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ABSTRACT

Physics-Informed Neural Networks (PINNs) offer an efficient approach to solving
partial differential equations (PDEs). In theory, they can provide the solution to
a PDE at an arbitrary point for the computational cost of a single forward pass
of a neural network. However, PINNs often pose challenges during training, ne-
cessitating complex hyperparameter tuning, particularly for PDEs with oscillating
solutions. In this paper, we propose a PINN training scheme for PDEs with oscil-
lating solutions. We analyze the impact of sinusoidal activation functions as model
prior and incorporate self-adaptive weights into the training process. Our experi-
ments utilize the double mass-spring-damper system to examine shortcomings in
training PINNs. Our results show that strong model priors, such as sinusoidal
activation functions, are immensely beneficial and, combined with self-adaptive
training, significantly improve performance and convergence of PINNs.

1 INTRODUCTION

A multitude of practically relevant systems can be modelled and described via partial differential
equations (PDEs), creating the demand for fast and reliable PDE solvers in both research and in-
dustry. In PINNs (Raissi et al., 2019), PDEs are used as constraints that are implemented via
a problem-specific loss function. Through automatic differentiation (Baydin et al., 2018), partial
derivatives can be obtained efficiently and are combined to form the PDE. This PDE constraint is
then enforced during optimization and provides strong priors to the model without problem-specific
architectures. PINNs can solve equations over a continuous domain and obviate the need for expen-
sive mesh creation.

Physics-informed models have successfully been applied to problems in fluid mechanics, solid me-
chanics, and optics (Wong et al., 2022). However, they are known to require cumbersome hy-
perparameter tuning, especially if the solution of the learned PDE contains high-frequency oscilla-
tions (Wang et al., 2020). Since oscillating phenomena are ubiquitous, e.g. in multi-body systems, an
improved training scheme for these types of problems is of particular interest. In recent years, mul-
tiple methods for improving the performance of PINNs have been proposed, ranging from domain
decomposition (Jagtap & Karniadakis, 2021), over variational formulation of PINNs (Kharazmi
et al., 2019) to transfer learning (Desai et al.). Two methods that should be especially suited to im-
prove the convergence behaviour for oscillating problems are sinusoidal activation functions in the
initial network layer (Wong et al., 2022) and self-adaptive PINNs (McClenny & Braga-Neto, 2020).

While prior works have motivated the sinusoidal activations from a learning perspective or a general
ability to improve high-frequency model behavior (Wong et al., 2022; Sitzmann et al., 2020), recent
theoretical advances in this field argue that the neural activation function should optimally also
represent a fundamental solution of the PDE (Ranftl, 2022). This result implies an application of the
fundamental solution activation in the model’s last layer.
With the fundamental solution being challenging to obtain for complex systems, we propose using
sinusoidal activation functions repeatedly throughout the model, as it (i) approximates fundamental
PDE solutions for oscillating systems as well as (ii) leverages the beneficial learning properties
discussed in (Wong et al., 2022).
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This paper analyzes the impact of introducing sinusoidal activations throughout the PINN model
in combination with self-adaptive PINNs. We analyze its potential for improving accuracy and re-
ducing training time. We also show that for high-frequency problems, employing multiple layers
of sine activation functions in PINNs is beneficial, and a single layer might not be enough. This
also translates to physics-informed deep neural operator networks trained for multiple initial con-
ditions, where sinusoidal activation functions provide considerable performance gains, as shown in
Appendix A.4. Our experiments use the double mass-spring-damper (dMSD) model as a benchmark
problem (results for the wave equation can be found in Appendix A.3).

2 RELATED WORK

The idea of incorporating prior knowledge as a PDE into a neural network has existed since the
1990s (Dissanayake & Phan-Thien, 1994). However, the method became viable by exploiting auto-
matic differentiation. Raissi et al. (2019) coined the term physics-informed neural networks in 2019
and reignited interest in this method.
The spectral bias of PINNs (Wang et al., 2020), the difficulty in training PINNs, and the subsequent
study of potential failure modes during training (Rohrhofer et al., 2022), (Wang et al., 2021a) lead to
a multitude of extensions of the original PINN framework. For oscillating problems, two research di-
rections are of particular interest: sinusoidal feature mapping and loss weighting schemes. Multiple
works report the performance benefits of using sinusoidal feature mapping. Here, the two main ap-
proaches either utilize sinusoidal activation functions (Raissi et al., 2018), (Fang, 2021), (Zobeiry &
Humfeld, 2021), (Sitzmann et al., 2020) or employ multi-scale Fourier feature architectures (Wang
et al., 2021b). Wong et al. (2022) are the first to systematically study the impact of sine activation
functions. They advocate employing them in the first layer only and show that using multiple layers
with sine activation functions performs similarly. However, in (Ranftl, 2022), it is shown that the
activation function should represent a fundamental solution of the PDE, which motivates the use of
a sine activation function in the last layer.

Several methods were proposed to ease the challenge of balancing the data and physics residuals
in the loss function. Non-adaptive weighting (Wight & Zhao, 2020) emphasises the importance
of fulfilling the initial condition first by scaling the corresponding residual by a predefined factor.
Learning rate annealing (Wang et al., 2021a) considers that finding these scaling factors might be
challenging and uses gradient statistics during training to balance the different loss terms. Minimax
weighting (Liu & Wang, 2021) uses a different balancing approach, updating the network weights
via gradient descent and the residual weights via gradient ascent. The weighting scheme in self-
adaptive PINNs (McClenny & Braga-Neto, 2020) is closely related to Minimax weighting but differs
in scaling not the entire term by one scalar value but every collocation and data point individually.

3 METHODOLOGY

Physics-informed neural networks: To solve a PDE with a PINN, we assume that the parameters
of the PDE are fixed and known. We can then use a neural network to approximate the desired
function and model the PDEs by differentiating the network output with respect to the inputs using
automatic differentiation.

The total loss, in our use-case, consists of an initial condition residual Lic and a physics residual Lp,
which can be defined as:

L(w,λic,λp) = Lic(w,λic) + βLp(w,λp), (1)

with:

Lic(w,λic) =
1

Nic

Nic∑
i=1

m(λic
i )(y(ti,xi)− ŷ(ti,xi;w))2, and

Lp(w,λp) =
1

Np

Np∑
j=1

m(λp
j )

(
∂ŷ(tj ,xj ;w)

∂tj
+N [ŷ(tj ,xj ;w);γ]

)2

,

where N [·,γ] is a nonlinear operator parameterized by γ and y(ti,xi) are known values of the PDEs
solution at (ti,xi). Depending on the studied problem, y(ti,xi) can be obtained from known initial
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conditions, boundary conditions, or measured data. The predicted solution of the PINN with weights
w at collocation points (tj ,xj), sampled over the whole domain, is given by ŷ(tj ,xj ;w), and β
is a scaling factor to balance the individual loss terms (Moseley et al., 2020). The self-adaptation
weights λ are an extension of the original PINN (McClenny & Braga-Neto, 2020), and m(λ) = 1
for the baseline PINN. The residual Lp enforces the PDE at the collocation points.

PINNs with sinusoidal activation functions: Using a sine instead of or in combination with
the more common tanh as an activation function was shown to improve the trainability of PINNs
(Raissi et al., 2018), (Huang et al., 2021). Wong et al. (2022) provide insights into why this might
be the case. The tanh function is known to saturate for large inputs, which can lead to vanishingly
small gradients. Additionally, the more expressive the PINN gets, the more it suffers from an initial
bias toward flat output functions due to a near-zero input gradient. Compared to traditional neural
networks, this is especially problematic for PINNs because a zero output ŷ(tj ,xj ;w), minimizes
many PDEs. The PINN is trapped in a local minimum where the physics residual is low or even
zero and might not be able to minimize the initial condition residual additionally. Another aspect
is that sinusoidal patterns often occur in physical phenomena, such as mass-spring-damper systems,
wave propagation, or the heat equation. Therefore, using a sinusoidal activation function is valuable
for incorporating prior knowledge into the network. Using a sine as an activation function in the
first layer as proposed in (Wong et al., 2022) leads to the input of the second layer being a weighted
sum of sine functions, which can be used to approximate periodic waves. Naturally, the usage of
sinusoidal activation functions can be extended to the subsequent layers (Sitzmann et al., 2020).
Sinusoidal activation functions should be especially suited for problems with oscillating solutions.

Self-Adaptive PINNs (SA-PINNs): SA-PINNs (McClenny & Braga-Neto, 2020) were introduced
to ease the challenge of balancing the individual components of the loss function. The residual
weights are jointly optimized with L and do not need to be tuned by hand after the initialization.
Since the weights are applied to each training point individually, the network can balance not only
the loss terms as a whole but also the individual training samples. The network focuses on training
samples with high weights, effectively concentrating on complex regions of L.

To achieve this, the authors introduce the nonnegative and trainable self-adaptation weights λ along-
side the strictly increasing, differentiable, nonnegative function m(λ) defined on [0,∞). In the loss
equations (1), λic

i and λp
j are the self-adaptation weights for the initial condition and physics collo-

cation points. The core optimization problem of SA-PINNs is to minimize the loss with respect to
the network weights w but maximize it with respect to the self-adaptation weights λ (McClenny &
Braga-Neto, 2020).

Training scheme: In our proposed training scheme, we combine several findings in PINN lit-
erature to improve performance, improve convergence speed, and reduce the required amount of
hyperparameter tuning for specific problems. Our training scheme for physics-informed models for
oscillating problems comprises two main parts: (i) Applications of sine activation functions in all
layers of the model, to more closely approximate the fundamental PDE solution, as well as reduc-
ing vanishing gradient effects, and (ii) combining it with self-adaptive weights to overcome local
minima during PINN training.

4 EXPERIMENTS AND DISCUSSION

We will test the original PINN and the self-adaptive PINN with up to three different activation
function configurations in the hidden layers: the usage of tanh in all layers, denoted by the token
all-tanh, sine in the first layer and tanh in the subsequent layers denoted as sine-first, and sine in all
layers denoted as all-sine (detailed configurations in Appendix A). The following set of differential
equations describes the double mass-spring-damper system (see also Appendix A, Figure 3):

m1ÿ1 = −c1y2 + c2(y1 − y2)− d1ẏ2 + d2(ẏ1 − ẏ2) (2)
m2ÿ2 = −c2(y1 − y2)− d2(ẏ1 − ẏ2) (3)

In the often-used quarter-car suspension model, d1 and c1 represent the damping and stiffness of the
tyre, while d2 and c2 embody the primary suspension of the car. In the following experiments, we
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Figure 1: PINN test error for the dMSD model
using a single initial condition.

Figure 2: A cutout of the predictions for the
dMSD model after 106 epochs for m2.

assume fixed PDE parameters and a fixed initial condition (detailed parameter settings can be found
in Appendix A).

Figure 1 shows the minimal obtained test MSE for every 100k of training iterations. It is apparent
that using a sinusoidal activation function in all layers is the best-suited approach for this problem.
Examining the performance of the all-tanh and sine-first networks (squares/triangles), we see the
results are almost indistinguishable. The introduction of self-adaptive weights (red) improves the
performance only marginally.
The all-sine networks can distinguish themselves with a considerable performance gap. Notably, the
PINN all-sine network outperforms two of the three self-adaptive networks. For this problem, the
proper activation function configuration outweighs the loss-balancing benefits of the self-adaptive
weights. However, the combination of both techniques converges not only the fastest but also to the
lowest error overall.

Predictions further away from the initial condition are more challenging for PINNs. Therefore,
Figure 2 shows a cutout of the averaged predicted solution after 1e6 epochs at the end of the tem-
poral domain. One second after the initial condition, networks without all-sine activation functions
predict a flat output close to zero, here exemplified by SA-PINN sine-first prediction, indicating
what is likely an attractive local minimum in the loss landscape and illustrating one of the chal-
lenges in training PINNs for oscillating problems. Even though the PINN all-sine configuration
can capture the low-frequency features in the solution after 1 second for both masses, it misses the
high-frequency features (see also Appendix A.2, Figure 4). In contrast, SA-PINN all-sine can ap-
proximate them reasonably well, encouraging the use of our proposed training scheme of combining
sinusoidal activation functions in all hidden layers with self-adaptive weights. In Appendix A.4, we
demonstrate that the benefits of employing multiple sinusoidal layers extend to deep neural operator
networks by solving the dMSD model for various initial conditions without retraining.

5 CONCLUSION

In this work, we propose a training scheme for PINNs tailored to oscillating problems. By combining
several findings in PINN literature, we are able to improve performance and reduce training time.
We show the advantages of applying sine activation functions in all layers of the model to more
closely approximate the fundamental PDE solution, as well as reducing vanishing gradient effects. In
combination with self-adaptive weights, this improves convergence speed during PINN training. Our
proposed scheme outperforms all baseline models for the considered double mass-spring-damper
model. Here the usage of sine activation functions in all, not only the first layer, provides the most
benefits.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

We run each experiment five times with random initialisation for a more objective comparison be-
tween the different configurations. We calculate the mean squared error (MSE) over test points
sampled evenly over the entire domain and then average the errors over the individual runs. The
reference solution is calculated with the help of traditional solvers. We set the simulation parame-
ters to m1 = 3e4, m2 = 3e3, c1 = 4e6, d1 = 4e4, c2 = 1e8, d2 = 3e3 and the initial conditions
y1 = 0.5, y2 = 1, ẏ1 = ẏ2 = 0. We sample 7,500 fixed collocation points evenly throughout the
entire domain (t ∈ [0, 1.5] seconds) to train PINNs with seven hidden layers with a width of 128.
In the output layer, we always use a linear mapping. All networks are optimised with the help of
Adam (Kingma & Ba, 2014) (learning rate: 1e− 4), and we set β = 1e− 6 to balance residuals Lic

and Lp.

The tested DeepONet in Section A.4 has 5 hidden layers with a width of 128 in both sub-networks.
To match the number of trainable parameters, we increase the hidden layers of the PINN to 9. We
define the temporal domain as t ∈ [0, 1] and set c2 = 1e7. To calculate Lp, we use 5, 000 collocation
points distributed evenly over the temporal domain.

6

https://doi.org/10.1109%2Ftai.2022.3192362
https://doi.org/10.1109%2Ftai.2022.3192362


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 3: Double mass-spring-damper model. Here, d1, d2, and c1, c2 are the first and secondary
damping and stiffness constants.
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Figure 4: FFT of the true solution and the predictions for m2.

A.2 DOUBLE MASS-SPRING-DAMPER MODEL FOR A SINGLE INITIAL CONDITION

Figure 4 highlights the performance differences of the individual PINN configurations discussed in
Section 4 by showing fast Fourier transformations of the true solution and the predictions for m2.
The networks using all-tanh or sine-first activation functions do not even capture the low frequen-
cies. The PINN all-sine network approximates the low frequencies well but misses the strongly
oscillating parts of the solution. Only the SA-PINN all-sine is able to approximate both ends of
the spectrum well, showcasing that employing a single layer with sine activation functions does not
yield the desired benefits.

A.3 WAVE EQUATION FOR A SINGLE INITIAL CONDITION

The wave equation occurs in many fields, such as acoustics, electromagnetics, cosmology, and fluid
dynamics. We consider the wave equation for a medium with constant density:

v2
(

∂y

∂x1
+

∂y

∂x2

)
− ∂y

∂t2
= 0, x1, x2 ∈ [0, 5], t ∈ [0, 10], (4)

with the following initial condition:

y(0, x1, x2) = exp(−(x1 − 3)2 − (x2 − 3)2), (5)
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Figure 5: Test error for the double mass-spring-damper model for different initial conditions.
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Figure 6: Test error for the wave equation for different initial conditions.

and boundary conditions:

∂y(t, 0, x2)

∂t
=

∂y(t, x1, 0)

∂t
=

∂y(t, 5, x2)

∂t
=

∂y(t, x1, 5)

∂t
= 0, (6)

where v is the velocity of the medium, x1, x2 represent the position, and t the time Moseley et al.
(2020).

We train a network with four hidden layers of width 256 and apply min-max normalization to the
input features. The training dataset incorporates 10,000 samples each for the initial and boundary
conditions. To calculate Lp, we use 50, 000 collocation points distributed evenly over the domain
and set β = 5e− 4.

The results in Figure 6 might appear similar to the ones discussed above for the experiments with
the double mass-spring-damper model. Once again, the SA-PINNs outperform the baseline PINN
in the beginning. However, after about 8,000 epochs, the initially slower converging PINN all-sine
surpasses it. Therefore, starting with self-adaptive weights and fixing them later in the training pro-
cess combined with all-sine activation functions might be a viable approach for the wave equation.
As shown by the results in (McClenny & Braga-Neto, 2020), employing stochastic gradient training
is another way of improving the accuracy of SA-PINNs for this particular problem.

A.4 DOUBLE MSD MODEL FOR MULTIPLE INITIAL CONDITIONS

Physics-informed deep neural operator networks: Deep neural operator networks (DeepONets)
(Lu et al., 2019) are designed to efficiently learn mappings from a space of functions to another
space of functions (operators). Their architecture is based on a universal approximation theorem for
operators (Chen & Chen, 1995) and features two sub-networks, a branch and a trunk network, whose

8



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 1: Test error for the double mass-spring-damper model for sampled initial conditions on PINN
as well as DeepONet (DON) models, with the classic DON (Wang et al., 2021c) variant using all-
tanh activations. Here, ID is the MSE of the in-domain data, and OOD is the out-of-domain data.

MSE PINN all-sine DON all-tanh DON sine-first DON all-sine
ID 8.40e-02 8.29e-04 1.34e-03 2.78e-04
OOD 6.35e-02 5.44e-04 8.01e-04 1.72e-04

outputs are combined via a dot product to produce the final result. The branch net encodes the input
function. In our experiments with the dMSD system, the input functions will be different initial
conditions. The second network, the trunk net, encodes the locations for the output functions. The
locations are given by the input time in the dMSD example. Since the outputs of both networks are
combined via a dot product, the framework needs to be slightly altered to deal with multiple outputs.
In order to obtain outputs for m1 and m2, we split the output neurons of the trunk and branch net
in half and compute two dot products as suggested in (Lu et al., 2022). To decrease the input-
output pairs needed for training and to produce physically plausible predictions, physics-informed
DeepONet were proposed (Wang et al., 2021c). They combine the benefits of DeepONets and PINNs
by incorporating an additional residual based on a PDE, as discussed in Section 3, into the loss
function of a DeepONet. We will use physics-informed DeepONets in the following experiments
but simply denote them as DeepONets. DeepONets are trained to solve the PDE over a predefined
input space and only require retraining for out-of-domain samples.

Experiments and discussion: Returning to the dMSD model discussed above, we want to assess
if the advantages of all-sine activation functions persist when using multiple initial conditions. We
define the temporal domain as t ∈ [0, 1] seconds and set c2 = 1e7. We train the networks by
sampling 900 initial conditions y1, y2 ∈ [−1, 1] exempt two out-of-domain gaps defined on the
intervals [−0.6,−0.4] and [0.4, 0.6]. To evaluate the test performance, we randomly sample 100
initial conditions from within the domain and, as a separate metric, 100 initial conditions from the
out-of-domain gaps. To calculate Lp, we use 5, 000 collocation points distributed evenly over the
temporal domain. The branch net always features all-tanh activation functions, whereas we test
different configurations of activation functions for the trunk net. Figure 5 illustrates the superior
performance the DeepONet architecture enables, compared to PINNs for handling multiple initial
conditions. Once again, employing a single layer of sine activation functions performs similarly to
the original DeepONet all-tanh, but DeepONet all-sine converges considerably faster than the other
configurations. Table 1 shows the MSE for the in-domain (ID) and out-of-domain (OOD) test set
after training. In both metrics, DeepONet all-sine performs best. Since the MSE depends on the
amplitude of the solution, which is influenced by the sampling intervals of the initial conditions,
the ID MSE and OOD MSE are not directly comparable. The similar performance of the original
all-tanh DeepONet and the sine-first configuration indicates that also in DeepONets, a single layer
with sine activations is not enough to profit from the benefits of sinusoidal activation functions.
In future work, we would like to explore if the benefits of self-adaptive weights in PINNs also
translate to DeepONets.
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