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Abstract

Imprinting is a common survival strategy in which an animal learns a lasting
preference for its parents and siblings early in life. To date, however, the origins
and computational foundations of imprinting have not been formally established.
What learning mechanisms generate imprinting behavior in newborn animals?
Here, we used deep reinforcement learning and intrinsic motivation (curiosity),
two learning mechanisms deeply rooted in psychology and neuroscience, to build
autonomous artificial agents that imprint. When we raised multiple artificial agents
together in the same environment, mimicking the early social experiences of
newborn animals, the agents spontaneously developed imprinting behavior. Our
results provide a pixels-to-actions computational model of animal imprinting. We
show that domain-general learning mechanisms—deep reinforcement learning and
intrinsic motivation—are sufficient for embodied agents to rapidly learn core social
behaviors from unsupervised natural experience.

1 Introduction

Since the Nobel prize-winning work of Konrad Lorenz, imprinting has become one of the most well-
known behaviors in the biological sciences [1–6]. Filial imprinting occurs during a short sensitive
period immediately after birth, when an animal develops a lasting attachment to an object or agent.
Many precocial avian species (e.g., chickens, ducks, geese) imprint to the first conspicuous objects
they see after hatching [5, 7]. In naturalistic settings, these conspicuous objects are parents and
siblings. Thus, imprinting allows animals to quickly learn to recognize caregivers and conspecifics,
providing the survival benefits associated with group living. Evolution has equipped newborn
brains with an intrinsic motivation system that drives animals to imprint. But what computational
components underlie this behavior? What motivational and information-processing systems do
newborn animals need to generate imprinting behavior from unsupervised natural experience?

While many researchers assume that imprinting requires specialized, domain-specific learning (e.g.,
[8]), others have argued that imprinting is an example of domain-general learning [9]. Neural evidence
suggests that imprinting is specialized because it relies on an “imprinting circuit” extending from
the visual wulst (VW) to the intermediate medial mesopallium (IMM) to the amygdala. The IMM
has been linked specifically to imprinting [5, 10, 11]. However, this “imprinting circuit” is also
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consistent with a general-learning account of imprinting because these brain regions are not merely
engaged in imprinting. Each of these brain regions has domain-general functions and are engaged in
a variety of cognitive tasks. For example, the IMM is also implicated in passive-avoidance learning
[12] and memory for food retrieval [13]. The VW, IMM, and amygdala correspond to familiar
mammalian homologs—-the visual cortex, association cortex, and amygdala, respectively––all of
which are implicated in basic tasks like object recognition and preference formation. Further evidence
that imprinting is based on domain-general learning processes comes from studies of imprinting
preferences. Chicks are not innately destined to imprint to conspecifics, rather they can learn to
imprint to a wide variety of naturalistic [14] and artificial stimuli [15]. Here, we test the hypothesis
that imprinting behavior can emerge from domain-general learning, by equipping artificial agents
solely with domain-general learning algorithms and testing whether the agents develop imprinting
behavior.

We explored the possibility that two biologically inspired learning mechanisms, deep reinforcement
learning and intrinsic motivation, provide the computational foundations for imprinting. We built
artificial brains, embodied those brains in virtual animal bodies as “agents,” and raised those agents
in realistic virtual environments. Like real animals, our agents learned to perform actions from
raw sensory inputs. Because the agents were active participants in the environment, their learning
experiences were self-organized: the agents’ actions determined what their learning inputs would
be. Importantly, learning in our agents was not guided by any external rewards. Our agents were
intrinsically motivated by prediction-based curiosity. Specifically, the agents learned to predict the
consequences of their actions and actively search for informative experiences (those which produced
high prediction errors given their current knowledge). Curiosity is an evolutionarily adaptive strategy
for learning agents [16, 17] because curiosity encourages organisms to develop an abstract internal
world model of their evolving environment [18].

We show that when learning is subject to a critical period (akin to imprinting in real animals), these
artificial agents spontaneously imprint to one another. These results provide the first pixels-to-actions
model of animal imprinting: an important step towards formalizing the computational mechanisms
that underlie this foundational behavior.

2 Experiments and Results

We probed which computational components are sufficient to produce imprinting behavior by creating
autonomous artificial agents—deep neural networks embodied in virtual animal bodies—and raising
those agents in realistic virtual environments. Our agents received raw visual inputs and intrinsic
rewards and performed actions in the environments. The agents’ brains had two components: (i) an
intrinsic motivation system that made predictions about the consequences of the agent’s action and
generated intrinsic rewards based on the prediction error, and (ii) a policy network that learned to
select actions based on raw visual inputs and the intrinsic rewards. Both components were constructed
using convolutional neural networks.

At each time step of the simulation, the agent received visual input from the environment and
performed an action. While interacting with the environment, the agent continuously adjusted its
internal model of environmental dynamics to predict how sensory inputs change in response to its own
actions. Specifically, the agent learned to predict the next visual observation from the current visual
input and its action at that time step. The intrinsic motivation system provided the error between the
actual observation and the agent’s prediction, as the intrinsic curiosity reward [19, 20]. The agent
learned which actions to perform based on maximizing the cumulative intrinsic reward. Because the
other agents were the least predictable parts of the environment, we hypothesized that the intrinsic
curiosity reward would motivate the agents to be interested in one another and develop imprinting
behavior. In the following experiments, we demonstrate that these artificial agents can learn to imprint
to other agents (Experiment 1), imprint in complex, naturalistic environments (Experiment 2), and
recognize agents based on shape and color cues (Experiment 3).

2.1 Experiment 1

In Experiment 1, we tested whether imprinting emerges when artificial agents are equipped with deep
reinforcement learning and intrinsic motivation. To develop imprinting behavior, the agents needed
to learn to move, detect and recognize other agents, and approach those agents.
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Figure 1: Environments and Results for Experiments 1-3. (A) Experiment 1: overhead view of the
simple environment and test performance of random (untrained) and trained agents. (B) Experiment 2:
overhead view of the natural environment, a sample agent’s first-person view of the environment, and
test performance of random (untrained) agents, agents raised (trained) separately, and agent raised
(trained) together in a group. Only the agents raised in a group learned to imprint. (C) Experiment
3: overhead view of the environment, a sample agent’s first-person view of the environment, and
accuracy performance for trained agents, in the color recognition (left panel) and shape recognition
(right panel) conditions.

We trained and tested 10 artificial agents simultaneously within a large cubic room with white walls
(Fig.1A). The agents’ actions were motivated entirely by intrinsic rewards: curiosity and a metabolic
cost associated with movements.

After the Training Phase, the model parameters were fixed for the Test Phase (i.e., the agents did
not receive any rewards during the Test Phase, and learning was discontinued). This was intended
to mimic the critical period of imprinting in animals, in which newborn animals stop developing a
preference for new imprinting objects after the first few days of life [5]. If the artificial agents learned
to imprint during the Training Phase, then they should show imprinting behavior during the Test
Phase, by attempting to reduce the distance between themselves and the other agents.

We measured the agents’ imprinting behavior using the nearest neighbor index (NNI)[21]. NNI is an
index of spatial dispersion of a group of individuals with NNI <1 indicating more clustered spacing
than random distribution and NNI >1 indicating greater dispersion than random distribution.

The results are shown in Figure 1. The NNI was small (M = 0.22, SD = 0.07; compared to an NNI
of 1.0 for a random spatial distribution of agents). This shows that our agents developed grouping
behavior. To confirm that the agents developed more pronounced grouping behavior than a group of
randomly moving agents, we also tested a group of random, untrained agents. Our trained agents
were far more likely to group than random agents (mean difference = 0.63, SD = 0.11; independent
samples t-test, t(98) = 29.30, p < 10−42, Cohen’s d = 5.92).

Experiment 1 indicates that deep reinforcement learning and intrinsic motivation can generate robust
imprinting behavior in a simple environment. In the real world, however, newborn animals must learn
to recognize group members in complex, natural environments. Natural environments introduce a
number of challenges for biological and artificial agents. For instance, natural environments contain a
variety of conspicuous features that could distract agents and lead them to imprint to incorrect objects
(e.g., rocks or trees). Natural environments also make it more difficult to detect and recognize other
agents because agents must be parsed from cluttered backgrounds [22, 23]. Can our artificial agents
overcome these challenges and learn to imprint in naturalistic environments?

2.2 Experiment 2

The methods were identical to those used in Experiment 1, except for the environment in which we
trained and tested the agents. To mimic the complexity of natural visual environments, we created a
virtual grass field with common real-world objects, including trees, mountains, and insects (Fig.1B).
Again, the agents learned to imprint, showing pronounced grouping behavior during the Test Phase
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(NNI: M = 0.40, SD = 0.11). The trained agents had lower NNIs than random agents (mean difference
= 0.56, SD = 0.13; t(58) = 17.22, p < 10−22, Cohen’s d = 4.52), confirming that deep reinforcement
learning and intrinsic motivation are sufficient to generate imprinting behavior when embodied agents
are raised (trained) in naturalistic visual environments.

Next, we examined the necessity of social experiences on the development of imprinting behavior
in artificial agents. In the experiment described above, the artificial agents were ’reared’ in groups
with other agents (akin to animals, who are reared in groups with siblings). To explore whether this
early social experience is necessary to develop imprinting behavior, we reared a second group of
10 artificial agents in the same naturalistic environment, but without social partners (other artificial
agents). During training, these agents acquired ample experience with the naturalistic visual world,
but did not acquire visual experience with social partners. After training, we then froze learning in
the artificial agents and tested their imprinting behavior in a group (like the agents in the ’reared
together’ experiment described above). Thus, the agents trained separately were exposed to the same
environmental features as the agents trained together, but only the agents trained together received
experience with social partners during the Training Phase.

The agents reared separately had NNIs similar to random agents (M = 1.19, SD = 0.15) and were
much more dispersed than the agents reared together (independent samples t-test, t(58) = 22.90, p
< 10−28, Cohen’s d = 6.01). This result confirms that the development of imprinting behavior in
artificial agents requires visual experience with social partners early in life, akin to the development
of social preferences in newborn animals, who develop preferences for social partners encountered
early in life [24–27].

While Experiments 1-2 demonstrate that artificial agents equipped with deep reinforcement learning
and intrinsic motivation spontaneously learn behavioral signatures of imprinting in the wild, these
experiments differ markedly from the methods used to probe imprinting in laboratory studies. For
decades, the main way to test imprinting behavior in the lab has been to present animals with a single
object to imprint to and then test their imprinting response with forced-choice trials. In Experiment 3,
we tested whether curiosity-driven agents also demonstrate imprinting behavior in a laboratory-like
setting that requires recognition based on color and shape features.

2.3 Experiment 3

To mimic laboratory tests of imprinting, we reared artificial agents with a single imprinted object
(Training Phase), and then used a two-alternative forced-choice task to test whether the agents
developed a preference for the imprinted object over novel objects (Test Phase).

On each test trial, the agent started in the center of the chamber and two objects were placed on
opposite sides of the chamber. One object was the imprinted object, and the other object was identical
to the imprinted object except for a change in color or shape (c.f., [28]) (Fig.1C). The objects rotated
around a vertical axis with a constant angular speed. We measured the proportion of time the agents
spent with the imprinted object versus the novel object on each trial. Performance was measured as
mean accuracy (percent of time spent by the imprinted object versus the novel object) across the test
trials.

The agents performed above chance level for all imprinted objects in both the Color Change (one-
sample t-tests, all Ps < 0.01) and Shape Change conditions (one-sample t-tests, all Ps < 0.05). The
artificial agents learned to recognize their imprinted object based on both color and shape features
simply by being exposed to the object during training. From a machine-learning perspective, this was
a challenging task because the agent only received “positive” examples (the imprinted object) during
training and never received explicit labels for learning to distinguish the imprinted object from novel
objects.

3 Discussion

We have shown that when artificial agents are equipped with deep reinforcement learning and intrinsic
motivation, the agents can learn to solve the suite of tasks required for imprinting, including ego-
motion, object recognition, and grouping behavior. Like real animals, our agents learned to imprint
from raw visual inputs in naturalistic environments. Our agents also learned to imprint without
external rewards or supervision, using intrinsic motivation (curiosity) to drive learning.
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To our knowledge, this study provides the first pixels-to-actions model of animal imprinting.1 For
decades, researchers across computational neuroscience [31], cognitive science [32], and devel-
opmental psychology [33] have argued that task-performing models are essential for gaining a
comprehensive and mechanistic understanding of the brain’s learning mechanisms. By providing a
task-performing (pixels-to-actions) model of animal imprinting, we formalize the mechanisms that
underlie the entire learning process, from sensory inputs to behavioral outputs. As a result, these
models can be compared against real animals, falsified, and refined.

We also show that two fundamental learning mechanisms–—deep reinforcement learning and intrinsic
motivation–—are sufficient for artificial agents to rapidly learn to detect, recognize, and navigate
towards social partners. Thus, imprinting behavior can develop in the complete absence of innate,
domain-specific learning algorithms, which have long been thought to drive imprinting behavior in
animals [8]. Our results provide computationally explicit evidence that it is not necessary to hardwire
imprinting behavior into embodied agents to produce imprinting. Rather, generic learning algorithms
can drive the development of imprinting. Neither reinforcement learning nor intrinsic motivation
were initially designed to produce imprinting behavior in embodied agents. Nevertheless, when these
learning algorithms are embodied and permitted to learn in naturalistic environments, animal-like
imprinting spontaneously emerges. Imprinting behavior—with all of its survival benefits—may
therefore be an emergent property of generic learning mechanisms adapting to the statistics of the
natural visual (and social) world.

This finding implies that evolution would not have needed to ‘discover’ innate, domain-specific
learning mechanisms to produce imprinting behavior. Rather, once evolution discovered generic
(i.e., domain-general) learning mechanisms, animals would have rapidly learned to imprint during
early postnatal development. Consequently, we speculate that domain-general algorithms (e.g.,
reinforcement learning and intrinsic motivation) provide the computational basis for core social
behaviors like imprinting, collective behavior, and social preferences [34]. These generic learning
algorithms provide a sufficient computational basis for embodied agents to rapidly learn domain-
specific social knowledge through experience.

In sum, we present a pixels-to-actions model of animal imprinting. Artificial agents equipped with
deep reinforcement learning and intrinsic motivation can learn the perceptual and cognitive abilities
needed to imprint in naturalistic environments. Our results compliment a growing body of work using
deep neural networks to model the visual [35], auditory [36], and motor [37] systems. Moreover,
our results extend this approach to the study of imprinting: a behavior with deep historical roots in
biology, ethology, and psychology.
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A Supplementary Material

A.1 Virtual environments

We created the virtual environments using the Unity game engine. For Experiment 1, we created
an environment called “Simple World.” Simple World was a white cubic chamber with 60×60×60
units (L×W×H) walls and a light source at the center of the chamber ceiling. For Experiment 2, we
designed an environment called “Realistic World,” an open terrain with natural objects including
grass, mountains, and trees. Within Realistic World, we created an arena on a grassy field enclosed
by a circular fence (diameter: 21 units). At the start of each trial, the agents spawned at random
positions within the fenced arena. For Experiment 3, we used a smaller version of Simple World with
30×30×30 units walls.

A.2 Model

We created the artificial agents by embodying artificial brains in virtual animal bodies. The animal
bodies were modelled after newborn chicks. Each agent had a yellow body, which fit into a cylinder
measuring 3.5 units height and 1.2 units length (radius). Each agent received visual input (96×96
pixel resolution images) through an invisible forward-facing camera attached to its head. The agents
could move forward or backward, rotate left or right, or remain stationary. The policy network
generated the agent’s actions as a pair of discrete variables: translation along the longitudinal axis
and rotation around the vertical axis. Each action incurred a metabolic cost to incentivize the agents
to move smoothly and efficiently. The action costs were chosen to reflect the fact that backward
locomotion elicits a greater metabolic demand than forward locomotion [38]. The costs for forward
motion, backward motion, rotation, and idling were -0.001, -0.01, -0.0005, and 0.0 respectively.

The artificial brains contained two biologically inspired components: (i) a policy network that
selected actions based on perceived sensory states, and (ii) an intrinsic motivation system that
produced rewards based on prediction errors (SI Figure 1). For the feature encoder of the intrinsic
motivation network, we used the “Small” CNN (2 convolution layers), and for the feature encoder of
the policy network, we used the “Large” CNN (15 convolution layers with skip connections). See SI
Figure 2 for details.

The model’s intrinsic motivation system was an Intrinsic Curiosity Module (ICM) adapted from
[19]. The ICM learned a predictive model of environmental dynamics using self-supervision and
produced curiosity rewards based on its prediction errors. The ICM consisted of three neural network
components: a feature encoder φ, an inverse dynamics model g, and a forward dynamics model f ,
parametrized by θφ, θg , and θf , respectively. Given a transition (st, at, st+1), the visual observations
were encoded into representations xt = φ(st; θφ) and xt+1 = φ(st+1; θφ) by the feature encoder.
The inverse model learned to predict actions ât = g(xt, xt+1; θg) from the features of two consecutive
observations. The forward model learned to predict the features of the observation at time t + 1,
x̂t+1 = f(xt, at; θf ), from the features xt and action at at time t. The parameters θφ, θg, and θf
were jointly optimized to minimize the weighted average of inverse and forward dynamics prediction
errors:

(1− α)Li[g(xt, xt+1; θg), at] + αLf [f(xt, at; θf ), xt+1]

where α is a weighting factor, Li is the negative log-likelihood of the true action at according to
the inverse model’s prediction, and Lf is the squared error between the forward model’s prediction
and the features xt+1. The forward model’s prediction error was multiplied by a scaling factor and
provided to the policy network as the intrinsic curiosity reward.

The feature encoder of the ICM was a convolutional neural network (CNN) followed by a fully-
connected layer with 128 units. The inverse dynamics model consisted of a hidden layer with 256
hidden units and two output heads to predict translation and rotation actions. The forward dynamics
model was a 2-layer MLP with 256 hidden units and 128 output units.

The policy network π, parameterized by θp, received visual observation st at time t and sampled an
action at from a stochastic policy π(st; θp). In our case with a discrete action space, π(st; θp) was a
categorical probability distribution across possible actions. Given a transition (st, at, st+1) between
t and t+ 1, the reward function was defined as:

Rt(st, at, st+1) = Rm(at) +Rc(st, at, st+1)
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Supplementary Figure 1: Our agents received visual observations and performed actions in virtual
environments. No external rewards were provided to the agents. The artificial brains contained two
components: (1) a curiosity network that produced intrinsic rewards based on prediction errors, and
(2) a policy network that selected actions based on perceived sensory states. The curiosity network
learned to make predictions about future observations based on the current observation and action.
The prediction error was provided to the policy network as an intrinsic reward. The policy network
learned a policy (a function mapping an observation to an action) that maximized cumulative intrinsic
reward.

where Rm is a metabolic cost of action at and Rc is a curiosity reward output by the intrinsic
motivation system taking the transition as input. The policy network was optimized to maximize the
expected sum of rewards E[Σtγ

tRt] with discount factor γ.

In the policy network, visual inputs were processed through a CNN feature encoder followed by
two fully-connected layers with 128 hidden units. Then, the outputs from the last hidden layer
were passed into two separate output layers to produce a vector of probabilities for each translation
action (forward, backward, no translation) and each rotation action (clockwise, counterclockwise, no
rotation).

In each experiment, all of the trained agents had the same brain architecture. However, each agent’s
brain started with different random initialization of the connection weights within the architecture,
and each agent’s brain was shaped by the particular visual experiences that the agent acquired during
the Training Phase.

We used an off-the-shelf implementation from the Unity ML-Agents Toolkit version 0.10.1. The
ML-Agents Toolkit provides a variety of neural network components (e.g., CNNs, recurrent networks)
that can be combined together to produce different types of deep reinforcement learning models.

A.3 Training

At the beginning of the Training Phase, the agents were spawned at random positions and orientations
within their environment. In Experiment 3, one agent and one object were spawned at random
positions and orientations. Each training episode lasted for 1,000 timesteps. The agents were reset at
random positions and orientations at the beginning of each episode. We trained the agents for 1,000
episodes in Simple World (Experiments 1 and 3) and 1,200 episodes in Realistic World (Experiment
2). The agents were trained to optimize the sum of their intrinsic curiosity reward and metabolic cost
using Proximal Policy Optimization (PPO) [39]. We scaled the intrinsic curiosity module’s output (its
prediction error) by a factor of 0.1 for the curiosity reward. We used the following hyperparameters in
all of our experiments: γ (discount rate) = 0.99, λ (Generalized Advantage Estimate regularization) =
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Supplementary Figure 2: Model architectures. (A) The curiosity network consisted of three com-
ponents: a feature encoder, an inverse model and a forward model. The feature encoder mapped
visual inputs onto a feature space. The forward and inverse models operated on the feature space to
predict forward and backward dynamics. The intrinsic curiosity rewards were proportional to the
prediction errors of the forward model. (B) The Small visual encoders in the curiosity network was
a 2-layer convolutional neural network with ELU activations (C) The policy network consisted of
a convolutional neural network followed by two fully connected layers and two output heads for
translation and rotation actions. (D) The Large visual encoder in the policy network was a 15-layer
convolutional neural network with residual connections and ReLU activations.

0.95, β (entropy regularization) = 0.001, batch size = 256, buffer size = 2560, learning rate = 0.001.
The learning rate decayed linearly, reaching 0 at the end of training. This decay in learning rate across
the Training Phase was designed to mimic the critical period found in filial imprinting.

A.4 Testing

After training, the neural network weights were fixed, so the networks did not continue to learn during
the Test Phase. Each test episode consisted of 2,000 timesteps. We tested our agents for 50 episodes
in Experiment 1, 30 episodes in Experiment 2, and 35 episodes per test condition in Experiment 3. At
every timestep, we recorded the position of each agent in X,Y coordinates for computing the Nearest
Neighbor Index (NNI).
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A.5 Effects of different architectures

To assess whether imprinting can also develop in a variety of other artificial brains, we also conducted
a follow-up experiment where we varied four hyperparameters in the artificial brain: (i) the archi-
tecture of the policy network feature encoder (2-layer, 4-layer, or 15-layer neural network), (ii) the
architecture of the intrinsic motivation network feature encoder (2-layer, 4-layer, or 15-layer neural
network), (iii) the strength of the intrinsic reward (.01, 0.1, or 1.0), and (iv) the resolution of the
retinal input (64×64, 96×96, or 128×128 pixel resolution). By varying these hyperparameters, we
could explore whether imprinting emerges in small, medium, and large neural networks and study
how different components of the model shape imprinting behavior. All of the agents were trained and
tested in the realistic environment from Experiment 2, since this environment most closely resembled
the environments encountered by animals in nature.

Two notable findings emerged. First, the agents learned to imprint with all but one of the artificial
brains (independent samples t-tests versus random agents, Ps < 10−12). Even small neural networks
were sufficient to produce imprinting behavior, perhaps explaining why animals with relatively small
brains (e.g., chicks, fish, insects) still develop grouping behavior. Second, the only architecture in
which imprinting did not emerge was the low curiosity architecture. Agents with the lowest curiosity
strength (0.01) showed no evidence of imprinting (independent samples t-tests versus random agents,
t(58) = 0.45, p = .65, Cohen’s d = 0.12), whereas the agents with moderate (0.1) and strong (1.0)
curiosity strength showed robust evidence of imprinting (Ps < 10−22). Thus, artificial agents need
moderate to strong curiosity to develop imprinting behavior in this class of model architectures. This
finding suggests, perhaps counterintuitively, that curiosity (seeking novelty) drives imprinting (a
preference for the familiar). Note, however, that curiosity-driven deep reinforcement learning must
be subject to a critical period to produce imprinting behavior; if learning stays “turned on,” the agents
will continue to seek novel experiences.
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