient flows in view of the asymmetry in A(x, x∗). Additionally,
since the dynamics in [6] with their parametrization can be represented as ẋ = −∇V (x) for some
strongly convex V , it is guaranteed to be contracting in the identity metric, M(x) = Id [42]. On
the other hand, our dynamics (10) is not necessarily contracting in the identity metric and instead is
contracting in a more complex metric given in (15).

3.3 Latent Space Representation

Realistic dynamical systems and their flows including the handwritten trajectories found in the LASA
dataset, are often highly-nonlinear and may not be represented in the form (10) or obey the bound (12).
One solution to these challenges is to transform the system to a latent, possible lower-dimensional,
space and learn an ELCD in the latent space.

Latent space learning is possible because contraction is invariant under differential coordinate changes.
From Theorem 2 of [29], given a dynamical system ẋ = f(x), f : Rd → Rd, with f satisfying
(1), the system will also be contracting under the coordinate change z = ϕ(x) if ϕ : Rd → Rd is a
smooth diffeomorphism. Specifically, if ẋ = f(x) is contracting with metric M , then the system
that evolves z is contracting as well with metric given by M̃(z) = Dϕ(z)−⊤M(z)Dϕ(z)−1, where
z = ϕ(x) and Dϕ is the Jacobian of the coordinate transform. In other words, We can learn vector
fields that are contracting in an arbitrary metric by training a vector field f which is parametrized
as (10) and using a coordinate transform ϕ.

NCDS [6], treats the coordinate transform as a Variational Autoencoder (VAE) [23]. Their training
procedure consists of two steps: first training the coordinate transform with VAE training, then
training the function f in the new learned coordinates.
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Figure 1: The learned vector field and corresponding trajectories of an ELCD with no transform (left)
and a model with a transform (right) when trained on data that is generated from a vector field that is
contracting in a more general metric.

3.4 On the Interdependence of Diffeomorphism and Learned Dynamics

To demonstrate the need for a coordinate transform, we consider the task of learning a vector field

that fits trajectories generated by the linear system ẋ = Ax with A =

(
−1 4
0 −1

)
. Clearly, this

linear system cannot be represented in the form (10) with parametrization (11). To see this fact, we
observe that A+A⊤ is not negative definite and thus no choice of Ps or Pa can represent this linear
system. To remedy this issue, one can take the linear coordinate transform z = ϕ(x) = Px, where

P =

(
1 0
0 4

)
. Then the z-dynamics read

ż = PAP−1z =

(
−1 1
0 −1

)
z (17)

and now the symmetric part of PAP−1 is negative definite and thus we can find suitable choices of

Ps, Pa. Specifically, we can take α ∈ (0, 1/2), let Pa(z) =
(

0 0
1/2 0

)
z, and let Ps(z) = Qz where

Q is the matrix square root of
(

1 −1/2
−1/2 1

)
− αI2. Note that in this toy example, asymmetry is

essential to exactly represent these dynamics in the latent space, z. If we used the parametrization
in [6], we would not be able to represent these dynamics since they have an asymmetric Jacobian. We
demonstrate this routine in Figure (1). We generate two trajectories starting at (0, 2) and (0,−2), and
use that data to train two ELCDs, one without and one with a learned, linear transform. Figure 1(a)
shows the vector field and trajectories corresponding to an ELCD with no transform. The trajectories
are forced to the center sooner than the actual data as a consequence of the bound (12). Learning
a coordinate transform allows the ELCD to learn a system that is contracting in an arbitrary metric
and exhibit overshoot. This is demonstrated by the learned system in Figure 1(b), which perfectly
matches the data.

3.5 Choice of Diffeomorphism

There are several popular neural network diffeomorphisms including coupling layers [12, 32], nor-
malizing flows [40], M-flow [6, 8], spline flows [14], and radial basis functions [5].

A coupling layer ϕ : Rd → Rd consists of a neural network θ : Rk → RN with 1 < k < d and a
neural network g : RN × R → R. The transform ϕ maps input x ∈ Rd to y ∈ Rd with the following
procedure:

(i) Set yi = xi for 1 ≤ i ≤ k for some 1 < k < d.
(ii) Set yi = g(x1:k, xi) for k ≤ i ≤ d

Coupling layers are invertible by doing the above process in reverse, so long as g is invertible. A
coupling layer can exhibit a wide variety of behaviors depending on the choice of g.

Polynomial spline curves are another diffeomorphism that are commonly used as g in coupling layers.
A polynomial spline has a restricted domain which is divided into bins. A different linear, quadratic
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[31], or cubic [13] polynomial covers each bin. [14] introduce rational-quadratic splines, which
constructs a spline from functions that are the quotient of two quadratic polynomials.

In practice, ϕ is the composition of several of transforms. Because the coupling transform only alters
some coordinates, they are often used in conjunction with random permutations. If the latent space
dimension is smaller than the data space dimension [6] makes the last composite function of ϕ an
’Unpad’ function, which simply removes dimensions to match the latent space. The decoder ϕ is then
prepended by a ’Pad’ function, which concatenates the latent variable with the necessary number of
’zeros’ to match the data space.

Of course, if the latent dimension is smaller than that of the data dimension, then ϕ can not be
bijective. However, [6] argue that as long as ϕ is injective and has range over the dataset, then
f being contracting in the latent space implies that the learned dynamics are contracting on the
submanifold defined by the image of ϕ−1. In other words, NCDS cannot be globally contracting. The
consequences of this are shown in Figure (2). While NCDS can learn to admit an equilibrium point
when on the submanifold, trajectories that fall off the submanifold may diverge. ELCD, in contrast,
is contracting to the correct equilibrium point during all phases of training.

Figure 2: Plots of the vector fields and induced trajectories learned by ELCD (Top) and NCDS
(Bottom) after different training epochs. ELCD is contracting always while NCDS may admit
multiple equilibrium or diverge.

Epoch 1 Epoch 2 Epoch 3

3.6 Training

Our task is to simultaneously learn the contracting system f(x) and the metric in which f contracts.
As previously discussed, the metric is implicitly determined by ϕ(x). [6] uses a two-step method.
First, they treat ϕ as a variational autoencoder and maximize the evidence lower bound (ELBO). They
then fix the encoder and train the model to evolve the state in latent space. Note that the VAE objective
is to make the encoded data to match a standard-normal distribution. Notably, VAE training does not
encourage the encoder to transform the data to space in which the data corresponds to trajectories of
a contracting system. If the data is not contracting in the transformed space, a contracting model will
not be able to fully fit the data. This explains why, in our implementation of the two step-training, we
are unable to reasonably learn the data. For further comparison with NCDS, we will train the encoder
and model jointly.

4 Experiments

The code for our model and data can be found here: https://github.com/seanjaffe1/
Extended-Linearized-Contracting-Dynamics. For all datasets we compare our
method against NCDS [6], Stable Deep Dynamics (SDD) [30] and Euclideanizing Flow (EFlow) [32].
See A.2 for a detailed discussion of the methods. We report the dynamic time warping distance
(DTWD) [20] (see A.1) and standard deviation between predicted and data trajectories. See A.5 for
model implementation details. See also the Appendix for more details on these models.
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Figure 3: Plots of the 2D LASA data. Demonstrations are in black. The learned ELCD trajectories
in magenta are plotted along with the learned vector field. The vector field velocities have been
normalized for visibility.

Table 1: Mean DTWD ± one standard deviation across 10 runs on LASA, multi-link pendulum, and
Rosenbrock datasets

SDD EFlow NCDS ELCD

LASA-2D 0.37 ± 0.32 1.05 ± 0.25 0.59 ± 0.61 0.12 ±0.11
LASA-4D 2.49 ± 2.4 2.24 ± 0.12 2.19 ± 1.23 0.80 ± 0.54
LASA-8D 5.26 ± 0.50 2.66 ± 0.63 5.04 ± 0.77 1.52 ± 0.61
Pendulum-4D 0.49 ± 0.11 0.17 ± 0.01 1.35 ± 2.26 0.03 ± 0.01
Pendulum-8D 0.75 ± 0.08 0.33 ± 0.01 2.88 ± 0.69 0.14 ± 0.03
Pendulum-16D 1.86 ± 0.14 0.45 ± 0.01 1.65 ± 0.31 0.44 ± 0.09
Rosenbrock-8D NaN 1.90 ± 0.16 2.74 ± 0.15 1.22 ± 0.01
Rosenbrock-16D NaN 3.57 ± 0.66 3.68 ± 0.12 2.57 ± 0.09

4.1 Datasets

We experiment with the LASA dataset [26], which consists of 30, two-dimensional curves. We use
three demonstration trajectories of each curve. As in [6], the first few initial points of each trajectory
are omitted so that only the target state has zero velocity. we stack two and four LASA trajectories
together to make datasets of 4 and 8-dimensional trajectories, respectively. All data is standardized
to have a mean of zero and variance of one. We use in total 10 2D curves, 6 4D curves, and 6 8D
curves. Some 2D-LASA trajectories and their respective trained ELCD trajectories and vector fields
are visualized in Figure (3).

We also experiment with simulated datasets. We simulate 6 trajectories of a 2,4, and 8-link pendulum
(4D, 8D, and 16D respectively) each and 4 trajectories of 8D and 16D Riemannian gradient descent
dynamics on a generalization of the Rosenbrock function (see Appendix A.4). Each model is trained
on all trajectories of the same dimension, and then predictions are made starting from every initial
point.

4.2 Results

Table 1 presents our results. ELCD performs the best in all tasks. These results shows the benefit
of the increased expressiveness allowed by the skew symmetric component of our parametrization.
These benefits are more apparent in the pendulum dataset. The oscillatory behavior of the pendulum
dynamics is a product of complex eigenvalues in its Jacobian. Our model’s skew symmetric com-
ponent is what enables it to learn the pendulum dynamics so well. A sample of demonstration and
learned pendulum trajectories is shown in figure (4).

The Rosenbrock dynamics are stiff and difficult to learn. In our training of SDD, we observed lack of
stability and convergence, resulting in very large DTWDs. Hence, we report NaN for the results of
the SDD models on the Rosenbrock dataset. While our model performs the best, there is still room
for improvement. Handling such dynamics with multiple time scales is still an open challenge.

9



Figure 4: Phase plots of the two link-pendulum trajectories (blue) and the trajectories produced by
ELCD (red). Each column is a different trajectory. The top row is the first link and the bottom row is
the second link. The x-axis is angle and the y-axis is angular velocity.

5 Limitations

Our method assumes that the underlying dynamics of the data trajectories are contracting. However,
the diffeomorphism allows for a wide class of stable systems to be represented. Our method is
currently implemented for trajectories that converge to the same fixed point. But, this can be
overcome by manually changing the fixed point, depending on which trajectory the input data came
from. Also, right now our method is limited to dynamics in Rn, but we imagine that an extension to
more general manifolds should be possible.

As we are motivated by applications in imitation learning and robotics, in this work, we are primarily
interested in problems where the underlying systems should be robustly stable, especially away from
training data. For this reason, we focus on learning dynamics which are guaranteed to be globally
contracting and do not address learning other types of systems, such as those with multiple fixed
points, limit cycles, or chaotic attractors. We imagine that extensions of ELCD could capture these
richer dynamical behaviors by leveraging weaker notions of contraction including local contraction
(i.e., contractivity in the region of attraction of a stable equilibrium), k-contraction (contraction of
k-dimensional bodies) [43], transverse contraction [28] and contraction in the Hausdorff dimension
[44]. Moreover, the notion of translation invariance mentioned could be studied using semicontraction
theory [11], i.e., contraction to a subspace.

6 Conclusions

In this paper, we introduce ELCD, the first neural network-based dynamical system with global
contractivity guarantees in arbitrary metrics. The main theoretical tools are extended linearization,
equilibrium contraction, and a converse contraction theorem. To allow for contraction with respect to
more general metrics, we use a latent space representation with dimension of the latent space equal
to the dimension of the data space and train diffeomorphisms between these spaces. We highlight
key advantages of ELCD compared to NCDS as introduced in [6], including global contraction
guarantees, expressible parametrization, and efficient inference. We demonstrate the performance
of ELCD on high-dimensional LASA datasets and simulated multi-link pendulum and Rosenbrock
dynamics. Our method shows consistent performance across all datasets.
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A Appendix

A.1 Metric

We evaluate trajectories by comparing them against their reference trajectory using the normalized
dynamic time warping distance (DTWD) [20]. For two trajectories x = {xi}i∈{1,...,t1}, x̄ =
{x̄i}i∈{1,...,t2} and some distance function d(·, ·), let DTWD be

DTWD(x, x̄) =
1

t1

t1∑
i=1

(
min
x̄j∈x̄

d(xi, x̄j)
)
+

1

t2

t2∑
i=1

(
min
xj∈x

d(x̄i, xj)
)

A.2 Comparisons to Other Models

In this section, we describe the models that we compare to, namely EFlow [32], SDD [30], and
NCDS [6].

Euclideanizing Flow: Starting with EFlow, they parametrize their dynamical system by

ẋ = −Gψ(x)−1∇Φ(ψ(x)), (18)

where ψ : Rd → Rd is a diffeomorphism, Φ : Rd → R is a convex potential function, and
Gψ(x) = Dψ(x)⊤Dψ(x) is the induced Riemmanian metric. The dynamics (18) then has the
interpretation of being the steepest descent for Φ ◦ ψ on the Riemmanian manifold defined by metric
Gψ. Specifically, in [32], the convex potential function is defined to be Φ(y) = ∥y − y⋆∥2, where
y⋆ = ψ(x⋆) and the diffeomorphism is parametrized via a coupling layer [12]. Note that contraction
properties of dynamics of these form were studied in [42]. Since Ψ is chosen to be convex but not
strongly convex, these dynamics are only weakly contracting, i.e., satisfy (2) with c = 0.

Stable Deep Dynamics: In [30], the authors parametrize both an unconstrained vector field
f̂ : Rd → Rd and a Lyapunov function V : Rd → R≥0 via neural networks. Then to enforce
global exponential stability, at every point x ∈ Rd, they project f̂(x) onto the convex set of points
{u ∈ Rd | ∇V (x)⊤u ≤ −αV (x)}. They do this projection in closed-form so that the dynamics
have the representation

ẋ = f̂(x)−∇V (x)
ReLU(∇V (x)⊤f̂(x) + αV (x))

∥∇V (x)∥22
. (19)

Under a smart parametrization of V using input-convex neural networks [3], the authors guarantee
global exponential stability of (19) to the origin with rate α. Note that the dynamics (19) are
continuous, but not necessarily differentiable. Due to this potential nonsmoothness, it is theoretically
unknown whether these dynamics are contracting (since Theorem 2.8 in [16] requires at least some
differentiability).

Neural Contractive Dynamical Systems: In [6], the authors enforce contractivity by directly
enforcing negative definiteness of the Jacobian matrix of the vector field by parametrizing

Df(x) = −(Jθ(x)
⊤Jθ(x) + ϵId), (20)

where Jθ : Rd → Rd×d is a neural network. Under this parametrization of the Jacobian, it is
straightforward to see that (2) holds with c = ϵ and M(x) = Id for all x. To recover the vector field
from the Jacobian, the fundamental theorem of calculus for line integrals (which can be seen as a
version of the mean-value theorem) is utilized to express

ẋ = f(x) = f(x0) +

∫ 1

0

Df((1− t)x0 + tx)(x− x0)dt, (21)

where x0 and f(x0) denote the initial condition and its velocity, respectively.

To express richer dynamics, NCDS also consists of an encoder and decoder for a lower-dimensional
latent space. The dynamics in the latent space are constrained to be (21) and the encoder and decoder
are parametrized using a VAE. Since, generally, the latent space is of lower dimension than the data
space, the resulting dynamics are only guaranteed to be contracting on the submanifold defined by
the image of the decoder.
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A.3 Universal Representation

Our ELCD model equipped with a coupling layer-based transformation can represent any contracting
dynamical system. It is known that any smooth nonlinear system with a hyperbolically stable fixed
point can be exactly linearized inside its basin of attraction via a suitable diffeomorphism [25].
Effectively, our extended linearization parameterization is tasked with learning the stable linear part,
while the coupling layers aim to learn and approximate this suitable diffeomorphism. As our ELCD
parametrization can universally approximate any linear model, we simply need our coupling layer
to universally approximate all diffeomorphisms. Indeed, [38] proved that the coupling layers are
universal approximators for diffeomorphisms.

A.4 Additional Details on Datasets

In this section, we provide additional elaboration on the multi-link pendulum dataset and the Rosen-
brock dataset.

Multi-link pendulum: The multi-link pendulum is a simple mechanical system which is the
interconnection of n rigid links under the force of gravity. We specifically assume that there is
damping on each of these links, which makes the resulting dynamical system stable and almost all
trajectories converge to the downright equilibrium point. In this case, the state of the pendulum is
described by the n pairs (θi, θ̇i), where θi is the angle of the i-th link and θ̇i is its angular velocity.
Thus, this dynamical system is 2n dimensional.

As was done in [30], we adapt the code from http://jakevdp.github.io/blog/2017/
03/08/triple-pendulum-chaos/ to generate data for n links.

Rosenbrock datset: The classical Rosenbrock function, see [34]

f(x, y) = (1− x)2 + 100(y − x2)2, (22)

is a nonconvex function with global minimum at (1, 1). Despite its apparent nonconvexity, it
is known that a Riemannian gradient descent dynamics, is contracting with respect to a suitable
Riemannian metric, see Example 3 in [42] for details. In optimization and in machine learning,
the Rosenbrock function is a benchmark for the design of various optimizers and in the study of
Riemannian optimization [19, 24].

For a higher-dimensional generalization of the Rosenbrock function, we consider

f(x) = λ1(1− x1)
2 +

n∑
i=2

λi(xi − x2i−1)
2, (23)

where λi > 0 are parameters that affect the conditioning of the function. This generalization is
still nonconvex and admits several saddle points. Note that the classic Rosenbrock corresponds to
n = 2, λ1 = 1, λ2 = 100. The unique global minimum of this generalization is at (1, 1, . . . , 1). The
corresponding contracting Riemmanian gradient descent dynamics that find this global minimum are

ẋ = −G(x)−1∇f(x), (24)

where G(x) = Dψ(x)⊤Dψ(x), where ψ : Rn → Rn is the mapping ψ(x) = (
√
λ1(1 −

x1),
√
λ2(x2 − x21), . . . ,

√
λn(xn − x2n−1)). Note that these dynamics were designed via a gen-

eralization of the procedure proposed in [42]. To generate data, we choose four initial points and
evolved them according to (24).

A.5 Model Details

For the encoder ϕ, we use the composition of two coupling layers composed of rational-quadratic
spline. The splines cover the range {−10, 10} with 10 bins, and linearly extrapolated outside that
range. The parameters of each spline are determined by residual networks, each containing two
transform blocks with a hidden dimension of 30. A permutation and linear flow layer is placed before,
in the middle, and after the two quadratic spline flow layers. For ELCD, we let the latent dimension
size equal the data dimension size. Pa and Ps are implemented as two-layer neural networks with a
hidden dimension of 16.
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As the authors of NCDS have not yet made their code publicly available, we implemented NCDS
to the best of our abilities. We used a latent dimension of size 2 for all datasets. This is in-line
with the description in [6], and necessary given the extra cost from integrating the Jacobian in
higher-dimensional latent spaces. We use the same encoder ϕ as for ELCD with an added un-padding
layer as the last function which removes the last d− 2 dimensions.

A.6 Training details

All experiments are trained with a batch size of 100, for 100 epochs, with an Adam optimizer and
learning rate of 10−3. All computation is done on CPUs.

NCDS [6] trained the model and the encoder to output xt+1 from xt using a single Euler integration
step: xt+1 = ϕ−1(ϕ(xt) + dt ∗ f(ϕ(xt)). Their loss was the MSE between the predicted and true
xt+1. We empirically find better performance by training our model to directly predict the velocity
vector ẋt+1 = ϕ−1

J (xt)f(ϕ(xt)), where ϕ−1
J (xt) is the Jacobian inverse of ϕ(xt). Calculating the

gradient of ϕ−1
J (xt) efficiently required a slight alteration to the original M-flow [8] code, which we

have included in our repository.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to
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technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

(iii) Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] Replace by [Yes] , [No] , or [NA] .

Justification: Our main theorem in section (3.2) is supported by a complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

(iv) Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] Replace by [Yes] , [No] , or [NA] .

Justification: Data details and model details are provided in the appendix. Code is also
provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

(v) Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] Replace by [Yes] , [No] , or [NA] .
Justification: Code to reproduce experiments is provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

(vi) Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] Replace by [Yes] , [No] , or [NA] .
Justification: See Appendix A.6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
(vii) Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] Replace by [Yes] , [No] , or [NA] .
Justification: Standard Deviations are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

(viii) Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] Replace by [Yes] , [No] , or [NA] .
Justification: We explain in the appendix that we use CPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

(ix) Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] Replace by [Yes] , [No] , or [NA] .
Justification: We have reviewed and comply with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
(x) Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] Replace by [Yes] , [No] , or [NA] .
Justification: There is no direct link between our work and a possible negative societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

(xi) Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] Replace by [Yes] , [No] , or [NA] .

Justification: This paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

(xii) Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] Replace by [Yes] , [No] , or [NA] .

Justification: Data and code from prior work are all cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

(xiii) New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] Replace by [Yes] , [No] , or [NA] .
Justification: Alongside the new ELCD model, we also provide the n-link pendulum dataset
and Rosenbrock dataset in the supplementary material of the submission. Upon acceptance,
we will release the datasets with a permissive license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

(xiv) Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] Replace by [Yes] , [No] , or [NA] .
Justification: The paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

(xv) Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] Replace by [Yes] , [No] , or [NA] .
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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