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Summary
Meta-reinforcement learning trains a single reinforcement learning agent on a distribution

of tasks to quickly generalize to new tasks outside of the training set at test time. From a
Bayesian perspective, one can interpret this as performing amortized variational inference on
the posterior distribution over training tasks. Among the various meta-reinforcement learn-
ing approaches, a common method is to represent this distribution with a point-estimate using
a recurrent neural network. We show how one can augment this point estimate to give full
distributions through the Laplace approximation, either at the start of, during, or after learn-
ing, without modifying the base model architecture. With our approximation, we are able
to estimate distribution statistics (e.g., the entropy) of non-Bayesian agents and observe that
point-estimate based methods produce overconfident estimators while not satisfying consis-
tency. Furthermore, when comparing our approach to full-distribution based learning of the
task posterior, our method performs on par with variational baselines while having much fewer
parameters.

Contribution(s)
1. We formulate a probabilistic graphical model to match the practical design of memory-

based meta-reinforcement learning agents, in order to perform uncertainty quantification
through the Laplace approximation without retraining or architecture modifications.
Context: Ours is an extension of the variational recurrent neural networks by Chung et al.
(2015), maximum a posteriori policy optimization by Abdolmaleki et al. (2018), and adopts
the control-as-inference framework (Levine, 2018).

2. We investigate how different assumptions on the posterior model over Markov decision pro-
cesses interact with representation learning and uncertainty quantification of the recurrent
neural network.
Context: The agents trained with a recurrent neural network are non-Bayesian agents to
which we try to apply a Bayesian approximation. Although we obtain a method for quanti-
fying uncertainty in their learned representation, there is still a degree of misspecification.

3. When used as an alternative to the baseline variational recurrent network, we show that our
method either matches or improves performance.
Context: This shows that our probabilistic formulation provides an alternative approxi-
mation for variational online learning while using fewer learnable parameters and without
needing architecture modifications.

4. Our results show that the recurrent neural network representations learned by non-Bayesian
meta-reinforcement learning agents, judging over multiple assumptions on the graphical
model, produces overconfident estimators.
Context: This extends prior insight by Xiong et al. (2021) that the representations of
memory-based meta-reinforcement learning agents learn inconsistent estimators.
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Abstract

Meta-reinforcement learning trains a single reinforcement learning agent on a distribu-1
tion of tasks to quickly generalize to new tasks outside of the training set at test time.2
From a Bayesian perspective, one can interpret this as performing amortized variational3
inference on the posterior distribution over training tasks. Among the various meta-4
reinforcement learning approaches, a common method is to represent this distribution5
with a point-estimate using a recurrent neural network. We show how one can augment6
this point estimate to give full distributions through the Laplace approximation, either7
at the start of, during, or after learning, without modifying the base model architecture.8
With our approximation, we are able to estimate distribution statistics (e.g., the en-9
tropy) of non-Bayesian agents and observe that point-estimate based methods produce10
overconfident estimators while not satisfying consistency. Furthermore, when compar-11
ing our approach to full-distribution based learning of the task posterior, our method12
performs on par with variational baselines while having much fewer parameters.13

1 Introduction14

Reinforcement Learning (RL) concerns itself with making optimal decisions from data (Sutton &15
Barto, 2018). This is typically achieved by letting an agent generate data in an environment and then16
optimizing a cost function of the agent’s parameters given this data. In meta-RL, an agent is trained17
to optimize an expected cost over a prior distribution of environments (Finn et al., 2017; Chen et al.,18
2017; Beck et al., 2023). The idea is then that, given a trajectory of new data, an agent can infer19
latent environment parameters and successfully adapt its action policy online. This is known as20
zero-shot or few-shot adaptation or learning (Beck et al., 2023). In recent years, this paradigm has21
shown impressive results, for example, by the Capture the Flag agent (Jaderberg et al., 2019) or the22
Adaptive Agent (Bauer et al., 2023).23

In any meta-RL algorithm, an accurate approximation of the latent parameter distribution given data,24
also known as the task posterior distribution, is useful to quantify the agent’s uncertainty (Grant25
et al., 2018). Accurate quantification of uncertainty enables agents to detect distribution shifts26
(Daxberger et al., 2021) or guide exploration through novelty signals (Osband et al., 2013; Sekar27
et al., 2020). Importantly, on deployment, distribution shift detection is essential for timely human28
intervention or retraining. This ultimately improves the robustness and efficacy of our algorithms29
and allows us to more reliably inspect failure cases.30

A common approach in meta-RL is to model the task posterior with point estimates, e.g., using the31
hidden state of recurrent neural networks (RNN) (Chen et al., 2017). However, this prevents us from32
exploiting useful distributional statistics. Another downside of using point-estimates is the increased33
risk of overconfidence unless the true posterior is sharply peaked at that particular point. This would34
imply that there exists almost no uncertainty about the environment, which is typically a strong and35
unrealistic assumption. As a consequence, point-estimate based meta-RL has been known to overfit36
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to its training distribution, leading to brittle downstream performance (Xiong et al., 2021; Greenberg37
et al., 2023).38

Arguably, a better approach would be to explicitly parameterize some full distribution (e.g., a Gaus-39
sian) (Chung et al., 2015; Zintgraf et al., 2021). However, approximate Bayesian methods are slower40
to train and are still often outperformed by simple point-estimate methods in terms of expected re-41
turns (Greenberg et al., 2023) even though they model the posterior more accurately. This could42
be explained by the fact that non-Bayesian methods enjoy reduced sampling noise, easier numeri-43
cal representation, and improved model capacity by not having to learn a complex posterior model44
(Goyal et al., 2017; Hafner et al., 2019).45

To get benefits from Bayesian methods when using non-Bayesian models, we introduce the Laplace46
variational recurrent neural network (Laplace VRNN) which utilizes the Laplace approximation to47
extend RNN-based meta-reinforcement learning. Our method can perform uncertainty quantifica-48
tion for non-Bayesian meta-RL agents without modifying the model architecture or loss function,49
and without needing to retrain any parameters. In other words, the consequence of the Laplace ap-50
proximation is that we can apply it at any point during model training. When applied after training,51
this is often referred to as a post-hoc posterior (Daxberger et al., 2021). This allows us to make use52
of deterministic pre-training schedules and benefit from their aforementioned advantages while also53
enjoying the benefits of Bayesian methods. Although the Laplace approximation has already been54
explored in meta-RL (Grant et al., 2018; Finn et al., 2018), it has not been applied in memory-based55
methods (Duan et al., 2016; Beck et al., 2023) which is what we explore.56

The Laplace approximation is a simple method that only requires the curvature of a distribution’s57
log-likelihood at a local maximum (Daxberger et al., 2021). For a Gaussian mean-field assumption58
on our posterior model (Bishop, 2007), we only require the Jacobian matrix of the RNN output59
with respect to its hidden state. This gives us a Gaussian distribution for the task posterior distri-60
bution centered at the RNN hidden state with inverse covariance equal to the sum of Jacobian outer61
products. This is a comparatively cheap approximation compared to typical methods that apply the62
Laplace approximation to the much higher dimensional neural network parameters (Grant et al.,63
2018; Daxberger et al., 2021; Martens & Grosse, 2015).64

We empirically validate that our method can reliably estimate posterior statistics of our non-65
Bayesian baselines without degrading performance on supervised and reinforcement learning do-66
mains. Similarly to Xiong et al. (2021), our results show that non-Bayesian meta-RL agents do not67
learn consistent estimators, however, we also find that the learned representations are overconfident.68
This could be seen by inspecting the post-hoc posterior provided by the Laplace approximation,69
which showed low entropy while not converging to a stable distribution. Furthermore, when com-70
paring our method against variational inference baselines, we find that our Laplace method performs71
on par in terms of mean returns. Ultimately, this shows that the Laplace approximation can com-72
plement (or serve as an alternative to) variational inference methods for uncertainty quantification,73
since we do not learn our local uncertainty but estimate this based on the model’s fitted parameters.74

2 Related Work75

Meta-Reinforcement Learning Meta-learning has been described from various viewpoints, rang-76
ing from contexts (Sodhani et al., 2022), latent-variable models (Garnelo et al., 2018; Wu et al.,77
2020; Gordon et al., 2019), amortized inference (Gershman & Goodman, 2014; Wu et al., 2020),78
and “learning to learn” (Beck et al., 2023; Wang et al., 2017; Hospedales et al., 2021). Applying79
these ideas to reinforcement learning has been gaining traction within the field recently, for exam-80
ple, learning maximum likelihood estimation algorithms (like our work) (Andrychowicz et al., 2016;81
Garnelo et al., 2018), probability density functions (Lu et al., 2022; Bechtle et al., 2021), or model82
exploration strategies (Gupta et al., 2018).83

Related to our work is the neural process by Garnelo et al. (2018) which formalizes using meta-84
learning to infer a set of (global) latent variables for a generative distribution. Since we test on85
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reinforcement learning problems, one could view our model as a type of non-stationary stochastic86
process or sequential neural process (Øksendal, 2003; Singh et al., 2019). This makes our model87
and optimization objective similar to the PlaNet model (Hafner et al., 2019), however, we do not88
condition our recurrent model on samples from the task posterior so we can obtain an analytical89
solution. This choice does reduce the non-linearity of our model, the topic of linear vs. non-linear90
state space models is still active research (Gu & Dao, 2024).91

Bayesian Reinforcement Learning Learning an optimal control policy conditional on a task-92
posterior amounts to approximating the Bayes-adaptive optimal policy (Duff, 2002). In this frame-93
work an agent is conditioned on its current state and a history of observations, the history can then94
be used to produce a belief distribution over latent variables. The Bayes-adaptive optimal policy95
maximizes the environment returns in expectation over this belief (Duff, 2002; Ghavamzadeh et al.,96
2015; Zintgraf et al., 2021; Mikulik et al., 2020). Although meta-learning induces uncertainty only97
over the reward and transition function, many have also successfully tackled the problem as a gen-98
eral partially observable Markov decision process (Chen et al., 2017; Bauer et al., 2023). Doing this99
is orthogonal to our method, however, we focus on the Bayes-adaptive framework.100

Laplace Approximation The Laplace approximation has been explored for meta-learning in, for101
example, the model agnostic meta-learning algorithm (Finn et al., 2017; 2018) to achieve more accu-102
rate inference, or for continual learning (Kirkpatrick et al., 2017) as a regularizer for weight-updates.103
The main obstacle to using the Laplace approximation in practice is the computation of the inverse104
Hessian (MacKay, 1992), which alone has quadratic memory scaling in the number of model pa-105
rameters. For this reason, in Bayesian neural networks, the block-diagonal factorization has become106
quite popular (Martens & Grosse, 2015), as used by TRPO (Schulman et al., 2015) or second order107
optimizers (Botev et al., 2017). Our method bypasses the costly Hessian problem by modeling a dis-108
tribution on a small subset of the full parameter set. In contrast to doing Bayesian linear regression109
on the last layer of a neural network, our method can express multimodal distributions.110

3 Preliminaries111

We want to find an optimal policy π for a sequential decision-making problem, which we formalize112
as an episodic Markov decision process (Sutton & Barto, 2018). We define states S ∈ S, actions113
A ∈ A, and rewards R ∈ R as random variables that we sample in sequences. We write Hi =114
{St, At, Rt}Tt=1 to abbreviate the joint random variable of episode i ∈ N,115

p(Hi) =

T∏
t=1

p(Rt|St, At)π(At|St)p(St|St−1, At−1),

where p(S1|A0, S0)
∆
= p(S1) is the initial state distribution, π(At|St) is the policy, p(St+1|St, At) is116

the transition model, and p(Rt|St, At) is the reward model. To avoid confusion, we denote episodes117
in the superscript from i = 1, . . . , n and time in the subscripts from t = 1, . . . , T . For convenience,118
we subsume the common discount factors γ ∈ [0, 1] into the transition probabilities as a global119
termination probability of pterm = 1 − γ (Levine, 2018) assuming that the MDP will end in an120
absorbing state with zero rewards. The objective is to find π∗ such that Ep(H)

∑
tRt is maximized.121

3.1 Inference in Meta-RL122

In contrast to single-task Reinforcement Learning (RL), in meta-RL we want to find the optimal123
policy π∗ to a distribution over different environments. The agent typically does not know which124
environment it is currently being deployed in and needs to adaptively switch strategies based on125
online feedback. We assume that the agent can adapt over multiple episodes H1:n, as opposed to126
only one episode H1, which is also known as zero-shot or few-shot adaptation (Beck et al., 2023).127
This approach can be formalized using the concept of global latent variables Z. For a fixed π,128
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each trajectory H that we sample depends on a sampled latent variable Z ∼ p(Z), which could be129
interpreted as a unique identifier of the current environment. Our agent does not directly observe Z,130
but this variable influences the reward and transition models of the environment.131

With full generality, we define the generative process,132

p(H1:n, Z1:n) =

n∏
i=1

p(Hi|Zi)p(Zi|Z<i, H<i), (1)

where the term p(Hi|Zi) indicates the sampling distribution of the environment under our current133
model for Z, and the term p(Zi|Z<i, H<i) denotes the posterior distribution over latent variables Z134
given all the data we have observed so far. For brevity, we do not expand the sampling distribution135
p(Hi|Zi) here (see Appendix A.1), however, this expression hides that the posterior model is also136
updated inter-episodically at every Sit , A

i
t, R

i
t ∈ Hi

t . Z
i. Note that this model is fully general, and137

is perhaps more common in continual-RL settings (Khetarpal et al., 2022), yet it reflects the model138
factorization and inference capabilities captured by most memory-based meta-RL methods (Duan139
et al., 2016). This generality can be both a feature and a downside; the agent can capture broad140
environment settings, but combined with function approximation it obfuscates what the agent learns141
and how posterior uncertainty is represented.142

Amortized Inference The posterior p(Zi|Z<i, H<i) from Eq. (1) is usually intractable; a com-143
mon approach to deal with this is to use variational inference (Bishop, 2007). This approach rep-144
resents the posterior with another distribution q ∈ Q within some simpler model class, and then145
chooses q to maximize a lower-bound to the data marginal (see Appendix A.1), i.e.,146

ln p(H1:n) ≥ max
q∈Q

Eq(Z1:n|H1:n)

n∑
i=1

ln p(Hi|Zi)−KL
(
q(Z≤i|H<i)∥p(Z≤i|H<i)

)
. (2)

This involves a functional optimization problem to be repeatedly solved at every timestep. There-147
fore, a more desirable approach is to amortize this with a learned neural network fθ that maps past148
observations and latents directly to a distribution q ∈ Q (Gershman & Goodman, 2014). In practice,149
this can be achieved by using a parametric family for qϕ and using fθ to predict the parameters150
ϕ ∈ Φ.151

To find the parameters θ that maximize the evidence lower-bound, we can derive an amortized152
learning objective. If we abbreviate the maximand from Eq. (2) as L(q,H1:n) and define fθ :153
Hn → Φ (omitting Z for brevity), we always have the inequality154

max
θ

Ep(H1:n) L(qϕ=fθ(H1:n), H
1:n) ≤ Ep(H1:n) [max

ϕ∈Φ
L(qϕ, H1:n)]. (3)

This shows that 1) with a sufficient function class for fθ and optimal parameters θ∗, we obtain155
equality when fθ∗(H1:n) = argmaxϕ∈Φ L(qϕ, H1:n),∀H1:n ∈ Hn, and 2) θ∗ can be obtained156
through a straightforward training procedure. The l.h.s. requires us to be able to sample from157
p(H1:n), and that L is end-to-end differentiable with respect to θ, which enables the use of stochastic158
gradient methods (Kingma & Ba, 2017).159

From Inference to Control So far, we have mostly discussed how meta-RL agents can perform160
inference to latent variables of the environment for a fixed policy π. To define optimal behavior in161
the generative process we extend the probabilistic model of Eq. (1) using the control as inference162
framework (Levine, 2018). This enables us to apply our Bayesian tools directly to our RL-agent in163
a theoretically sound manner and, for specific design choices, recovers the typical meta-RL training164
objective (Duan et al., 2016; Wang et al., 2017).165

Control as inference reformulates classical RL as an inference problem by conditioning the distribu-166
tion over trajectories p(Hi) on a desired outcome O. This outcome O ∈ {0, 1} is a binary variable167
indicating whether a trajectory achieves the outcome (1) or not (0). The likelihood of this outcome168
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given a trajectory Hi follows the exponentiated sum of rewards, p(O = 1|Hi) ∝ exp(
∑
tR

i
t).169

Using Bayes rule, we can then infer the desired policy as p(Hi|O = 1).170

Similarly to the latent variable posterior qϕ, we can estimate p(H1:n|O = 1) through variational171
inference by defining a lower bound to the log-likelihood of the outcome variable ln p(O = 1|H1:n)172
using a variational policy qπ(Ait|Sit , Zit). Given our choice for the outcome likelihood, this recovers173
a regularized RL objective (Geist et al., 2019) (see the derivation in Appendix A.1.2),174

L(qϕ, qπ) = Eqϕ(H1:n,Z1:n)

n∑
i=1

Ti∑
t=1

Rit −KL (qπ∥π) (4)

−KL
(
qϕ(Z

i
t |Z

≤i
<t , H

≤i
<t)∥p(Zit |Z

≤i
<t , H

≤i
<t)
)

which is an extension of the MPO objective by Abdolmaleki et al. (2018) to include the latent-175
variable posterior and its KL-term. The indexing of the conditional is slightly overloaded for brevity,176
it indicates that the task posterior is conditioned on all prior data.177

Unfortunately, this lower-bound does not give a practical training objective for both inference or178
amortization as shown in Eq. (3), nor does it find the optimal policy given a fixed π. Therefore,179
practitioners often include the following design choices.180

1. The true posterior p(Zit |Z
≤i
<t , H

≤i
<t) is substituted by the previous variational posterior181

q(Zit−1|Z
≤i
<t−1, H

≤i
<t−1), using only a “true” prior p(Z0) at time and episode 0 (Hafner et al.,182

2019).183

2. The policy π is iteratively updated to the variational optimum qπ (Abdolmaleki et al., 2018).184

3. KL-penalties are scaled by parameters βπ, βq .185

Finally, observe that the amortized objective for Eq. (4) (i.e., substituted into Eq. (3)) recov-186
ers the typical memory-based meta-RL objective when using a point-estimate (Dirac posterior)187
qϕ(Z| . . . ) = δ(ϕ− Z) and ignoring the KL-penalties (Duan et al., 2016).188

4 Laplace Variational RNNs189

We introduce the Laplace variational recurrent neural network (Laplace VRNN) to make a relatively190
simple approximation to the variational task posterior qθ ≈ q̂θ, to be used in the lower-bounds191
of Eq. (2) and Eq. (4), using the Laplace approximation (MacKay, 1992; Daxberger et al., 2021).192
This enables the construction of proper distributions over the latent-variables without introducing193
additional variational parameters. The idea is that we use this to extend point-estimate methods194
(i.e., base RNNs) to use distributions at any point during training. For exposition, we introduce our195
approximation starting from a simpler variational distribution qϕ(Zt|H<t), dropping superscripts.196
The full derivation is given in Appendix A.3.197

We use the predicted distribution parameters ϕt = fθ(H<t) as a helper variable, and interchange the198
notation qϕt

(Zt|H<t) = qθ(Zt|H<t, ϕt). Most importantly, the statistical amortization by Eq. (3)199
allows us to interpret the mapping fθ : H 7→ ϕ as a learned summary statistic for the distribution200
of Z; i.e., a maximum a posteriori estimate. We assume that ϕt is computed autoregressively with a201
recurrent neural network (RNN) such that ϕt+1 = fθ(St, At, Rt;ϕt).202

We then factorize using a mean-field assumption,203

qθ(Zt|H<t, ϕt) =
1

qθ(Zt|ϕt)t−2

t−1∏
i=1

qθ(Zt|Si, Ri, Ai, ϕt),

= exp[(2− t) ln qθ(Zt|ϕt) +
t−1∑
i=1

ln qθ(Zt|Si, Ri, Ai, ϕt)]

= exphθ(Zt;H<t, ϕt), (5)
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which gives us the target function hθ that we wish to approximate (for the first step, see Lemma 1;204
Appendix A.2). For a given θ and data H<t, we use the second order Taylor expansion of hθ ≈ ĥθ205
linearized at ϕ = ϕt, we then exponentiate ĥθ and renormalize. Assume that ϕt is maximum a206
posteriori to qθ(Zt|H<t, ϕt), then we obtain the Laplace approximation,207

qθ(Zt|H<t) ≈
exp ĥθ(Zt;H<t, ϕt)∫
exp ĥθ(z;H<t, ϕt)dz

= N (ϕt,∇2
ϕ ln qθ(Zt|H<t, ϕ)|ϕ=ϕt

), (6)

where ∇2
ϕ ln qθ is the Hessian of our log-posterior.208

To complete our model from Eq. (2) and Eq. (4), we can solve the expectation over Eqθ(Z<t|H<t)209
for the posterior qθ(Zt|H<t, Z<t) at each time-step t, by assuming a convolution of Gaussian den-210
sities. The result of this convolution is well-known to be another Gaussian with summed parameters211
(Bromiley, 2003),212

µt = ϕt +

t−1∑
i=1

µi, (7)

Λt = −∇2
ϕ ln qθ(Z|H<t, ϕ)|ϕ=ϕt +

t−1∑
i=1

Λi. (8)

In practice, we use a smaller window Hk:t−1 and Zk:t−1 inside the conditional for efficiency. In213
summary, this implements an RNN where we sum the last k hidden states and covariances for the214
output-Gaussian, and where the covariances are produced by the Hessian of the log-posterior with215
respect to the hidden state.216

The assumption that ϕt is maximum a posteriori is quite strict and assumes equality in the amor-217
tization objective Eq. (3). For a sub-optimal θ or insufficient function class fθ, this can induce a218
first-order error in the Taylor expansion of the variational log-posterior, which results in a worse219
approximation. Furthermore, most RNN methods do not sum their hidden states for the predictive220
model, which mismatches our formulation. It is also not obvious what representations RNN-based221
meta-RL agents learn and, thus, which model factorization would best suit the agent for construc-222
tion of our Laplace approximation. We investigate these technicalities and assumptions in the next223
section.224

Special Case Our method obtains a particularly nice form if we choose qθ(Zt|Si, Ai, Ri, ϕt) to225
be standard Gaussian and use an uninformative prior for qθ(Zt|ϕt). In that case, the Hessian of the226
log-posterior qθ(Zt|H<t, ϕt) becomes a sum of outer products of our RNN state Jacobians w.r.t. ϕ.227
Let xi = (Si, Ai, Ri), this gives the inverse covariance,228

Λt =

t−1∑
i=1

(∇ϕfθ(xi;ϕ)|ϕ=ϕt)(∇ϕfθ(xi;ϕ)|ϕ=ϕt)
⊤, (9)

which is cheap to compute with forward accumulation (Bradbury et al., 2018), see Prop. 2 in Ap-229
pendix A.3.230

Posterior Predictive If we now choose a policy π(At|St, Zt) that is linear in Zt, then our full231
model would recover a type of Gaussian process (Immer et al., 2021; Rasmussen & Williams, 2005).232
However, we model this term with another neural network πψ(At|St, Zt) to improve expressiveness.233
Our policy is then defined by the posterior predictive πψ(At|St, H<t), which we compute using234
Monte-Carlo,235 ∫

πψ(At|St, zt)qθ(zt|H<t)dzt ≈
1

k

k∑
i=1

πψ(At|St, Zt = z(i)), z(i) ∼ qθ(Zt|H<t), (10)
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Figure 1: Final performance on the zero-shot regression task in terms of predictive cross-entropy,
this should decrease over time. The left column shows results for complete model training, the
middle and right columns perform model pre-training with the RNN (black). The middle column
includes parameter finetuning, the right column does not. The blue dashed line indicates the training
cut-off (T = 50).

overloading superscripts to index Monte-Carlo samples. This induces a finite mixture for the policy236
where k = 1 corresponds to posterior sampling (Osband et al., 2013). The parameters θ and ψ were237
trained jointly in an end-to-end manner (as defined in the l.h.s. of Eq.(3)).238

Interestingly, during training we found output aggregation to train more stably in the loss when239
k > 1. Thus, during training we chose to average the predicted logits of πψ over samples z(i), or240
in the continuous case, we averaged over the parameters of a parametric distribution (Wang et al.,241
2020), e.g., the mean and variance of a Gaussian (see Appendix B.3 for a discussion).242

5 Experimental Validation243

In order to apply our method to memory-based meta-RL agents in a manner that didn’t alter the244
network architecture, we required a few extra simplifications to our more general model from Sec-245
tion 4. Crucially, for the non-stationary assumption on the log-posterior only, this required us to246
omit the mean aggregation of Eq. (7). This wasn’t needed for the stationary factorizations, see Ap-247
pendix A.3.1 for a more detailed discussion. To evaluate our factorizations and design choices, we248
performed experiments to answer the following:249

1. Utility: Does our method give useful posterior statistics for a non-Bayesian baseline?250

2. Sensitivity: What model assumptions for the Laplace VRNN are empirically effective?251

3. Performance: When used as an alternative to variational inference, does the Laplace VRNN252
perform at least on par with existing methods?253

Our point-estimate (RNN) baseline was implemented with a long-short term memory architecture254
(Hochreiter & Schmidhuber, 1997). The VRNN baseline (Chung et al., 2015) extends the RNN255
by predicting the mean and covariance for a Gaussian distribution as a transformation of the RNN256
output. For the RNN and VRNN we assumed a stationary factorization of the posterior qθ(Zt|Ht−1),257
which is a simplification of the fully general posterior shown in Eq. (1) and most accurate to the true258
generative process. We intermittently created model snapshots of the point-estimate baseline (RNN)259
and finetuned these snapshots over our parameter grid for the Laplace VRNN and VRNN.260

All experiments were repeated over r = 30 seeds (number of network initializations), we tested261
intermediate model parameters by measuring their in-distribution performance and model statistics262
for B = 128 samples (number of test-tasks). We report 2-sided confidence intervals with a confi-263
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Figure 2: Evolution of summary statistics for the posterior model during testing. The top row
shows the KL-divergences between consecutive posteriors qt and qt+1, and the bottom row shows
the model entropy over time. In principle, we expect all lines to decrease gradually with more
observations. When applying our Laplace approximation with summed covariances (green) after
deterministic pre-training (right-column), we see that the posterior becomes more and more confi-
dent but does not converge to a stable distribution.

dence level α = 0.99 for each metric X aggregated over the seeds r and the test-tasks B. For the264
full details on the experiment and baseline setup, see Appendix B (code available upon publication).265

5.1 Supervised Learning266

As a didactic test-setup, we evaluated our method on noiseless 1D regression tasks. We267
generated data by sampling parameters to a Fourier expansion and then sampling datasets268
{{(Xi, fj(Xi))}Ti=1}nj=1 where each Xi ∼ Unif(−1, 1), fj ∼ pFourier(f), and n = 256, T = 50.269
During training, we optimized a lower bound for a supervised domain using a weight for the KL-270
term of β = 10−2 (see Eq. (2); Appendix A.1.1). During testing, we computed the predictive271
cross-entropy (CE) with the true data-generating distribution and our model. So, at each step t, we272
usedHt = {Xi, f(Xi)}ti=1 to estimate the posterior predictive distribution Eqθ(Zt|Ht)pθ(Yi|Xi, Zt)273
with Monte-Carlo usingm = 30 samples. The predictive CE was estimated using Monte-Carlo over274
a large test dataset.275

Variations Our Laplace VRNN used a stationary qθ(Zt|H<t) assumption (Laplace: Stationary;276
red) and a Markovian qθ(Zt|Ht−1, Zt−1) assumption (Laplace: Sum Σ; green) on the graphical277
model from Eq. (1). In practice, the stationary model computes the covariance for each datapoint278
in H<t at each t, whereas, the Markovian model sums the covariances for each pair (Xi, Yi). To279
reduce clutter, we only show the Laplace VRNN ablation that sums the covariance, which also per-280
formed best among our variations (c.f., Appendix C.1). We tested both diagonal and full covariance281
matrices.282

Results As shown in Figure 1, across our comparisons the predictive CE goes down initially (ex-283
cept for the post-hoc stationary Laplace VRNN), however slightly increases again after the size of284
the dataset exceeds that seen during training T > 50. Notably, we see that our stationary Laplace285
VRNN strongly degrades performance when not used at the beginning (red), most notably the full-286
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Figure 3: Average return curves during training for the Reinforcement Learning experiments. The
dashed and solid lines (Num Z) indicate the number of Monte-Carlo samples used for the posterior
model during training inside the modified lower bound of Eq. (4), to validate off-policy robustness
in our loss. As expected, the deterministic RNN performs best, but our Laplace VRNN also outper-
forms the baseline VRNN.

covariance variation. This could be an indication that the Laplace approximated posterior is too287
wide, whereas the point-estimate is extremely sharp, causing samples from our method to be out-288
of-distribution for the predictive model. In contrast, this result also shows that our method with289
the Markovian assumption (green) performs at least as well as the baselines in all cases while also290
providing a Bayesian posterior for the RNN after training.291

5.2 Reinforcement Learning292

To show that our method can perform uncertainty quantification while maintaining strong perfor-293
mance in reinforcement learning problems, we evaluated our method on a stochastic 5-armed bandit294
and a deterministic 5 × 5 gridworld with sparse rewards. We tested all models using a variant of295
recurrent PPO (Schulman et al., 2017) as a simple approximation for Eq. (4). During training, we296
used a batch size of B = 256 task samples and a sequence length of T = 50 interactions with the297
bandit and T = 100 for the gridworld task.298

For the bandit, we generated training tasks by sampling reward probabilities from a Dirichlet prior299
using α⃗ = 0.2. In this domain we only condition our policy on the sampled model hypotheses300
zt ∼ qθ(Zt|Ht), at ∼ πθ(Z = zt) as is typical in Thompson sampling (Osband et al., 2013).301
This experiment also aimed to investigate robustness to model sampling noise. For the gridworld302
(Zintgraf et al., 2021) we sampled tasks by generating the agent’s start- and goal-tile uniformly303
randomly across the grid. In contrast to the bandit problem, the gridworld agent modeled the task304
as a Bayes-adaptive Markov decision process (Duff, 2002). Meaning that the policy conditions on305
both the model samples Z and the current state, at ∼ πθ(Z = zt, S = st).306

Variations As before, we test different assumptions for our Laplace VRNN agent’s model307
from Eq. (1). In this instance, we used a windowed version of the stationary Laplace VRNN308
qθ(Zt|Ht−w−1:t−1) for w = 10 (red). I.e., this truncates the history up to a certain timestep to309
improve the runtime of the covariance computation, which otherwise scales in O(t)-time. We also310
tested two variations of the Markovian qθ(Zt|Ht−1, Zt−1) factorization, which scaled in O(1)-time.311
The proper-Markovian method (blue) sums the mean and covariance computed at each state-action312
(St, At) whereas the second variant only sums the covariance (green).313

Results We visualize the evolution of estimated posterior statistics during testing in figure 2, where314
we removed the ablation that sums both the mean and covariance (blue) to reduce clutter (this ab-315
lation performed in between the other two, see Appendix C.3). We plotted the differential entropy316
of the posteriors qθ and the consecutive KL-divergences KL(qθ(Zt| . . . )∥qθ(Zt−1| . . . )) between317
posteriors over time, to see whether their behavior matches that of the true posterior. For the true318
posterior, we expect the entropy to decrease gradually with more observations T , which indicates319
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that our model concentrates around some true value. Furthermore, the KL-divergences should con-320
verge to zero.321

As expected, we see that the posterior entropy of the Bayesian methods reliably goes down and322
the KL-divergences gets close to zero (left-column). We see a similar pattern when doing finetun-323
ing (middle-columns) except for our stationary Laplace variation (red). Most importantly, we see324
a strong effect of our accumulating covariances variation (green) when using a post-hoc posterior325
approximation. We see that the entropy steadily decreases while the KL-divergences between con-326
secutive posteriors grows larger and larger. In contrast, the post-hoc VRNN (grey) and stationary327
Laplace (red) stay relatively constant, and are therefore non-informative. This result shows that the328
deterministic RNN does not converge to a stable hidden state when not explicitly regularized during329
training. This means that the learned estimator becomes more and more confident while not being330
consistent (Xiong et al., 2021).331

The average training returns for our model ablations are shown in Figure 3. As argued in the intro-332
duction, we find that the deterministic method (black) has strong performance while also being the333
least noisy in the mean episode returns and being the fastest to train in terms of algorithm runtime.334
Interestingly, the proper-Markovian factorization (blue) of our Laplace VRNN showed faster learn-335
ing in the Bandit up to a certain point, whereas it degraded training performance for the gridworld.336
All Bayesian methods tested on the bandit task were significantly noisy and only achieved sub-linear337
cumulative regret during test-time about 50% over all experiment repetitions. On the grid task, all338
methods achieved sub-linear cumulative regret.339

In summary, none of the ablations for our Bayesian methods degraded performance when applied340
after deterministic pre-training without finetuning (post-hoc). Our Laplace VRNN also typically per-341
formed on par with the VRNN in terms of returns. However, only our Markovian Laplace variation342
that summed the covariances (green) could produce insightful posterior statistics of the pre-trained343
model. This confirms all our research questions of whether our proposed Laplace VRNN, and what344
model assumptions, can give useful posterior statistics while not degrading performance.345

6 Conclusions346

We have described how the Laplace approximation can be applied to recurrent neural network mod-347
els in a zero-shot meta-reinforcement learning context. Our method is a cheap transformation of348
an existing recurrent network to a Bayesian model. This enables trained agents to more accurately349
model their task-uncertainty which can be used to create better or more robust methods.350

We tested our method on supervised and reinforcement learning tasks to investigate the utility of our351
approximation (the quality of posterior statistics), how it depends on model assumptions (ablations),352
and how it compares against variational inference or point-estimate baselines (no degradation in353
performance). Our results show that the proposed Laplace variational recurrent neural network354
can reliably transform existing non-Bayesian models to produce a Bayesian posterior, at any point355
during training without modifying the model or training procedure. In contrast, variational inference356
requires altering the model architecture and training setup despite matching (or underperforming)357
compared to our method.358

One limitation of our method is the computation of the Jacobians and possible restrictiveness of the359
Gaussian distribution. Furthermore, the RNN based agents required a variety of simplifications to360
our probabilistic model formulation (at least, for some of the tested configurations). Although the361
results matched expected behavior, and is consistent with prior work (Xiong et al., 2021; Mikulik362
et al., 2020), future work should investigate what the induced biases entail for our approximated363
posterior. Our method also does not fix the overconfidence of the non-Bayesian agents, but enables364
us to observe this effect. Extending our approach to enable statistically sound representation learn-365
ing or to improve exploration through e.g., distribution-shift detection in meta-RL are a promising366
directions for further study (Daxberger et al., 2021).367
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574

A Derivations575

A.1 Lower Bounds576

In this section, we derive the two lower bounds used for model training in the main paper. These577
lower bounds are not particularly new or special, they only show how one can derive a learning578
objective from a probabilistic graphical modeling perspective.579

A.1.1 Supervised Learning580

For the supervised learning domain we can derive an evidence lower bound on the data-marginal as581
a training objective for our neural network parameters in the following way. For all permutations of582
H1:n = {Xi, Y i}ni=1, where Xi ∈ X , Y i ∈ Y , we have,583

p(H1:n) =

∫
p(H1:n|z)p(z)dz (11)

=

∫
p(Xn, Y n|z,H<n)p(H<n|z)p(z)dz (12)

=

∫
p(Xn, Y n|z)p(H<n|z)p(z)dz (13)

= p(H<n)

∫
p(Xn, Y n|z)p(z|H<n)dz (14)

if we complete the recursion for p(H<n) and do importance sampling on the posterior with q, we584
get,585

ln p(H1:n) = ln

n∏
i=1

∫
p(Xi, Y i|zi)p(zi|H1:i)dz1:n (15)

=

n∑
i=1

ln

∫
p(Xi, Y i|zi)q(z

i|H1:i)

q(zi|H1:i)
p(zi|H1:i)dz1:n (16)

≥
n∑
i=1

∫
q(zi|H1:i)

[
ln p(Xi, Y i|zi) + ln

p(zi|H1:i)

q(zi|H1:i)

]
dz1:n (17)

=

n∑
i=1

Eq(Zi|H1:i) ln p(X
i, Y i|Zi)−KL(q(Zi|H1:i)∥p(Zi|H1:i)), (18)

which gives us the lower-bound for our approximate inference model when we use neural network586
parameters θ for the predictive and posterior models (overloading notation for qϕ in Eq.(3)),587

L(θ,H1:n) =

n∑
i=1

Eqθ(Zi|H1:i) ln pθ(X
i, Y i|Zi)︸ ︷︷ ︸

Prediction Loss

− β ·KL(qθ(Z
i|H1:i)∥stop_grad[qθ(Zi−1|H1:i−1))︸ ︷︷ ︸

Complexity Penalty

, (19)

where stop_grad[·] indicates a stop-gradient operation and L should be maximized with respect to588
θ. The hyperparameter β ∈ R+ accounts for differences in scaling. The stop-gradient is necessary589
so that the posterior at time t does not depend on the future. During generation and training, we also590
assume a uniform prior over the inputs p(Xi|Z) = Unif. Of course, this is just one lower bound,591
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the one we use in the main paper for the reinforcement learning tasks also assumes that each zi is592
sequentially dependent. In this case, the product would appear inside the integral in the first line for593
ln p(H1:n), this is only relevant for the Laplace VRNN that accumulates the mean and covariances.594

For simplicity, we only perform training on a single permutation of Hn (i.e., canonical order), as in595
expectation all permutations are covered anyway and this provides training batches with more di-596
verse examples. Unfortunately, when amortizing the computation of this lower bound with recurrent597
models it can be difficult to properly distill this permutation invariance of the data into the model.598
Using a recurrent model that linearly transforms the state, like a transformer (Vaswani et al., 2017;599
Katharopoulos et al., 2020) or general state space model (Bishop, 2007), would prevent this. We600
leave this open for future work.601

A.1.2 Reinforcement Learning602

Consider the joint distribution over environment traces Hi = {St, Rt, At}Tt=1 and latent variables603
Z, we’ll write episode indices (extra-episodic) i = 1 . . . , n, in the superscript and time indices604
(inter-episodic) t = 1, . . . , T , in the subscript,605

p(H1:n, Z1:n) =

n∏
i=1

p(Hi, Zi|H<i, Z<i) (20)

=

n∏
i=1

Ti∏
t=1

p(Sit , R
i
t, A

i
t, Z

i
t |Si<t, Ri<t, Ai<t, Zi<t, Z<i, H<i) (21)

=

n∏
i=1

Ti∏
t=1

p(Sit , R
i
t, A

i
t|Zit , Hi

<t)p(Z
i
t |Zi<t, Hi

<t︸ ︷︷ ︸
inter

, Z<i, H<i︸ ︷︷ ︸
extra

) (22)

=

n∏
i=1

Ti∏
t=1

p(Rit|Sit , Ait, Zit)︸ ︷︷ ︸
Reward Model

π(Ait|Sit , Zit)︸ ︷︷ ︸
Action Model

p(Sit |Sit−1, A
i
t−1, Z

i
t)︸ ︷︷ ︸

Transition Model

p(Zit |Zi<t, Hi
<t, Z

<i, H<i)︸ ︷︷ ︸
Posterior Model

, (23)

the lower-bound in Eq. 2 can then be easily derived by doing importance sampling on the posterior606
model with q, marginalizing out the latent variables, and assuming that Hi is independent of all607
other variables given the latent-variable Zi,608

ln p(H1:n) = ln

∫ n∏
i=1

p(Hi, zi|H<i, z<i)dz1:n (24)

= ln

∫ n∏
i=1

p(Hi|zi)q(z
1:i|H<i)

q(z1:i|H<i)
p(zi|H<i, z<i)dz1:n (25)

≥
∫ n∑

i=1

q(z1:i|H1:i)

(
ln p(Hi|zi)− ln

q(z1:i|H<i)

p(zi|H<i, z<i)

)
dz1:n (26)

∝ Eq(Z1:n|H1:n)

n∑
i=1

ln p(Hi|Zi)−KL(q(Zi|Z<i, H<i)∥p(Zi|Z<i, H<i)). (27)

As stated in the paper, this lower bound only reproduces the data but does not maximize the rewards609
per se. So, using the control as inference framework (Levine, 2018), if we write the conditional610
that a given trajectory H is desirable as p(O = 1|H) ∝ exp(

∑T
t=1Rt), then we can derive a lower611

bound for the sampling distribution for a reinforcement learning agent as (again simplifying notation612
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for L compared to the main text),613

ln p(O = 1) = lnEq(H1:n,Z1:n)p(O = 1|H1:n, Z1:n)
p(H1:n, Z1:n)

q(H1:n, Z1:n)
(28)

≥ Eq(H1:n,Z1:n) ln p(O = 1|H1:n)−KL(q(H1:n, Z1:n)∥p(H1:n, Z1:n)), (29)
= L(q) (30)

where we define the variational distribution q(H1:n, Z1:n) to factorize in exactly the same way614
as p(H1:n, Z1:n) where we fix the reward and transition models and then modify the action and615
posterior models. This choice of factorization cancels out the fixed terms in the KL-divergence,616
giving us the lower bound (Eq.(4) in the main-text),617

L(q) = Eq(H1:n,Z1:n)

n∑
i=1

Ti∑
t=1

Rit −KL
(
q(Ait|Sit , Zit)∥π(Ait|Sit , Zit)

)
(31)

−KL
(
q(Zit |Zi<t, Hi

<t, Z
<i, H<i)∥p(Zit |Zi<t, Hi

<t, Z
<i, H<i)

)
. (32)

To amortize computation of this lower bound and make this practical to compute, we parametrize618
the variational posterior qθ(Z| . . . ) and action model πψ(A| . . . ). To then finally give us a practical619
optimization objective for the parameters θ, ψ, we substitute for the action model π(A| . . . ) = πψold

620
and for the true posterior we simply use qθ(Z| . . . ) with a stop-gradient □. We scale the KL-penalty621
with a hyperparameter β ∈ R+ to account for differences in scaling. This gives us our final lower-622
bound,623

L(θ, ψ) = Eqθ(H1:n,Z1:n)

n∑
i=1

Ti∑
t=1

Rit −KL
(
πψ(A

i
t|Sit , Zit)∥πψold

(Ait|Sit , Zit)
)

(33)

− β ·KL
(
qθ(Z

i
t |Zi<t, Hi

<t, Z
<i, H<i)∥□qθ(Zit−1|Zi<t−1, H

i
<t−1, Z

<i, H<i)
)
,

which we can plug into the l.h.s. of the amortization objective in Eq. (3) enabling us to optimize our624
model parameters through sampling and end-to-end differentiation from the policy to the posterior.625
Although this is the objective we desire, we make further heuristic approximations through the626
use of the Proximal Policy Optimization algorithm (Schulman et al., 2017). This could roughly627
be interpreted as doing expectation-propagation (Bishop, 2007) on the policy (i.e., swapping the628
KL-arguments for the policies).629

Our lower bound is an extension of the one by Abdolmaleki et al. (2018), for standard Markov deci-630
sion processes, to include the latent variable posterior for use in memory-based meta-reinforcement631
learning (Duan et al., 2016). When using an RNN to approximate the posterior, the KL-penalty for632
qθ(Z| . . . ) is typically ignored since this is undefined for point-estimates. Doing this would recover633
the RL2 objective in combination with MPO (Abdolmaleki et al., 2018; Duan et al., 2016).634

A.2 Posterior Factorization635

To choose an efficient factorization for our variational model we need the following result,636

Lemma 1. We can write p(Z|{Xi}ni=1) =
1

p(Z)n−1

∏n
i=1 p(Z|Xi) iff Xi ⊥⊥ Xj ,∀j ̸= i.637
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Proof. This result can be shown by applying Bayes rule then factorizing each Xi to be independent638
of Xj ,∀j ̸= i and then applying Bayes rule again,639

p(Z|{Xi}ni=1) =
p(X1, X2, . . . , Xn|Z)p(Z)

p(X1, X2, . . . , Xn)
(34)

=
p(Z)∏n
i=1 p(Xi)

n∏
i=1

p(Xi|Z) (Independence)

=
p(Z)∏n
i=1 p(Xi)

[
n∏
i=1

p(Z|Xi)
p(Xi)

p(Z)

]
(35)

=
p(Z)∏n
i=1 p(Xi)

[∏n
i=1 p(Xi)

p(Z)n

n∏
i=1

p(Z|Xi)

]
(36)

=
1

p(Z)n−1

n∏
i=1

p(Z|Xi) (37)

□640

A.3 Laplace Variational Recurrent Model641

Proposition 1. Given a mean-field assumption on the data for our posterior qθ (Lemma 1). The642
second order Taylor Expansion of ln qθ(Zt|H<t, ϕt) linearized at ϕt, where ϕt = ϕ∗ is a local643
maximizer of qθ and occupies the same space as Zt, yields the following Gaussian distribution,644

qθ(Zt|H<t, ϕt) = N
(
Zt;µ = ϕt,Σ = (−∇2

ϕ ln qθ(Zt|H<t, ϕ)|ϕ=ϕt
)−1
)
. (38)

Proof. Reiterating the results from the main paper, we choose to factorize our model as,645

qθ(Zt|H<t, ϕt) =
1

qθ(Zt|ϕt)t−2

t−1∏
i=1

qθ(Zt|Si, Ri, Ai, ϕt), (Lemma 1)

= exp

[
(2− t) ln qθ(Zt|ϕt) +

t−1∑
i=1

ln qθ(Zt|Si, Ri, Ai, ϕt)

]
(39)

= exphθ(Zt;H<t, ϕt), (40)

where our aim is to make a local approximation to hθ, the rest of the proof follows Appendix A from646
Daxberger et al. (2021).647

The second order Taylor expansion of hθ(Zt;H<t, ϕt) where ϕt (locally) maximizes hθ keeping all648
other arguments fixed, gives us,649

ĥθ(Zt;H<t, ϕ) = hθ(Zt;H<t, ϕt) +∇ϕhθ|ϕ=ϕt
(ϕ− ϕt)︸ ︷︷ ︸

= 0

+
1

2
(ϕ− ϕt)

⊤∇2
ϕhθ|ϕ=ϕt

(ϕ− ϕt),

= hθ(Zt;H<t, ϕt)−
1

2
(ϕ− ϕt)

⊤∇2
ϕhθ|ϕ=ϕt(ϕ− ϕt), (41)
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dropping the function arguments to hθ for the higher-order terms for brevity. When exponentiating650
ĥθ and renormalizing it to integrate to 1, it is easy to show that we recover a Gaussian,651

hθ(Zt;H<t, ϕt) ≈
1∫

R exp ĥθ(Zt;H<t, ϕ′)dϕ′
exp ĥθ(Zt;H<t, ϕ) (42)

=
exp{hθ(Zt;H<t, ϕt)− 1

2 (ϕ− ϕt)
⊤(−∇2

ϕhθ|ϕ=ϕt)(ϕ− ϕt)}∫
R exp{hθ(Zt;H<t, ϕt)− 1

2 (ϕ
′ − ϕt)⊤(−∇2

ϕhθ|ϕ=ϕt)(ϕ
′ − ϕt)}dϕ′

(43)

=
exp{− 1

2 (ϕ− ϕt)
⊤(−∇2

ϕhθ|ϕ=ϕt
)(ϕ− ϕt)}∫

R exp{− 1
2 (ϕ

′ − ϕt)⊤(−∇2
ϕhθ|ϕ=ϕt

)(ϕ′ − ϕt)}dϕ′
(44)

= N
(
Z;µ = ϕt,Σ = (−∇2

ϕ ln qθ(Zt|H<t, ϕ)|ϕ=ϕt
)−1
)
. (45)

□652

Observe that the above result technically gives us a distribution over ϕ, and misleadingly not Z.653
However, this is simply a consequence of our notation and distributional assumptions for q. In654
practice, ϕ is computed by our representation model (recurrent neural network), and our probabilistic655
model conflates the learned representation ϕ as the mode of the distribution for the latent distribution656
Z.657

Proposition 2. If we choose qθ(Zt|Si, Ri, Ai, ϕ) = N (Zt;µ = fθ(Si, Ri, Ai;ϕ),Σ = In) and658
qθ(Zt|ϕ) = N (Zt;µ = ϕ,Σ = σ2

ϕIn) where we take the limit for σ2
ϕ to infinity, then our Laplace659

approximated posterior (Proposition 1) has an inverse covariance that is computed as,660

Σ−1
t =

t−1∑
i=1

(∇ϕfθ(Si, Ri, Ai;ϕ)|ϕ=ϕt
)(∇ϕfθ(Si, Ri, Ai;ϕ)|ϕ=ϕt

)⊤. (46)

Proof. To see this we only need to write down the Hessian under a local maximum assumption of661
ϕ = ϕ∗ (Laplace approximation) and substitute the chosen Gaussian distributions in for all terms.662

∇2
ϕ ln qθ(Zt|H<t, ϕ) = ∇2

ϕ

[
(2− t) ln qθ(Zt|ϕ) +

t−1∑
i=1

ln qθ(Zt|Si, Ri, Ai, ϕ)

]
(47)

= ∇2
ϕ

[
(2− t) lnN (Zt;ϕ, σ

2
ϕIn) +

t−1∑
i=1

lnN (Zt; fθ(Si, Ri, Ai;ϕ), In)

]
(48)

=
t− 2

σ2
ϕ

In +

t−1∑
i=1

(Jϕ)i
(
∇2
µ lnN (Zt; (fθ)i, In)

)︸ ︷︷ ︸
=−1

(Jϕ)
⊤
i

+

t−1∑
i=1

∇2
ϕ(fθ)i|ϕ=ϕt∇µ lnN (Zt; (fθ)i, In)︸ ︷︷ ︸
=0, when ϕt=ϕ∗ (Laplace approx.)

(49)

=
t− 2

σ2
ϕ

In −
t−1∑
i=1

(Jϕ)i(Jϕ)
⊤
i , (50)
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where we abbreviate (Jϕ)i = ∇ϕfθ(Si, Ri, Ai;ϕ) and (fθ)i = fθ(Si, Ri, Ai;ϕ). Then, in the case663
of using an infinite variance Gaussian for the prior, limσ2

ϕ→∞ ∇2
ϕ ln qθ(Zt|H<t, ϕ), we get,664

Σ−1
t =

(
−∇2

ϕ ln qθ(Zt|H<t, ϕ)|ϕ=ϕt

)
=

t−1∑
i=1

(Jϕ)i(Jϕ)
⊤
i (51)

=

t−1∑
i=1

(∇ϕfθ(Si, Ri, Ai;ϕ)|ϕ=ϕt)(∇ϕfθ(Si, Ri, Ai;ϕ)|ϕ=ϕt)
⊤. (52)

□665

A.3.1 Final Model666

To complete our fully general Laplace approximated variational recurrent neural network, we need667
to define the posterior over all previous latent variables, qθ(Zt|Z<t, H<t). We can easily plug668
this dependency in for our Laplace approximation from Prop. 1 by assuming that each consecutive669
posterior has an additive effect on all future posteriors (i.e., a Gaussian convolution),670

qθ(Zt|Z<t, H<t) = N

(
Zt;µt = ϕt +

t−1∑
i=1

Zi,Λt = −∇2
ϕ ln qθ(Zt|Z<t, H<t, ϕt)|ϕ=ϕt

)

)
. (53)

As long as we do not condition ϕt on Z<t, the dependency on past latent variables becomes a671
constant w.r.t. ∇2

ϕ, making the covariance independent of these terms. This is in contrast to a672
recurrent state-space model architecture which does condition on these values (Hafner et al., 2020),673
however, our choice permits an analytical solution. It is a known result that the expected posterior674
then becomes another Gaussian with the means and inverse covariances summed (Bromiley, 2003),675

Eqθ(Z<t|H<t)qθ(Zt|Z<t, H<t)

= N

(
µt = ϕt +

t−1∑
i=1

µi,Λt = −∇2
ϕ ln qθ(Z|H<t, ϕ)|ϕ=ϕt

+

t−1∑
i=1

Λi

)
. (54)

This particular form has also been described by Ritter et al. (2018) in the context of continual learn-676
ing. It is easy to accumulate the mean and covariances terms sequentially over t. Depending on the677
assumptions one makes on the data-generating distribution, one can sum over fewer terms to make678
the calculation more efficient. The ones we ran experiments for in the main paper include:679

1. Stationary Posterior: qθ(Zt|H<t). Full summation over H<t in the calculation of Λt. No680
summation over previous posteriors Z<t.681

2. Markov Chain Posterior: qθ(Zt|Ht−1, Zt−1). The inverse covariance is calculated only using682
the most recent observation t − 1. Only the previous posterior mean and precision are summed683
with the current mean and precision.684

3. Windowed Markov Chain Posterior: qθ(Zt|Hk:t−1, Zt−1). The inverse covariance is calcu-685
lated using the k most recent observations. Only the previous posterior mean and precision are686
summed with the current mean and precision.687

However, these are all simplified models, whereas the variational recurrent model (Chung et al.,688
2015) we discuss in the main paper is fully general.689

On summation of the means The current formulation for the probabilistic model mismatches690
with typical recurrent neural network (RNN) architectures. Typically, RNN models do not aggre-691
gate their past hidden states for the outputs. However, as discussed in the main paper, we strictly692
required this simplification for the Markov chain (non-stationary) factorizations, since this was the693
only approach that would leave the base RNN architecture untouched. Despite that, we can make694
two heuristic arguments that can partially explain the effect of summing all the previous covariances695
but omit summation of the mean:696
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• Representation Learning: When using covariance summation throughout training (no post-hoc697
posterior, or finetuning of deterministic baselines), an RNN can learn to represent the hidden state698
aggregation implicitly within the state-update.699

• Exponential Tilting: Omitting the mean summation can be interpreted as a form of exponential700
tilting of Gaussian distributions. This is an importance-sampling technique for rare-event simu-701
lation (Asmussen & Glynn, 2007). For the correctly chosen tilting parameter, this can have the702
same effect as subtracting all previous means (at the cost of some bias).703

B Implementation Details704

B.1 Model Architecture and Optimization705

Following the main text we can define our model according to the following components,706

Embedding Sgt , A
g
t , R

g
t = gθ(St), hθ(At), wθ(Rt),

Recurrent Model ϕt+1 = fθ(S
g
t , A

g
t , R

g
t ;ϕt),

Posterior Model Zt ∼ qθ(Zt|H<t, ϕt),

Reward Model R̂ ∼ pθ(R̂|Zt, Ag, Sgt ),
Action Model At ∼ πθ(At|Zt, Sgt ),

note that we do not train an action model for the supervised experiments, and we do not use the707
reward model in the reinforcement learning experiments (i.e., we do not use it to select actions or to708
do planning). In the supervised case, the reward model simply learns a direct function prediction R̂709
where the state can be considered stationary. For brevity, we denoted the full set of parameters as710
θ, in practice each component has its parameters but we jointly optimize for these using end-to-end711
differentiation.712

For the embedding model we used a multi-layered perceptron (MLP) (Cybenko, 1989) of two hidden713
layers of width 256 nodes, we used leaky-ReLU for the activation. The action and predictive model714
used a three hidden layer MLP with sizes (256, 256, 64), also with leaky-ReLU. For the recurrent715
model, we use a long-short-term memory module (Hochreiter & Schmidhuber, 1997) with n = 128716
hidden nodes. We projected the outputs (not the carried state) of the LSTM to a smaller n = 64717
feature output vector with a learned affine transform (i.e., a 1-layer MLP without an activation).718

For discrete environments, the action model predicted the n logits for the full action space. For the719
regression task, the reward model outputs a Gaussian with a learned mean and input-independent720
variance.721

As noted in the main paper, we apply stop-gradients on the prior term appearing in the KL-722
divergences (Eq. 2 and Eq. 4). Doing this prevents past posteriors from fitting to data beyond their723
respective timestep, while still constraining our current posterior to not deviate too much from these724
terms. We also apply stop-gradients to the past mean and covariance terms when accumulating these725
terms. This is only relevant for the Laplace VRNN ablations. The reasoning for this is the same as726
for the stop-gradient in the KL term, we want to use the past means and covariances as constants727
at timestep t, and not as another learnable parameter. As a side note, we also found that doing this728
sped up training orders of magnitude.729

We developed everything discussed in this paper in Jax v.0.4.23 (Bradbury et al., 2018). For neural730
network design, we used the Flax library v0.8.1 (DeepMind et al., 2020). For optimization, we731
used the Adamw optimizer (Loshchilov & Hutter, 2019) implemented in Optax with learning-rate732
= 10−3, weight-decay = 10−6, and the rest on default settings at version v0.1.7. We used gradient-733
clipping to have a max global norm of 1.0 and a maximum individual gradient of [-5.0, 5.0]. We734
used our implementation for the PPO algorithm with help from the RLax library to compute the735
generalized advantage estimators. For a full list of dependencies, requirements, and program flags,736
our code will be made available upon publication.737
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B.2 Variational Posterior Baseline738

As discussed in the main paper, typically in meta-reinforcement learning we see that the posterior739
qθ(Zt|H<t) is modeled with a point-estimate and we propose to use the Laplace approximation to740
convert this point-estimate into a Gaussian distribution. Instead of computing the covariance matrix741
using the Laplace approximation, we can also directly predict this covariance with another neural742
network.743

So, our variational recurrent neural network (VRNN) baseline predicted them(m−1) lower triangu-744
lar elements of the m×m dimensional covariance matrix (or just m for the diagonal ablations) and745
them dimensional mean. We opted for a spectral decomposition Σ = USV where S is diagonal and746
U was predicted through the Cayley map starting from a skew-symmetric matrix. First, we compute747
ϕt with our RNN, then we project ϕt to µt, St, Lt with a linear layer such that µt ∈ Rm, St ∈ Rm×m748
is diagonal and Lt ∈ Rm×m is lower-triangular, we then compute Ut = (I −At)(I +At)

−1 where749
At = Lt − L⊤

t to get an orthogonal eigenbasis. We then construct the Gaussian as,750

qθ(Zt|H<t, ϕt) = N (Zt;µ = µt,Σ = Ut(expSt)U
⊤
t ), (55)

this representation also made matrix inversion incredibly easy as (UeSV )−1 = Ue−SV since U =751
V ⊤ are orthogonal.752

The reason for using the spectral decomposition was that we did not achieve stable training using753
any variant of the Cholesky factorization for the covariance matrix (LU or LDU decomposition),754
even if explicitly transforming the eigenvalues to be positive. We suspect that the spectral parame-755
terization trained more stably than the LU or LDL parameterization as the basis matrices U or V are756
constrained to the group of orthogonal matrices. Therefore, each element in the predicted parame-757
ters Ln is also constrained. In contrast, the LDL parameterization leaves the triangular parameters758
in an unconstrained representation which might enable an unstable representation. However, we did759
not investigate this problem beyond what was needed to get our method working.760

We also did not accumulate the mean or covariances for the VRNN, unlike for the Laplace VRNN,761
as this model parameterization could simply learn this function instead (or learn to undo this param-762
eterization). The point of our experiments was not to squeeze performance out of our baseline but to763
have a strong reference for comparison. We also found that the VRNN was highly competitive with764
the Laplace VRNN.765

B.3 Predictive Ensemble Averaging766

Since we sample latent variables Z from our posterior qθ, when we pass multiple samples through767
our predictive model or the action model, we obtain multiple distributions for the output modalities.768
Typically this induces a mixture distribution, however, we simply averaged out either the logits or769
the means and variances (Wang et al., 2020). This can be interpreted as a normalized Gaussian con-770
volution over the output parameters or simply as a kind of bagging strategy over ensemble members771
Z = z(i), i = 1, . . . , k.772

The reasoning for opting for ensemble averaging instead of mixture distributions is that this simply773
achieved more stable training in combination with PPO (Schulman et al., 2017). The main problem774
was caused by the penalty term of the policy entropy, our implementation did not achieve stable775
training when approximating this term in any way (so neither with mixtures nor with singular distri-776
butions), we only achieved stable training when the entropy term could be computed exactly.777

We did not investigate in depth why an approximate entropy loss caused training divergence, but778
we speculate this is due to the problems of training on generated data as discussed in the context779
of language models by Shumailov et al. (2023). In this case, the tails of the action distribution780
slowly shrink over time as Monte-Carlo estimation of the entropy might not cover low-likelihood781
events sufficiently with small sample sizes. This phenomenon is referred to as model collapse, not782
to be confused with posterior collapse (Goyal et al., 2017). We suspect that this problem could be783
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reduced by using a proper (approximate) Bayesian inference algorithm, like maximum a posteriori784
optimization (Abdolmaleki et al., 2018), which essentially removes the instability of reinforcement785
learning losses by casting policy learning as a supervised learning problem.786

B.4 Environment Design787

For our testing environments we implemented three problem domains, a 1D function regression788
problem (Finn et al., 2017), a discrete n-armed bandit problem (Duan et al., 2016), and an n × n789
open grid problem (Zintgraf et al., 2021), as shown in Figure 4. We generated many variations of790
these environments to learn from by sampling their dependent task parameters.791

X

Y

Function Regression
Model
True
Observed

1 2 3 4 5
p = 0.00

p = 0.46

p = 0.00

p = 0.41

p = 0.13

n-armed Bandit

Goal!

Open Grid

Figure 4: Visualization of sampled tasks we evaluated our method on. 1) Zero-shot learning of
a function (left), 2) learning a stochastic best-arm selection algorithm (middle), and 3) learning a
deterministic grid exploration agent (right).

Supervised. For the supervised problem we generated noiseless 1D test-functions on the bounded792
domain [−1, 1]. We did this through a Fourier expansion of n = 4 components where we randomly793
generate amplitudes, phase shifts, and input shifts. We manually tuned the ranges for these param-794
eters and sampled uniformly random within these ranges. In other words, we can define the joint795
distribution over a function dataset as,796

p(X,Y ) = δ(Y = FourierSum(Y ;X,φ1:n, cshift, A0:n)) · Unif(X;−1.0, 1.0), (56)
cshift ∼ Unif(0.0, π), φi ∼ Unif(0.0, π), Ai ∼ Unif(−1.0, 1.0) (57)

where the ’FourierSum’ is computed in its amplitude-phase form. The training was performed with797
50 examples per sampled function.798

Bandit To generate bandit problems we used a Dirichlet distribution with α = 0.2 during training799
and α = 0.3 during testing (higher α makes the problem more difficult), this gave us a normalized800
vector of probabilities, pn ∼ Dir(α = 1n · 0.2) for which the agent needed to find maxi pi. Ob-801
servations (which are equivalent to the rewards) were generated by sampling Bernoulli outcomes802
given pi. Since each interaction of the agent with the bandit is seen as an episode, the environment803
returned discount factors of γ = 0. The training was performed over 50 total interactions.804

Gridworld For the discrete grid environment we closely match the implementation of (Zintgraf805
et al., 2021). We reimplemented this environment in Jax to benefit from GPU acceleration for the806
data-generation process. The environment constructs a n× n open grid for the agent and uniformly807
randomly initializes the start and goal state (such that they don’t overlap). The agent can choose808
between moving up, down, left, or right, the environment transitions deterministically but does not809
move the agent if it moves outside the bounds. The agent is rewarded with +1 if it encounters the810
goal and 0 otherwise, the observations were constructed as two one-hot-encoded vectors for the row811
and column index. The goal tile is not observed. If the agent did not find the goal within T = 15812
steps it would be reset to its starting state and the discount factor would be set to γ = 0 at that813
transition. The training was performed over 100 total interactions.814
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B.5 Experimental Design and Hyperparameters815

The supervised experiments did not provide additional hyperparameters to set, all necessary param-816
eters were learned using an empirical cross-entropy with the data (see the main paper). For the817
reinforcement learning experiments we needed to set several hyperparameters for PPO (Schulman818
et al., 2017), these are given in Table 1. We did not use mini batching for our version of recurrent819
PPO and accumulated the loss over the full trajectories and batches. We found that larger batch sizes820
gave us faster and more stable learning.821

Table 1: Proximal Policy Optimization loss parameters. Note that we use our Recurrent implemen-
tation for this algorithm.

Name Symbol Value

Minibatches Full-Batch

Batch-Size 256

TD-Lambda λ 0.9

Discount γ 0.9

Policy-Ratio clipping ϵ 0.2

Standardize Advantages False

Exact Policy Entropy True

Value Loss Scale 1.0

Policy Loss Scale 1.0

Entropy Loss Scale 0.1

Then our experimental design implied running an exhaustive parameter grid over the domain pre-822
sented in Table 2. This grid was adjusted over successive experiments to reduce the computational823
footprint, this was manually tuned to select the parameter values that performed the best for both824
the baseline and our method. The parameter grid was applied equivalently on all problem domains825
for r = 30 distinct seeds. Although this experiment design is still quite modest, running this full826
grid induces 144 distinct configurations times 30 repetitions for the Laplace VRNN alone. One827
single run took on average 1 1

2 hour to complete for the gridworld environment on an A100 80GB828
NVIDIA GPU. Although, a better learning algorithm other than PPO (e.g., MPO), and minibatch829
optimizations could probably get the wallclock time down drastically while still achieving similar830
performance.831

For the finetuning experiments we essentially made model snapshots of the deterministic baselines832
(RNNs) and reran the ablations as shown in Table 2 using the snapshots as starting weights. For each833
experiment, these snapshots were taken halfway, and three-quarters way during training in terms of834
the number of weight-updates.835

To make some final informal notes on the choices for the parameters,836

• We found that scaling the KL-penalties in the lower bound with hyperparameters that were slightly837
larger than β > 10−2 caused posterior collapse (Goyal et al., 2017). Meaning, our posterior838
simply fitted its parameters to always match the prior despite accumulating more data.839

• For the regression problem, using multiple samples for z(i) inside the lower bound decreased the840
predictive loss a lot. Showing that integration over the predictive is effective. Although, this did841
not result in better test-time performance.842

• Using a small buffer size for the history window in the posterior qθ(Zt|Ht−k:t−1) is more practical843
since the computation of the Jacobians is the main bottleneck of our method. We found that844
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Table 2: Proximal Policy Optimization loss parameters. Note that we use our recurrent implemen-
tation for this algorithm. All configurations were repeated for r = 30 repetitions (distinct random
seeds). We also drop configurations that do not induce a valid model, e.g., kZ = 0 and accumulation
of Σ is not a valid configuration since there is no window to accumulate over.

Name Symbol Value

Deterministic RNN

Posterior Dimensionality n {32, 64}

Variational RNN

Posterior Dimensionality n {32, 64}

Covariance Parameterization {Full, Diagonal}

Posterior KL-Penalty β {1.0, 10−2, 10−4}

Number of Posterior Samples nZ {1, 5}

Laplace VRNN

Posterior Dimensionality n {32, 64}

Covariance Parameterization {Full, Diagonal}

Posterior KL-Penalty β {1.0, 10−2, 10−4}

Number of Posterior Samples nZ {1, 5}

History Buffer Window kH {1, 10}

Latent Variable Window kZ {0, 1}

Accumulation {(µ,Σ), Σ}

accumulation of only the covariance where each covariance is computed with a window of just845
1, Ht−1 results in the fastest method (in wallclock time) while being on par with many of the846
ablations.847
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C Supplementary Results848

C.1 Supplementary Supervised Results849
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Figure 5: Progression of the predictive error during supervised model training of all ablations. Ab-
lations are averaged over parameter groups as indicated by the legend. This figure does not show
the finetuning results. To reduce computation time for subsequent results, we picked β = 0.01 for
the reinforcement learning task ablations.
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Figure 6: Zoom-in of Figure 5 for three finetune runs (left), for most ablations the predictive error
quickly goes down to their full variational training error.
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Figure 7: Posterior statistics during testing on the supervised task. The consecutive KL divergences
(top) and entropy (bottom) should go down over time. The Laplace VRNN where we sum the
covariances (green) is the only method that performs as expected for the entropy estimation but
seems to grow more unstable for the KL-divergences. Results use β = 10−2.
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Figure 8: Complete plot of Figure 1 from the main paper to include the accumulation over means
and covariances (blue) in the left plot. This was left out of the main paper to improve visibility.
Results use β = 10−2.
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C.2 Supplementary Bandit Results850
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Figure 9: Zoom-in of Figure 3 for the bandit task when finetuning the deterministic model weights
intermittently with a diagonal variational model. In this domain, it seems that finetuning slightly
actually helps the expected training performance. Results use β = 10−2.
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was quite unstable, about half of the repetitions did not find model weights with strong final perfor-
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performance. Results use β = 10−2.
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C.3 Supplementary Gridworld Results851
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Figure 11: Zoom-in of Figure 3 for the gridworld task when finetuning the deterministic model
weights intermittently with a diagonal variational model. In contrast to the bandit task, the agent
needs to recover from this sudden change of additional model noise. Results use β = 10−2.
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Figure 12: Cumulative regret of trained agents on the gridworld task, lower is better. All agents
perform well on this task, the diagonal Variational RNN slightly outperforms all other agents.
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Figure 13: Complete plot of Figure 2 from the main paper to include the accumulation over mans
and covariances (blue) in the left plot. Posterior statistics during testing on the gridworld task. The
consecutive KL divergences (top) and entropy (bottom) should go down over time. Results use
β = 10−2.
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