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Abstract

Spiking Neural Networks (SNNs) offer a biologically plausible and energy-efficient
framework for temporal information processing. However, existing studies over-
look a fundamental property widely observed in biological neurons—synaptic
heterogeneity, which plays a crucial role in temporal processing and cognitive
capabilities. To bridge this gap, we introduce HetSyn, a generalized framework that
models synaptic heterogeneity with synapse-specific time constants. This design
shifts temporal integration from the membrane potential to the synaptic current,
enabling versatile timescale integration and allowing the model to capture diverse
synaptic dynamics. We implement HetSyn as HetSynLIF, an extended form of
the leaky integrate-and-fire (LIF) model equipped with synapse-specific decay
dynamics. By adjusting the parameter configuration, HetSynLIF can be specialized
into vanilla LIF neurons, neurons with threshold adaptation, and neuron-level
heterogeneous models. We demonstrate that HetSynLIF not only improves the
performance of SNNs across a variety of tasks—including pattern generation,
delayed match-to-sample, speech recognition, and visual recognition—but also
exhibits strong robustness to noise, enhanced working memory performance, effi-
ciency under limited neuron resources, and generalization across timescales. In
addition, analysis of the learned synaptic time constants reveals trends consistent
with empirical observations in biological synapses. These findings underscore the
significance of synaptic heterogeneity in enabling efficient neural computation,
offering new insights into brain-inspired temporal modeling. Code available at:
https://github.com/dzcgood/HetSyn.

1 Introduction

Spiking Neural Networks (SNNs) have been widely studied as a promising and energy-efficient
alternative to conventional artificial neural networks (ANNs), offering a biologically plausible
computing paradigm characterized by sparse, event-driven signaling and inherent capability for
temporal processing [1, 2, 3]. However, due to the complex dynamical characteristics of spiking
neurons, effectively training SNNs and improving their performance remain major challenges in the
field. This calls for new learning paradigms, either by adapting established methods from ANNs [4,
5, 6, 7, 8, 9, 10] or by drawing inspiration from biological mechanisms [11, 12, 13, 14, 15, 16].

While ANN-derived methods have led to notable progress, we instead focus on strengthening the
biological foundations of SNNs by revisiting fundamental neurobiological mechanisms, which
remain underexplored and hold great potential for enabling more versatile timescale integration
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in spiking systems. This capability is particularly important, as effective timescale integration
is central to temporal cognition, and many real-world tasks—such as working memory, speech
recognition, and sequential decision-making—require neural systems to operate across multiple
timescales [17, 18, 19, 20]. Achieving such multi-timescale processing requires neural models to
incorporate diverse temporal dynamics across different input pathways. To this end, various forms
of temporal heterogeneity have been introduced in SNNs to enhance their capability to represent
and integrate information across multiple time constants, such as ALIF [12], PLIF [21], neuron
heterogeneity [22], and dendritic heterogeneity [23]. Although these approaches provide valuable
insights, they remain limited to the neuron level or sub-neuronal level, where temporal dynamics are
uniformly applied across aggregated inputs. This restricts their ability to assign distinct temporal
responses to different synaptic pathways, limiting performance on tasks with complex temporal
structure.

In contrast, numerous neuroscience studies have shown that synapses vary substantially across brain
regions and cell types [24, 25], giving rise to a diverse temporal basis that supports multi-timescale
integration and cognitive abilities [26, 27] (see Fig. 1A, B). This diversity, known as synaptic
heterogeneity, constitutes a fundamental biological principle that plays a crucial role in shaping neural
computation. Despite its biological significance, synaptic heterogeneity has rarely been incorporated
into the design of spiking neural networks. Its computational potential remains largely unexplored, in
part due to the challenges of modeling fine-grained, synapse-specific temporal dynamics.

Figure 1: (A) Distributions of synaptic time constants (τs) extracted from human (left, 194 pairs)
and mouse (right, 1213 pairs) cortex, shown as histograms with overlaid KDE curves (green). The
broad, long-tailed (τs ≥ 500 ms) profiles reflect substantial synaptic heterogeneity. (B) Postsynaptic
membrane potential traces under different synaptic time constants (τs = 5, 20, 50 ms, from second
to fourth row) in response to a regular spike train (first row). (C-D) Schematic of HetSyn, in which
afferent spikes are integrated via synapses with heterogeneous decay dynamics.

To bridge this gap, we take a first step toward incorporating synaptic heterogeneity into SNNs and
introduce HetSyn by focusing on one key aspect: the diversity of synaptic time constants, motivated
by our analysis of the raw data from the Allen Institute’s recently released Synaptic Physiology
Dataset [28], which reveals that synaptic time constants follow a log-normal distribution across
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populations, providing direct empirical support for synapse-specific time constants (Fig. 1A). As
illustrated in Fig. 1B, synapses with longer time constants are able to retain input-driven activity
over extended periods, whereas those with smaller time constants respond more transiently and can
effectively filter out noise or irrelevant fluctuations. This functional diversity lays the foundation for
versatile timescale integration, enabling neural models to process information across both long and
short temporal windows.

Furthermore, instead of relying on a single membrane time constant, HetSyn computes the membrane
potential by aggregating synaptic currents, each governed by a synapse-specific decay factor. This
synapse-driven formulation allows temporal integration to arise from the diverse dynamics of individ-
ual synapses, rather than being uniformly controlled at the neuron level (Fig. 1C, D). We instantiate
HetSyn as HetSynLIF and demonstrate that it subsumes several representative spiking neuron models
as special cases through parameter configuration (see Methods).

Our contributions are as follows:

• We propose HetSyn, the first modeling framework to explicitly explore synaptic heterogene-
ity in SNNs, offering a biologically plausible yet computationally powerful approach for
versatile timescale integration.

• We demonstrate that HetSyn serves as a unified and extensible framework, capable of
representing a wide range of existing spiking neuron models.

• We instantiate HetSyn as HetSynLIF and demonstrate its effectiveness across multiple
temporal tasks, with consistently strong performance. Notably, we achieve 92.36% accuracy
on the SHD dataset, which is, to the best of our knowledge, the best-reported accuracy
among models with similar network structures.

2 Related Work

2.1 Training methods

There are two primary approaches for training SNNs: ANN-to-SNN conversion (ANN2SNN) [29,
30, 31, 32, 33, 34] and direct training using surrogate gradient methods [10, 35, 36, 37, 38, 39]. The
ANN2SNN method first trains a conventional ANN and then maps its parameters to an SNN, where
the firing rates of spiking neurons are used to approximate the continuous activations of the original
ANN. However, it often suffers from accuracy degradation due to the approximation process. In
comparison, surrogate gradient methods approximate the non-differentiable spiking function with
a surrogate, thus enabling direct end-to-end training of SNNs via backpropagation through time
(BPTT). This approach forms the basis of modern surrogate-gradient based training frameworks for
SNNs, such as Spatio-Temporal Backpropagation (STBP) [35] and Slayer [36]. In this paper, we
adopt the surrogate gradient method to enable efficient training of the HetSynLIF model.

2.2 Heterogeneity in SNNs

Recent studies have highlighted the significance of heterogeneity in SNNs, exploring its impact on
network performance and temporal processing from various perspectives. For instance, neuron-level
heterogeneity has been shown to enhance the stability and noise robustness of SNNs. Perez-Nieves
et al. [22] show that networks with membrane time constants drawn from a Gamma distribution
better capture complex temporal patterns, outperforming homogeneous networks in tasks with rich
temporal structure. In addition, PLIF [21] learns a shared membrane time constant for each layer,
which can be interpreted as introducing heterogeneity at a coarser granularity. Another source of
heterogeneity arises from the spiking history of a neuron [12]. Firing thresholds that evolve over
time based on recent spiking activity introduce a form of adaptive, history-dependent threshold
heterogeneity. Furthermore, heterogeneity has also been explored at the level of neural dynamics
and plasticity mechanisms. Chakraborty et al. [40] investigate the effects of heterogeneity in LIF
and spike-timing-dependent plasticity (STDP) parameters. Additionally, the temporal heterogeneity
of dendritic branches [23] has been integrated into SNNs. While considerable work has explored
heterogeneity in SNNs, synapse-level heterogeneity remains largely underexplored. In contrast, our
HetSyn introduces synapse-specific decay factors, embedding heterogeneity directly at the synaptic
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level. This fine-grained design enables HetSyn to integrate temporal information over a broader range
of timescales, thereby enhancing both computational flexibility and biological plausibility.

3 Methods

3.1 Vanilla LIF

Spiking neurons are the fundamental computational units in SNNs, enabling the modeling of temporal
dynamics through biologically inspired mechanisms. Among various neuron models, the LIF neuron
is one of the most widely adopted for its balance between computational efficiency and biological
plausibility. It captures essential neuronal properties such as membrane potential leakage, input
integration, and spike emission. The dynamics of the LIF neuron can be formulated as follows:

dV

dt
= −V − Vrest

τm
+
∑
i,j

wi · δ
(
t− tji

)
− ϑ ·

∑
j

δ
(
t− tjs

)
(1)

where V is the membrane potential, Vrest is the resting potential, and τm represents the membrane
time constant. tji and tjs denote the timing of the j-th input spike from the i-th presynaptic neuron and
the j-th output spike from the postsynaptic neuron, respectively. The term wi denotes the synaptic
efficacy of the i-th afferent, ϑ denotes the firing threshold and δ(·) represents the Dirac delta function.
We set Vrest = 0 in this paper, and an equivalent continuous-time solution to Eq. (1) is then given by:

V t =
∑
i

wi

∑
j

k
(
t− tji

)
− ϑ ·

∑
j

k
(
t− tjs

)
(2)

where V t is the membrane potential at time t. The term k
(
t− tji

)
= exp(− t−tji

τm
), for t > tji , is the

synaptic kernel induced by the j-th spike of the i-th afferent. It describes the resulting postsynaptic
potential (PSP), which decays exponentially at a rate governed by the membrane time constant τm. In
practice, simulations typically adopt a discrete-time formulation, which is given by:

V t = ρ · V t−1 +
∑
i

wi · zti − ϑ · zt−1 (3)

zt = H(V t − ϑ) (4)

where ρ = exp(−∆t
τm

) denotes the membrane decay factor, with ∆t representing the discrete timestep.
The output spike zt is computed using the Heaviside step function H(·).

3.2 LIF-based spiking neuron with HetSyn

We apply the HetSyn principle to the vanilla LIF neuron and propose HetSynLIF, a variant that
incorporates synaptic heterogeneity. In HetSynLIF, the traditional membrane time constant is replaced
by synapse-specific time constants. Instead of applying a uniform temporal filter to all inputs, each
synaptic input is individually integrated through its own exponential decay, resulting in heterogeneous
synaptic currents. This design shifts temporal integration from the membrane dynamics to the
synaptic dynamics, reproducing synaptic diversity in biological systems. Moreover, we model the
reset mechanism as a negative current injection. The neuron then accumulates these individually
filtered synaptic currents and subtracts the reset current to update its membrane potential. The
dynamics of HetSynLIF can be derived from Eq. (2), yielding:

V t =
∑
i

Iti − J t (5)

dIti
dt

= − Iti
τs,i

+
∑
j

wi · δ
(
t− tji

)
(6)

dJ t

dt
= −J t

τJ
+
∑
j

ϑ · δ
(
t− tjs

)
(7)

where Iti denotes the synaptic current from the i-th afferent at time t, governed by its own synapse-
specific time constant τs,i, thereby capturing the heterogeneity in synaptic temporal dynamics. J t
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denotes the reset current, a neuron-level term that models the effect of spike-triggered reset and
decays with time constant τJ . The discrete-time formulations of synaptic and reset currents are given
by:

Iti = ri · It−1
i + wi · zti (8)

J t = κ · J t−1 + ϑ · zt−1 (9)

where ri = exp(−∆t
τs,i

) and κ = exp(−∆t
τJ

) are the decay factors for the i-th synaptic current and the
reset current of the neuron, respectively.

3.3 Generalize to other spiking neurons

Equipped with HetSyn, our HetSynLIF model is highly flexible and can be generalized to a wide
range of spiking neuron models. To distinguish between variants, we use the prefixes "HomNeu" and
"HetNeu" to denote homogeneous and heterogeneous configurations at the neuron level, respectively.
Under this notation, HetSynLIF can reduce to vanilla LIF neurons (HomNeuLIF), neurons with
threshold adaptation (HomNeuALIF), and neuron-level heterogeneous models (HetNeuLIF). This
flexibility stems from the incorporation of synapse-specific time constants, which enable HetSynLIF
to modulate temporal dynamics at a finer granularity. By analyzing the synaptic dynamics from a
presynaptic neuron i to a postsynaptic neuron j, we demonstrate how HetSynLIF generalizes to other
neuron models under specific conditions. See Appendix A for detailed proof.

Proposition 1 If all synaptic decay factors rji and the reset current decay factor κj are identical
and equal to a shared value ρ, i.e., rji = κj = ρ for all i, j, then the HetSynLIF model reduces to the
HomNeuLIF model. Under this condition, the membrane potential of the postsynaptic neuron j at
time t in HetSynLIF simplifies to:

V t
j = ρ · V t−1

j +
∑
i

wji · zti − ϑ · zt−1
j (10)

The resulting equation matches Eq. (3), which suggests that the vanilla LIF model emerges as a
special case of HetSynLIF when all synaptic and reset decay factors are identical.

Proposition 2 Based on Proposition 1, if we further decompose the reset current into a standard
component and an additional adaptation current triggered by spikes—characterized by a decay
factor ρa and a scaling coefficient a—then HetSynLIF generalizes to the HomNeuALIF model. Under
this condition, the membrane potential of postsynaptic neuron j at time t in HetSynLIF can be
transformed into:

V t
j = ρ · V t−1

j +
∑
i

wji · zti − J t
a − ϑ · zt−1

j (11)

This indicates that HetSynLIF effectively reproduces the adaptive dynamics of the HomNeuALIF
model proposed by [41] through a structural modification of the reset current, demonstrating its
flexibility in modeling neuron dynamics beyond fixed-threshold designs.

Proposition 3 For each postsynaptic neuron j, if all synaptic decay factors rji and the reset
current decay factor κj are identical and equal to a neuron-specific membrane decay factor ρj , i.e.,
rji = κj = ρj for all i, then HetSynLIF generalizes to the HetNeuLIF model. Under this condition,
the membrane potential of postsynaptic neuron j at time t in HetSynLIF simplifies to:

V t
j = ρj · V t−1

j +
∑
i

wji · zti − ϑ · zt−1
j (12)

In this case, each postsynaptic neuron j evolves according to its own membrane decay factor ρj ,
which reflects neuron-level heterogeneity[22]. This shows that HetSynLIF encompasses neuron-level
heterogeneity as a special case by assigning shared decay dynamics per neuron.

4 Experiments

As detailed in Section 3.3, HetSynLIF can be reduced to HomNeuLIF, HomNeuALIF, and HetNeuLIF
through appropriate parameterization. In this section, we conduct a systematic comparison of the four
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variants and further evaluate HetSynLIF against previous state-of-the-art methods. All variants are
implemented within our unified framework to ensure theoretical equivalence, controlled ablation, fair
comparison, and architectural consistency, enabling us to isolate the specific contribution of synapse-
level heterogeneity. For clarity, we prefix feedforward and recurrent SNN implementations with "F-"
and "R-", respectively. Further experimental and training details are provided in the Appendix.

4.1 Versatile Timescale Integration in Pattern Generation Task

Figure 2: Pattern generation task. (A) An input spike pattern with a fixed Poisson-generated template
(10 Hz, black dots) and superimposed noise spikes (2 Hz, red dots). Repeating features are marked
by shaded gray regions (Top). Output traces of four FSNN variants (middle) and four RSNN variants
(bottom) in response to the same input pattern. (B-C) Normalized distances between output traces
at the 2nd vs. 1st and 3rd vs. 2nd occurrences of the repeating input segments for FSNNs (B) and
RSNNs (C). Higher means better; see Appendix B. (D) Mean squared error over training iterations
for four FSNN variants. (E-F) Mean squared error of FSNN variants (E) and RSNN variants (F)
under different noise levels. Data in B-F are averaged over 10 runs and reported as mean ± s.d.

We first evaluate HetSynLIF and three variants using one-layer FSNN and RSNN architectures on
a more complex version of the pattern generation task, compared to the setups used in previous
works [13, 14], where the network is trained to reproduce a target trace in response to structured
input spike patterns that consist of repeated segments embedded in Poisson noise, with no input
provided between the segments (Fig. 2A; see Appendix for details). We reveal that our HetSynLIF
exhibits the fastest convergence and lowest mean squared error (MSE). In contrast, both HomNeuLIF
and HomNeuALIF produce near-zero outputs during the input-free intervals between repeated
segments, regardless of whether the network is an FSNN or an RSNN. This suggests their limited
ability to learn time constants long enough to bridge these temporal gaps (Fig. 2A, D and Appendix
Fig. A1). We then compute normalized distances between outputs corresponding to repeated input
segments (Fig. 2B for FSNNs, Fig. 2C for RSNNs, see Appendix B), where larger distances indicate
a stronger ability to generate target-aligned outputs for identical input segments. HomNeuLIF
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shows consistently low distances, indicating nearly identical responses, while HomNeuALIF and
HetNeuLIF show slight improvements in FSNNs and modest gains in RSNNs, benefiting from
recurrent connections. Nevertheless, all three are inferior to HetSynLIF in performance, which
consistently achieves the highest distances across both architectures. Additionally, under varying
levels of input noise, HetSynLIF maintains the lowest MSE, while other models exhibit greater
degradation (Fig. 2E, F). Finally, we show that HetSynLIF is also capable of generating multiple
target patterns simultaneously (Appendix Fig. A2).

4.2 Versatile Timescale Integration in Delayed Match-to-Sample Task

Figure 3: Delayed match-to-sample task. (A) Schematic diagram of a sample mismatch trial with
two cues separated by an 800 ms delay (Top). Spiking activity of hidden layer neurons (Second).
Membrane potential and spike activities (red dots) of a sample neuron (Third). Softmax outputs of
neurons representing match and mismatch (Bottom). (B) Learning curves of four FSNN variants with
100 hidden neurons. (C) Task accuracy under different synaptic time constant masking ratios. (D)
Success and failure rates across neuron numbers and FSNN variants. Each grid cell corresponds to
a different hidden neuron count (5, 20, 50, 100), containing four centered bars for the four FSNN
variants. Each bar is split vertically into a success segment (opaque, above) and a failure segment
(transparent, below); trials with accuracy ≥ 90% are considered successful. D-G follow the same
color scheme as B. (E) Overall task accuracy of four FSNN variants under varying neuron counts.
(F-G) Same as D-E, but for RSNN variants. Data in B-G are averaged over 50 runs and reported as
mean ± s.d.

To assess the ability of HetSynLIF to capture multi-timescale dependencies essential for working
memory, we adopt the delayed match-to-sample task—a widely used paradigm in neuroscience [42,
43, 44, 45]. The network must judge whether two temporally separated cues belong to the same
category (i.e., left or right), requiring short-term processing at cue onset and long-term retention
across the delay (Fig. 3A; see Appendix for details). As in the pattern generation task, we compare
the performance of eight variants—four FSNNs and four RSNNs—across multiple metrics. Fig. 3B
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presents the learning curves of the four FSNN variants, showing that F-HetSynLIF converges fastest
and achieves the highest accuracy among FSNN variants. To assess the functional importance
of synaptic heterogeneity, we progressively mask a fraction of the synaptic time constants in R-
HetSynLIF, rendering them non-trainable. Results show that even with 80% of synapses masked, the
model maintains 100% accuracy, highlighting the critical role of heterogeneous temporal integration
in sustaining memory over delays (Fig. 3C). We further analyze how performance scales with network
size (Fig. 3D–G). Both F-HetSynLIF and R-HetSynLIF consistently achieve higher success rates
(defined as accuracy ≥ 90%) across varying numbers of hidden neurons, remaining effective even
with five neurons, which highlights computational efficiency of synaptic heterogeneity in resource-
constrained scenarios. Besides, R-HetSynLIF maintains 100% accuracy even at a 2500 ms delay, with
no notable increase in iterations to reach 95% accuracy, and retains nearly 80% accuracy under noise
of 20 Hz, demonstrating both stable training efficiency and strong robustness (Appendix Fig. A3).

4.3 Versatile Timescale Integration in Speech Recognition

Figure 4: Speech recognition and robustness analysis. (A) Learning curves of four RSNN variants on
the SHD dataset. (B) Spike inputs under deletion noise ratios of 0.00, 0.32, and 0.64 (top to bottom),
where each ratio denotes the probability of deleting a spike. (C) Test accuracy under varying deletion
noise ratios. (D) Distribution of synaptic time constants for connections from the last hidden layer to
the output layer, before (top) and after (bottom) training. (E) Spike inputs under time warp conditions
with log2-scaled factors of -0.5 (compressed), 0.0 (original), and 0.5 (stretched), top to bottom. (F)
Test accuracy under log2-scaled time warp factors. Data in A, C, and F are averaged over 10 runs.

We then evaluate the speech recognition capability of four RSNN variants mentioned above on the
SHD[46] dataset, using a two-layer recurrent architecture. As shown in Fig. 4A, HetSynLIF consis-
tently achieves the highest accuracy and fastest convergence, followed by HetNeuLIF, HomNeuALIF,
and HomNeuLIF. This result underscores the superior modeling capacity of synapse heterogene-
ity. While neuron heterogeneity also improves performance, assigning distinct time constants to
individual synapses offers finer temporal resolution. In contrast, threshold adaptation yields limited
gains and remains less effective than neuron heterogeneity. To understand how temporal dynamics
evolve during learning, we analyze the distribution of τs in the final hidden-to-output layer (Fig. 4D).
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Initialized from U(5, 20) ms, τs shifts toward lower values, with 2.0% exceeding 20 ms, forming
a mild long-tail that may support slow-varying temporal encoding, loosely resembling biological
patterns in Fig. 1A. Similar trends are observed across other layers (Appendix Fig. A5). We further
assess robustness under deletion noise and time warp, both of which are introduced only during
testing (i.e., trained on clean data and tested with deletion noise or time-warped inputs). In deletion
noise, each spike is independently removed with a fixed probability (Fig. 4B). Although performance
degrades with increasing noise, the accuracy ranking remains unchanged (Fig. 4C). Notably, when
the noise ratio increases from 0.32 to 0.64, HetSynLIF maintains relatively stable, while others drop
sharply, demonstrating the strong resilience of synapse heterogeneity to input disruptions. A similar
trend holds under time warp distortions (Fig. 4E–F), where HetSynLIF consistently achieves higher
accuracy across varying timescales (see Appendix D and Fig. A4 for more details).

4.4 Comparison with Existing Works

We compare our proposed HetSynLIF model with other existing works on the SHD, S-MNIST [47],
TiDigits [48], and Ti46-Alpha [49] datasets, and report the results in Table 1. Notably, our two-
layer RSNN architecture achieves 92.36% accuracy on the SHD dataset, which, to the best of our
knowledge, is the highest reported accuracy among models with similar architectures. In addition,
the HetSynLIF model demonstrates outstanding performance on the other three datasets as well,
consistently outperforming prior methods, highlighting its effectiveness in processing multi-timescale
temporal dynamics across both speech and visual recognition tasks.

Table 1: Accuracy comparison on SHD, S-MNIST, TiDigits, and Ti46-Alpha datasets

Dataset Method Acc Dataset Method Acc

SHD

DH-SFNNNat.Commun24[23] 92.1

TiDigits

BPT-SNN[50] 98.1
DH-SRNNNat.Commun24[23] 91.34 M-STIPTNNLS22[51] 98.1
SRNNICLR25[52] 91.19 MPD-ALAAAI19[53] 97.5
SRNNNMI21[54] 90.4 BAE-MPDAL[55] 97.4
NeuHet-SRNNNatCom21[22] 82.7 TDP-DL[56] 97.16
SRNNPNAS22[57] 81.6 PBSNLR-DW[58] 96.5

HetSynLIF (Ours) 92.36 HetSynLIF (Ours) 98.99

S-MNIST

DH-SRNNNat.Commun24[23] 98.87

Ti46

RSNN[59] 96.44
SRNNNMI21[54] 98.7 ScSr-SNNs[60] 95.9
LSTMICML16[61] 98.2 RSNNNeurIPS19[62] 93.5
LSNNNeurIPS18[12] 96.4 LSM[63] 92.3
AHP-SNNNMI22[41] 96.0 S-MLPNeurIPS18[64] 90.98

HetSynLIF (Ours) 98.93 HetSynLIF (Ours) 96.53

5 Conclusion

In this paper, we propose HetSyn, the first modeling framework with synaptic heterogeneity in SNNs
that replaces the conventional membrane time constant with synapse-specific time constants. This
design enables versatile timescale integration at the synapse level, grounded in biological observations
of synaptic diversity. We instantiate HetSyn as HetSynLIF and theoretically show its generalization
ability to existing models. Through comprehensive experiments, we show that HetSynLIF consistently
achieves high accuracy on tasks requiring versatile timescale integration, exhibits strong robustness
to noise, and maintains computational efficiency under resource constraints. Furthermore, the learned
synaptic time constants exhibit a mildly long-tailed distribution, loosely resembling biological
observations and reflecting adaptation to multi-timescale processing. These findings underscore the
critical role of synaptic heterogeneity in SNNs, not only in enhancing computational performance,
but also in aligning with biological principles. By establishing synapse-level modeling as a viable
direction, our work points toward promising avenues for advancing brain-inspired learning systems.
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Future work could explore the combination of HetSyn with other advanced spiking architectures or
training strategies for further improvements in versatile timescale integration and task performance.
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the computer resource in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is in every respect with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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impacts of the work in Appendix H.
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• The answer NA means that there is no societal impact of the work performed.
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]

Justification: The paper poses no such risks.
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safety filters.
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faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in this study have been properly cited; see Section 4.4 and
Appendix E for details.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have submitted our source code used for training and evaluating our models
in the Supplementary Material.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Theoretical Proof

Proposition 1 If all synaptic decay factors rji and the reset current decay factor κj are identical
and equal to a shared value ρ, i.e., rji = κj = ρ for all i, j, then the HetSynLIF model reduces to the
HomNeuLIF model.

Proof From Eq. (5) and Eq. (8–9), the membrane potential V t
j of postsynaptic neuron j at time t in

the HetSynLIF model is given by:

V t
j =

(∑
i

rji · It−1
ji +

∑
i

wji · zti

)
−
(
κj · J t−1

j + ϑ · zt−1
j

)
(13)

Under the condition that rji = κj = ρ, Eq. (13) simplifies to:

V t
j =

(∑
i

ρ · It−1
ji +

∑
i

wji · zti

)
−
(
ρ · J t−1

j + ϑ · zt−1
j

)
= ρ ·

(∑
i

It−1
ji − J t−1

j

)
+
∑
i

wji · zti − ϑ · zt−1
j (14)

Observe that the term
∑

i I
t−1
ji − J t−1

j corresponds precisely to the membrane potential at the
previous time step t− 1, as defined in Eq. (8):

V t−1
j =

∑
i

It−1
ji − J t−1

j (15)

Substituting Eq. (14) yields:

V t
j = ρ · V t−1

j +
∑
i

wji · zti − ϑ · zt−1
j (16)

This recurrence relation is identical to the membrane update rule of the HomNeuLIF model, as
defined in Eq. (3). Therefore, under the condition rji = κj = ρ, the HetSynLIF model reduces
exactly to the HomNeuLIF model under the specified condition. This completes the proof.

Proposition 2 Based on Proposition 1, if we further decompose the reset current into a standard
component and an additional adaptation current triggered by spikes—characterized by a decay factor
ρa and a scaling coefficient a—then HetSynLIF generalizes to the HomNeuALIF model.

Proof Under the condition that the total reset current in the HetSynLIF model consists of two
components: a standard reset current J t

ϑ and an additional adaptation current J t
a, such that the

membrane potential V t
j of postsynaptic neuron j at time t satisfies:

V t
j =

∑
i

Itji − J t
ϑ − J t

a (17)

The standard reset current J t
ϑ follows the dynamics defined in Eq. (9), while the adaptation current

J t
a follows the dynamics introduced in [12]:

dJ t
a

dt
= −J t

a

τa
+
∑
j

a · δ
(
t− tjs

)
(18)

J t
a = ρa · J t−1

a + a · zt−1
j (19)

where ρa = exp(−∆t
τa

) is the decay factor derived from the adaptation time constant τa, and a is the
adaptation strength. Substituting Eq. (8–9) into Eq. (17), we obtain:

V t
j =

∑
i

(
rji · It−1

i + wji · zti
)
− κj · J t−1

ϑ − ϑ · zt−1
j − J t

a (20)
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Under the condition that rji = κj = ρ, Eq. (20) simplifies to:

V t
j = ρ ·

(∑
i

It−1
ji − J t−1

ϑ

)
+
∑
i

wji · zti − J t
a − ϑ · zt−1

j

= ρ · V t−1
j +

∑
i

wji · zti − J t
a − ϑ · zt−1

j (21)

The recurrence in Eq. (21) is similar as the membrane potential dynamics of the HomNeuALIF model
defined in [41]. This completes the proof.

Proposition 3 For each postsynaptic neuron j, if all synaptic decay factors rji and the reset
current decay factor κj are identical and equal to a neuron-specific membrane decay factor ρj , i.e.,
rji = κj = ρj for all i, then HetSynLIF generalizes to the HetNeuLIF model.

Proof From Eq. (5) and Eq. (8–9), the membrane potential V t
j of postsynaptic neuron j in the

HetSynLIF model is given by Eq. (13). Under the condition that rji = κj = ρj , substituting this into
Eq. (13), we obtain:

V t
j =

(∑
i

ρj · It−1
ji +

∑
i

wji · zti

)
−
(
ρj · J t−1

j + ϑ · zt−1
j

)
(22)

Rewriting Eq. (22) by extracting ρj as a common factor, we have:

V t
j = ρj ·

(∑
i

It−1
ji − J t−1

j

)
+
∑
i

wji · zti − ϑ · zt−1
j (23)

Substituting Eq. (15) into Eq. (23) yields:

V t
j = ρj · V t−1

j +
∑
i

wji · zti − ϑ · zt−1
j (24)

This update rule corresponds to the membrane dynamics of the HetNeuLIF model, in which each
neuron has its own membrane decay factor ρj . Thus, under given condition, the HetSynLIF model
reduces to the HetNeuLIF model. This completes the proof.

B Details of the Pattern Generation Task

Task Description In this task, network is trained to reproduce a continuous target trace in response
to structured input spike patterns. Each input consists of 100 afferent channels spanning a 2000-
ms window. A single 500-ms spike segment is first generated using a 10 Hz Poisson process and
then embedded three times within the input window, evenly spaced and separated by 250-ms silent
intervals (i.e., periods with no input spikes from the structured segment, though background noise
may still occur). To perturb the input structure, global background noise is superimposed across all
channels, and regenerated independently at each training iteration. In our experiments (Fig. 2E, F),
we evaluate noise levels with rates of 1, 2, 3, and 4 Hz to examine the model’s robustness under
increasing perturbation. The target trace is constructed as the sum of five cosine components with a
base frequency of 0.5 Hz, with each component modulated by a random amplitude sampled from
U(0, 1) and a phase sampled from U(0, 2π). The resulting signal is then normalized to the range
[−1, 1].

Loss Function We train the network using a loss that combines a task-specific term and a reg-
ularization term. The task loss is defined as the mean squared error (MSE) between the network
output (yt) and the target trace (y∗,t), averaged over all timesteps. The regularization term penalizes
deviations of each neuron’s firing rate from a target rate of 10 Hz, computed as the mean squared
relative error across neurons. The two terms are weighted using a fixed coefficient of 0.01 for the
regularization.
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Computation of the Normalized Distances In Fig. 2B and C, we quantify the model’s ability
to generate temporally distinct outputs for repeated input segments by computing the normalized
distance between the output traces corresponding to different occurrences of the same structured
input. Specifically, for any two repeated segments (e.g., the first and second), we compute the mean
squared difference between their output traces, and normalize it by the corresponding difference
between the target traces:

dist(2nd, 1st) =
∑

t (y
t
2nd − yt1st)

2∑
t

(
y∗,t2nd − y∗,t1st

)2 (25)

Here, a higher distance indicates that the model produces differentiated outputs for repeated inputs,
suggesting alignment with the target trace rather than generating identical responses to identical
stimuli. Conversely, a lower value implies that the model outputs remain nearly the same across
repetitions.

Experiment Settings We adopt a 100-100-1 network architecture for all models, comprising 100
input channels, 100 hidden neurons, and a single leaky-integrate readout neuron. The synaptic
time constant τs is fixed at 20 ms for HomNeuLIF and HomNeuALIF, and initialized by sampling
from N (20, 5) ms for HetNeuLIF and HetSynLIF. The reset time constant τJ is uniformly set to
20 ms across all models. For HomNeuALIF, the adaptation time constant and adaptation strength
are set to τa = 500 ms and a = 0.01, respectively. All decay factors are constrained to the range
[0, 1] during training. For the surrogate function, we use a triangular-shaped derivative defined as
∂zt

∂V t = γ ·max
(
0, 1−

∣∣∣V t−ϑ
ζ·ϑ

∣∣∣), we set γ = 1 and ζ = 1. Training is performed using the Adam
optimizer with a StepLR learning rate scheduler, where the learning rate is initialized at 1e-3 and
decayed by a factor of 0.8 every 100 iterations. All models are trained for 1000 iterations with a
batch size of 1.

C Details of the Delayed Match-to-Sample Task

Task Description In this task, the network is required to determine whether two temporally sepa-
rated cues belong to the same category (i.e., left or right). There are four possible cue combinations:
left-left, left-right, right-left, and right-right. The left-left and right-right
conditions are labeled as “match” , while the remaining two are considered “mismatch”. The input
consists of 30 channels, divided equally into left-cue, right-cue, and noise channels (10 each). Each
cue is delivered through either the left or right group using independent Poisson spike trains at
40 Hz. The first cue begins at 50 ms and lasts for 100 ms, followed by an 800 ms delay. The second
cue then appears, also lasting 100 ms. Throughout the entire 1050 ms input window, continuous
background noise is added on the noise channels using a 10 Hz Poisson process. To evaluate the
model’s ability to retain the first cue and compare it to the second after a long delay, we compute the
decision by comparing the membrane potentials of two output neurons—corresponding to “match”
and “mismatch”—at the final millisecond of the second cue (1050 ms), and the class associated with
the higher membrane potential is selected as the predicted label.

Loss Function Similar to the pattern generation task, the network is trained using a loss func-
tion composed of a task-specific term and a regularization term. The regularization term remains
unchanged and penalizes deviations of each neuron’s firing rates from a target of 10 Hz. The task-
specific loss is defined as the cross-entropy between the predicted class probabilities and the target
labels.

Experiment Settings In this task, the synaptic time constant τs is fixed at 40 ms for HomNeuLIF
and HomNeuALIF, and initialized by sampling from N (40, 4) ms for HetNeuLIF and HetSynLIF. The
reset time constant τJ is uniformly set to 40 ms across all models. For HomNeuALIF, the adaptation
time constant and adaptation strength are set to τa = 800 ms and a = 0.15, respectively. All decay
factors are constrained to the range [0, 1] during training. A simulation timestep of ∆t = 5 ms is used
to reduce computational overhead. We use the same surrogate function as in the pattern generation
task and set γ = 1 and ζ = 1. Training is performed using the Adam optimizer with a StepLR
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learning rate scheduler, where the learning rate is initialized at 5e-3 and decayed by a factor of 0.8
every 100 iterations. All models are trained for 1000 iterations with a batch size of 32.

D Details of the Speech Recognition Task

SHD Dataset and Preprocessing The SHD dataset comprises 10,420 high-quality audio samples
of spoken digits (0-9) in English and German. It includes 12 speakers—6 female and 6 male—aged
between 21 and 56, with each speaker contributing approximately 40 utterances per digit for each
language. The dataset is divided into training and testing sets, containing 8,156 and 2,264 samples,
respectively. Before feeding into neural networks, we first align all audio recordings to a fixed
duration of 1000 ms by trimming or zero-padding, and then sample the resulting spike trains using a
4 ms time bin, yielding a 250 × 700 input matrix per recording (250 timesteps × 700 input channels).

Deletion Noise Spiking systems deployed in real-world scenarios often face partial signal loss or
sensor failures, making robustness to missing inputs a critical property. To assess this capability, we
evaluate performance under deletion noise, which simulates missing input events by independently
removing each spike with a fixed probability p. Specifically, for each spike input (i.e., binary value
1), it is retained with probability 1− p and set to 0 with probability p. We test seven noise levels with
p ∈ {0.0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}, corresponding to p = 0.01 × 2n for n = 0 to 6,
plus a clean condition.

Temporal scaling Temporal scaling is a fundamental aspect of sensory processing, as biological
systems such as the auditory and motor systems are capable of recognizing patterns across a wide
range of speeds. To test whether SNNs equipped with HetSyn exhibit similar robustness, we simulate
temporal variability by scaling each spike time with a global warping factor. That is, each spike time
is multiplied by a constant factor α, resulting in a globally compressed or stretched spike sequence.
Accordingly, the total number of timesteps changes proportionally to the warping factor. We evaluate
20 different warping conditions, with factors sampled as log2 α ∼ U(−0.5, 0.5), covering both
temporal compression (log2 α < 0) and dilation (log2 α > 0) at varying scales.

Experiment Settings As in [23, 54], we adopt leaky-integrate neurons for the readout layer
to decode the output of the network, where the predicted possibility for class i is obtained by
summing the softmax-normalized membrane potential of the output neuron over time, i.e., ŷi =∑

t softmax(V t
out). For better performance, we use multi-Gaussian curve[54] as surrogate function,

and train the network using the standard cross-entropy loss. The synaptic time constant τs is fixed
at 20 ms for HomNeuLIF and HomNeuALIF, and initialized by sampling from U(5, 20) ms for
HetNeuLIF and HetSynLIF. The reset time constant τJ is uniformly set to 20 ms across all models.
For HomNeuALIF, the adaptation time constant and adaptation strength are set to τa = 100 ms and
a = 0.05, respectively. All decay factors are constrained to the range [0, 1] during training. The
model is optimized using the AdamW with a learning rate of 2e-3 and a weight decay of 4e-3. We
apply a cosine annealing schedule with 5% warm-up, computed per batch, and fix the learning rate
after 40 epochs.

E Datasets and Configurations

SHD Same as Appendix D.

S-MNIST Sequential MNIST (S-MNIST) is a sequential version of the standard MNIST dataset,
where each 28 × 28 image is reshaped into a sequence of 784 inputs. At each timestep, a single
pixel is presented to the model in a row-wise scan from top-left to bottom-right. The MNIST dataset
consists of grayscale images of handwritten digits (0–9), with 60,000 training and 10,000 test samples.
We follow the original train/test split in our evaluation.

TiDigits We use the adults subset of the TiDigits dataset, which comprises isolated utterances of
the 11 English digit classes (“zero”–“nine” and “oh”), with standard training and testing splits of
2,464 and 2,486 speech samples. We use threshold crossing encoding method proposed by Gutig [65]
to encode TiDigits into spikes, with nfft=512, 16 Mel filters from 360–8000 Hz, and 15 thresholds
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per channel for crossing. We use the first 200 timesteps of each sample, yielding an input of shape
200 × 500 (timesteps × channels).

Ti46-Alpha Ti46-Alpha, consisting of the 26 English alphabet letters, is a subset of the Ti46-Word
dataset. We apply the same encoding method as in TiDigits, yielding input representations of size
200 × 500.

Experiment settings All experiments are conducted using NVIDIA RTX 4090 and Tesla V100-
PCIE-16GB GPUs. We employed a cosine-annealing learning rate scheduler applied at each batch
step. For S-MNIST, classification is based on spike counts from the output layer neurons, whereas for
all other datasets, predictions are derived from temporally integrated outputs, as previously described
for SHD. A detailed overview of the experimental settings and hyperparameter configurations is
provided in Table 2.

Table 2: Experiment settings and hyperparameter configurations for different datasets

Dataset SHD S-MNIST TiDigits Ti46-Alpha

learning rate 2e-3 1e-3 2e-3 4e-3

dropout rate 0.2 0 0.5 0.2

epochs 100 150 50 50

batch size 32 256 32 32

warmup ratio 0.05 0.05 0.05 0.05

optimizer AdamW AdamW AdamW AdamW

weight decay 4e-3 0 1e-2 4e-3

architecture SRNN SRNN SRNN SRNN

hidden neuron number [128, 64] [64, 64] [64, 32] [128, 128]

ϑ 1.0 1.0 1.0 1.0

∆t 1e-3 1e-3 1e-3 1e-3

τJ 20e-3 20e-3 20e-3 20e-3

initialization of τs U(5e-3, 20e-3) U (5e-3, 20e-3) U(5e-3, 20e-3) U(5e-3, 20e-3)

F Model Complexity Analysis

We conduct a comparative analysis of model parameters across several representative SNN models
with distinct neuronal dynamics. The models considered include four FSNN variants, four RSNN
variants, and two dendritic heterogeneity models (DH-SFNN and DH-SRNN [23]). For clarity, we
assume that each layer consists of N neurons and receives M inputs, with D representing the number
of dendritic branches per neuron. The theoretical results are summarized in Table 3.

The analysis indicates that HetSynLIF introduces a moderate increase in trainable model parameters
under identical architectural configurations and neuron counts. Intriguingly, HetSynLIF achieves
comparable or even superior performance with significantly fewer neurons and faster convergence
(Fig. 2D, 3B, 3D, 4A, and Appendix Fig. A1), suggesting that the increased per-unit complexity
is effectively offset and may even constitute an advantage in terms of overall training efficiency.
Given the notable performance gains and the promising potential of synaptic heterogeneity in SNNs,
the additional per-unit complexity represents a reasonable trade-off at this early stage, which is
natural and biologically grounded, as synapses greatly outnumber neurons in the brain. Future studies
may further mitigate the computational complexity of HetSynLIF by exploring sparse synaptic
connectivity and lightweight architectural designs, as inspired by [12, 22].

26



Table 3: Comparison of trainable model parameters
Models Synaptic Parameters Neuron Parameters Total Parameters
F-HomNeuLIF MN 0 MN

F-HetNeuLIF MN N MN +N

F-HomNeuALIF MN 0 MN

F-HetSynLIF 2MN 0 2MN

DH-SFNN MN N +ND MN + (D + 1)N

R-HomNeuLIF MN +NN 0 MN +NN

R-HetNeuLIF MN +NN N MN +NN +N

R-HomNeuALIF MN +NN 0 MN +NN

R-HetSynLIF 2MN + 2NN 0 2MN + 2NN

DH-SRNN MN +NN N +ND MN +NN + (D + 1)N

G Evolution of Synaptic Time Constants During Training

The DMS task inherently relies on both short-term and long-term memory capabilities: long-term
memory enables the model to retain cue information (e.g., "left" or "right") across the delay period,
while short-term memory helps to suppress irrelevant noise. During training, the time constants in
the cue-related pathways tend to increase toward the delay duration to sustain relevant information,
while those in noise-related pathways decrease to promote rapid forgetting.

To demonstrate this, we initialize the time constants τ from Gaussian distributions with means
µ ∈ {100, 200, 400}ms and standard deviations of 0.1µ. Each configuration is trained for five
independent runs, and the averaged results in Table 4 indicate the expected divergence of learned time
constants between the cue and noise pathways. In addition, approximately 5–6% of synapses develop
time constants comparable to the task delay, and resetting these synapses to their initial mean values
leads to a substantial decrease in accuracy. These results demonstrate the task-aligned functional
specialization of synaptic time constants, and further support the effectiveness of HetSyn in versatile
timescale integration by adaptively tuning synaptic dynamics to input characteristics during training.

Table 4: Analysis of time constant statistics

Initialization N (100, 102) N (200, 202) N (400, 402)

Cue-channel (after training) 154.38 (+54.38%) 252.43 (+26.22%) 430.70 (+7.68%)

Noise-channel (after training) 85.59 (-14.41%) 181.93 (-9.04%) 382.29 (-4.43%)

Synapses with τ > 700 ms 5.25% 6.05% 5.80%

Accuracy 99.97% 100.00% 99.87%

Accuracy (reset long τ ) 75.68% (-24.29%) 76.47% (-23.53%) 77.15% (-22.72%)

H Discussion

Broader impacts By introducing synaptic heterogeneity into SNNs, our work advances the model-
ing of biologically inspired temporal dynamics and enhances the computational performance of SNNs.
This has the potential to improve both learning performance and energy efficiency in neuromorphic
computing systems, contributing to the development of low-power, event-driven AI applications.
Furthermore, our study is purely computational and does not involve sensitive data or human subjects,
and we anticipate no adverse societal or environmental impacts of out study.
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Limitations This work provides a step toward understanding the role of synaptic heterogeneity in
SNNs while introducing additional per-unit complexity and increased training cost. Future work will
explore approaches for reducing computational complexity, such as sparse synaptic connectivity and
lightweight architectural designs. Moreover, as this work focuses on a subset of synaptic properties, a
broader range of other synaptic features and more sophisticated architectures remain to be explored.

I Supplementary Figures

Figure A1: Convergence speed evaluation of four FSNN variants on the pattern generation task,
trained with learning rates 1e-4 (A), 5e-4 (B), 1e-3 (C), 5e-3 (D). The curves show the mean squared
error (MSE) over training iterations.
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Figure A2: Dynamics of F-HetSynLIF during training on the pattern generation task with simultane-
ous generation of three output patterns. From left to right: network dynamics at 10, 100, and 1000
training iterations. Each column shows spike activity of hidden neurons (top), followed by predicted
traces (colored lines) and targets (black dashed lines) for the three outputs.
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Figure A3: Performance and training efficiency of R-HetSynLIF on the delayed match-to-sample
task under varying delays and noise levels. Left: Test accuracy (solid line, left y-axis) and training
iterations required to reach 95% accuracy (boxplot, right y-axis; window size = 10) across different
delay durations. Right: Same metrics evaluated under varying levels of addition noise (Hz).
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Figure A4: Bar plots show test accuracy of four RSNN variants on the SHD dataset under three
conditions: baseline (left), deletion noise ratio 0.32 (middle, from Fig. 4C), and time warp scale 0.25
(log2, right, from Fig. 4F). Error bars represent standard deviation over 10 runs.
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Figure A5: Distributions of synaptic time constants (τs) across all connection types in the two-layer
R-HetSynLIF. From (A) to (D): input to hidden layer 1, recurrent connections within hidden layer
1, hidden layer 1 to hidden layer 2, and recurrent connections within hidden layer 2. Each subplot
shows the distribution of τs before training (top) and after training (bottom).
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