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Figure 1: AV-Deepfake1M is a large-scale content-driven deepfake dataset generated by utilising a large language model. The dataset
contains more than 2K subjects and 1M deepfake videos generated by employing different audio-visual content manipulation strategies. The
left figure illustrates examples of word-level replacement, deletion, and insertion strategies to manipulate audio-visual content. The right figure
illustrates a comparison between the proposed dataset and other publicly available datasets in terms of the number of subjects, and amount of
real and fake videos.

ABSTRACT
The detection and localization of highly realistic deepfake audio-
visual content are challenging even for the most advanced state-of-
the-art methods. While most of the research efforts in this domain
are focused on detecting high-quality deepfake images and videos,
only a few works address the problem of the localization of small
segments of audio-visual manipulations embedded in real videos. In
this research, we emulate the process of such content generation and
propose the AV-Deepfake1M dataset. The dataset contains content-
driven (i) video manipulations, (ii) audio manipulations, and (iii)
audio-visual manipulations for more than 2K subjects resulting in
a total of more than 1M videos. The paper provides a thorough
description of the proposed data generation pipeline accompanied
by a rigorous analysis of the quality of the generated data. The
comprehensive benchmark of the proposed dataset utilizing state-
of-the-art deepfake detection and localization methods indicates a
significant drop in performance compared to previous datasets. The
proposed dataset will play a vital role in building the next-generation
deepfake localization methods. The dataset and associated code will
be made public.
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1 INTRODUCTION
We are witnessing rapid progress in the domain of content genera-
tion technology, i.e., models trained on massive amounts of data that
can produce highly realistic text [3, 51, 52], video [18, 49, 59] and
audio [27, 28, 45]. Consequently, discriminating between real and
fake content is becoming increasingly more challenging even for hu-
mans [38, 67]. This opens the door for misuse of content generation
technology for example to spread misinformation and commit fraud,
rendering the development of reliable detection methods vital.

The development of such methods is highly dependent on the
available deepfake benchmark datasets, which led to the steady in-
crease in the number of publicly available datasets that provide
examples of visual-only [26, 33, 36], audio-only [37, 62], and audio-
visual [29] content modification strategies (e.g., face-swapping, face-
reenactment, etc.). However, the majority of these datasets and meth-
ods assume that the entirety of the content (i.e., audio, visual, audio-
visual) is either real or fake. This leaves the door open for criminals
to exploit the embedding of small segments of manipulations in the
otherwise real content. As argued in [6], this type of targeted ma-
nipulation can lead to drastic changes in the underlying meaning as
illustrated in Figure 1. Given that most deepfake benchmark datasets
do not include this new type of manipulation strategy, state-of-the-art

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: Details for publicly available deepfake datasets in a chronologically ascending order. Cla: Binary classification, SL: Spatial
localization, TL: Temporal localization, FS: Face swapping, RE: Face reenactment, TTS: Text-to-speech, VC: Voice conversion.

Dataset Year Tasks Manipulated Manipulation #Subjects #Real #Fake #Total
Modality Method

DF-TIMIT [32] 2018 Cla V FS 43 320 640 960
UADFV [61] 2019 Cla V FS 49 49 49 98
FaceForensics++ [44] 2019 Cla V FS/RE - 1,000 4,000 5,000
Google DFD [39] 2019 Cla V FS 5 363 3,068 3,431
DFDC [16] 2020 Cla AV FS 960 23,654 104,500 128,154
DeeperForensics [26] 2020 Cla V FS 100 50,000 10,000 60,000
Celeb-DF [36] 2020 Cla V FS 59 590 5,639 6,229
WildDeepfake [68] 2020 Cla - - - 3,805 3,509 7,314
FFIW10𝐾 [67] 2021 Cla/SL V FS - 10,000 10,000 20,000
KoDF [33] 2021 Cla V FS/RE 403 62,166 175,776 237,942
FakeAVCeleb [29] 2021 Cla AV RE 600+ 570 25,000+ 25,500+
ForgeryNet [21] 2021 SL/TL/Cla V Random FS/RE 5,400+ 99,630 121,617 221,247
ASVSpoof2021DF [37] 2021 Cla A TTS/VC 160 20,637 572,616 593,253
LAV-DF [6] 2022 TL/Cla AV Content-driven RE/TTS 153 36,431 99,873 136,304
DF-Platter [38] 2023 Cla V FS 454 133,260 132,496 265,756
AV-Deepfake1M 2023 TL/Cla AV Content-driven RE/TTS 2,068 286,721 860,039 1,146,760

detection methods might fail to perform reliably on this new type of
deepfake content.

This work addresses this gap by releasing a new large-scale audio-
visual dataset called AV-Deepfake1M specifically designed for the
task of temporal deepfake localization. To improve the realism and
quality of generated content, the proposed data generation pipeline
incorporates the ChatGPT1 large language model. The pipeline fur-
ther utilizes the latest open-source state-of-the-art methods for high-
quality audio [8, 31] and video [54] generation. The scale and novel
modification strategies position the proposed dataset as the most
comprehensive audio-visual benchmark as illustrated in Figure 1,
making it an important asset for building the next generation of
deepfake localization methods. The main contributions of this work
are,

• We propose AV-Deepfake1M, a large-scale content-driven
audio-visual dataset for the task of temporal deepfake local-
ization.

• We propose an elaborate data generation pipeline employing
novel manipulation strategies and incorporating the state-of-
the-art in text, video and audio generation.

• We perform comprehensive analysis and benchmark of the
proposed dataset utilizing state-of-the-art deepfake detection
and localization methods.

2 RELATED WORK
The performance of any deepfake detection method is highly de-
pendent on the quantitative and qualitative aspects of the datasets
used for development. Over the past few years, many datasets
(e.g., [21, 32, 38]) have been proposed to support the research on
deepfake detection. A comprehensive list of the relevant publicly
available datasets is given in Table 1. Most of the available datasets
provide examples of face manipulations through either face swap-
ping [16, 32, 67] or face reenactment [29, 33] techniques. In terms
of the number of samples, earlier datasets are smaller due to the

1https://chat.openai.com/

limited availability of face manipulation techniques. With the rapid
advancements in content generation technology, several large-scale
datasets such as DFDC [16], DeeperForensics [26], KoDF [33], and
DF-Platter [38] have been proposed. However, the task associated
with these datasets is mainly restricted to coarse-level deepfake de-
tection. Until this point manipulations are mainly applied only to the
visual modality, and later, audio manipulations [37] and audio-visual
manipulations [29] have been proposed to increase the complexity
of the task.

In 2022, LAV-DF [6] was introduced to become the first content-
driven deepfake dataset for temporal localization. However, the qual-
ity and scale of LAV-DF are limited, and the state-of-the-art methods
designed for temporal localization [4, 65] are already achieving
very strong performance. AV-Deepfake1M addresses these gaps by
improving the quality, diversity, and scale of the previous datasets de-
signed for temporal deepfake localization. Given that LAV-DF is the
only available public dataset that has been designed for the same task
as the dataset proposed in this paper, next we do a direct comparison
of the two datasets. In addition to the fact that AV-Deepfake1M is
significantly larger than LAV-DF, in terms of the number of subjects,
and amount of real and fake videos, the following differences further
highlight our contributions.

• LAV-DF uses a rule-based system to find antonyms that max-
imize the change in sentiment in the transcript manipulation
step. We argue that naively choosing the antonyms causes
context inconsistencies and low diversity of the fake con-
tent. AV-Deepfake1M addresses this issue with the use of a
large language model, which results in diverse and context-
consistent fake content.

• The output quality of the visual generator Wav2Lip [42] and
audio generator SV2TTS [25] used for generating LAV-DF
is not sufficient for state-of-the-art detection methods. AV-
Deepfake1M utilizes the latest open-source state-of-the-art
methods for high-quality audio and video generation.

https://chat.openai.com/
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"... the great songbook ...  
I'm not going to ... and unique ..."

You are a helpful text modifier. Your target is to modify the provided text to invert its 
meaning to the opposite direction. The operation can be one of "delete", "insert" and  
"replace". Please generate output for the following input with 3 operations. 
... the great songbook ... I'm not going to ... and unique ...
[{"operation": "replace", "old_word": "great", "new_word": "terrible", "index": 4}, 
 {"operation": "delete", "old_word": "not", "new_word": None, "index": 17}, 
 {"operation": "insert", "old_word": None, "new_word": "not", "index": 24}]
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Figure 2: Data manipulation and generation pipeline. Overview of the proposed three-stage pipeline. Given a real video, the pre-processing
consists of audio extraction via FFmpeg followed by Whisper-based transcript generation. In the first stage, transcript manipulation, the original
transcript is modified through word-level insertions, deletions, and replacements. In the second stage, audio generation, based on the relevant
transcript manipulation, the audio is generated in both speaker-dependent and independent fashion. In the final stage, video generation, based
on the generated audio, the subject-dependant video is generated with smooth transitions in terms of lip-synchronization, pose, and other
relevant attributes.

• LAV-DF includes only replacement as a manipulation strat-
egy. AV-Deepfake1M includes two additional challenging
manipulation strategies, deletion and insertion.

3 AV-DEEPFAKE1M DATASET
AV-Deepfake1M is a large-scale audio-visual deepfake dataset, in-
cluding 1,886 hours of audio-visual data from 2,068 unique subjects
captured in diverse background environments. This positions the
proposed dataset as the most comprehensive audio-visual bench-
mark as illustrated in Figure 1 and Table 1. The generated videos in
AV-Deepfake1M preserve the background and identity present in the
real videos, while the content is carefully manipulated with content-
driven audio-visual data. Following previous deepfake dataset gen-
eration research [6, 29], the dataset includes three different combi-
nations of modified modalities in the generated fake videos. Please
note that here we also introduce the concept of content-driven mod-
ifications for unimodal as well as multimodal aspects. We further
elaborate on this in the supplementary material.

• Fake Audio and Fake Visual. Both the real audio and visual
frames are manipulated.

• Fake Audio and Real Visual. Only the real audio correspond-
ing to replacements and deletions is manipulated. To further
increase data quality, the fake audio, and the corresponding
length-normalized real visual segments are synchronized. As
for the insertions, new visual segments are generated based
on the length of the fake audio and are lip-synced to the
background noise (i.e., closed mouth).

• Real Audio and Fake Visual. Only the real visual frames
corresponding to replacements and deletions are manipulated.
To further increase data quality, the length of the fake visual
segments is normalized to match the length of the real audio.
As for the insertions, background noise is inserted for the
corresponding fake visual segments.

3.1 Data Generation Pipeline
The three-stage pipeline for generating content-driven deepfakes is il-
lustrated in Figure 2. A subset of real videos from the Voxceleb2 [14]
dataset is pre-processed to extract the audio using FFmpeg [50], fol-
lowed by Whisper-based [43] real transcript generation.

3.1.1 Transcript Manipulation.
Manipulation Strategy. The first stage for generating content-driven
deepfakes is transcript manipulation. We utilize ChatGPT for altering
the real transcripts. Through LangChain [9] the output of ChatGPT
is a structured JSON with four fields: 1) operation: This set
contains replace, delete, and insert, which has been applied on the
input; 2) old_word: The word in the input to replace or delete; 3)
new_word: The word in the input to insert or replace; 4) index:
The location of the operation in the input. The number of transcript
modifications depends on the video length and is determined by
the following equation 𝑀 = ceil(𝑡/10) where 𝑀 is the number of
modifications and 𝑡 (sec) is the length of the video. We followed [3]
and built a few-shot prompt template for ChatGPT.
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Figure 3: Comparison of transcript modifications in AV-Deepfake1M and LAV-DF.

Prompt 3.1: Transcripts manipulation

System: You are a helpful text modifier. Your target is to modify the provided text
to invert its meaning to the opposite direction. Here is the transcript of the audio.
Please use the provided operations to modify the transcript to change its meaning.
The operation can be one of “delete”, “insert” and “replace”.
Human: {EXAMPLE INPUT 1}
AI: {EXAMPLE OUTPUT 1}
Human: {EXAMPLE INPUT 2}
AI: {EXAMPLE OUTPUT 2}
......
Human: Please generate output for the following input with {NUM} operations.
{INPUT}

Analysis. Figure 3 (a) illustrates a comparison of the frequencies of
the top 20 words in AV-Deepfake1M and LAV-DF [6]. The results
show that few words in LAV-DF have dominant frequencies (>
10%), whereas this issue is drastically reduced in AV-Deepfake1M.
Owing to the contribution of ChatGPT, we also observed a significant
increase in unique new words (27.7 times more) in the modified
transcripts compared to LAV-DF, illustrated in Figure 3 (b). This
statistical comparison shows that the proposed LLM-based transcript
manipulation strategy generates more diverse content compared to
the rule-based strategy employed in LAV-DF. We further elaborate
on the advantages of using an LLM in this step in the supplementary
material.

3.1.2 Audio Generation.
Manipulation Strategy. The next stage is to generate high-quality
audio with the same style as the speaker. The audio is first separated
into background noise and speech using Denoiser [17]. Zero-shot
voice cloning methods such as SV2TTS [25] utilized by previous
datasets [6, 29] have low signal-to-noise ratio resulting in low-quality
audio manipulations that are easily localized by BA-TFD [4] and
UMMAFormer [65]. To increase the quality of the generated audio,
we employ the identity-dependent text-to-speech method VITS [31]
for a subset of the subjects. Further diversity in the audio generation
was introduced by utilizing the identity-independent text-to-speech
method YourTTS [8] for the rest of the subjects.

Audio generation is slightly different for each of the manipu-
lation strategies (i.e., replace, insert and delete). In the case of
replace and insert, we need to generate new audio correspond-
ing to new_word(s). Generally, there are two ways to generate
the new_word(s): 1) Generate audio for the final fake transcript
and crop it to get the audio for the required new_word(s) and 2)
Generate audio only for the new_word(s). To bring further diver-
sity and challenge, we use both strategies to generate audio for the
new_word(s). In the case of delete, only the background noise is
retained. After the audio manipulation, we normalized the loudness

Table 2: Audio quality of AV-Deepfake1M. Quality of the gener-
ated audio in terms of SECS, SNR and FAD.

Dataset SECS(↑) SNR(↑) FAD(↓)
FakeAVCeleb [29] 0.543 2.16 6.598
LAV-DF [6] 0.984 7.83 0.306
AV-Deepfake1M (Train) 0.991 9.40 0.091
AV-Deepfake1M (Validation) 0.991 9.16 0.091
AV-Deepfake1M (Test) 0.991 9.42 0.083
AV-Deepfake1M (Overall) 0.991 9.39 0.088

of the fake audio segments to the original audio to add more realism.
Finally, to keep the consistency with the environmental noise, we
add the background noise previously separated to the final audio
output.
Analysis. We evaluated the quality of the audio generation following
previous works [7, 11] (note that for all datasets, we only evaluated
the samples where the audio modality is modified). The results are
shown in Table 2. The first evaluation metric is speaker encoder co-
sine similarity (SECS) [53]. It measures the similarity of the speakers
given a pair of audio in the range [−1, 1]. We also calculated the
signal-to-noise ratio (SNR) for all fake audio and Fréchet audio dis-
tance (FAD) [30]. The results indicate that AV-Deepfake1M contains
higher quality audio compared to other datasets.

3.1.3 Video Generation.
Manipulation Strategy. The final stage of the generation pipeline
is visual content generation. After the audio is generated, the lip-
synced visual frames are generated based on the subjects’ original
pose and the fake audio. We investigated several face reenactment
strategies including EAMM [24], AVFR-GAN [2], DiffTalk [46],
AD-NeRF [19] and ATVGnet [10] and concluded that these methods
are not well suited for zero-shot lip-synced generation of unseen
speakers. Thus, we use TalkLip [54] for visual content generation
which is primarily designed for zero-shot lip-sync scenarios. LipTalk
is 1) Identity-independent, 2) Lip-syncing only without generating
new poses, 3) Fast, 4) State-of-the-art, and 5) Open-source. This way
we avoid the weaknesses of the aforementioned face reenactment
strategies. The pre-trained TalkLip model is used to generate fake
visual frames that are lip-synchronized with the input audio and can
be used for insertion, replacement, and deletion.
Analysis. To evaluate the visual quality of the proposed dataset,
we used peak signal-to-noise ratio (PSNR), structural similarity
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Figure 5: Comparison of AV-Deepfake1M and LAV-DF. The left three-row three-column histograms illustrate the fake segment absolute
lengths (sec), the fake segment lengths proportion in videos (%) and the video lengths (sec) in the train, validation, and test sets. In the middle,
the histograms illustrate the overall statistics for fake segment lengths, proportions and video lengths, compared with LAV-DF. For the fake
segment lengths and proportions, the X-axis is in log scale and for video lengths, the X-axis is in linear scale. For all histograms, the Y-axis is
in linear scale. The vertical dotted lines and numbers in histograms represent the mean value. On the right side, (a) The number of segments
with different modifications and (b) The number of videos with different numbers of segments per video.

Table 3: Visual quality of AV-Deepfake1M. Quality of the gener-
ated video in terms of PSNR, SSIM and FID.

Dataset PSNR(↑) SSIM(↑) FID(↓)
FF++ [44] 24.40 0.812 1.06
DFDC [16] - - 5.69
FakeAVCeleb [29] 29.82 0.919 2.29
LAV-DF [6] 33.06 0.898 1.92
AV-Deepfake1M (Train) 39.50 0.977 0.50
AV-Deepfake1M (Validation) 39.54 0.977 0.49
AV-Deepfake1M (Test) 39.48 0.977 0.56
AV-Deepfake1M (Overall) 39.49 0.977 0.49

index (SSIM) [58] and Fréchet inception distance (FID) [23] met-
rics as shown in Table 3. Note that for a fair comparison, we pre-
processed the videos to a common format. The videos of FF++ [44]
and DFDC [16] are ‘in-the-wild’, whereas FakeAVCeleb [29], LAV-
DF [6] and AV-Deepfake1M are facial videos. Thus, we cropped
the facial region for FF++ and DFDC for visual quality assessment.
Since FakeAVCeleb, LAV-DF and AV-Deepfake1M are multimodal,
for a fair comparison, we only used the samples with the visual

modality modified to compute the metrics. The results indicate that
AV-Deepfake1M is of higher visual quality compared to existing
datasets.

3.2 Dataset Statistics
We split the dataset into train, validation, and test sets. We first
randomly select 1,657 subjects for the train set and 411 subjects
for the test set without any overlap. The validation set is selected
randomly from the train subset. The test set contains only samples
with VITS-based identity-dependent audio. The variation in the
number of subjects and videos in different sets is presented in Table 4
and Figure 4.

Figure 5 illustrates the direct comparison of AV-Deepfake1M
and LAV-DF [6]. The results indicate that AV-Deepfake1M is more
diverse in terms of modifications, subjects, fake segment and video
lengths, and a lower average proportion of fake segments, making
the dataset a vital asset for building better deepfake localization
methods.
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Table 4: Number of subjects and videos in AV-Deepfake1M.

Subset #Subjects #Real Videos #Fake Videos #Videos
Train

1,657
186,666 559,514 746,180

Validation 14,235 43,105 54,730
Test 411 85,820 257,420 343,240
Overall 2,068 286,721 860,039 1,146,760

Table 5: User study results for AV-Deepfake1M and LAV-DF.

User Study Acc. AP@0.1 AP@0.5 AR@1
LAV-DF 84.03 36.80 14.17 10.04
AV-Deepfake1M 68.64 15.32 01.92 02.54

3.3 Human Quality Assessment
To investigate if humans can detect the deepfakes in AV-Deepfake1M,
we also conducted a user study with 25 participants with prior experi-
ence in video manipulation in the computer vision domain (note that
the authors did not participate in the study). 200 random samples
that contain 0 or 1 modification were selected for the study, where
100 from LAV-DF and 100 from AV-Deepfake1M. Each participant
was asked to classify 20 videos (5 real and 5 fake from LAV-DF
dataset, 5 real and 5 fake from AV-Deepfake1M) as real or fake and
propose the potential fake segment start and end point. The user
study results presented in Table 5 indicate that the deepfake content
in AV-Deepfake1M is very challenging to detect for humans, and
AV-Deepfake1M is more difficult than LAV-DF.

3.4 Computational Cost
We spent around ∼600 GPU hours for speech recognition with Whis-
per [43], ∼2100 GPU hours for training VITS [31] (each of the
721 VITS models requires ∼3hrs), and ∼300 GPU hours for data
generation. Overall, we needed ∼3000 GPU hours to generate AV-
Deepfake1M with NVIDIA RTX6000 GPUs.

4 BENCHMARKS AND METRICS
This section outlines the benchmark protocol for AV-Deepfake1M
along with the used evaluation metrics. The goal is to detect and lo-
calize content-driven audio, visual, and audio-visual manipulations.

4.1 Data Partitioning
The dataset is organized in train, validation, and test sets, as de-
scribed in Section 3.2. The original test set (all modifications) is
referred to as fullset in the rest of the text. For a fair comparison with
visual-only and audio-only methods, we also prepared subset V (by
excluding the videos with audio-only modifications from fullset) and
subset A (by excluding the videos with visual-only modifications
from fullset).

4.2 Implementation Details
For benchmarking temporal deepfake localization, we consider the
following state-of-the-art methods: Pyannote [41] is a pre-trained
speaker diarization method. TriDet [47] and ActionFormer [63] are
the state-of-the-art in the temporal action localization domain. Since
these two methods require pre-trained features, we extracted the

state-of-the-art features VideoMAEv2 [56] and InternVideo [57] for
benchmarking. BA-TFD [6], BA-TFD+ [4], and UMMAFormer [65]
are the state-of-the-art methods specifically designed for audio-
visual temporal deepfake localization. We followed the original
settings for BA-TFD and BA-TFD+. For UMMAFormer [65], we
implemented it using the InternVideo [57] visual features and BYOL-
A [40] audio features. For image-based classification methods, we
consider Meso4 [1], MesoInception4 [1], Xception [12], Face X-
Ray [34], LipForensics [20], EfficientViT [15], and SBI [48]. We
followed the procedure used in previous works [4, 66] to aggregate
the frame-level predictions to segments for localization.

For benchmarking deepfake detection, we trained the image-based
models Meso4 [1], MesoInception4 [1], Xception [12] and Effi-
cientViT [15] with video frames along with the corresponding labels.
For the segment-based methods MDS [13] and MARLIN [5], we
used a sliding window to sample segments from the video for training
and inference. During the inference stage, the frame- and segment-
level predictions are aggregated to video-level by max voting. The
aggregation strategy is discussed in Section 5. We also evaluated the
zero-shot performance of several methods, including the LLM-based
Video-LLaMA [64], audio pre-trained CLAP [60], M2TR [55] and
LipForensics [20] pre-trained on FF++ [44], Face X-Ray [34] and
SBI [48] pretrained on blending images. For Video-LLaMA, we
also evaluated 5 model ensembles (the majority vote of 5 model
inferences). To investigate the impact of the level of label access,
we designed 3 different label access levels for training: frame-level
labels, segment-level labels only, and video-level labels only.

4.3 Evaluation Metrics
Temporal Deepfake Localization. We use average precision (AP)
and average recall (AR) as prior works [6, 21].
Deepfake Detection. We use the standard evaluation protocol [16,
44] and report video-level accuracy (Acc.) and area under the curve
(AUC).

5 RESULTS AND ANALYSIS
This section reports the performance of the state-of-the-art deepfake
detection and localization methods described in Section 4.2 on AV-
Deepfake1M. The reported performance is based on different subsets,
described in Section 4.1, and different levels of label access during
training, described in Section 4.2.

5.1 Audio-Visual Temporal Deepfake Localization
The results of this benchmark are depicted in Table 6. All state-of-the-
art methods achieve significantly lower performance compared to the
performance reported on previous datasets [6, 21]. This significant
drop indicates that existing temporal deepfake localization methods
are falling behind with the rapid advancements in content generation.
In other words, we can claim that the highly realistic fake content
in AV-Deepfake1M will open an avenue for further research on
temporal deepfake localization methods.

5.2 Audio-Visual Deepfake Detection
Similarly to temporal deepfake localization, the results of the clas-
sical deepfake detection benchmark are summarized in Table 7.
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Table 6: Temporal deepfake localization benchmark. Performance comparison of state-of-the-art methods on the proposed AV-Deepfake1M
dataset. The results are significantly low, indicating that AV-Deepfake1M is an important benchmark for this task.

Set Method Mod. AP@0.5 AP@0.75 AP@0.9 AP@0.95 AR@50 AR@30 AR@20 AR@10 AR@5

Fu
lls

et

PyAnnote (Zero-Shot) [41] A 00.03 00.00 00.00 00.00 00.67 00.67 00.67 00.67 00.67
Meso4 [1] V 09.86 06.05 02.22 00.59 38.92 38.91 38.81 36.47 26.91
MesoInception4 [1] V 08.50 05.16 01.89 00.50 39.27 39.22 39.00 35.78 24.59
EfficientViT [15] V 14.71 02.42 00.13 00.01 27.04 26.99 26.43 23.90 20.31
TriDet + VideoMAEv2 [47, 56] V 21.67 05.83 00.54 00.06 20.27 20.23 20.12 19.50 18.18
TriDet + InternVideo [47, 57] V 29.66 09.02 00.79 00.09 24.08 24.06 23.96 23.50 22.55
ActionFormer + VideoMAEv2 [56, 63] V 20.24 05.73 00.57 00.07 19.97 19.93 19.81 19.11 17.80
ActionFormer + InternVideo [57, 63] V 36.08 12.01 01.23 00.16 27.11 27.08 27.00 26.60 25.80
BA-TFD [6] AV 37.37 06.34 00.19 00.02 45.55 40.37 35.95 30.66 26.82
BA-TFD+ [4] AV 44.42 13.64 00.48 00.03 48.86 44.51 40.37 34.67 29.88
UMMAFormer [65] AV 51.64 28.07 07.65 01.58 44.07 43.93 43.45 42.09 40.27

Su
bs

et
V

PyAnnote (Zero-Shot) [41] A 00.02 00.00 00.00 00.00 00.52 00.52 00.52 00.52 00.52
Meso4 [1] V 15.31 09.54 03.52 00.93 58.04 58.03 57.87 54.37 40.06
MesoInception4 [1] V 13.38 08.25 03.05 00.81 58.54 58.48 58.15 53.34 36.59
EfficientViT [15] V 23.21 03.92 00.21 00.02 37.52 37.46 36.88 34.19 29.64
TriDet + VideoMAEv2 [47, 56] V 26.45 07.35 00.74 00.08 22.49 22.47 22.42 22.04 21.09
TriDet + InternVideo [47, 57] V 37.90 12.15 01.12 00.13 28.08 28.07 28.03 27.79 27.17
ActionFormer + VideoMAEv2 [56, 63] V 24.80 07.25 00.77 00.09 22.26 22.23 22.16 21.70 20.71
ActionFormer + InternVideo [57, 63] V 45.57 16.07 01.75 00.23 31.78 31.77 31.73 31.56 31.14
BA-TFD [6] AV 55.34 09.48 00.30 00.03 62.66 55.48 49.53 43.15 38.48
BA-TFD+ [4] AV 65.85 20.37 00.73 00.05 65.13 59.07 53.57 46.79 41.69
UMMAFormer [65] AV 39.07 20.77 05.62 01.16 40.39 40.19 39.51 37.53 34.93

Su
bs

et
A

PyAnnote (Zero-Shot) [41] A 00.05 00.01 00.00 00.00 00.97 00.97 00.97 00.97 00.96
Meso4 [1] V 07.13 04.17 01.45 00.39 29.34 29.34 29.27 27.58 20.54
MesoInception4 [1] V 05.88 03.46 01.19 00.32 29.46 29.42 29.26 26.95 18.80
EfficientViT [15] V 09.91 15.79 00.08 00.01 21.47 21.42 20.87 18.43 15.39
TriDet + VideoMAEv2 [47, 56] V 17.45 04.01 00.24 00.02 18.47 18.43 18.28 17.53 16.02
TriDet + InternVideo [47, 57] V 24.95 06.85 00.47 00.05 21.79 21.76 21.64 21.07 19.95
ActionFormer + VideoMAEv2 [56, 63] V 16.22 03.95 00.28 00.03 18.11 18.07 17.92 17.10 15.59
ActionFormer + InternVideo[57, 63] V 30.86 09.47 00.78 00.09 24.49 24.46 24.36 23.85 22.87
BA-TFD [6] AV 27.79 04.31 00.12 00.01 36.71 32.50 28.82 24.02 20.58
BA-TFD+ [4] AV 33.23 10.07 00.36 00.03 40.54 37.07 33.63 28.50 23.82
UMMAFormer [65] AV 68.68 40.00 11.32 02.35 51.44 51.41 51.35 51.23 50.95

Models that have access only to the video-level labels during train-
ing and the zero-shot models all perform poorly on this task, except
the Face X-Ray and SBI which are designed to be generalizable.
Providing the fine-grained segment-level and frame-level labels dur-
ing training brings an improvement in performance. However, even
with the frame-level labels provided during training, the AUC of
the best-performing methods is less than 70, due to the multimodal
modifications present in AV-Deepfake1M.

The frame- and segment-based deepfake detection methods can
only produce frame- and segment-level predictions. Thus, a suitable
aggregation strategy is required to generate the video-level predic-
tions. We investigated several popular aggregation strategies, such
as max (e.g., [6]), average (e.g., [15, 22, 55]), and the average of the
highest 5 scores (e.g., [35]) for video-level predictions. The results
of the experiment are presented in Table 9. The results show that
max is the optimal aggregation strategy on AV-Deepfake1M for the
considered deepfake detection methods.

5.3 Unimodal Deepfake Detection and Localization
We also evaluated the performance on subset V and subset A, as
described in Section 4.1. As expected, all visual-only methods con-
sistently perform better on subset V compared to fullset for both
temporal localization and detection. The same holds for subset A
and audio-only methods.

5.4 Benchmark Comparison
We conducted additional experiments (Tables 8 and 10) to compare
the performance on temporal localization and classification on AV-
Deepfake1M and LAV-DF [6].

There is a significant drop in BA-TFD [6] temporal localization
performance as compared to LAV-DF (Table 8). A similar pattern
is also observed for BA-TFD+ [4] (AP@0.5 96.30 → 44.42) and
UMMAFormer [65] (AP@0.5 98.83 → 51.64). For classification
(Table 10), the performance of Xception [12], LipForensics [20],
Face X-Ray [34], and SBI [48] also drops compared to LAV-DF.
These additional results further validate that AV-Deepfake1M is
more challenging than LAV-DF.

We conduct the experiments using Xception and BA-TFD pre-
trained on AV-Deepfake1M then finetune and evaluate on LAV-DF,
shown in Table 11. We observe the performance improvements are
significant for both temporal localization with BA-TFD and clas-
sification with Xception, when compared with models trained on
LAV-DF from scratch.

6 CONCLUSION
This paper presents AV-Deepfake1M, the largest audio-visual dataset
for temporal deepfake localization. The comprehensive benchmark
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Table 7: Deepfake detection benchmark. Performance comparison of state-of-the-art methods on the proposed AV-Deepfake1M dataset using
different evaluation protocols. E5: Ensemble 5.

Label Access Methods Mod. Fullset Subset V Subset A
For Training AUC Acc. AUC Acc. AUC Acc.

Zero-Shot Video-LLaMA (7B) [64] AV 50.09 25.23 50.13 33.51 50.08 33.49
Video-LLaMA (13B) [64] AV 49.50 25.02 49.53 33.35 49.30 33.36
Video-LLaMA (7B) E5 [64] AV 49.97 25.32 50.01 33.57 49.98 33.62
Video-LLaMA (13B) E5 [64] AV 50.74 25.05 50.52 33.36 50.78 33.40
CLAP [60] A 50.83 31.99 50.91 37.83 50.67 37.54
M2TR [55] V 50.18 74.99 50.24 66.67 50.14 66.66
LipForensics [20] V 51.57 68.84 54.37 64.13 50.65 62.19
Face X-Ray [34] V 61.54 73.83 61.88 66.59 60.86 66.35
SBI [48] V 55.10 34.04 57.75 41.51 53.81 39.38

Video-level Meso4 [1] V 50.22 75.00 50.31 66.66 50.17 66.66
MesoInception4 [1] V 50.05 75.00 50.01 66.66 50.06 66.66
SBI [48] V 65.82 69.00 67.31 67.19 65.11 65.55

Segment-level Meso4 [1] V 54.53 55.83 56.81 56.78 53.34 53.89
MesoInception4 [1] V 57.16 28.24 62.14 37.41 54.64 35.46
MDS [13] AV 56.57 59.44 54.21 53.70 56.92 58.88
MARLIN [5] V 58.03 29.01 61.57 38.28 56.23 35.99

Frame-level Meso4 [1] V 63.05 49.51 76.30 64.62 56.27 47.82
MesoInception4 [1] V 64.04 54.13 80.67 69.88 56.28 51.73
Xception [12] V 68.68 61.33 81.97 81.39 63.19 57.45
EfficientViT [15] V 65.51 71.80 76.74 70.89 59.75 63.51

Table 8: Temporal localization results on the AV-Deepfake1M and LAV-DF.

Method Dataset AP@0.5 AP@0.75 AP@0.95 AR@50 AR@20 AR@10

BA-TFD [6]
LAV-DF [6] 79.15 38.57 00.24 64.18 60.89 58.51

AV-Deepfake1M 37.37 06.34 00.02 45.55 35.95 30.66

BA-TFD+ [4]
LAV-DF [6] 96.30 84.96 04.44 80.48 79.40 78.75

AV-Deepfake1M 44.42 13.64 00.03 48.86 40.37 34.67

UMMAFormer [65]
LAV-DF [6] 98.83 95.54 37.61 92.47 92.42 92.10

AV-Deepfake1M 51.64 28.09 01.57 44.07 43.45 42.09

Table 9: Aggregation strategies. AUC scores on fullset for each
method using different aggregation strategies.

Method → Meso4 MesoInc4 Xception EfficientViT MARLIN
Strategy ↓ [1] [1] [12] [15] [5]

max 63.05 64.04 68.68 65.51 58.03
avg 55.61 54.07 61.44 58.75 53.20
avg of top5 62.32 59.82 68.81 63.60 56.39

Table 10: Performance (AUC ↑) for classification baselines on
AV-Deepfake1M and LAV-DF.

Label Access Methods AV-Deepfake1M LAV-DF [6]
Zero-shot LipForensics [20] 51.57 73.34

Face X-Ray [34] 61.54 69.65
SBI [48] 55.10 62.84

Video-level SBI [48] 65.82 67.23
Segment-level MDS [13] 56.57 82.80
Frame-level Xception [12] 68.68 83.58

EfficientViT [15] 65.51 96.50

of the dataset utilizing state-of-the-art deepfake detection and local-
ization methods indicates a significant drop in performance com-
pared to previous datasets, indicating that the proposed dataset is an

Table 11: Transfer learning results. Dataset for pretraining.

Methods → BA-TFD Xception
Train Data Test Data AP@0.5 ↑ AUC ↑

LAV-DF LAV-DF 79.15 83.58
AV-Deepfake1M, LAV-DF LAV-DF 83.93 90.12

important asset for building the next-generation of deepfake local-
ization methods.
Limitations. Similarly to other deepfake datasets, AV-Deepfake1M
exhibits a misbalance in terms of the number of fake and real videos.
Broader Impact. Owing to the diversified and realistic, content-
driven fake videos, AV-Deepfake1M will support the development of
robust, generalized, audio-visual deepfake detection and localization
models.
Ethics Statement. We acknowledge that AV-Deepfake1M may raise
ethical concerns such as the potential misuse of facial videos of
celebrities, and even the data generation pipeline could have a poten-
tial negative impact. Misuse could include the creation of deepfake
videos or other forms of exploitation. To avoid such issues, we have
taken several measures such as distributing the data with a proper
end-user license agreement, where we will impose certain restric-
tions on the usage of the data, such as the data generation technology
and resulting content being restricted to research purposes only.
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