
Under review as a conference paper at ICLR 2021

TOWARDS GOOD PRACTICES IN SELF-SUPERVISED
REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-supervised representation learning has seen remarkable progress in the last
few years. More recently, contrastive instance learning has shown impressive
results compared to its supervised learning counterparts, in particular on down-
stream tasks like image classification and object detection. However, even with
the ever increased interest in contrastive instance learning, it is still largely un-
clear why these methods work so well. In this paper, we aim to unravel some of
the mysteries behind their success, which are the good practices. In particular,
we investigate why the nonlinear projection head is essential, why instance dis-
crimination does not suffer from strong data augmentation, and if large amounts
of negative samples are required during contrastive loss computation. Through
an extensive empirical analysis, we hope to not only provide insights but also lay
out a set of best practices that led to the success of recent work in self-supervised
representation learning.

1 INTRODUCTION

Self-supervised representation learning (SSL) has been a hot area of research in the last several
years. The allure of SSL is the promise of annotation-free ground-truth to ultimately learn a su-
perior data representation (when compared to supervised learning). Initial attempts to improve the
quality of learned representations were via designing various pretext tasks, such as predicting the
rotation (Gidaris et al., 2018), learning to count (Noroozi et al., 2017), context completion (Doersch
et al., 2015; Pathak et al., 2016; Noroozi & Favaro, 2016), image colorization (Zhang et al., 2016),
deep clustering (Caron et al., 2018), generative modeling (Donahue et al., 2016), motion prediction
(Agrawal et al., 2015), etc. More recently, a type of contrastive learning method based on instance
discrimination as pretext task (Dosovitskiy et al., 2014; Wu et al., 2018) has taken-off as it has been
consistently demonstrated to outperform its supervised counterparts on downstream tasks like image
classification and object detection (Oord et al., 2018; Tian et al., 2019; Misra & Maaten, 2020; He
et al., 2020; Khosla et al., 2020; Chen et al., 2020a; Caron et al., 2020).

Putting the progress in contrastive instance learning aside for a moment, many recent observations
seem to contradict what we have known from supervised learning. For example, Bachman et al.
(2019); Chen et al. (2020a) have shown that simply adding a nonlinear projection head after the
last pooled convolutional feature can significantly improve the quality of learned representations.
Quantitatively, the nonlinear projection head can help to improve top-1 classification accuracy on
ImageNet by over 10% in Chen et al. (2020a) and 5.6% in Chen et al. (2020c). However, adding
such a shallow multilayer perceptron (MLP) projection head (i.e., one fully-connected layer and
one activation layer) is often not effective in supervised learning. Take another example, recent
methods (He et al., 2020; Chen et al., 2020a) adopt aggressive and strong data augmentation during
contrastive pre-training. Although data augmentation has been proven to be useful, overly aggressive
augmentations often lead to worse results in supervised or other self-supervised learning methods.
Then why contrastive instance learning does not suffer from strong data augmentation? At this
moment and to the best of our knowledge, there is no concrete evidence to answer these questions.

After closely observing recent contrastive instance learning work, it becomes apparent that what
seem to be design choices are in-fact good practices which are largely responsible to their disruptive
success. Furthermore, some of these good practices can effectively be transferred to other non-
contrastive, unsupervised learning methods (Grill et al., 2020). Hence in this work, we focus on

1



Under review as a conference paper at ICLR 2021

the importance of these design choices using extensive experimental evidence and evangelize cer-
tain good practices which lead to their success. We hope to provide insights to the self-supervised
learning community, with the potential impact and application even beyond it. Specifically, our
contributions include:

• We empirically show why the nonlinear projection head helps contrastive instance learning
and visualize it using a feature inversion approach (Section 3).

• We present the semantic label shift problem caused by strong data augmentation in su-
pervised learning and study the difference between supervised and contrastive instance
learning (Section 4).

• We investigate both quantity and quality of negative samples used in computing contrastive
loss. We find that good practices can help to eliminate the need of using large number of
negative samples, thereby could simplify the framework design (Section 5).

2 BACKGROUND

The goal of contrastive instance learning is to learn representations by distinguishing between simi-
lar and dissimilar instances. Images are typically perturbed using various augmentation techniques
(e.g. random cropping, or color jittering) and a model is trained to map the original images and the
perturbed ones as the same latent representation. It is important to note that in instance discrimi-
nation, each image together with its augmented versions is treated as its own class requiring no a
priori class annotations. A generic visual depiction of recent contrastive instance learning methods
is shown in Figure 1.

Figure 1: A generic visual depiction of recent con-
trastive instance learning methods.

More formally, given a set of images X , an im-
age x is uniformly sampled from X and is aug-
mented using various augmentation techniques
t ∈ T to generate the positive pairs x+

1 and x+
2 .

fθ and fφ are encoders which map the images
to visual representations h1 and h2, i.e., 2048-
dim features from the last average pooling layer
of a ResNet (He et al., 2016). These visual rep-
resentations are then projected via gθ and gφ,
which are often MLP heads, to lower dimen-
sional features z1 and z2 for similarity compar-
ison. Networks are usually trained by InfoNCE
(Oord et al., 2018) loss,

LNCE = −log
exp[sim(z1, z2)]

exp[sim(z1, z2)] +
∑K
i=1 exp[sim(z1, gφ(fφ(x

−
i )))]

. (1)

Here, sim(.) is the distance metric used to measure the similarity between feature embeddings. K
denotes the number of negative examples x− for each x used in computing contrastive loss. It has
been posited that negative examples are crucial to avoid learning collapsed representations (Grill
et al., 2020), and can be selected from the rest of the dataset X via different mechanisms, e.g.,
memory bank (Wu et al., 2018), queue (He et al., 2020) or large mini-batch (Chen et al., 2020a). By
optimizing the objective, the model learns to map similar instances closer and dissimilar instances
farther apart in the embedding space. For simplicity, we use f and g to denote encoder network and
MLP head, h and z to represent the feature before and after MLP head for the rest of the paper.

In this paper, we mainly use MoCov2 (Chen et al., 2020c) as an illustrating example, but also
include experiments on other methods when needed. In terms of unsupervised pre-training, we train
a ResNet50 backbone for 100 epochs, unless otherwise stated. In terms of evaluation, we follow
the standard protocol of (Wu et al., 2018; He et al., 2020) to perform linear probe on ImageNet and
report top-1 classification accuracy. To be specific, we freeze the encoder f and train a supervised
linear classifier using feature h. MLP head g is discarded in the evaluation.
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Table 1: Investigation of nonlinear projection head in MoCov2 (Chen et al., 2020c).

Method Top-1 Acc (%)
MoCov2 64.4
(a) without projection head 59.2
(b) with fixed projection head 62.9
(c) with more hidden layers in projection head 63.9
(d) with reduced feature dimension in projection head 62.2

3 NONLINEAR PROJECTION HEAD

A main goal of unsupervised representation learning is to learn features that are transferable to
downstream tasks. Typically the outputs of the penultimate layer (i.e. the pooling of the last convo-
lution layer) are considered for transferring to other tasks. Recently, Bachman et al. (2019); Chen
et al. (2020a;c) have shown that simply adding a nonlinear projection head as shown in Figure 1
can significantly improve the quality of learned feature representation h. For example, the nonlin-
ear projection head helps to improve the top-1 classification accuracy on ImageNet by over 10% in
Chen et al. (2020a) and 5.6% in Chen et al. (2020c). However, the nonlinear projection head typi-
cally consists of only one fully-connected (fc) layer and one ReLU activation layer. Adding such a
shallow MLP projection head is often not so effective in supervised learning regime. So the question
arises, why adding a nonlinear projection head is so important for contrastive instance learning?

In this paper we attempt to answer this question by designing experiments to explore different as-
pects of the nonlinear projection head in MoCov2 during unsupervised pre-training. First, as shown
in Table 1 (a), removing the projection head g significantly degrades the classification accuracy com-
pared to baseline (64.4 � 59.2). This is consistent with observations made in (Chen et al., 2020a;c).
Next, we initialize the nonlinear projection head g with a uniform distribution and freeze its param-
eters during the unsupervised pre-training. Interestingly, as we can see in Table 1 (b), we obtain
better representations compared to removing the projection head (62.9 vs 59.2). This indicates that
the nonlinear projection head is useful beyond its learning capability offered by the extra two layers.
In fact, it is the nonlinear transformation itself that somehow benefits the learning process even if the
parameters of this transformation is randomly initialized. To strengthen our observation, we inves-
tigate two other model variations. We first deepen the nonlinear projection head with more hidden
layers, i.e., fc � ReLU � fc � ReLU which in theory adds more learning capacity. As shown in
Table 1 (c), this seems not to bring extra benefits (63.9 vs 64.4). We then narrow the nonlinear
projection head by reducing the embedding dimensionality, e.g, 2048 � 128 for a ResNet50. As
shown in Table 1 (d), such a drastic dimension reduction indeed lowers the performance compared
to baseline, but still outperforms setting (a) by a large margin (62.2 vs 59.2). With these insights
we are more confident to conclude: it is the transformation of the projection head, which separates
the pooled convolutional features from the final classification layer, that helps the representation
learning. But why is such separation beneficial?

We argue that the nonlinear projection head acts as a filter separating the information-rich features
useful for downstream tasks (i.e. color, rotation, or shape of objects) from the shallow, more dis-
criminative features that are more useful for the contrastive loss. This conjecture was previously
introduced in (Chen et al., 2020a) and verified by using features to predict transformations applied
during the pre-training. In this work, we provide further visual evidence to support this hypothesis.

Inspired by deep image prior (DIP) Ulyanov et al. (2018), we perform feature inversion to obtain
natural pre-images. By looking at the natural pre-image, we can diagnose which information is lost
and which invariances are gained by the network. Given a fixed random noiseZ and a reconstruction
networkR, a realistic natural image can be generated by

x′ = R(Z).
Here, Z is sampled from a uniform noise between 0 and 0.1. R is an U-Net architecture with skip
connections. In order to optimize R, we formulate the inverse problem as an image reconstruction
problem by forcing x′ to be close to a given input image x in the embedding space of the encoder
network f . The objective can be minimized by

L = minE(f(x′), f(x)),
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Input no MLP before MLP after MLP Input no MLP before MLP after MLP

Figure 2: Visualization of feature inversion results by DIP (Ulyanov et al., 2018). We show four
examples, each example contains: (a) original image, (b) reconstructed image using h from a model
trained without MLP projection head, (c) reconstructed image using h from a model trained with
MLP projection head and (d) reconstructed image using z from a model trained with MLP projection
head. Best viewed in color and digitally.

(a) (b) (c)

Figure 3: t-SNE plots from 10 randomly chosen ImageNet classes where each class is represented
by 64 images. We use the 1000-dim features from a ResNet50 model trained on ImageNet in super-
vised manner. The three sub-figures use the same images but under different augmentations: (a) no
augmentation; (b) weak augmentation; and (c) strong augmentation. Best viewed in color.

where L2 distance is adopted. Specifically, we invert the features before and after the nonlinear
projection head, h and z respectively (both features has a dimension of 1 × 2048). By checking on
the quality of feature inversion, we can find out the information contained within the activations of
a pre-trained network. We refer the readers to (Ulyanov et al., 2018) for more details.

As we can see in Figure 2, using features before MLP projection head gives the best reconstruc-
tion result. Even though we use globally pooled features without spatial dimension, they are able
to generate decent image reconstructions, maintaining most color, shape, location and orientation
information. However, features learned without projection or features after projection head only
preserve the most discriminative information to make classification. This observation supports our
claim that layers close to loss computation will lose information due to invariances to data transfor-
mations induced by the contrastive loss.

4 STRONG DATA AUGMENTATION

Data augmentation is an important regularization technique in training most deep learning models.
In the supervised setting, people have applied a range of augmentation techniques going back to the
seminal work of AlexNet (Krizhevsky et al., 2012) which used random flipping, crop-and-resize to
more recent and sophisticated techniques such as cutout (DeVries & Taylor, 2017) and autoAugment
(Cubuk et al., 2019).

Despite the evolving augmentation techniques and mounting complexity of them, empirical experi-
ence shows that augmentation should not be too strong in the supervised setting as it will have an
adverse effect on the network training. For example, the augmentation stack in MoCov2 unsuper-
vised pre-training stage is far more aggressive than the augmentation stack used in its linear probe
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Table 2: Investigation on different data augmentation settings’ effect on MoCov2 versus supervised
training. The setting of color jittering strength follows SimCLR (Chen et al., 2020a). Numbers in
second line of each row indicate the performance difference compared to baseline.

(a) Random Cropping

Cropping strength (min/max size)

Method baseline medium extreme
20%/100% 20%/50% 2%/10%

MoCo 64.4 63.7 47.1
v2 −0.7 −17.3

Super- 75.5 74.8 52.0
vised −0.7 −23.5

(b) Color Jittering

Color jittering strength

Method from weak to strong
1/8 1/4 1/2 1

MoCo 63.1 63.9 64.2 64.3
v2 +0.8 +1.1 +1.2

Super- 75.8 75.7 75.6 74.6
vised −0.1 −0.2 −1.2

stage (Chen et al., 2020c). In this section, we try to explain why unsupervised contrastive instance
learning can benefit from strong augmentation more effectively than supervised setting.

We hypothesize that the exact instance discrimination learning technique plays an important role.
Without class label information, each image becomes its own class (or as in Tian et al. (2019),
several views of the same object/scene become its own class) and as a result, there are no clear class
boundaries like they exist in supervised training. Let us take FixMatch (Sohn et al., 2020) as an
example. In Figure 1 of their paper, a strongly augmented horse image can look like a cow and
easily confuse the model. To address this concern, the authors in Sohn et al. (2020) propose to use
label-propagation from the model’s prediction on a series of weakly augmented images (but not the
original images) to supervise its predictions on the strongly augmented counterparts. Because strong
data augmentation would probably break the class boundary and hinder the model from learning
class labels effectively.

In order to see clearly how this hurts supervised learning, we provide a t-SNE visualization (van der
Maaten & Hinton, 2008) in Figure 3 to show how the class boundaries in ImageNet break down
when strong augmentation is applied, i.e., images under no/weak augmentations are separated nicely
but collapse into one cluster under strong data augmentation. We term this phenomenon as semantic
label shift problem. However, this phenomenon does not apply to instance discrimination since there
are no clear semantic class boundaries. We could use strong data augmentation without worrying
about the semantic label shift problem.

We also want to justify the hypothesis quantitatively. In Table 2a and Table 2b, we show how
different random cropping and color jittering settings can affect MoCov2 training and supervised
training. From Table 2a, we can see that as the cropping augmentation becomes more “extreme”,
performance on both supervised learning and MoCov2 degrade. We think this is due to the fact
that MoCov2 is learning occlusion invariant features and cropping augmentation is essential in this
process. This has been demonstrated recently in (Purushwalkam & Gupta, 2020) that contrastive
instance learning is good at occlusion invariance. Despite this drawback for instance discrimination,
MoCov2 still suffers less than its supervised counterparts. From Table 2b, we can see a different
trend where stronger color jittering benefits MoCov2 but hurts supervised learning. This is consistent
with the findings from SimCLR (Chen et al., 2020a).

5 NEGATIVE SAMPLES

Recall from Equation. (1), computing contrastive loss requires sampling negative pairs, which is
essential to avoid learning collapsed representations (Grill et al., 2020). Recently, Wu et al. (2018);
He et al. (2020); Chen et al. (2020a) have empirically shown that using a large number of negative
samples is beneficial to learn good features in contrastive instance learning. However, one needs to
design sophisticated mechanisms to store the negative examples due to hardware limitation, as well
as ways to update them. So we ask, is it possible to use less negative examples during contrastive
loss computation without performance degradation?
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Figure 4: Comparison of different algorithms
with varying number of negative samples. K
denotes the number of negative samples. We
show that MoCov2 performs the same rang-
ing from K = 512 to K = 65536.

Figure 5: Illustration of how we perform dy-
namic hard-negative sampling on MoCov2
during training time for each mini-batch. We
sort the entire dynamic queue based on sim-
ilarity with incoming positive samples. We
use positive skew-normal distribution to se-
lect more of hard and semi-hard samples and
less of “easy” positive samples.

Quantity of Negative Samples: In order to answer the question, we first run experiments on recent
contrastive instance learning approaches using different number of negative examples to see the
effects. We choose InstDisc (Wu et al., 2018), MoCo (He et al., 2020), SimCLR (Chen et al., 2020a)
and MoCov2 (Chen et al., 2020c) as illustrating methods. Although they use negative examples in
different manners, e.g., memory bank in InstDisc, queue in MoCo and MoCov2, and large mini-
batch in SimCLR, what they have in common is using a large number of negative examples. We
adopt their official released code and follow the same hyper-parameter setting. All the models here
are trained 200 epochs in terms of fair comparison.

We report the numbers in Figure 4 and have several interesting findings. First, the performance of
InstDisc and MoCo drops when number of negatives decreases, which is consistent with the con-
clusion in previous literature (Wu et al., 2018; He et al., 2020; Chen et al., 2020a). However, for
SimCLR and MoCov2, the performance drop is not obvious when using fewer negative samples.
In fact, MoCov2 performs consistently with respect to the number of negatives. Its accuracy on
ImageNet stays the same ranging from K = 512 to K = 65536, K denotes the number of neg-
ative samples. Figure 4 does indicate that the quantity of negative samples during contrastive loss
computation has little impact on final linear probe performance.

Despite the accuracy on ImageNet stay the same for using less negative samples, it is possible that
the learned features may not transfer well to downstream tasks. Here, we also perform a sanity
check on the learned representations’ transferability on object detection and follow the setting of
(He et al., 2020). Evaluation is performed on the PASCAL VOC test2007 set. We find that AP stay
the same no matter the features are learned using 512 or 65536 negative samples, which indicates
that negative samples has little impact on transfer learning as well.

Quality of Negative Samples: We ask ourselves another question - What if we alter the quality
of negative samples? Here, we perform dynamic hard-negative mining in MoCov2 where for an
incoming batch of positive images we sample hard-negatives from the dynamic queue (instead of
taking all samples from the queue as negatives). Specifically, during unsupervised training for a
positive batch of images B and an existing dynamic queue Q, we re-arrange Q for each batch based
on cosine-similarity of query-branch feature q and the latent features in Q. After re-arrange, we have
similar embeddings at top of the queue, least at the bottom. We mine hard and semi-hard negative
exemplars from dynamic Q using a skew-norm distribution. Note, we over-sample in order to keep
the overall Q size same as MoCov2. The intuition for this experiment: each image is treated as a
distinct class of its own in instance discrimination learning. Particular to ImageNet, since we are
not using labels, for a specific dog image all other dog images (possibly cats looking like dogs)
are considered hard-negative samples as shown in Figure 5. Contrasting among these hard-negative
samples intuitively should improve the learned representation.
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Table 3: Investigation of good practices’ impact on the number of negative examples (K) being
used in computing contrastive loss. We show that MLP projection head and momentum encoder are
essential to keep the performance when using fewer negative samples.

Method K=512 K=65536
MoCov2 67.3 67.5
(a) without MLP projection head 61.7 63.6
(b) without GaussianBlur 65.5 66.4
(c) without cosine learning schedule 67.2 67.3
(d) with smaller momentum (0.5) in momentum encoder 59.8 64.5

However, as shown in Figure 4 (blue line), in spite of over-sampling hard-negative samples, perfor-
mance of MoCov2 does not change for various sizes of Q. Note that by only including hard and
semi-hard negative samples, the training could collapse as this leads to an intractable optimization
problem (Schroff et al., 2015). To prevent this, we also sampled positives (as shown in Figure 5 ).
The use of skew-normal distribution easily allows us to do this. We also tried various other sampling
strategies like random sampling, adaptive sampling, but the final linear probe performance does not
out-perform MoCov2.

To summarize, in spite of quantity and quality of negative samples in queue Q, MoCov2 performance
is stable. Naturally, we ask why? We know that MoCov2 is an improved version of MoCo with
good practices, like adding MLP projection head, adding GaussianBlur data augmentation and using
cosine learning schedule. Hence, the question now becomes which good practice(s) eliminate the
need of using large number of negatives and why?

Good Practices Here, we perform ablation studies to see the contribution from each good practice.
From Table 3, we can see that the MLP projection head and momentum encoder have the biggest
impact (row a and d). Without these two techniques, the performance quickly drops as the number
of negative samples decreases. In terms of MLP projection head, it can preserve more information,
like color, rotation and shape, as we show in Section 3. Such information contains generic low/mid-
level features that can help discriminate among instances during loss computation, which effectively
reduce the need of using large number of negative samples. This also explains why SimCLR is
robust to number of negatives given its performance using K = 4096 and K = 65536 is similar.
In terms of momentum encoder, it is essential because using a slowly changing network can ensure
the comparisons between negative and query are consistent, which avoids degenerated solution. We
suspect the large performance drop of SimCLR from K = 4096 to K = 256 is due to the lack
of mechanisms like momentum encoder1. Using stronger data augmentation and cosine learning
schedule are helpful to keep the performance when using fewer negative samples, but not the key.

Note that, we are not claiming contrastive loss computation does not need negative samples, because
it does in order to avoid learning collapsed representations. Our finding is that by using appropriate
good practices, we do not need a huge number of negative samples during loss computation. This can
simplify the framework design and potentially get more of the community interested in contrastive
instance learning. Furthermore, we want to emphasize the importance of good practices because
they can generalize beyond contrastive instance learning. For example, recent state-of-the-art SSL
approaches BYOL (Grill et al., 2020) and SwAV (Caron et al., 2020) are consistency based and
clustering based respectively, but they adopt good practices like MLP projection head, strong data
augmentation and momentum encoder to achieve good performance.

6 RELATED WORK

Contrastive instance learning Instance discrimination is a classification task where each image in
a dataset is considered to be in its own class (Dosovitskiy et al., 2014). This task can either learn
from both positive and negative pairs (Wu et al., 2018; He et al., 2020) or simply learn from positive
pairs through consistency (Grill et al., 2020). Recently, most work on instance discrimination use
contrastive learning to train the network due to its simplicity and effectiveness. He et al. (2020);
Chen et al. (2020a); Caron et al. (2020) have been particularly impressive as these self-supervised
models do better than supervised variants (He et al., 2016) on downstream tasks.

1SimCLRv2 (Chen et al., 2020b) adopts momentum encoder, which would be a good example to support
our claim. However, their official released code does not include momentum encoder at this moment.
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Interestingly, we find that part of the success of recent self-supervised learning methods actually
come from using good practices. Inspired by (Bachman et al., 2019; Cubuk et al., 2019), SimCLR
(Chen et al., 2020a) adopts nonlinear projection head and stronger data augmentation to learn better
feature representations. Then, MoCov2 (Chen et al., 2020c) incorporates these good practices with
longer training, and significantly outperform MoCo (He et al., 2020). Followed by this, SimCLRv2
(Chen et al., 2020b) uses more MLP heads and momentum encoder in He et al. (2020) to again
refresh the state-of-the-art. Recently, Caron et al. (2020) show that clustering based representation
learning can benefit from aforementioned good practices as well. Furthermore, consistency based
methods like BYOL (Grill et al., 2020) also used MLP head and momentum encoder to achieve
promising results, which suggests that these good practices can be generalized beyond contrastive
learning paradigm.

Hence in this work, we deviate from proposing new pretext tasks or new constraints. Instead we
analyze the effect of good practices in self-supervised learning and unravel the mystery behind the
recent success of contrastive instance learning methods.

Insights and analysis With this ever increased interest in contrastive instance learning, there are
only few work that shed light on why they work so well. Wang & Isola (2020) identifies two key
properties, alignment and uniformity, related to the contrastive loss and empirically confirms the
strong agreement between both metrics and downstream task performance. Tian et al. (2020) is
a follow-up work of Contrastive Multiview Coding (Tian et al., 2019) which studies the influence
of different view choices in contrastive learning. Their analysis suggests an “InfoMin principle”
which inspires a task-dependent representation learning strategy. Zhao et al. (2020) investigates the
problem of what makes instance discrimination pre-training good for transfer learning. Interestingly,
they find that the low-/mid-level representations matter the most for object detection transfer, not
high-level representations. Purushwalkam & Gupta (2020) demystifies the gains from contrastive
learning by investigating the invariances encoded in the learned visual representations. Their results
indicate that a large portion of recent gains come from occlusion invariances. Recently, Falcon &
Cho (2020) analyze leading SSL approaches and find that despite different motivations, they are
special cases under one unified framework. All aforementioned work provide great insights from
different perspectives, while we go with a new one: good practices.

Good practices in deep learning Deep models are known to be sensitive to training techniques. A
small change in network architecture or learning schedule can significantly impact the final perfor-
mance. Numerous good practices have been proposed over the last decade and lead to the current
deep learning era. The great success of AlexNet (Krizhevsky et al., 2012) benefits from using color
augmentation, Dropout layer and ReLU activation. Gulrajani et al. (2017) stabilizes the training of
generative adversarial networks (GAN) by introducing gradient penalty, and makes GAN accessible
to more people. He et al. (2018) ensembles multiple training procedure refinements in image classi-
fication, like learning rate warmup, no bias decay, label smoothing, etc., so that stronger backbones
can be trained and transferred to downstream tasks. Similarly, Bochkovskiy et al. (2020) combines
good practices in object detection over the years and builds a more accurate and faster object de-
tector YOLOv4. Hence, good practices are important, sometimes even essential, for deep network
learning. Furthermore, it is also beneficial to understand how they work, which could be inspiration
for further improvement.

7 CONCLUSION

In this paper, we dive into the details of recent contrastive instance learning methods and unravel
the mysteries behind their success. We emphasize that good practices are an integral part of the
algorithms. For example, MoCo cannot converge without momentum encoder. In particular, we
investigate on MLP projection head and find that it acts like a filter, separating the information-rich
features useful for downstream tasks from the more discriminative feature that are suitable for min-
imizing the contrastive loss. We also find that instance discrimination task does not suffer from
the semantic label shift problem presented in supervised learning. Finally, by analyzing both quan-
tity and quality of negative samples, we make an interesting observation that good practices during
training eliminate the need of using large number of negatives. We hope our empirical evidence can
provide insights and better understanding of recent progress, as well as advance future development
of self-supervised representation learning.
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