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Figure 1: Illustrative comparison between our Construstivist model (B) and conventional Transaction model (A).

Abstract

Humans talk in free-form while negotiating the
expressed meanings or common ground. Despite
the impressive conversational abilities of the large
generative language models, they do not con-
sider the individual differences in contextual un-
derstanding in a shared situated environment. In
this work, we propose MindDial, a novel con-
versational framework that can generate situated
free-form responses to negotiate common ground.
We design an explicit mind module that can
track three-level beliefs – the speaker’s belief,
the speaker’s prediction of the listener’s belief,
and the common belief based on the gap between
the first two. Then the speaking act classification
head will decide to continue to talk, end this turn,
or take task-related action. We augment a com-
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mon ground alignment dataset MutualFriend (He
et al., 2017b) with belief dynamics annotation, of
which the goal is to find a single mutual friend
based on the free chat between two agents. Ex-
periments show that our model with mental state
modeling can resemble human responses when
aligning common ground meanwhile mimic the
natural human conversation flow. The ablation
study further validates the third-level common
belief can aggregate information of the first and
second-order beliefs and align common ground
more efficiently.

1. Introduction
Large generative language models (LGLMs), such as
GPT (Radford et al., 2019; Brown et al., 2020) and T5 (Raf-
fel et al., 2020), have dominated the natural language pro-
cessing (NLP) community over recent years. By providing
carefully designed prompts with zero or few-shot examples,
LGLMs are capable of adapting to various downstream
NLP tasks in the form of natural language generation. Chat-
GPT, one of the most prevalent models, has demonstrated
“human-like” multi-turn conversational generation abilities
by learning from massive natural language datasets and hu-



man feedbacks (RLHF) (Ouyang et al., 2022). Despite the
inspiring performance demonstrated by these large language
chat models, the objective of these models is to provide
general, helpful and objective information based on users’
queries (Glaese et al., 2022; OpenAI, 2023) rather than daily
chit-chats. Therefore, they can hardly be applied to daily
conversational agents that deliver situated, free-form and
subjective responses within a shared conversational context.
Critically, two vital components are not carefully addressed
in previous dialogue models:

I. Shared Situated Context. Conventional neural dialogue
agents model dialogues as multi-turn question answering,
where they treat conversational agents as sender and re-
ceiver: the sender initiates the topic by sending out a query
and the receiver takes in the query and produces the next
sentence with the highest probability by learning from a mas-
sive dialogue corpus. These models are considered Trans-
action models. Refer to Figure 1A for an example, Bob re-
sponds according to his individual knowledge and assumes
there is no ambiguity in Alice’s question. However, these
models differ from the nature of human communication —
we communicate based on a shared understanding of con-
textual meanings (also known as negotiated meanings or
common ground) (Burleson, 2007; Delia & O’Keefe, 1982).
Such perspective is particularly essential when the dialogue
agents can only partially perceive the environment and ef-
fective communication can only occur when they negotiate
to obtain a common ground. These models are in line with
the Constructivist model. As shown in the talking pairs from
Figure 1B, Alice and Bob have to negotiate to confirm the
common understanding of “Joe” is “Joe Smith”.

II. Individual Mental Dynamics. One prerequisite for the
Constructivist framework is that agents have to explicitly
model individual differences in understanding, intention and
goals, i.e., mental states. Compared with the Transaction
framework that only models the individual’s state, a proper
inference of the conversational partner’s state can result
in faster convergence of the common ground. Moreover,
based on the individual mental state modeling, one can
easily produce free-form dialogues, i.e., the goal is not to
be forced to generate a single response based on the context
but to keep speaking or stop based on individual differences.

In order to step towards real-world situated conversation, in
this work, we introduce MindDial, a new dialogue frame-
work built upon the theory-of-mind (ToM) modeling in cog-
nitive theory, aiming at modeling free-form neural dialogue
generation with the Constructivist model’s point of view.
Specifically, a mind module on top of the dialogue context
encoder will start by predicting the first and second-order be-
lief dynamics of the current speaker. Then a common belief
distribution about which entities will be aligned is estimated

based on the mind gap between the first and second-order
beliefs. The neural dialogue generator will generate the next
response taking the dialogue context, world knowledge, and
the common belief distribution into account. We adopt a
cooperation communication game dataset with additional
belief annotations to demonstrate the belief update process
and how agents negotiate common ground through conver-
sation. It is worth noting that some works simulate human
values through their feedback to enable dialogue systems
to generate responses aligning better with human expecta-
tions (Bai et al., 2022; Yuan et al., 2022). Different variants
of Sally-Anne test are also proposed to test ToM of large
language models (Kosinski, 2023; Ullman, 2023; Sileo &
Lernould, 2023). In comparison, we consider mind model-
ing in situated daily dialogue scenarios and differing from
value alignment and ToM question answering from three
perspectives:

• A structured “five mind” representation (Fan et al.,
2021): as the Constructivist model example shown in
Figure 1B, we model two first-order beliefs, two second-
order beliefs of each other’s mind, and the third-level
common belief;

• Belief dynamics prediction: we explicitly model how
each utterance in the context results in the occurrence,
disappearance, or no change of the entities in the agents’
beliefs as the belief dynamics. Then, the final belief distri-
bution will be the summation of all belief dynamics esti-
mation over utterances in the dialogue history. It avoids
the problem of losing track of some entities if we directly
model the final belief given a long dialogue input;

• Common belief modeling: we define the common belief
as how probably the current speaker thinks about an entity
that will be aligned to the common ground. We hypothe-
size that the common belief is based on the gap between
the speaker’s belief of the physical world and her belief
estimation of the listener.

Contribution We consider our contributions as four-fold:

i. We build a speaking act classifier to model the free-
form conversation. Experimental results show that
the model can accurately predict whether the current
speaker wants to talk more or finishes the current turn.

ii. We design an explicit mind module that can track the
first and second-order beliefs over long contexts by
aggregating belief dynamics. A third-level common
belief based on the gap between the two will support
the next response generation.

iii. We augment a collaborative dialogue dataset Mutu-
alFriend with belief dynamics annotations for each
utterance. The dataset can serve as a new benchmark
for ToM in situated dialogue tasks.

iv. The evaluation results demonstrate the efficacy of each



component in our mind module. The responses gener-
ated with the three-level beliefs are shown to be more
accurate and efficient for negotiating common ground.

2. Related Work
Theory-of-Mind (ToM) ToM is a crucial capability for
human social interactions developed in early life (Kovács
et al., 2010; Richardson et al., 2018). In literature, early
works model belief update through time in sequential
games with partially observable Markov decision process
(POMDP) (Baker et al., 2011; De Weerd et al., 2013; Doshi
et al., 2010; Han & Gmytrasiewicz, 2018). One agent’s
belief update is based on the estimate of others’ current
beliefs, resulting in an infinite recursion. However, in real
life, studies have shown that humans could go no deeper
than two levels of recursion (Camerer et al., 2004). There-
fore, works (Fan et al., 2021) began the efforts to end the
recursion when their beliefs merge into the “common mind”.

Modeling the belief of others has been extensively studied
in symbolic-like environments (Wunder et al., 2011; Rabi-
nowitz et al., 2018; Kleiman-Weiner et al., 2016; Ho et al.,
2016), where agents need to incorporate or compete for a
goal. Efforts to measure models’ ability to recognize false
beliefs and perspective-taking also emerge in robotics (Yuan
et al., 2020; Milliez et al., 2014), computer vision (Eysen-
bach et al., 2016; Fan et al., 2021), and natural language
processing (Qiu et al., 2022; Nematzadeh et al., 2018) using
the Sally-Anne test (Baron-Cohen et al., 1985). It is also
shown that augmenting the model with external mind mod-
ules can help improve the performance of tasks involving
intensive belief exchange and rich social interaction sce-
narios (Fan et al., 2021; Qiu et al., 2022). In this work, we
explore how the common belief modeling with first and
second-order belief difference can enhance the quality and
efficiency of the response generation in dialogue tasks.

Neural Dialogue Generation Neural dialogue generation
has made impressive progress after various datasets and ad-
vanced model architectures are proposed. Both SEQ2SEQ
and decoder-based models (Lewis et al., 2019; Zhang et al.,
2020) are introduced into the open-domain dialogue sys-
tems for style and personality-controlled generation (Hu
et al., 2022; Cho et al., 2022), with knowledge and emotion-
aware abilities (Varshney et al., 2022; Liu et al., 2022),
etc. In addition, researchers explore reinforcement learning-
based methods to enable agents to learn from human feed-
back (Bai et al., 2022), coordinate, and compete with each
other in task-oriented dialogues (Verma et al., 2022; Jang
et al., 2022).

Cooperative Communication For a cooperative task, ef-
ficient communication could be essential, especially in a
situation when each agent can only have a partial obser-

vation of the environment. To guarantee that the commu-
nication takes the least cost meanwhile provides the most
informative messages, previous works proposed multiple
methods to align the common ground between agents (Bohn
et al., 2019; Anderson, 2021). Specially for dialogue tasks,
datasets have been collected to provide golden utterances
when people try to align the common ground with each other
based on structured knowledge (He et al., 2017a), in situated
tasks (Bara et al., 2021; Kim et al., 2019), multimodal and
continuous environment (Haber et al., 2019; Udagawa &
Aizawa, 2021). Frameworks have been adopted to model the
belief dynamics using GNN, RNN, and transformers (He
et al., 2017a; Udagawa & Aizawa, 2021; Qiu et al., 2022).
Fan et al. (2021) introduce low-level visual cues that may
possibly indicate mind transition. However, most of the mod-
els only focus on the first-order belief (the current speaker’s
belief of the world). In this work, we track the speaker’s
both first and second-order beliefs (the current speaker’s
belief of others) and demonstrate how the jointly modeling
between the two can help align the common ground.

3. The MindDial Framework
The dialogue corpus can be denoted as D =
{(Un,KBp

n, E
p
n, Cn, Yn)}Nn=1, where Un =

(un,1, ..., un,K) represents the dialogue history and
K is the number of turns. KBp

n = (kbn,1, ...kbn,I) where I
is the number of knowledge passages. p ∈ A,B represents
the two agents. We assume that the current speaker is
A, and p will be dropped for the following formulation.
The knowledge base contains entities under different
attributes. En is a union set of entities visible for the
current speaker. Each entity in En = {EU

n , EKB
n } is either

shown in the dialogue history or in the speaker’s knowledge
base. Yn = {y1n, .., yLn} is A’s next response consisting of
several utterances. Cn = {c1n, ..., cLn} is A’s corresponding
speaking act sequence, with c1n, ..., c

L−1
n is “continue to

talk” and cLn belongs to stop talking or make task related
action. Given the dialogue contexts and a partial response
{y1n, .., yl−1

n }, speaker A will first decide the next speaking
act cl. If she decides to talk, the next utterance yln will be
generated.

Utterance Encoder The utterance and the structured
knowledge encoder are built upon sequential models like
recurrent neural networks (Cho et al., 2014) or a transformer
encoder (Vaswani et al., 2017). We define the output states
at all time steps of one utterance and knowledge passage as
ouk

, okbi . We take the last hidden state as the turn-level rep-
resentation suk

, skbi ∈ R1×dh . Similarly, when we flatten
the turns and passages into a single sequence, the encoded
output is written as oU and oKB . The sentence-level repre-
sentation is sU and sKB . The entity representation se is a
linear transformation of the corresponding word embedding



Figure 2: (a) Illustration of the MindDial framework. The colored barplots denote the belief prediction’s outputs bA and
bBinA for each attribute; the barplot in lightgray denotes the normalized probability of the next entity to be mentioned
w.r.t. the common belief prediction module. (b) We annotate belief dynamics of each turn for the current context; refer to
Section 4.1 for details.

of the entity for a given e ∈ E.

Belief prediction We define the first and second-order
belief as the confidence distribution over entities of each
attribute. For a knowledge base with M attributes, the belief
is b = {bm = (bm1 , ..., bmJm )}Mm=1,

∑
j b

mj = 1. Jm is
the number of entities for attribute m. We further define
belief dynamics as the state change of each entity at each
time step k as ∆bk with each entry value ranging from −1
to 1. −1 indicates the disappearance of an entity in the belief
and 1 indicates an occurrence of an entity. Then the current
belief is the accumulated prediction of the dynamics over
all dialogue turns: bm = Softmax(bm0 +

∑
k ∆bmk ). b0 is

initialized to all zeros. The belief dynamics of speaker A
are obtained by calculating the attention score between the
current utterance and the entity shown in her own knowledge
base

∆bmk,A = tanh(smEKB · (suk
)T )

dmA =
∑
k

(bmk,A)
T · smEKB ,

(1)

where smEKB = [sm1
e ; ...; s

mJ′
m

e ] ∈ RJ′
m×dz concatenates all

entity representations for the attribute m shown in EKB .
dmA ∈ R1×dz is the belief representation of attribute m for
the speaker. Since A’s current estimate of B’s knowledge
base is based on her own knowledge base along with the
entities mentioned by B in the context, using the same atten-
tion module applied to the context and the whole entity set
of A, we can get dBinA, bBinA:

∆bmk,BinA = tanh(smE · (suk
)T )

dmBinA =
∑
k

(∆bmk,BinA)
T · smE . (2)

We further define common belief bcom as how likely each

entity is agents’ next talking focus over all possible enti-
ties based on the gap bdiff between bA and bBinA. The
output range is between 0 and 1. 1 indicates that this en-
tity will be mentioned in the next response and 0 oth-
erwise. The common belief will be learned through an-
other attention layer bcom = Sigmoid(sE · dTbdiff ), where
sE = [s0E ; ..., s

M
E ] ∈ R|Ent|×dz . |Ent| =

∑
m Jm is the

total number of entities over all attributes.

To get the gap representation dbdiff , we first aggregate
dA and dBinA over entities by a weighted summa-
tion of pm: dmbdiff = (pmdmA + (1 − pm)dmBinA),
where pm = σ(Went[b

m
A , bmBinA]

T ), and Went =
R1×2dz . dmbdiff is then aggregated over attributes:
dbdiff = g(WAtt[d

0
bdiff ; ...; d

M
bdiff ]), where

WAtt = Softmax(W0, ...,WM ). Wm is computed
by the Jensen–Shannon divergence (Lin, 1991) over bmA and
bmBinA in that we hope to pay more attention to attributes
if they differ a lot between bA and bBinA. g is a linear
transformation.

Speaking act Classifier We divide the speaking act into 3
categories: {continue to talk, end the current turn, take task-
related action}. Based on the current context and the partial
response, the action is predicted using pcl = MLP(sU ),
where MLP(·) denotes a multi-layer perceptron network.

Response Decoder We take another recurrent neural net-
work or a transformer decoder as our response generator.
For each word prediction, it receives the embedding vector
yt−1 of the word predicted at time-step t − 1 and outputs
the last hidden state ht ∈ R1×dz′ and Pvocab(wt) over the
fixed vocabulary obtained from the training set.

Multi-source Copy Mechanism. We follow Bai et al. (2021);
He et al. (2017a) to adopt the copy mechanism so that the
final word distribution depends on both the decoder output



and a copy probability of words shown in dialogue history,
speaker’s knowledge base and the common belief. The con-
text representation of utterance and structured knowledge at
each time step is obtained through the Attention module:

dϕt = Softmax(ht · oTϕ )oϕ (3)

where ϕ ∈ {U,KB}. Then the decoder state ht attends over
the dialogue history representation dUt and the knowledge
representation dKB

t by

αt = Softmax(ht · [dUt ; dKB
t ]T )

dt = αt[d
U
t ; d

KB
t ]

(4)

where αt = (αU
t , α

KB
t ) ∈ R1×2 is used to combine the

distributions of the two inputs as shown in Equation (5).
We also use a generation probability pgent ∈ [0, 1] to bal-
ance the distribution between input sources and the fixed
vocabulary, where pgent = σ(Wgen[yt−1, ht, dt]

T ), and
Wgen ∈ R1×(demb+dz+dz′ ). Besides, we set a mind weight
pcom to leverage the common belief distribution into the
final prediction. The overall distribution is obtained by

P (wt) = (1− pcom)
[
pgent Pvocab(wt)

+ (1− pgent )
∑̇

ϕ:ϕ{U,KB}
αϕ
t Pϕ(wt)

]
+ pcom Softmax(bcom)

(5)

Objective Mean squared error (MSE) loss will be used to
measure the difference between the predicted and ground
truth belief dynamics. The common belief prediction loss
will be measured by Binary Cross Entropy (BCE). The
action classification head is updated by Cross-Entropy loss.
Apart from belief and act training loss, we use the NLL loss
to capture the word order information:

LNLL = − 1

|yl|

|yl|∑
t=1

log(P (ylt|yl1:t−1, U,KB)) (6)

The final loss is composed of three parts:

L = LNLL + Lbelief + Lact (7)

4. Experiments
4.1. Settings

Dataset To provide a reasonable quantitative measure of
belief dynamics in the dialogue, the expected dataset should
contain rich belief exchanges. Meanwhile, the belief ex-
change and the final common ground can be easily labeled.
Therefore, we choose MutualFriend (He et al., 2017b) to
evaluate our dialogue generation framework for its clear def-
inition of belief (distribution over structured knowledge) and

common ground (the mutual friend). In the MutualFriend
task, each agent has a private knowledge base including
a list of friends and their attributes like name, school, etc.
There is a shared friend that both agents have and they need
to chat with each other to find this mutual friend. We only
keep the successful dialogues and the final data split for
train/val/test is 4922/608/581. Each dialogue in the training
set contains a maximum of 53 turns and each turn with a
maximum length of 29.

To get the supervision signal for belief dynamics, we man-
ually label each entity after one turn of utterance as occur
(mentioned by the speaker), no change (not mentioned in
the last turn), or disappear (negated by the speaker). Fig-
ure 2 illustrate one annotation process. For example, when
B is asking about “yo-yoing”, this entity is marked as 1
for bBinA dynamics. However, since it does not belong to
A’s knowledge, for the first-order belief of speaker A, we
annotate it as no change. Then, when “yo-yoing” is negated
by A, it will be marked as a “disappear” in bBinA dynamics.
One entity is labeled as the common belief to be aligned
next if it is shown in the response utterance.

Implementation To serve as a baseline in this task, the
model is expected to encode current contexts and predict
the belief dynamics. Then it will further generate the next
response based on both the dialogue history and the be-
lief prediction. Therefore, we select dialogue baselines
from three categories: 1) We use the Gated Recurrent Unit
(GRU) (Cho et al., 2014) among the recurrent neural net-
works for its memory efficiency of modeling sequential data;
2) We combine the powerful encoder Transformer (Vaswani
et al., 2017) with the decoder Transformer (Radford et al.,
2019) for its strong conversation abilities; 3) We employ
pre-trained encoder-decoder Transformer architectures such
as BART (Lewis et al., 2020) which can be flexibly adopted
to sequence-to-sequence tasks.

For all transformer models, we finetune the pretrained model
on the MuturalFriend dataset. For context encoding, we
prepend the BOS token at the beginning of the context and
use its corresponding hidden representation as the turn and
sentence-level representation for the following attention
layers and speaking act prediction. The entity encoding
will be a linear transformation of the corresponding word
embedding. Meanwhile, the decoder’s predicted vocabulary
distribution will be mediated by the copy mechanism (Bai
et al., 2021). The model is trained on a single A6000 GPU
for 30k steps with an initial learning rate of 1e-4. The batch
size is set to 32. Results are gathered over 3 random seeds.

4.2. Evaluation and Results

Mind prediction We first determine whether the models
can accurately track both the first and second-order beliefs.
The dynamics prediction performance is evaluated using



Table 1: Belief dynamics prediction. ∆b specifies
belief dynamics for bA and bBinA.

Models ∆b Precision Recall F1

GRU
bA

69.00±0.02 83.33±0.02 74.67±0.02
Transformer 65.67±0.01 70.67±0.09 67.67±0.04
BART 70.67±0.02 62.33±0.07 64.67±0.03

GRU
bBinA

73.33±0.02 83.33±0.02 77.33±0.01
Transformer 70.00±0.01 69.33±0.11 68.33±0.06
BART 73.33±0.02 60.00±0.07 62.33±0.04

Table 2: Next response generation and speaking act classification.
+mind indicates the generator copies from common belief distribution.

Models METEOR ROUGE-L BLEU-1 BLEU-2 Action acc

GRU 7.64±0.33 9.26±0.90 12.65±1.06 4.70±0.42 76.49±0.48
GRU+mind 8.56±0.03 9.89±0.27 12.70±0.56 5.17±0.11 77.64±0.54

Transformer 9.93±0.70 12.44±0.15 13.45±0.21 3.95±0.21 77.24±0.50
Transformer+mind 10.45±0.11 13.14±0.23 14.15±0.07 4.90±0.14 77.66±0.42

BART 10.70±0.28 12.54±1.90 15.10±1.13 4.75±0.35 75.77±2.62
BART+mind 11.72±0.26 14.01±1.10 16.95±1.34 6.25±1.06 76.90±0.69

the macro-average of Precision, Recall, and F1-score. We
can see from Table 1 that all three types of encoders can
predict the belief dynamics in mind A and BinA fairly well
compared with the random guess (0.33).

For the next common entity prediction, we compare the
performance using both information from bA and bBinA

as shown in Section 3 with a method computing dbdiff
by dA or dBinA only. In dA only method, pm will be set
to 1 and the Jensen-Shannon divergence is set to 0 for all
attributes. In dBinA, pm will be 0. We also report the same
metrics as the belief dynamics. However, since the common
belief label is pretty sparse (selecting one/two entities from
over 20 entities), all models get similar results. Therefore,
we further treat it as a ranking task and use MRR (Mean
Reciprocal Rank) to measure how well the target entity can
be returned among all available entities. As shown in the
first three columns of Table 4, combining bA and bBinA can
achieve higher ranking score, which suggests that people
consider both their self belief and the belief estimation of
others when choosing the next entity to align with.

Next Response Generation We evaluate the response
generation by both speaking act prediction accuracy and
commonly used textual generation metrics (BLEU, ME-
TEOR, and ROUGE (Papineni et al., 2002; Lin, 2004; Lavie
& Agarwal, 2007)). For the textual evaluation metrics, we
align the generated texts with the ground truth utterances
only when both speaking acts are “continue to talk”. If the
ground truth action is “continue to talk” while the predicted
action is “end the current turn”, the score will be set to 0.
To study the contributions of our mind module, we com-
pare the performance of our full model with generations
not copying from common belief distribution (pcom = 0 in
Equation (5)).

From the results shown in Table 2, we can see that gen-
erators combining with the external mind module achieve
better performances for all three categories. Without consid-
ering the mind prediction, the performances drop for both
response generation and speaking act prediction. This indi-
cates that reasoning about the belief dynamics can help the
model resemble human responses when aligning common
ground meanwhile form human-like speaking flows.

Case Study Figure 3 demonstrates how the response dif-
fers with and without mind/first/second-order belief model-
ing in Transformer category. The example on the left shows
that the model without belief modeling cannot effectively
pull the conversation towards the mutual friend based on the
context history. Model bA and bBinA respond with entities
in their corresponding order of beliefs but do not address the
false belief of B. For the right example, though all models
can capture the correct knowledge and generate reasonable
responses, only bA+bBinA provides additional information
of other unknown attributes.

4.3. Ablation study

To assess the contributions of each component in the pro-
posed method, we derive the following variants as an abla-
tion study:

• No dynamics: We predict the current beliefs bA and
bBinA directly from the given K turns of dialogues in-
stead of summing over belief dynamics across turns in
contexts.

• bA only / bBinA only: The common belief distribution is
learned only based on the first or second-order beliefs
(the same in Section 4.2).

• pcomm = X: We apply different values of X ∈ [0, 1] for
the copy weight pcom of the common belief distribution.

Will the belief prediction with dynamics be more ac-
curate? We contrast belief prediction with and without
belief dynamics in the GRU category. We can observe from
Table 3 that predictions by summing belief dynamics over
turns can reach higher precision and F1. We reckon that
modeling the state change of entities per utterance can help
better track beliefs in longer contexts.

Does each order of belief benefit the response genera-
tion? From the pair-wise comparison between +bA only
and +bBinA of columns 4-5 in Table 4, we can see that +bA
performs better in BART while +bBinA is better in the other
two models. And jointly modeling both two levels of beliefs
can achieve the best results. This suggests that there is no
clear dominance between the first and second-order beliefs.
Our full model bA+bBinA can weight the information of the
two beliefs accordingly based on the current given contexts.



Context
A: Hey
B: Hi do you know anyone in 
Astronomy?

Context
B: Hello
B: I know 2 people who are into 3D 
printing
A: Have Julia and Randy
A: No 3D printing

Hobby School Name

Roller Skating Boise State Univ. Randy

Mahjong Mount Holyoke Lawrence

Mahjong Claremount Julia

Hobby School Name

Mahjong Mount Holyoke Lawrence

3D Printing UIUC Patricia

3D Printing Rider Univ. Eric

A’s Knowledge Base

B’s Knowledge Base B’s next Response
GT: I don’t know any Julia or Randy. Do 
you know a Lawrence or Eric?
w/o mind: I have a friend into Mahjong
𝒃𝒃𝑨𝑨 only: I have a friend named Lawrence
𝒃𝒃𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨 only: I have a friend named Randy
𝒃𝒃𝑨𝑨 + 𝒃𝒃𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨: I don’t know a Julia

A’s Knowledge Base

B’s Knowledge Base

A’s next Response
GT: 2 of my friends
w/o mind: I have a friend that
went to Astronomy.
𝒃𝒃𝑨𝑨 only: I have 2 that work at
Astronomy
𝒃𝒃𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨 only: I have a friend
that work at Astronomy
𝒃𝒃𝑨𝑨 + 𝒃𝒃𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨: I have two that
at indoor

Hobby Major Location

Astronomy Veterinary Sciences Indoor

Astronomy Vocational Education Indoor

Hobby Major Location

Knapping Physical Education Outdoor

Astronomy Veterinary Sciences Indoor

Figure 3: Responses generated by model variants. For each case, the current contexts are shown in the top-right; bottom-
right visualizes the ground truth responses and the responses generated by models without mind (w/o mind), with common
belief estimation using the first-order belief (bA only), the second-order belief (bBinA only) and with both the first and
second-order beliefs (bA + bBinA).

Table 3: Belief estimation with/without dynamics prediction
for each turn. w/o ∆b represents models trained directly
with bA and bBinA. w/ ∆b denotes models trained with belief
dynamics. The belief estimation sums over dynamics over all
turns in the context.

Models Belief Precision F1

w/o ∆b
bA 45.00±0.00 46.00±0.00

bBinA 45.33±0.01 46.33±0.01

w/∆b
bA 53.67±0.01 56.00±0.01

bBinA 55.00±0.00 57.00±0.01
Figure 4: The textual generation score with different copy
weights of pcom.

Table 4: Common belief prediction, next response generation and self-talk simulation by ablating the first and
second-order belief. Rows with model+bA specify results with common belief predicted by the first-order belief only, with
model+bBinA by the second-order belief only and with +bA+bBinA by both the first and second-order beliefs.

Models F1 MRR ROUGE-L Action acc Success rate # of Turn # of Entity
GRU+bA 60.00±0.00 26.75±0.31 8.89±1.12 77.54±0.66 6.58±1.25 37.74±0.13 12.80±2.90

+bBinA 60.00±0.00 26.65±0.51 9.88±0.26 77.63±0.55 6.33±1.01 37.77±0.25 12.78±2.86
+bA+bBinA 60.00±0.00 26.87±0.43 9.89±0.27 77.64±0.54 6.92±1.60 37.71±0.17 12.78±2.94

Transformer+bA 58.67±0.01 24.70±1.74 12.63±0.09 77.43±0.04 9.99±4.82 19.20±0.94 12.23±2.72
+bBinA 59.00±0.01 25.12±1.77 12.75±0.55 77.77±0.11 8.83±2.18 17.79±1.28 10.55±0.99
+bA+bBinA 58.67±0.01 25.17±2.06 13.14±0.23 77.66±0.42 10.76±4.55 17.65±0.29 10.91±2.73

BART+bA 60.00±0.00 26.46±0.71 14.41±1.29 76.84±0.55 5.77±0.04 31.77±0.21 15.31±2.84
+bBinA 59.67±0.01 25.93±1.03 12.83±1.43 76.25±1.58 7.37±3.00 28.93±1.84 13.71±4.92
+bA+bBinA 60.00±0.00 26.51±0.65 14.10±1.10 76.90±0.69 7.65±2.60 30.68±4.57 14.87±4.52

How much does the mind modeling contribute to re-
sponse generation? We investigate the effects of chang-
ing the copy weight of the common belief distribution when
generating the next response. The line plot of Figure 4 gives
an illustration of the variation of the performance when
pcom in {0, 0.2, 0.4, 0.6, 0.8}. We observe that the genera-
tion score first increases and then decreases as the weights
vary. This indicates that the model not only needs to learn
what should be mentioned next but also how to express it
in the response. It is supposed to trade-off between entity

name prediction accuracy and grammar fluency.

Common ground alignment We further use self-talk to
evaluate how well the agents align their common ground
with and without modeling the gap between their beliefs
and the belief of others. For each round, the model will
play as both the speaker and the listener to generate the
next response. The game will end when the two agents
exceed the maximum of turns, or both of the agents decide
to make the choice. When the model predicts the next action
is “take task-related action”, we will choose the friend with



(𝑏𝑏1: American Motors Corporation; 𝑏𝑏2 𝑖𝑖𝑖𝑖 1: None) Do you have a friend who works for
the Apache Software Foundation?

(𝑏𝑏2: None; 𝑏𝑏1 𝑖𝑖𝑖𝑖 2: None) I don't have anyone in my friend's list working for the
Apache Software Foundation. Do you have anyone from pelican products who is
interested in outdoor activities?
(𝑏𝑏1: L&L Hawaiian Barbecue, outdoor; 𝑏𝑏2 𝑖𝑖𝑖𝑖 1: L&L Hawaiian Barbecue, outdoor)
Sorry, I don't have anyone in my friend's list working for Pelican Products but I can see
that one of my friends likes L&L Hawaiian Barbecue and has interest in outdoor
activities.
(𝑏𝑏2: L&L Hawaiian Barbecue, outdoor; 𝑏𝑏1 𝑖𝑖𝑖𝑖 2: L&L Hawaiian Barbecue, outdoor)
That's a great lead, thank you. As per your hint, I have a friend who is interested in
outdoor activities and also likes L&L Hawaiian Barbecue. He could be the mutual friend
we are looking for.

(𝑏𝑏1: Lake Superior, L&L Hawaiian Barbecue, outdoor; 𝑏𝑏2 𝑖𝑖𝑖𝑖 1: L&L Hawaiian Barbecue,
outdoor) That's awesome! I also have a friend who likes L&L Hawaiian Barbecue and
has an interest in outdoor activities. Let me check his profile quickly to see if he works
at Pelican Products.

School Company Location

Pittsburg 
State

American 
Motors 
Corporation

Outdoor

West Virginia L&L Hawaiian 
Barbecue

Indoor

Lake Superior 
State

Pelican Products Outdoor

ChatGPT1’s Knowledge Base

ChatGPT2’s Knowledge Base

Note: ChatGPT1 fails to mention entities w.r.t 𝑏𝑏1 .

Note: ChatGPT2 provides incorrect information w.r.t its KB.

Note: “Pelican Products” has been checked in turn 2.

School Company Location

Pittsburg 
State

American 
Motors 
Corporation

Outdoor

West Virginia Apache Software 
Foundation

Indoor

Lake Superior 
State

L&L Hawaiian 
Barbecue

Outdoor

Figure 5: Self-talk simulation using ChatGPT. The left table contains the knowledge bases of two ChatGPT agents. The
right box shows the conversation flow. We additionally prompt ChatGPT to obtain their belief estimation as shown in
parenthesis.

the maximum probability based on bA as its choice of friend.
Since models without a mind cannot make this choice, we
only compare models with bA or bBinA only and our full
model. We report the average success rate when the agents
choose the same person in their knowledge bases as their
mutual friend at the end of each game round. Meanwhile, we
also calculate the average number of turns they use to end
the game and the average number of entities they mention
when they reach the common ground.

The right three columns of Table 4 show the self-talk re-
sults. Compared with bA and bBinA only, our full model can
achieve higher success while take less turns in the game and
mention fewer number of entities to achieve the alignment.
This indicates that attending both the first and second-order
beliefs helps the model align the common ground more
efficiently.

4.4. How well do the large language models (LLMs)
perform this task?

LLMs have gained great attention for their impressive con-
versational abilities. Instead of directly asking ChatGPT
questions regarding beliefs and false beliefs like the Sally-
Anne test (Kosinski, 2023; Ullman, 2023; Sileo & Lernould,
2023), we investigate its capability of solving cooperative
communication tasks involving intense belief exchanges.

As shown in Figure 5, we initialize two ChatGPT models
as two chat agents. Instructions are given to both of them
about the goal and rules of the game. Additional prompts are
given to help circulate the conversation meanwhile probe
their belief estimation and action prediction. As marked in
Figure 5, we observe several potential questions of current
LLMs: 1) Inappropriate belief estimation: when Chat-
GPT1 proposes friends interested in L&L Hawaiian Bar-
becue and outdoor activities, ChatGPT2’s first-order belief
over possible entities is also outdoor which is not consistent
with his knowledge base; 2) Mind inconsistent utterance:
ChatGPT1 is asking Apache Software Foundation while
she believes more in people working for American Motors
Corporation as the mutual friend; 3) No belief tracking:
when the two agents confirm with L&L Hawaiian barbecue
and outdoor, ChatGPT1 returns back to Pelican Products
which it already negated before.

5. Conclusion
In this study, we present MindDial, a novel framework for
generating human-like dialogues. Our approach incorpo-
rates an external mind module, which predicts the first and
second-order beliefs of the speaker. The response genera-
tion takes into account a third-level common belief, which
is determined based on the disparity between the first two



levels. Through extensive experiments, we demonstrate that
responses that consider belief estimation can enhance com-
mon ground negotiation between agents. Our ablation stud-
ies further validates the effectiveness of our design in cap-
turing belief dynamics and modeling common beliefs by
aggregating the first and second-order beliefs.
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