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Abstract

Improving the accuracy of deep neural networks on out-of-distribution (OOD)
data is critical to an acceptance of deep learning in real world applications. It has
been observed that accuracies on in-distribution (ID) versus OOD data follow a
linear trend and models that outperform this baseline are exceptionally rare (and
referred to as “effectively robust”). Recently, some promising approaches have been
developed to improve OOD robustness: model pruning, data augmentation, and
ensembling or zero-shot evaluating large pretrained models. However, there still is
no clear understanding of the conditions on OOD data and model properties that
are required to observe effective robustness. We approach this issue by conducting
a comprehensive empirical study of diverse approaches that are known to impact
OOD robustness on a broad range of natural and synthetic distribution shifts of
CIFAR-10 and ImageNet. In particular, we view the “effective robustness puzzle”
through a Fourier lens and ask how spectral properties of both models and OOD
data correlate with OOD robustness. We find this Fourier lens offers some insight
into why certain robust models, particularly those from the CLIP family, achieve
OOD robustness. However, our analysis also makes clear that no known metric is
consistently the best explanation of OOD robustness. Thus, to aid future research
into the OOD puzzle, we address the gap in publicly-available models with effective
robustness by introducing a set of pretrained CIFAR-10 models—RobustNets—
with varying levels of OOD robustness.

1 Introduction

Deep learning (DL) holds great promise for solving difficult real-world problems in domains such as
healthcare, autonomous driving, and cyber-physical systems. The major roadblock in adopting DL
for real-world applications is that real-world data often deviates from the training data due to noise,
corruptions, or other changes in distribution that may have temporal or spatial causes [3, 20, 41, 44].
DL models are known to be highly brittle under such distribution shifts, which raises the risk of
making incorrect predictions with harmful consequences. Designing approaches to learn models
that achieve both high accuracy on in-distribution data and high robustness to distribution shifts is
paramount to the safe adoption of DL in real-world applications.

Several recent works [1, 35] have noticed an intriguing phenomenon: accuracy on in-distribution
(ID) versus accuracy on distribution-shifted data obeys a linear trend across a wide range of models,
corruption benchmarks, and prediction tasks. Unfortunately, as nearly all current DL models bear
a substantial loss under distribution shifts, this linear relationship implies that our current training
strategies are insufficient to bridge the gap between ID and out-of-distribution (OOD) performance.
However, despite being exceedingly rare, models that break this linear trend to obtain effective
robustness [1] exist—such models defy explanation by the wisdom that OOD accuracy and ID
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accuracy should correlate strongly: they are “out of line”. Identifying when and why such models
arise is key to overcoming OOD brittleness in DL models.

Related research efforts have focused on improving OOD robustness via new techniques such as model
pruning [8], data augmentation [5, 21], and ensembling large pre-trained models [37, 52]. While these
efforts have created significant excitement in the ML robustness community, it remains unclear (a)
under which conditions on OOD data these methods can improve effective robustness (ER), and (b)
which underlying model properties make a DNN effectively robust. A more in-depth understanding
of these phenomena is likely to help in bridging the gap between ID and OOD performance.

Towards achieving this goal, we carry out a comprehensive empirical study leveraging models trained
using each of the aforementioned state-of-the-art approaches to improving OOD robustness. We
analyze the impact of these robustness improvement methods on various model architectures, two
clean datasets (CIFAR-10 and ImageNet), and a broad range of natural and synthetic distribution
shifts. In particular, we view the OOD robustness puzzle through a Fourier lens and ask how spectral
properties of OOD data and models influence their effective robustness. In this process, we design
new metrics that capture Fourier sensitivity of models as test data moves farther away from the
training data manifold. We make the following contributions:

• A new perspective on the state of OOD robustness: across diverse models, metrics, and distribution
shifts, we observe that no one single metric rules them all, not even in-distribution accuracy.
This accents the potential need for a multi-faceted approach to understanding OOD robustness,
in contrast to ID generalization where single properties like model flatness can enjoy predictive
success across an array of models [28].

• Design of Fourier sensitivity metrics: our new metrics quantify various model properties, including
spectral ones that strongly correlate with the OOD robustness of ensembled CLIP models [52],
explaining this robustness much better than ID accuracy.

• A public collection of effectively robust models: to help crack the OOD robustness puzzle, we make
available (at https://github.com/sarafridov/RobustNets) a RobustNets dataset of CIFAR-
10 models with effective robustness that stems from training under a variety of data augmentation
and pruning schemes.

2 Related work

Distribution shift fragility is a well-documented phenomenon among neural networks
[40, 41, 20, 19, 34] in which a model trained on an ID dataset performs markedly worse
when evaluated on OOD data, even when humans find the OOD data just as easy to classify. These
OOD accuracy gaps often follow a linear relationship between ID and OOD accuracy, but the slope
and intercept of the linear trendline varies depending on the specific ID and OOD datasets [34, 15].
In our work, we focus on two popular image classification benchmark ID datasets, CIFAR-10 [30]
and ImageNet [6], and an array of OOD benchmarks for each.

While most models follow the linear ID-OOD trendlines of Miller et al. [34], some models are
“effectively robust" and appear above the trendline, with OOD accuracy higher than expected given
ID accuracy [1]. These models are quite rare, and thus far have only been shown to arise through
a few training paradigms: by pruning a model as a sort of regularization [8], by training with data
augmentation intended to mimic the expected OOD test data [5, 21], or by pretraining on a larger
and more diverse dataset and evaluating zero-shot [37], partially finetuning [1], or interpolating the
weights of a zero-shot and a finetuned model [52].

Although as a community we are beginning to uncover robust training methods, it remains a
mystery why these particular methods achieve robustness on particular distribution shifts. We study
this mystery via a Fourier lens based on prior work involving both image frequency and function

frequency analyses. Ortiz-Jimenez et al. [36], Yin et al. [55], and Sun et al. [47] study model
sensitivity to Fourier perturbations of the input images and analyze how different data augmentations
produce different Fourier sensitivities (and correspondingly robustness to image perturbations of
different frequencies). Chen et al. [4] showed that exchanging amplitude and phase information
between images (as a regularization scheme) has connections to robustness as well. Another line
of research focuses on spectral bias [13, 2, 54, 38], wherein models prioritize learning low frequency
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functions over the input space. This bias towards low function frequencies can also affect robustness
and is influenced by training hyperparameters like data augmentation and weight decay [13].

Among the model properties we study as potential predictors of OOD accuracy are ID accuracy [34],
model Jacobian norm [24], the linear pixel-space interpolation metrics of Fridovich-Keil et al. [13],
and our own Fourier amplitude and phase interpolation metrics. We study these metrics over a wide
range of robust and nonrobust models, including sparse models from [8] on CIFAR-10 and pretrained
models from CLIP [37, 52] and RobustBench [5] on ImageNet.

3 Methods

Datasets. We consider two standard image classification tasks: CIFAR-10 [30] and ImageNet [6].
For each of these "in-distribution" (ID) datasets we consider a variety of "out of distribution" (OOD)
datasets, both natural and synthetic. For CIFAR-10 we consider CIFAR-10.1 [40] and CIFAR-10-C
[20]; for ImageNet we consider ImageNetV2 [41], ImageNet-C [19], ImageNet-R [23], ImageNet-A
[9], ImageNet-Sketch [50], and ObjectNet [10].

Models. Our CIFAR-10 experiments use 3 different model architectures: Conv8 [12], ResNet18
[17], and VGG16 [45]. For each model architecture, we consider a range of model pruning strategies
that have been studied for their effect on OOD robustness [8, 25] as some of these pruned models
were demonstrated to have higher OOD robustness than dense models. Namely, lottery-ticket style
pruning methods [12, 42, 39, 7] were able to provide robustness gains on CIFAR-10-C [8]. We
outline the various pruning techniques and sparsity levels we utilized in detail in Section 4.1.

In our ImageNet experiments we use 28 standard (nonrobust) pretrained models from Torchvision
[33], 5 pretrained models from the ImageNet-C leaderboard on RobustBench [5], and 33 models
obtained by robustness-enhancing weight-space interpolation [52] between zero-shot and ImageNet-
finetuned CLIP ViT-B/16, ViT-B/32, and ViT-L/14 [37]. More details on the ImageNet models we
use from Torchvision and RobustBench can be found in Section A.1.

Previously-proposed metrics: ID accuracy, Jacobian norm, pixel interpolation. Because OOD
robustness is a complex and multi-faceted problem, we make use of multiple previously-proposed
model measurements and apply them to study effectively robust models. To the best of our knowledge,
our work is the first application of most of these metrics (except for in-distribution accuracy) to the
study of effective robustness. Specifically, we evaluate four previously-proposed metrics that have
been observed to correlate with some notion of generalization: accuracy on unseen in-distribution
data ("ID accuracy") [34], Jacobian norm [24], and within-class and between-class pixel interpolation
high frequency fraction [13]. These latter metrics are analogous to the high frequency fractions we
compute for amplitude and phase interpolation (described below), except that interpolating paths
simply interpolate in pixel space between two images, where the two images are from either the
same class ("within-class") or different classes ("between-class") [13]. Prior work observed that
in-distribution generalization typically improves as within-class high frequency fraction decreases
and between-class high frequency fraction increases [13]. Reducing the norm of the Jacobian of
model outputs with respect to input data can push the decision boundary away from the training
points, providing robustness to random perturbations of the input data [24]. Thus, models with
smaller Jacobian norms may perform better on corrupted/shifted data. We estimate the norm of the
Jacobian using a random-projection-based approach [24]; further details can be found in Section A.4.

Fourier interpolation metrics. We also introduce novel Fourier interpolation metrics to capture
more information about model behavior that may help answer the robustness puzzle. Inspired by
the pixel-space interpolation procedure of Fridovich-Keil et al. [13], we propose evaluating the
smoothness of a model’s predictions along image paths that perturb the Fourier amplitude or phase
information of one test image towards another, while preserving the Fourier phase or amplitude
(respectively) information of the original image. The intuition for this type of interpolation is that
most of the semantic content of an image is contained within its Fourier phases, which encode
structural information like edges. Accordingly, we can perturb the Fourier amplitude of an image
without destroying its semantic meaning, and we can reliably destroy semantic content by perturbing
Fourier phase. Example Fourier amplitude and phase interpolating paths on ImageNet are shown in
Figure 1; example paths on CIFAR-10 and further computational details are included in Section A.3.
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Figure 1: Example Fourier amplitude (top) and phase (bottom) interpolating paths from ImageNet.
Each path includes 100 images; every 15th image is visualized here. The first image along each path
is an unaltered image from the original validation set; the last image has the same Fourier phases (top)
or amplitudes (bottom) as the original but has some of the Fourier amplitudes (top) or phases (bottom)
of a random other image from the validation set. Amplitude interpolation preserves semantic content
across usually the entire path, whereas phase interpolation destroys semantic content more rapidly.
Note that the human visual system is robust to both types of corruption to some extent (see [51]).

More precisely, we compute an interpolating path by first randomly selecting two images x0 and x1

from the ID test/validation set. We perform standard preprocessing on each image, which involves
cropping to a standard size (for ImageNet) and normalizing each pixel by the training mean and stan-
dard deviation (for both CIFAR-10 and ImageNet). We then compute the two-dimensional discrete
Fourier transform (DFT) of each image and separate the complex-valued results into amplitude and
phase components ai and pi for i 2 {0, 1}. To construct an image along an amplitude interpolating
path, we retain the original phase p0 and interpolate the low-frequency amplitude as (1� �)a0 + �a1

(while preserving the high frequency amplitude), where � 2 [0, 1], and produce an image via the
inverse discrete Fourier transform. Phase interpolation is defined analogously; we retain the original
amplitude and interpolate the low-frequency phase. We interpolate the lowest 40% of image frequen-
cies for both amplitude and phase on CIFAR-10, the lowest 20% of image frequencies for phase on Im-
ageNet, and all image frequencies for amplitude on ImageNet. We choose 100 evenly-spaced � values
to define each path, and choose 5000 random paths for CIFAR-10 and 7000 for ImageNet. The images
in Figure 1 are rescaled for visualization (essentially undoing the initial pixel-wise normalization).

We evaluate each model on each path, producing a probability vector over the available classes
for each image along the path. We compute two metrics based on these path predictions: high

frequency fraction (HFF) and consistent distance (CD). For high frequency fraction, we take the
one-dimensional DFT of the 100 model predictions along the path, average the Fourier amplitudes
among all the classes, and compute the fraction of the total amplitude above a frequency threshold
(10% of the maximum frequency). This metric is always between 0 and 1 (usually between 0.1 and
0.3). The higher the average high frequency fraction, the more sensitive a model is to the given
Fourier perturbation of its input images.

We also consider consistent distance, which is defined as the index of the first image along the path
that the model classifies differently (by highest softmax prediction) than the original image. This
metric is always between 1 and 100, and is often at least 40. Consistent distance is intended as a more
intuitive metric to capture the same notion of robustness to corruptions of image Fourier content. In
particular, Fourier amplitude corruptions change image statistics but do not hamper human semantic
identification; a more robust model in this sense should have a lower high frequency fraction and a
higher consistent distance on average compared to a less robust model.

4 Results

We are interested in understanding when (under what conditions on the distribution shift) and why

(via model properties) neural networks can exhibit effective robustness. Although our experiments are
correlational rather than causal, they provide evidence for and against various hypotheses regarding
why effective robustness might emerge. We hope that future work will make use of our proposed
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metrics and released model database RobustNets to answer the causal questions raised by our
experiments, perhaps following Dziugaite et al. [11].

We perform a systematic study of three model interventions that have been shown to impact
OOD robustness: pruning [8], data augmentation [5, 21], and weight ensembling [52]. For each
intervention, we evaluate a benchmark set of pretrained CIFAR-10 and/or ImageNet models on the
original in-distribution test set, several OOD test sets, and a suite of model property metrics capturing
local smoothness (via model Jacobian norm), frequency response to pixel-space interpolation within
and between classes [13], and Fourier amplitude and phase sensitivity (via high frequency fraction

and consistent distance). Representative results from our analysis of these three interventions are
presented in Sections 4.1, 4.2, 4.3, and A.10. For each dataset we consider a mixture of natural
and synthetic distribution shifts: CIFAR-10.1 [40] and CIFAR-10-C [20], and ImageNet-V2 [41],
ImageNet-R [23], ObjectNet [10], ImageNet-A [9], ImageNet-Sketch [50], and ImageNet-C [19].
Since CIFAR-10-C and ImageNet-C are each composed of 15 synthetic corruptions ranging from
low to high frequency, we include results on representative corruptions of each frequency band in
the main text and defer results on the remaining corruptions to the appendix. In all figures, we show
95% confidence intervals around each measurement (Clopper-Pearson for accuracy measurements
and Gaussian bounds for averages of other metrics).

4.1 When and why does model pruning confer effective robustness?

Diffenderfer et al. [8] demonstrated the nuanced behavior that model pruning has on OOD robustness,
specifically with respect to the distribution shift from CIFAR-10 to CIFAR-10-C. Notably, pruned
models are capable of providing superior OOD robustness compared to dense, or unpruned, models.
Furthermore, the effect, either positive or negative, and degree of robustness arising from model
pruning is dependent on both the model architecture and the pruning algorithm. It remains unknown
which properties of these pruned models contribute to their robustness on OOD data.

In an effort to better understand these findings, we further investigate this behavior by considering
the three categories of pruning used in Diffenderfer et al. [8]: traditional [16, 57], rewinding lottery-

tickets [12, 42], and initialization lottery-tickets [39, 7]. Note that we often abbreviate "lottery tickets"
as LT. We provide details on each of the pruning techniques in Section A.2. For each pruning
strategy and each architecture, we prune models to 50%, 60%, 80%, 90%, and 95% sparsity. For
all pruning methods, pruning is performed in an unstructured (i.e., individual weights are pruned)
and global manner (i.e., prune to a given sparsity across the entire network). Additionally, for
traditional and initialization LTs, pruning was performed in a layerwise fashion (i.e., where each
network layer is pruned to the given sparsity level). In Figure 2 we investigate when (on which types
of distribution shifts) and in Table 1 we study why (via corresponding model property measurements)
these differently-pruned CIFAR-10 models achieve their varying degrees of robustness.

Because different model architectures respond differently to different pruning methods, in each
subplot of Figure 2 we color-code models by their architecture and fit a separate probit-domain
OOD vs. ID accuracy regression line to each architecture, so that each regression captures a range
of different pruning amounts (what fraction of weights are pruned). We display these regressions
with opacity proportional to the fit quality R2, so that regression lines that fit the data well are dark
and easily seen, while lower-quality linear fits are more transparent. In the corresponding Tables 1,
each reported slope (m) and R2 value is the average of the corresponding values among the three
architectures we consider. For ease of reading, we bold average R2 values above 0.5, and among
these entries we highlight the best (bright green) and second-best (faded green) R2 values for each
pruning method on each OOD dataset. Although these results are nuanced and raise additional open
questions, we summarize a few key takeaways from our CIFAR-10 model pruning experiments:

• As reported in Miller et al. [34], ID accuracy is often a strong predictor of OOD accuracy; this
trend holds across different pruning methods. However, the linear trend breaks down for mid and
high frequency image corruptions like pixelate, Gaussian noise, and impulse noise.

• Even for low-frequency corruptions, different model architectures might lie on either the same or
different robustness lines (as evidenced by comparing brightness and contrast).

• When trained without data augmentation, higher effective robustness is present on several mid- and
high-frequency corruptions by non-residual architectures (i.e. Conv8 and VGG16) (see Figures 2
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and 8). However, when training with data augmentation, less variation in effective robustness is
realized by different architectures (see Figures 3 and 9).

Figure 2: When does pruning affect OOD robustness?

Traditional Rewinding LT Initialization LT
m R2 m R2 m R2

C
IF

A
R

-1
0.

1

ID accuracy 0.85 0.85 0.9 0.59 0.79 0.87

Jacobian -0.0 0.16 -0.01 0.36 0.0 0.19
Pixel - within -6.42 0.79 -8.54 0.66 -6.7 0.78

Pixel - between 8.45 0.48 -1.29 0.25 7.45 0.45
Amp - HFF -6.11 0.72 -5.97 0.31 -4.73 0.75

Amp - CD 0.04 0.6 0.05 0.52 0.04 0.75

Phase - HFF -8.09 0.26 -5.66 0.24 -6.78 0.41
Phase - CD 0.03 0.33 0.01 0.26 0.02 0.4

B
rig

ht
ne

ss

ID accuracy 1.0 0.96 0.9 0.89 0.97 0.97

Jacobian -0.0 0.2 -0.01 0.49 0.0 0.29
Pixel - within -7.41 0.88 -7.47 0.79 -8.09 0.85

Pixel - between 9.73 0.51 0.6 0.34 9.32 0.57

Amp - HFF -6.73 0.7 -6.47 0.53 -5.9 0.88

Amp - CD 0.04 0.63 0.04 0.67 0.05 0.84

Phase - HFF -7.7 0.18 -8.02 0.31 -6.66 0.35
Phase - CD 0.03 0.27 0.02 0.23 0.02 0.4

C
on

tra
st

ID accuracy 0.91 0.85 0.89 0.66 0.87 0.91

Jacobian -0.0 0.15 -0.01 0.4 0.0 0.25
Pixel - within -6.59 0.74 -8.13 0.64 -7.4 0.81

Pixel - between 8.08 0.39 3.92 0.3 8.46 0.51

Amp - HFF -6.13 0.63 -5.9 0.4 -5.45 0.86

Amp - CD 0.04 0.65 0.04 0.54 0.05 0.83

Phase - HFF -8.83 0.26 -9.17 0.3 -7.18 0.4
Phase - CD 0.03 0.29 0.02 0.23 0.02 0.42

D
ef

oc
us

B
lu

r

ID accuracy 0.55 0.51 0.86 0.63 0.42 0.39
Jacobian -0.0 0.17 -0.01 0.64 0.01 0.45
Pixel - within -4.54 0.55 -7.82 0.61 -4.49 0.41
Pixel - between 6.35 0.36 8.82 0.26 7.84 0.52

Amp - HFF -4.01 0.42 -5.96 0.43 -2.79 0.45
Amp - CD 0.03 0.37 0.04 0.55 0.02 0.37
Phase - HFF -4.78 0.16 -6.51 0.34 1.13 0.18
Phase - CD 0.02 0.19 0.01 0.37 -0.0 0.12

Pi
xe

la
te

ID accuracy 0.73 0.44 0.85 0.61 -0.31 0.33
Jacobian -0.0 0.11 -0.01 0.75 0.0 0.13
Pixel - within -6.8 0.46 -8.09 0.6 2.67 0.22
Pixel - between 10.92 0.45 14.0 0.25 0.01 0.23
Amp - HFF -3.92 0.3 -7.48 0.57 2.11 0.44
Amp - CD 0.02 0.31 0.05 0.62 -0.02 0.48
Phase - HFF -0.17 0.26 -8.55 0.31 11.15 0.61

Phase - CD 0.01 0.25 0.02 0.39 -0.03 0.5

G
au

ss
ia

n
N

oi
se

ID accuracy 0.55 0.16 0.24 0.1 -1.16 0.47
Jacobian -0.0 0.05 -0.0 0.15 -0.0 0.05
Pixel - within -6.17 0.24 -2.89 0.14 10.65 0.38
Pixel - between 7.48 0.11 9.49 0.14 -10.94 0.31
Amp - HFF -2.28 0.09 -5.56 0.11 7.09 0.47
Amp - CD 0.01 0.12 0.03 0.17 -0.06 0.47
Phase - HFF -0.52 0.18 -11.92 0.25 16.98 0.49
Phase - CD 0.0 0.13 0.03 0.18 -0.04 0.42

Im
pu

ls
e

N
oi

se

ID accuracy 0.04 0.0 -0.17 0.5 -0.58 0.39
Jacobian 0.0 0.05 0.01 0.5 -0.0 0.05
Pixel - within -1.26 0.03 1.31 0.54 5.47 0.33
Pixel - between 3.21 0.07 -17.81 0.35 -5.25 0.28
Amp - HFF 0.13 0.01 0.48 0.36 3.43 0.38
Amp - CD -0.01 0.04 -0.0 0.47 -0.03 0.38
Phase - HFF 4.05 0.1 -7.43 0.41 8.61 0.43
Phase - CD -0.01 0.06 0.02 0.26 -0.02 0.38

Table 1: How well do metrics for
pruned models correlate with OOD ro-
bustness?

• Initialization LT pruning confers robustness to high-frequency corruptions and can induce a negative
correlation between ID and OOD accuracy for these corruptions.

• Jacobian norm is rarely a good predictor of OOD accuracy, but it does correlate negatively (lower
norm is better) for models pruned by rewinding methods on mid-frequency corruptions.

• As reported in Fridovich-Keil et al. [13], lower high frequency fraction HFF (i.e. smoother
predictions) for within-class pixel interpolation is a good predictor of OOD accuracy, at least for
low-frequency distribution shifts where ID accuracy is also predictive.

• Amplitude and phase interpolation are sometimes predictive of OOD accuracy, particularly for
initialization LT pruning, and in the expected direction of correlation (a better model should have
lower HFF and higher CD). However, even these metrics fail to explain most of the robustness
behavior for high (and some mid) frequency distribution shifts on CIFAR-10.
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Please see Figure 10 for visualizations of the data fit associated with the most predictive metric for
each distribution shift and pruning approach.

4.2 When and why does data augmentation confer effective robustness?

Figure 3: When does augmentation affect OOD robustness?

Clean AugMix Gaussian
m R2 m R2 m R2

C
IF

A
R

-1
0.

1

ID accuracy 0.91 0.92 0.91 0.93 0.89 0.86

Jacobian 0.01 0.14 0.01 0.35 -0.0 0.05
Pixel - within -8.45 0.79 -6.88 0.86 -7.13 0.73

Pixel - between 10.68 0.57 8.55 0.67 6.95 0.45
Amp - HFF -5.43 0.79 -5.93 0.83 -5.64 0.71

Amp - CD 0.04 0.74 0.06 0.66 0.04 0.68

Phase - HFF -7.36 0.36 2.63 0.06 4.18 0.09
Phase - CD 0.02 0.45 0.02 0.19 0.03 0.29

B
rig

ht
ne

ss

ID accuracy 0.99 0.98 1.02 0.99 1.01 0.97

Jacobian 0.0 0.12 0.01 0.37 0.0 0.06
Pixel - within -9.36 0.87 -7.7 0.91 -7.51 0.74

Pixel - between 11.52 0.61 9.73 0.73 8.54 0.6

Amp - HFF -5.94 0.84 -6.68 0.88 -6.32 0.78

Amp - CD 0.04 0.78 0.06 0.7 0.04 0.69

Phase - HFF -7.38 0.33 3.32 0.07 7.44 0.18
Phase - CD 0.02 0.44 0.02 0.19 0.03 0.24

C
on

tra
st

ID accuracy 1.01 0.87 1.25 0.93 0.55 0.54

Jacobian 0.0 0.08 0.02 0.44 -0.0 0.05
Pixel - within -9.88 0.79 -9.79 0.9 -5.22 0.61

Pixel - between 11.55 0.5 12.76 0.78 3.12 0.16
Amp - HFF -6.55 0.86 -8.23 0.84 -3.64 0.44
Amp - CD 0.05 0.83 0.07 0.6 0.02 0.47
Phase - HFF -9.91 0.44 8.98 0.11 0.25 0.03
Phase - CD 0.03 0.53 0.02 0.12 0.02 0.22

D
ef

oc
us

B
lu

r

ID accuracy 0.47 0.34 0.98 0.98 0.7 0.6

Jacobian -0.0 0.04 0.01 0.39 -0.0 0.12
Pixel - within -5.33 0.45 -7.44 0.94 -6.77 0.72

Pixel - between 5.81 0.24 9.54 0.76 5.42 0.31
Amp - HFF -3.27 0.42 -6.39 0.88 -5.19 0.64

Amp - CD 0.02 0.36 0.06 0.67 0.03 0.6

Phase - HFF -2.38 0.11 4.59 0.08 3.9 0.08
Phase - CD 0.01 0.13 0.02 0.18 0.03 0.28

Pi
xe

la
te

ID accuracy 0.11 0.13 0.42 0.45 0.68 0.55

Jacobian -0.0 0.13 0.0 0.04 -0.01 0.14
Pixel - within -2.12 0.14 -3.27 0.49 -6.33 0.64

Pixel - between 2.03 0.16 3.7 0.29 5.31 0.3
Amp - HFF -0.4 0.18 -3.0 0.49 -5.1 0.57

Amp - CD -0.0 0.13 0.03 0.47 0.03 0.54

Phase - HFF 5.4 0.2 2.31 0.05 5.28 0.1
Phase - CD -0.01 0.15 0.01 0.08 0.03 0.25

G
au

ss
ia

n
N

oi
se

ID accuracy -1.11 0.23 0.08 0.11 0.88 0.94

Jacobian -0.03 0.31 -0.01 0.11 -0.0 0.08
Pixel - within 6.83 0.09 -0.81 0.12 -7.08 0.85

Pixel - between -17.36 0.23 -0.34 0.07 7.32 0.57

Amp - HFF 5.63 0.25 -1.26 0.08 -5.74 0.79

Amp - CD -0.04 0.23 0.03 0.15 0.03 0.7

Phase - HFF 10.47 0.26 0.8 0.05 6.39 0.16
Phase - CD -0.03 0.27 0.02 0.15 0.03 0.25

Im
pu

ls
e

N
oi

se

ID accuracy -0.64 0.32 0.33 0.26 0.75 0.67

Jacobian -0.01 0.27 0.0 0.13 -0.0 0.1
Pixel - within 4.67 0.16 -2.64 0.26 -6.54 0.71

Pixel - between -9.44 0.26 2.62 0.23 5.93 0.42
Amp - HFF 3.08 0.3 -2.23 0.27 -5.39 0.61

Amp - CD -0.02 0.31 0.03 0.25 0.03 0.53

Phase - HFF 5.28 0.25 0.32 0.03 4.36 0.16
Phase - CD -0.01 0.27 0.02 0.2 0.03 0.2

Table 2: How well do metrics for data-
augmented models correlate with OOD
robustness?

A common practice to protect against distribution shift is to train with data augmentation [5, 21].
Accordingly, we revisit each of the CIFAR-10 models considered in Section 4.1 with three different
variations of data augmentation used during training: no augmentation (clean), AugMix [21], and
Gaussian noise augmentation [29]. In Figure 3 we investigate when (on which types of distribution
shifts) and in Table 2 we consider candidate explanations for why (via corresponding model property
measurements) these differently-augmented CIFAR-10 models achieve varying degrees of robustness.
As in Figure 2 and Table 1, we fit a separate regression line to each model architecture and average
the resulting slope and R2 values. The models that contribute to each regression line therefore share
an architecture and an augmentation strategy, but vary by pruning method and amount. Our findings
in this experiment echo those in Section 4.1, but we make the following additional observations:
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• The closer the match between the training data and the OOD data in terms of their spectral profile
(see Section A.5 for visualizations), the better ID accuracy, within-class pixel interpolation, and
amplitude interpolation HFF and CD are at predicting OOD accuracy. This is evident from the high
R2 values for these metrics when predicting defocus blur accuracy for models trained with AugMix,
and when predicting Gaussian or impulse noise accuracy for models trained with Gaussian noise.

• The closer the spectral match between the training data and the OOD data, the better the OOD
accuracy. This unsurprising result is evident from the higher accuracies of AugMix-trained models
on contrast and defocus blur corruptions and the higher accuracies of Gaussian-noise-trained
models on Gaussian noise and impulse noise corruptions.

Please see Figure 11 for visualizations of the data fit associated with the most predictive metric for
each distribution shift and data augmentation approach.

4.3 CLIP: Weight ensembling a robust model on ImageNet

Perhaps the most stunning example of OOD robustness for image classification is CLIP [37], which
showed that a large model pretrained on a massive dataset and evaluated zero-shot on ImageNet
achieves effective robustness on many OOD test sets simultaneously. Andreassen et al. [1] found
that finetuning these robust models towards ImageNet improves ID accuracy on ImageNet but
erodes effective robustness, and Wortsman et al. [52] offered a "best of both worlds" solution by
interpolating in weight space between a pretrained zero-shot model and its finetuned counterpart,
improving ID accuracy on ImageNet without sacrificing robustness. Accordingly, we study a set
of 33 CLIP models obtained by interpolating the pretrained and finetuned versions of three CLIP ViT
models (B/16, B/32, and L/14) [37, 52] with various relative weights on the two models. We compare
this CLIP model set to a benchmark set of 28 standard (nonrobust) ImageNet pretrained models from
Torchvision [33] as well as 5 pretrained models from the RobustBench [5] ImageNet-C leaderboard;
these models typically use data augmentation to improve corruption performance but are not nearly as
effectively robust as the CLIP models. We make the following observations in Figure 4 and Table 3:

• Although in-distribution accuracy is a reasonable predictor of OOD accuracy for most models and
distribution shifts, it performs markedly worse when predicting OOD accuracy for CLIP models
(and a couple of effectively robust RobustBench models on some OOD shifts).

• Fourier interpolation metrics for both amplitude and phase interpolation are strong predictors (often
R2 � 0.9) of OOD performance for CLIP models across OOD shifts. This suggests a hypothesis
for why CLIP models are more robust: they are less sensitive to perturbations of Fourier amplitude
and phase [51], which preserve image semantics for humans but confuse nonrobust models.

We also consider the ability of these model metrics to predict robustness in ImageNet models trained
with various data augmentation approaches, which can produce effective robustness on many of the
distribution shifts we consider [5]. Figures 5 and 13 show the most predictive metric’s performance
for these non-CLIP models from Figure 4. We again find that, although no single metric is best
across all distribution shifts, our proposed Fourier interpolation metrics are often most predictive,
outperforming in-distribution accuracy. See Appendix A.10 for full results and discussion.

5 Discussion

Our work is only the beginning of a full understanding of what makes models effectively robust to
distribution shifts, starting with the domain of image classification where some models have demon-
strated effective robustness. For example, Section 4.1 showed different types of model pruning can
confer robustness to different distribution shifts, and while some of this robustness can be explained by
improved behavior in response to amplitude and phase perturbations, much remains an open mystery.

As we saw in Section 4.2 (and has been noted by prior work [55, 21]), models can achieve robustness
to some distribution shifts by training with data augmentations designed to imitate the expected OOD
data. This approach can be a powerful way to mitigate expected test-time distribution shifts but leaves
open the question of how to prepare for the unexpected. We learned in Section 4.3 that more robust
CLIP models are less sensitive to perturbations of Fourier amplitude and phase, perhaps making
them more attuned to human perceptions of semantic meaning. This finding provides an exciting
opportunity for future work to confirm our results with both additional out-of-line models and causal
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experiments; and to incorporate our Fourier interpolation metrics into training paradigms, for instance
as regularizers or data augmentation strategies, to explicitly encode robustness in future models.

Figure 4: When does CLIP ensembling affect OOD robust-
ness?
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Phase - HFF -11.96 0.24 -9.19 0.73 35.48 0.26
Phase - CD 0.03 0.57 0.01 0.8 0.1 0.72

Table 3: How well do metrics for CLIP
models correlate with OOD robustness?

Our results provide a new perspective on the effective robustness problem by showing that no one
single metric rules them all. This dictates the need for a multi-faceted analysis to understand OOD
robustness, which is in sharp contrast to the in-distribution setting where a single property such as
model flatness can reasonably explain generalization performance.

RobustNets benchmark. The robustnesses of our analyzed CIFAR-10 models remain out-of-line.
To track and aid progress on effective robustness prediction, we release our code as well as a database
of our model weights and metric values at https://github.com/sarafridov/RobustNets. The
models we study on ImageNet are publicly available.
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Figure 5: When does ImageNet data augmentation affect
OOD robustness?
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Table 4: How do metrics for ImageNet
models correlate with OOD robustness?
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