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Abstract

We present an extensive study of surrogate losses for structured prediction sup-
ported by H-consistency bounds. These are recently introduced guarantees that are
more relevant to learning than Bayes-consistency, since they are not asymptotic and
since they take into account the hypothesis set H used. We first show that no non-
trivial H-consistency bound can be derived for widely used surrogate structured
prediction losses. We then define several new families of surrogate losses, including
structured comp-sum losses and structured constrained losses, for which we prove
H-consistency bounds and thus Bayes-consistency. These loss functions readily
lead to new structured prediction algorithms with stronger theoretical guarantees,
based on their minimization. We describe efficient algorithms for minimizing
several of these surrogate losses, including a new structured logistic loss.

1 Introduction

In most applications, the output labels of learning problems have some structure that is crucial
to consider. This includes natural language processing applications, where the output may be a
sentence, a sequence of parts-of-speech tags, a parse tree, or a dependency graph. It also includes
image annotation, image segmentation, computer vision, video annotation, object recognition, motion
estimation, computational photography, bioinformatics, and many other important applications.

Several algorithms have been designed in the past for structured prediction tasks, including Con-
ditional Random Fields (CRFs) [Lafferty et al., 2001a, Gimpel and Smith, 2010], StructSVMs
[Tsochantaridis et al., 2005a], Maximum-Margin Markov Networks (M3N) [Taskar et al., 2003a],
kernel-regression-based algorithms [Cortes et al., 2005, 2007], Voted CRF and StructBoost [Cortes
et al., 2016], search-based methods [Daumé III et al., 2009, Doppa et al., 2014, Lam et al., 2015,
Chang et al., 2015, Ross et al., 2011] and a variety of deep learning techniques [Jurafsky and Martin,
2009, Vinyals et al., 2015a, Nadeau and Sekine, 2007, Zhang et al., 2008, Wu et al., 2016, Lucchi
et al., 2013, Vinyals et al., 2015b], see Appendix A for a more comprehensive list of references and
discussion.

Structured prediction tasks inherently involve a natural loss function based on substructures, which
could be the Hamming loss, the n-gram loss, the edit-distance loss, or some other sequence similarity-
based loss or task-specific structured loss. Many of the algorithms previously mentioned overlook
this inherent structured loss by simply minimizing the cross-entropy loss. In contrast, the surrogate
loss functions minimized by algorithms such as CRFs [Lafferty et al., 2001a, Gimpel and Smith,
2010], M3N [Taskar et al., 2003a], StructSVMs [Tsochantaridis et al., 2005a] or Voted CRF and
StructBoost [Cortes et al., 2016] do take into account the natural structured loss of the task. But
are these structured prediction loss functions consistent? What guarantees can we rely on when
minimizing them over a restricted hypothesis set that does not include all measurable functions? Can
we derive non-asymptotic guarantees?
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This paper deals precisely with these theoretical problems in structured prediction.

Previous work. We include a detailed discussion on consistency in structured prediction in Ap-
pendix A. Here, we briefly discuss previous work by Osokin et al. [2017]. To our knowledge, this
is one of the only studies proving Bayes-consistency for a family of loss functions in structured
prediction (see also [Nowak et al., 2020] and other related references in Appendix A). The surrogate
losses the authors proposed are the following quadratic losses (see also [Zhang, 2004]) defined for
any function h mapping X × Y to R and any loss function ` between output labels by

∀(x, y) ∈ X × Y, Lquad
(h,x, y) = ∑

y′∈Y
[`(y′, y) + h(x, y′)]

2
. (1)

However, the authors only consider the hypothesis set of linear scoring functions. Moreover, the
feature vector in their setting only depends on the input x and ignores the label y. In many applications
such as natural language prediction, however, it is critical to allow for features that depend both on the
input sequence and the output sequence, parse tree, or dependency graph. Finally, in this formulation,
the structured prediction problem is cast as a regression problem. Thus, as shown below, the loss
function derived is non-standard, even in the binary classification case, where ` = `0−1 is the zero-one
loss and Y = {y1, y2}. In this simple case, Lquad(h,x, y1) can be expressed as

Lquad
(h,x, y1) = ∑

y′∈Y
[`0−1(y

′, y1) + h(x, y
′
)]

2
= h(x, y1)

2
+ (1 + h(x, y2))

2. (2)

This is not a typical formulation since it incorporates the magnitude of individual scores. In contrast,
in standard binary classification scenario, only the difference between scores matters.

Structure of the paper. We present an extensive study of surrogate losses for structured prediction
supported by H-consistency bounds. These are recently introduced guarantees that are more relevant
to learning than Bayes-consistency, since they are not asymptotic and since they take into account
the hypothesis set H used. We first show that no non-trivial H-consistency bound or even Bayes-
consistency can be derived for widely used surrogate structured prediction losses (Section 3). We
then define several new families of surrogate losses, including structured comp-sum losses (Section 4)
and structured constrained losses (Section 5), for which we prove H-consistency bounds and thus
Bayes-consistency. These loss functions readily lead to new structured prediction algorithms with
stronger theoretical guarantees, based on their minimization. We also describe efficient gradient
computation algorithms for several of these surrogate losses, including a new structured logistic loss
(Section 6).

2 Preliminaries

Learning scenario. We consider the standard structured prediction scenario with the input space
X and output space Y = {1, . . . , n}. The output space may be discrete objects with overlapping
structures, such as sequences, images, graphs, parse trees, lists, or others. We assume that the output
can be decomposed into l substructures. The substructures could represent words or tokens for
example, or other subsequences along a sequence, resulting in the decomposition of the output space
Y as Y = Y1×⋯×Yl. Here, each Yj represents the set of possible labels or classes that can be assigned
to the j-th substructure.

Scoring function. Structured prediction is typically formulated via scoring functions that map X × Y
to R, which assign a score to each possible class y ∈ Y. Let H be a family of such scoring functions.
For any h ∈H, we denote by h(x) its prediction for the input x ∈ X, which is the output y ∈ Y that
maximizes the score h(x, y), that is, h(x) = argmaxy∈Y h(x, y), with a fixed deterministic strategy
to break ties in selecting the label with the highest score. For simplicity, we choose the label with the
highest index under the natural ordering of labels as the tie-breaking strategy. We denote by Hall the
family of all measurable scoring functions.

Generalization error and target loss. Given a distribution D over X × Y and a loss function
L∶H×X×Y→ R, the generalization error of a hypothesis h ∈H and the best-in-class generalization
error are defined as follows:

RL(h) = E
(x,y)∼D

[L(h,x, y)] and R∗
L,H = inf

h∈H
RL(h).
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In structured prediction, the goal is to select a hypothesis h ∈H with small generalization error with
respect to a target loss function L(h,x, y), which can be written as L(h,x, y) = `(h(x), y) for some
non-negative auxiliary function `(y′, y) with any y′, y ∈ Y. ` is assumed to be symmetric, that is,
`(y′, y) = `(y, y′). This is a natural assumption since all instances of ` that we are familiar with in
structured prediction admit this property. A significant characteristic of structured prediction is that
the target loss function can be decomposed along the substructures Yk. As an example, we may use the
Hamming loss as the target loss function, which is defined as Lham(h,x, y) = `ham(h(x), y), where
`ham(y′, y) = 1

l ∑
l
j=1 1y′j≠yj with any y′j , yj ∈ Yj ; we can also use the zero-one loss as the target loss

function, which is defined as L0−1(h,x, y) = `0−1(h(x), y), where `0−1(y
′, y) = 1y′≠y. Note that

L0−1 can be viewed as a special case of Lham when l = 1. We denote by `max = maxy′,y∈Y `(y
′, y)

the maximal value of a target loss function. Without loss of generality, we assume that `max ≤ 1,
which can be achieved by normalizing the function `.

Consistency guarantees and surrogate loss. Optimizing the target loss functions in structured
prediction for many choices of the hypothesis sets is NP-hard because they are not convex. One
common method to address this issue is to resort to surrogate loss functions. Different surrogate loss
functions readily lead to different structured prediction algorithms. A natural learning guarantee for
such surrogate losses is Bayes-consistency, which guarantees that minimizing the generalization error
for a surrogate loss Lsur over Hall also leads to the minimization of generalization error for the target
loss L.
Definition 1 (Bayes-consistency). A surrogate loss Lsur is Bayes-consistent in structured prediction,
if for any target loss `, hypothesis hn ∈Hall and any distribution,

(RLsur(hn) −R∗
Lsur,Hall

n→+∞
ÐÐÐ→ 0) Ô⇒ (RL(hn) −R∗

L,Hall

n→+∞
ÐÐÐ→ 0). (3)

Bayes-consistency is an asymptotic guarantee and does not take into account typical hypothesis sets
used in structured prediction algorithms, such as linear models or neural networks. To tackle these
issues, recent work by Awasthi, Mao, Mohri, and Zhong [2022a,b] propose a stronger consistency
guarantee, referred to as H-consistency bounds, which are bounds relating the estimation error of the
target loss to the estimation error of a surrogate loss (see also [Awasthi et al., 2021a,b, Mao et al.,
2023h,e,f, Zheng et al., 2023, Mao et al., 2023b,g,d, Mohri et al., 2023, Mao et al., 2023c,a, Awasthi
et al., 2023a,b]):
Definition 2 (H-consistency bounds). Given a subset of the hypothesis class H ⊆Hall, a surrogate
loss Lsur admits a H-consistency bound in structured prediction, if for some non-decreasing function
f ∶R+ → R+, a bound of the following form holds for any target loss `, hypothesis h ∈ H and any
distribution:

RL(h) −R∗
L,H ≤ f(RLsur(h) −R∗

Lsur,H
). (4)

As pointed out by Awasthi et al. [2022a,b], H-consistency bounds are the state-of-the-art consistency
guarantees for surrogate losses. They are much stronger and more informative than Bayes-consistency,
since they account for hypothesis sets H adopted and provide a quantitative, non-asymptotic relation
between surrogate losses and target losses. H-consistency bounds can imply Bayes-consistency when
taking H to be Hall. In the next sections, we will present an extensive study of surrogate losses for
structured prediction supported by H-consistency bounds.

Conditional regret and minimizability gap. We denote by p(x) = (p(x,1), . . . , p(x,n)) the
conditional distribution of Y given X = x. Then, the conditional error of a hypothesis h for a loss
function L, denoted by CL(h,x), can be expressed as

CL(h,x) = E
y∣x

[`(h(x), y)] = ∑
y∈Y

p(x, y)`(h(x), y).

We further define the best-in-class conditional error and the conditional regret as C∗L(H, x) =

infh∈H CL(h,x) and ∆CL,H(h,x) = CL(h,x) − C∗L(H, x) respectively. The generalization error
can then be rewritten as RL(h) = Ex[CL(h,x)].

A key quantity appearing in H-consistency bounds is the minimizability gap ML(H), which measures
the difference between the best-in-class generalization error and the expected best-in-class conditional
error for a loss function L and a hypothesis set H: ML(H) = R∗

L(H) − Ex[C∗L(H, x)]. This is an
inherent quantity that we cannot hope to minimize or estimate. As shown by Steinwart [2007,
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Theorem 3.2], the minimizability gaps vanish ML(Hall) = 0 for the family of all measurable
functions. More generally, the minimizability gaps vanish when the best-in-class error coincides with
the Bayes-error, that is, R∗

` (H) = R∗
` (Hall) [Awasthi et al., 2022b, Mao et al., 2023h].

The following result characterizes the best-in-class conditional error and the conditional regret for
a target loss L, which will be helpful for proving H-consistency bounds in structured prediction.
We denote by H(x) the set of all possible predictions on a input x generated by hypotheses in H:
H(x) = {h(x)∶h ∈H}. The proof is given in Appendix B.

Lemma 3. The best-in-class conditional error and the conditional regret for a target loss L in
structured prediction can be expressed as follows:

C∗L,H(x) = min
y′∈H(x)

∑
y∈Y

p(x, y)`(y′, y)

∆CL,H(h,x) = ∑
y∈Y

p(x, y)`(h(x), y) − min
y′∈H(x)

∑
y∈Y

p(x, y)`(y′, y).

3 Structured max losses

In this section, we examine the loss functions associated to several prominent structured prediction
algorithms. We show that, while they are natural, none of them is Bayes-consistent, which implies
that they cannot be supported by H-consistency bounds either. More generally, we consider the
following family of surrogate loss functions proposed in [Cortes, Kuznetsov, Mohri, and Yang, 2016],
which we refer to as structured max losses:

∀(x, y) ∈ X × Y, Lmax
(h,x, y) = max

y′≠y
Φ`(y′,y)(h(x, y) − h(x, y

′
)), (5)

where Φu∶R → R+ is an upper bound on v ↦ u1v≤0 for any u ∈ R+. In this formulation, different
choices of Φu can lead to different structured prediction algorithms. Specifically, as shown by Cortes
et al. [2016], the following choices of Φu(v) recover many well-known algorithms:

• Φu(v) = max(0, u(1 − v)): StructSVM [Tsochantaridis et al., 2005b].

• Φu(v) = max(0, u − v): Max-Margin Markov Networks (M3N) [Taskar et al., 2003b].

• Φu(v) = log(1 + eu−v): Conditional Random Field (CRF) [Lafferty et al., 2001b].

• Φu(v) = ue
−v: StructBoost [Cortes et al., 2016].

The following gives a general negative result for Lmax that holds under broad assumptions.

Theorem 4 (Negative results of Lmax). Assume that n > 2 and that Φu(v) is convex and non-
increasing for u = 1. Then, the max structured loss Lmax is not Bayes-consistent.

The proof is included in Appendix C. It is straightforward to see that the assumption of Theorem 4
holds for all the choices of Φu listed above. Thus, the theorem rules out consistency guarantees
for any of the loss functions associated to the structured prediction algorithms mentioned above:
StructSVM, M3N, CRF, Structboost. Furthermore, Theorem 4 provides negative results for a broad
and generalized family of loss functions, collectively referred to as structured max loss. This extends
the scope of existing research, as previous works had only addressed the inconsistency of specific
instances within the structured max loss category, such as that of M3N [Osokin et al., 2017, Ciliberto
et al., 2016, Nowak et al., 2020].

4 Structured comp-sum losses

In this section, we first analyze the Voted CRF loss function, which incorporates the auxiliary loss
function ` in the CRF loss and which has been used in several previous studies. Next, we introduce
a new family of loss functions for structured predictions that we prove to admit strong consistency
guarantees.
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4.1 Voted Conditional Random Field (VCRF)

We first study a family of surrogate losses called Voted Conditional Random Field (VCRF), which
corresponds to the structured prediction algorithm defined in [Cortes et al., 2016]:

∀(x, y) ∈ X × Y, LVCRF
(h,x, y) = − log[

eh(x,y)

∑y′∈Y e
h(x,y′)+`(y,y′) ] = log

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y

e`(y,y
′)+h(x,y′)−h(x,y)

⎤
⎥
⎥
⎥
⎥
⎦

.

This loss function has also been presented as the softmax margin [Gimpel and Smith, 2010] or the
reward-augmented maximum likelihood [Norouzi et al., 2016]. It can be viewed as the softmax
variant of the M3N loss. Indeed, the loss function for M3N can be written as follows:

L(h,x, y) = max
y′

max(0, `(y′, y) + h(x, y′) − h(x, y)). (6)

If we replace the maximum function with the softmax, we obtain

L(h,x, y) = log

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y

emax(0,`(y′,y)+h(x,y′)−h(x,y))
⎤
⎥
⎥
⎥
⎥
⎦

= log

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y

max(1, e`(y
′,y)+h(x,y′)−h(x,y)

)

⎤
⎥
⎥
⎥
⎥
⎦

. (7)

Next, we show that, as with the loss function for M3N, the VCRF loss function LVCRF is inconsistent.
Theorem 5 (Negative result of LVCRF). The Voted Conditional Random Field LVCRF is not Bayes-
consistent.

The proof is included in Appendix D. The key observation in the proof is that the conditional error
of VCRF loss function can be reduced to a specific form when the target loss function L decouples,
which can lead to a different Bayes classifier from that of the target loss function.

To the best of our knowledge, no prior studies in the literature have explored the consistency of the
VCRF loss formulation. The most closely related discussions center around a specialized instance of
the multi-class logistic loss (also referred to as Conditional Random Field in that context), in which
`(y′, y) disappears within the framework of the Voted Conditional Random Field. The previous works
by Osokin et al. [2017], Ciliberto et al. [2016], Nowak et al. [2020] point out that the multi-class
logistic loss cannot be consistent in structured prediction due to the absence of the target loss function
within its formulation. Instead, our result shows that, even when integrating the target loss `(y′, y)
within its formulation, the Voted Conditional Random Field cannot be consistent.

Along with Theorem 4, these results rule out consistency guarantees for commonly used surrogate
loss functions in structured prediction.

4.2 Structured comp-sum loss functions

In this section, we define a family of new loss functions for structured prediction that are not only
Bayes-consistent but also supported by H-consistency bounds. These are loss functions that can be
viewed as the generalization to structured prediction of loss functions defined via a composition and
a sum, and that have been referred to as comp-sum losses in [Mao et al., 2023h]. Thus, we will refer
to them as structured comp-sum losses. They are defined as follows:

∀(x, y) ∈ X × Y, Lcomp
(h,x, y) = ∑

y′∈Y
`(y′, y)Φ1

⎛

⎝
∑
y′′∈Y

Φ2(h(x, y
′′
) − h(x, y′))

⎞

⎠
, (8)

where `(y′, y) = 1 − `(y′, y), Φ1∶R+ → R+ is a non-decreasing auxiliary function and Φ2∶R→ R+ a
non-decreasing auxiliary function. This formulation (8) can also be viewed as a weighted comp-sum
loss, if we interpret `(⋅, y) as a weight vector.

Specifically, we can choose Φ2(v) = e
v and Φ1(v) = log(v), Φ1(v) = v−1, Φ1(v) =

1
α
(1 − 1

vα
), α ∈

(0,1) and Φ1(v) = 1 − 1
v

, which leads to new surrogate losses for structured prediction defined in
Table 1. These surrogate losses are novel strict generalization of their counterparts in the standard
multi-class classification case where ` = `0−1. More precisely, when ` = `0−1, Lcomp

log coincides
with the logistic loss [Verhulst, 1838, 1845, Berkson, 1944, 1951]; Lcomp

exp coincides with the sum-
exponential loss [Weston and Watkins, 1998, Awasthi et al., 2022b]; Lcomp

gce coincides with the
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Table 1: A new family of surrogate losses for structured prediction: structured comp-sum losses.
Φ1(v) Name Formulation

log(v) Structured logistic loss Lcomp
log = −∑y′∈Y `(y

′, y) log[ eh(x,y
′
)

∑y′′∈Y eh(x,y
′′
)
].

v − 1 Structured sum-exponential loss Lcomp
exp = ∑y′∈Y `(y

′, y)∑y′′≠y′ e
h(x,y′′)−h(x,y′)

1
α
[1 − 1

vα
] Structured generalized cross-entropy loss Lcomp

gce = ∑y′∈Y `(y
′, y) 1

α
[1 − [ eh(x,y

′
)

∑y′′∈Y eh(x,y
′′
)
]
α

]

1 − 1
v

Structured mean absolute error loss Lcomp
mae = ∑y′∈Y `(y

′, y)[1 − eh(x,y
′
)

∑y′′∈Y eh(x,y
′′
)
].

generalized cross-entropy loss [Zhang and Sabuncu, 2018]; and Lcomp
mae coincides with the mean

absolute error loss [Ghosh et al., 2017].

We will show that these structured comp-sum losses benefit from H-consistency bounds in structured
prediction, when H is a symmetric and complete hypothesis set. A hypothesis set H is symmet-
ric if there exists a family F of real-valued functions such that {[h(x,1), . . . , h(x,n)]∶h ∈H} =

{[f1(x), . . . , fn(x)]∶ f1, . . . , fn ∈ F} for any x ∈ X. Thus, the choice of the scoring functions does
not depend on the order of the categories in Y. A hypothesis set H is complete if it can generate
scores that span R, that is, {h(x, y)∶h ∈H} = R for any (x, y) ∈ X × Y. As shown by Awasthi et al.
[2022b] and Mao et al. [2023h], these assumptions are general and hold for common hypothesis sets
used in practice, such as the family of linear hypotheses and that of multi-layer feed-forward neural
networks, and of course that of all measurable functions.
Theorem 6 (H-consistency bound of Lcomp). Assume that H is symmetric and complete. Then, for
any target loss `, any hypothesis h ∈H and any distribution, we have

RL(h) −R∗
L,H ≤ Γ(RLcomp(h) −R∗

Lcomp,H +MLcomp,H) −ML,H, (9)

where Γ(t) = 2
√
t when Lcomp = Lcomp

log or Lcomp
exp ; Γ(t) = 2

√
nαt when Lcomp = Lcomp

gce ; and
Γ(t) = nt when Lcomp = Lcomp

mae .

Theorem 6 represents a consolidated result for the four structured comp-sum losses, with the proofs
for each being presented separately in Appendix E. The key step of the proof is to upper bound
the conditional regret of the target loss (Lemma 3) by that of a surrogate loss. To achieve this,
we upper bound the best-in-class conditional error by the conditional error of a carefully selected
hypothesis hµ ∈H. The resulting softmax Sµ of this hypothesis only differs from the original softmax
S corresponding to h on two labels. Theorem 6 admits as special cases the H-consistency bounds of
Mao et al. [2023h] given for standard multi-class classification (` = `0−1) and significantly extends
them to the general structured prediction scenario.

Let us emphasize that our proof technique is novel and distinct from the approach used in [Mao et al.,
2023h], which only applies to the special case where ` is the zero-one loss and cannot be generalized
to any target loss `. In their proof, the authors choose hµ based on individual scores h(x, y), rather
than the softmax. Consequently, when ` ≠ `0−1, as is common in structured prediction, the resulting
optimization problem of µ can be very intricate and a closed-form expression of the optimization
solution cannot be derived. However, our new proof method overcomes this limitation. By viewing
the softmax of hypothesis as a unit and introducing a pseudo-conditional distribution q, we are able
to solve a simple constrained optimization problem on µ within structured prediction scenario.

By Steinwart [2007, Theorem 3.2], the minimizability gaps MLcomp,H and ML,H vanish for the
family of all measurable functions. Therefore, when H =Hall, the H-consistency bounds provided
in Theorem 6 imply the Bayes-consistency of these structured comp-sum losses.
Corollary 7. The structured comp-sum loss Lcomp is Bayes-consistent for Lcomp = Lcomp

log , Lcomp
exp ,

Lcomp
gce , and Lcomp

mae .

In fact, Theorem 6 provides stronger quantitative bounds than Bayes-consistency when the min-
imizability gaps vanish, which suggests that if the estimation error of the structured comp-sum
loss RLcomp(h) −R∗

Lcomp,H is reduced to ε, the estimation error of the target loss RL(h) −R∗
L,H is

upper bounded by 2
√
ε for structured logistic loss and structured sum-exponential loss, 2

√
nα ε for

structured generalized cross-entropy loss, and nε for structured mean absolute error loss.
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Table 2: A new family of surrogate losses for structured prediction: structured constrained losses.
Φu(v) Name Formulation (∑y∈Y h(x, y) = 0)

ue−v Structured constrained exponential loss Lcstnd
exp = ∑y′∈Y `(y

′, y)max{0,1 − h(x, y′)}
2

umax{0,1 − v}
2 Structured constrained squared-hinge loss Lcstnd

hinge = ∑y′∈Y `(y
′, y)max{0,1 − h(x, y′)}

umax{0,1 − v} Structured constrained hinge loss Lcstnd
hinge = ∑y′∈Y `(y

′, y)max{0,1 − h(x, y′)}

umin{max{0,1 − v
ρ
},1} Structured constrained ρ-margin loss Lcstnd

ρ = ∑y′∈Y `(y
′, y)min{max{0,1 − h(x,y′)

ρ
},1}.

5 Structured constrained loss functions

In this section, we introduce another new family of surrogate losses for structured prediction that
we prove to admit H-consistency bounds. We will present a novel generalization of the constrained
losses [Lee et al., 2004, Awasthi et al., 2022b] to structured prediction. Thus, we refer to them as
structured constrained losses and define them as follows:

∀(x, y) ∈ X × Y, Lcstnd
(h,x, y) = ∑

y′∈Y
Φ`(y′,y)(−h(x, y

′
)), (10)

with the constraint that ∑y∈Y h(x, y) = 0 and Φu∶R → R+ is an upper bound on v ↦ u1v≤0

for any u ∈ R+. In standard constrained loss formulation, a single-variable function Φ(v) that
defines a margin-based loss is used. In (10), the single-variable function Φ(v) is generalized to
being a function of two variables Φu(v), which depends on both the target loss and the scores,
to accommodate the structured prediction scenario. Specifically, we can choose Φu(v) = ue−v,
Φu(v) = umax{0,1 − v}

2, Φu(v) = umax{0,1 − v}, Φu(v) = umin{max{0,1 − v/ρ},1}, which
lead to new surrogate losses for structured prediction defined in Table 2. These surrogate losses are
novel generalization of their corresponding counterparts [Lee et al., 2004, Awasthi et al., 2022b] in
standard multi-class classification, where ` = `0−1. As with structured comp-sum losses, we will show
that these structured constrained losses benefit from H-consistency bounds in structured prediction
as well, for any symmetric and complete hypothesis set H.
Theorem 8 (H-consistency bound of Lcstnd). Assume that H is symmetric and complete. Then, for
any target loss `, hypothesis h ∈H and any distribution, we have

RL(h) −R∗
L,H ≤ Γ(RLcstnd(h) −R∗

Lcstnd,H +MLcstnd,H) −ML,H. (11)

where Γ(t) = 2
√
`maxt when Lcstnd = Lcstnd

exp ; Γ(t) = 2
√
t when Lcstnd = Lcstnd

sq−hinge; and Γ(t) = t

when Lcstnd = Lcstnd
hinge or Lcstnd

ρ .

The proof is included in Appendix F. As for Theorem 8, the key part of the proof is to upper bound
the conditional regret of the target loss (Lemma 3) by that of a surrogate loss. Here too, we introduce
a pseudo-conditional distribution q, which can be viewed as a weighted distribution of the original
one, p(x), with weights given by the target loss function. Then, we upper bound the best-in-class
conditional error by the conditional error of a carefully selected hypothesis hµ ∈H.

As shown by Steinwart [2007, Theorem 3.2], for the family of all measurable functions, the mini-
mizability gaps vanish: MLcstnd,H = 0 and ML,H = 0. Therefore, when H =Hall, the H-consistency
bounds provided in Theorem 6 imply the Bayes-consistency of these structured constrained losses.
Corollary 9. The structured constrained loss Lcstnd is Bayes-consistent for Lcstnd = Lcstnd

exp , Lcstnd
sq−hinge,

Lcstnd
hinge, and Lcstnd

ρ .

As with the cases of structured comp-sum losses, Theorem 8 provides in fact stronger quantitative
bounds than Bayes-consistency. They show that that if the estimation error of the structured con-
strained loss RLcomp(h)−R∗

Lcomp,H is reduced to ε, the estimation error of the target loss RL(h)−R
∗
L,H

is upper bounded by 2
√
`maxε for Lcstnd

exp , 2
√
ε for Lcstnd

sq−hinge and ε for Lcstnd
hinge and Lcstnd

ρ .

It is important to note that we can upper bound the minimizability gap by the approximation error, or
finer terms depending on the magnitude of the parameter space as in [Mao et al., 2023h]. Furthermore,
our H-consistency bounds (Theorems 6 and 8) can be used to derive finite sample learning bounds
for a hypothesis set H. These bounds depend on the Rademacher complexity of the hypothesis set
and the loss function, as well as an upper bound on the minimizability gap for the surrogate loss.
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6 Optimization of Lcomp
log and Lcomp

exp

In this section, we show that the gradient of the structured logistic loss Lcomp
log can be computed

efficiently at any point (xi, yi) and therefore that this loss function is both supported by H-consistency
bounds and is of practical use. We similarly show that for Lcomp

exp in Appendix G.2.

Fix the labeled pair (xi, yi) and h ∈H. Observe that Lcomp
log (h,xi, yi) can be equivalently rewritten

as follows:

Lcomp
log (h,xi, yi) = ∑

y′∈Y
`(y′, yi) log

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′′∈Y

eh(xi,y
′′)−h(xi,y′)

⎤
⎥
⎥
⎥
⎥
⎦

= − ∑
y′∈Y

`(y′, yi)h(xi, y
′
) +

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y

`(y′, yi)

⎤
⎥
⎥
⎥
⎥
⎦

log

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′′∈Y

eh(xi,y
′′)
⎤
⎥
⎥
⎥
⎥
⎦

= − ∑
y′∈Y

`(y′, yi)h(xi, y
′
) + `i logZh,i,

where `i = ∑y′∈Y `(y
′, yi), and Zh,i = ∑y∈Y e

h(xi,y). Note that `i does not depend on h and can be
pre-computed. Modulo normalization, this quantity is the average similarity of yi to Y, if we interpret
` = 1 − ` as a similarity. While Y may be very large, this can be often computed straightforwardly for
most loss functions `. For example, for the Hamming loss, for sequences of length l, we have

1

∣Y∣
`i =

1

l
E[

l

∑
k=1

(1 − 1y′
k
≠yi,k)] =

1

l

l

∑
k=1

E[1y′
k
=yi,k] =

1

l

l

∑
k=1

1

2
=

1

2
.

Thus, in this case, `i does not depend on i and is a universal constant. Similarly, `i can be shown to
be a constant for many other losses.

Hypothesis set. For the remaining of this section, to simplify the presentation, we will consider the
hypothesis set of linear functions H = {x↦w ⋅Ψ(x, y)∶w ∈ Rd}, where Ψ is a feature mapping
from X × Y to Rd. Note that a number of classical structured prediction algorithms adopt the same
linear hypothesis set: StructSVM [Tsochantaridis et al., 2005b], Max-Margin Markov Networks
(M3N) [Taskar et al., 2003b], Conditional Random Field (CRF) [Lafferty et al., 2001b], Voted
Conditional Random Field (VCRF) [Cortes et al., 2016]. Our algorithms can also be incorporated into
standard procedures for training neural network architectures (see [Cortes et al., 2018], Appendix B).

Markovian features. We will also assume Markovian features, as is common in structured pre-
diction. Features used in practice often admit this property. Furthermore, in the absence of any
such assumption, it is known that learning and inference in general are intractable. We will largely
adopt here the definitions and notation from [Cortes et al., 2016] and will consider the common
case where Y is a set of sequences of length l over a finite alphabet ∆ of size r. Other structured
problems can be treated in similar ways. We will denote by ε the empty string and for any sequence
y = (y1, . . . , yl) ∈ Y, we will denote by ys

′

s = (ys, . . . , ys′) the substring of y starting at index s and
ending at s′. For convenience, for s ≤ 0, we define ys by ys = ε.

We will assume that the feature vector Ψ admits a Markovian property of order q, that is it can be
decomposed as follows for any (x, y) ∈ X × Y:

Ψ(x, y) =
l

∑
s=1

ψ(x, yss−q+1, s). (12)

for some position-dependent feature vector function ψ defined over X ×∆q × [l]. We note that we
can write Ψ = ∑

p
k=1 Ψ̃k with Ψ̃k = (0, . . . ,Ψk, . . . ,0). In the following, abusing the notation, we will

simply write Ψk instead of Ψ̃k. Each Ψk corresponds to a Markovian feature vector based only on
k-grams, p is the largest k. Thus, for any x ∈ X and y ∈ Y, we have

Ψ(x, y) =
p

∑
k=1

Ψk(x, y). (13)
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For any k ∈ [1, p], let ψk denote the position-dependent feature vector function corresponding to Ψk.
Also, for any x ∈ X and y ∈ ∆l, define ψ̃ by ψ̃(x, yss−p+1, s) = ∑

p
k=1 ψk(x, y

s
s−k+1, s). Observe then

that we can write

Ψ(x, y) =
p

∑
k=1

Ψk(x, y) =
p

∑
k=1

l

∑
s=1

ψk(x, y
s
s−k+1, s) =

l

∑
s=1

p

∑
k=1

ψk(x, y
s
s−k+1, s) =

l

∑
s=1

ψ̃(x, yss−p+1, s).

Gradient computation. Adopting the shorthand w for h, we can rewrite the loss at (xi, yi) as:

Lcomp
log (w, xi, yi) = −w ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y

`(y′, yi)Ψ(xi, y
′
)

⎤
⎥
⎥
⎥
⎥
⎦

+ `i logZw,i.

Thus, the gradient of Lcomp
log at any w ∈ Rd is given by

∇Lcomp
log (w) = − ∑

y′∈Y
`(y′, yi)Ψ(xi, y

′
) + `i∑

y∈Y

ew⋅Ψ(xi,y)

∑y′′∈Y e
w⋅Ψ(xi,y′′)

Ψ(xi, y)

= − ∑
y′∈Y

`(y′, yi)Ψ(xi, y
′
) + `i E

y∼qw
[Ψ(xi, y)],

where qw is defined for all y ∈ Y by qw(y) = ew⋅Ψ(xi,y)

Zw
with Zw = ∑y∈Y e

w⋅Ψ(xi,y). Note that
the sum defining these terms is over a number of sequences y that is exponential in r and that the
computation appears to be therefore challenging. The following lemma gives the expression of the
gradient of Lcomp

log and helps identify the most computationally challenging terms.

Lemma 10. For any w ∈ Rd, the gradient of Lcomp
log can be expressed as follows:

∇Lcomp
log (w) =

l

∑
s=1
∑

z∈∆p

[`iQw(z, s) − L(z, s)]ψ̃(xi,z, s),

where Qw(z, s) = ∑y∶yss−p+1=z qw(y) and L(z, s) = ∑y∶yss−p+1=z `(y, yi).

Proof. Using the decomposition of the feature vector, we can write:

∑
y∈Y

`(y, yi)Ψ(xi, y) = ∑
y∈∆l

`(y, yi)
l

∑
s=1

ψ̃(xi, y
s
s−p+1, s) =

l

∑
s=1
∑

z∈∆p

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∶yss−p+1=z

`(y, yi)

⎤
⎥
⎥
⎥
⎥
⎦

ψ̃(xi,z, s)

E
y∼qw

[Ψ(xi, y)] = ∑
y∈∆l

qw(y)
l

∑
s=1

ψ̃(xi, y
s
s−p+1, s) =

l

∑
s=1
∑

z∈∆p

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∶yss−p+1=z

qw(y)

⎤
⎥
⎥
⎥
⎥
⎦

ψ̃(xi,z, s).

This completes the proof.

In light of this result, the bottleneck in the gradient computation is the evaluation of Qw(z, s) and
L(z, s) for all s ∈ [l] and z ∈ ∆p. In previous work [Cortes, Kuznetsov, Mohri, and Yang, 2016,
Cortes, Kuznetsov, Mohri, Storcheus, and Yang, 2018], it was shown that the quantities Qw(z, s) can
be determined efficiently, all together, by running two single-source shortest-distance algorithms over
the (+,×) semiring on an appropriate weighted finite automaton (WFA). The overall time complexity
of the computation of all quantities Qw(z, s), z ∈ ∆p and s ∈ [l], is then in O(lrp), where r = ∣∆∣.

We now analyze the computation of L(z, s) for a fixed z ∈ ∆p and s ∈ [l]. Note that, unlike Qw(z, s),
this term does not depend on w and can therefore be computed once and for all, before any gradient
computation. The sum defining L(z, s) is over all sequences y that admit the substring z at position s.

Rational losses. In Appendix G.1, we also give an efficient algorithm for the computation of the
quantities L(z, s) in the case of Markovian losses. Here, we present an efficient algorithm for their
computation in the important case of rational losses. This is a general family of loss functions based
on rational kernels [Cortes, Haffner, and Mohri, 2004] that includes, in particular, n-gram losses,
which can be defined for a pair of sequences (y, y′) as the negative inner product of the vectors of
n-gram counts of y and y′.
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Our algorithm bears some similarity to that of Cortes et al. [2018] for the computation of the gradient
of the VCRF loss function. It is however distinct because the structured prediction loss function we
are considering and our definition of rational loss are both different. We will adopt a similar notation
and terminology. Recall that for any sequence y, we denote by yi the symbol in its ith position and
by yji = yiyi+1⋯yj the substring of y starting at position i and ending at j. We denote by EA the
set of transitions of a WFA A. Let U be a weighted finite-state transducer (WFST) over the (+,×)
semiring over the reals, with ∆ as both the input and output alphabet. Then, we define the rational
loss associated to U for all y, y′ ∈ ∆∗ by `(y, y′) = U(y, y′).

0 1

a:a/1

b:b/1
2

a:a/1

b:b/1
3/1

a:a/1

b:b/1

0 1
a:a/1

2
b:b/1

3/1
a:a/1

Figure 1: Illustration of the
WFA Y for ∆ = {a, b} and l = 3,
and the WFA Yi, where yi =

aba.

Let Y denote a WFA over the (+,×) semiring accepting the set of
all sequences of length l with weight one and let Yi denote the WFA
accepting only yi with weight one. Then, by definition, the weighted
transducer Y○U○Yi obtained by composition maps each sequence y
in ∆l to yi with weight U(y, yi). The WFA Π1(Y ○U ○Yi) derived
from that transducer by projection on the input (that is by removing
output labels) is associating to each sequence y weight U(y, yi).
We use weighted determinization [Mohri, 1997] to compute an
equivalent deterministic WFA denote M. As shown by Cortes et al.
[2015][Theorem 3], M can be computed in polynomial time. M
admits a unique path labeled with any sequence y ∈ ∆l and the weight of that path is U(y, yi). The
weight of that accepting path is obtained by multiplying the weights of its transitions and that of the
final state.

(ε, 0)

(a, 1)
a:a/1

(b, 1)

b:b/1

(a, 2)

a:a/1 (b, 2)

b:b/1

a:a/1

b:b/1

Figure 2: Illustration of the
WFA N for ∆ = {a, b}, p = 2
and l = 2.

We now define a deterministic p-gram WFA N that accepts all
sequences y ∈ ∆l with each of its states (z′, s) encoding a (p − 1)-
gram z′ read to reach it and the position s in the sequence y at
which it is reached. The transitions of N are therefore defined as
follows with weight one:

EN = {((ys−1
s−p+1, s − 1), a,1, (ys−1

s−p+2a, s))∶ y ∈ ∆l, a ∈ ∆, s ∈ [l]}.

The initial state is (ε,0) and the final states are those with the second
element of the pair (the position) being l. Note that, by construction,
N is deterministic. Then, the composition (or intersection) WFA
N ○M still associates the same weight as M to each input string
y ∈ ∆l. However, the states in that composition help us compute
L(z, s). In particular, for any z ∈ ∆p and s ∈ [l], let E(z, s) be
the set of transitions of N ○M constructed by pairing the transition
((zp−1

1 , s − 1), zp, ω(z, s), (z
p
2, s)) in N with a transition (qM, zp, ω, q

′
M) in M. They admit the

following form:

E(z, s) ={((qN, qM), zp, ω, (q
′
N, q

′
M)) ∈ EN○M∶ qN = (zp−1

1 , s − 1)}. (14)

The WFA N ○M is deterministic as a composition of two deterministic WFAs. Thus, there is a
unique path labeled with a sequence y ∈ ∆l in N ○M and y admits the substring z ending at position
s iff that path goes through a transition in E(z, s) when reaching position s. Therefore, to compute
L(z, s), it suffices for us to compute the sum of the weights of all paths in N ○M going through a
transition in E(z, s). This can be done straightforwardly using the forward-backward algorithm or
two single-source shortest-distance algorithm over the (+,×) semiring [Mohri, 2002a], one from
the initial state, the other one from the final states. Since N ○M is acyclic and admits O(l∣∆∣p)

transitions, we can compute all the quantities L(z, s), s ∈ [l] and z ∈ ∆p, in time O(l∣∆∣p).

7 Conclusion

Our detailed study revealed shortcomings in commonly used surrogate loss functions and algorithms
for structured prediction, prompting the introduction of new, strongly consistent alternatives. These
findings not only enhance the theoretical and algorithmic foundations of structured prediction but
also pave the way for the development of practical and effective solutions. In upcoming work, we
will report an extensive empirical analysis of our algorithms. Our work provides tools and insights
for future algorithm design in this domain, promising advancements in both theory and application.
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A Related work

Structured prediction and neural networks. A variety of deep learning techniques have been used
for structured prediction tasks, including a unified neural network architecture for natural language
processing [Collobert et al., 2011], energy model-based structured prediction including structured
prediction energy networks (SPENs) and various inference methods [Belanger and McCallum, 2016,
Tu and Gimpel, 2018, Larsson et al., 2018, Tu and Gimpel, 2019, Tu et al., 2019, Graber and
Schwing, 2019, Pan et al., 2020], attention networks incorporating richer structural distributions
[Kim et al., 2017], tree-structured long short-term memory (LSTM) networks [Tai et al., 2015],
sequence to sequence learning [Sutskever et al., 2014, Edunov et al., 2017], memory-reduced variant
of best-first beam search [Meister et al., 2020], end-to-end learning for SPENs [Belanger et al., 2017],
conditional generative flow [Lu and Huang, 2020], proximal methods [Wang et al., 2016], CRF using
deep features [Jaderberg et al., 2014, Huang et al., 2015, Chen et al., 2014, Schwing and Urtasun,
2015, Chen et al., 2015], non-iterative feed-forward predictors [Stoyanov et al., 2011, Domke, 2013,
Kunisch and Pock, 2013, Hershey et al., 2014, Li and Zemel, 2014, Belharbi et al., 2018, Zheng et al.,
2015], deep value network [Gygli et al., 2017], fully convolutional networks [Long et al., 2015],
constraint reasoning tool [Dragone et al., 2021, Jiang et al., 2022], multi-label box model[Patel et al.,
2022], probabilistic deep networks[Zheng and Pronobis, 2019, Jang et al., 2023], autoregressive
methods [Liu et al., 2022], nonlinear output transformations and embedding [Graber et al., 2018,
Brogat-Motte et al., 2020], smoothing methods [Pillutla et al., 2018] and structural training [Choi
et al., 2016, Ahmad et al., 2023]. Let us also mention ensemble algorithms for structured prediction
algorithms [Cortes, Kuznetsov, and Mohri, 2014a,b], which can be used to combine several algorithms
for this problem.

Consistency in structured prediction. Here, we discuss in detail previous work on consistency in
structured prediction [Osokin et al., 2017, Ciliberto et al., 2016, Blondel, 2019, Nowak et al., 2020,
2022, Ciliberto et al., 2019, 2020, Nowak-Vila et al., 2019, Nowak et al., 2019, Cabannes et al., 2021,
Cabannnes et al., 2020, Corro, 2023].

Osokin et al. [2017], Nowak et al. [2020] and Nowak et al. [2022] pointed out that the max-margin
Markov networks (M3N), or more generally structural SVMs may not be Bayes-consistent. Instead,
Osokin et al. [2017] proposed the first Bayes-consistent surrogate loss in the structured prediction
setting, the quadratic surrogate (QS) loss. A general theory of QS was further developed in [Nowak-
Vila et al., 2019, Nowak et al., 2019]. However, as pointed out in Section 1, the quadratic surrogate
loss formulation casts the structured prediction problem as a regression problem and is not a typical
formulation even in the binary classification case.

Nowak et al. [2020] proposed a consistent method called max-min margin Markov networks (M4N)
derived from first principles for binary SVM. However, this method is restricted to SVM-type loss
functions. Instead, we propose broad families of surrogate losses, which can be naturally derived
from common multi-class losses including the logistic loss.

Nowak et al. [2022] addressed the inconsistency of Max-Margin loss in structured prediction by
introducing the notion of Restricted-Max-Margin, where the maximization is performed over a subset
of the original domain. Their method is based on an implicit embedding [Finocchiaro et al., 2019]; a
general framework for structured prediction has been further developed by Ciliberto et al. [2020].
However, these methods are only applied to polyhedral-type surrogates which are not as smooth as
the logistic loss. Thus, the resulting surrogate losses may not be favorable from the optimization point
of view. Instead, our novel families of surrogate losses are very general and can be smooth, including
a new structured logistic loss, for which we describe efficient gradient computation algorithms.

Ciliberto et al. [2016] focused on a least squares surrogate loss function and corresponding framework.
In this framework, the structured prediction problem is cast as a regression problem. They derived
a regularization approach to structured prediction from the least squares surrogate loss and proved
the Bayes-consistency of that approach. Ciliberto et al. [2019] focused on a local structure-adapted
framework for structured prediction. They proposed a novel structured prediction algorithm that
adaptively leverages locality in the learning problem. Ciliberto et al. [2020] developed a general
framework for structured prediction based on implicit embedding. Their methods lead to polyhedral-
type surrogates losses that benefit from Bayes-consistency.

On the other hand, our work presents an extensive study of surrogate losses for structured prediction
supported by H-consistency bounds. Different from the surrogate loss studied in the previous work,
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the formulations of our proposed surrogate losses including structured comp-sum losses and structured
constrained losses are completely novel and do not cast structured prediction problems as a regression
problem. Furthermore, we prove stronger consistency guarantees that imply Bayes-consistency for
these new proposed families of surrogate loss.

Other related work on structured prediction includes: projection-based losses for structured prediction
[Blondel, 2019]; fast convergence rates for general structured prediction problems [Cabannes et al.,
2021]; a unified framework for dealing with partial labelling [Cabannnes et al., 2020]; and an analysis
of the inconsistency of separable negative log-likelihood losses for structured prediction [Corro,
2023].

B Proof of Lemma 3

Lemma 3. The best-in-class conditional error and the conditional regret for a target loss L in
structured prediction can be expressed as follows:

C∗L,H(x) = min
y′∈H(x)

∑
y∈Y

p(x, y)`(y′, y)

∆CL,H(h,x) = ∑
y∈Y

p(x, y)`(h(x), y) − min
y′∈H(x)

∑
y∈Y

p(x, y)`(y′, y).

Proof. By the definition, the conditional L-risk can be expressed as follows:
CL(h,x) = ∑

y∈Y
p(x, y)`(h(x), y). (15)

Since {h(x) ∶ h ∈H} = H(x), the best-in-class conditional error can be expressed as follows:
C∗L,H(x) = min

y′∈H(x)
∑
y∈Y

p(x, y)`(y′, y),

which proves the first part of the lemma. By the definition,
∆CL,H(h,x) = CL(h,x) − C∗L,H(x) = ∑

y∈Y
p(x, y)`(h(x), y) − min

y′∈H(x)
∑
y∈Y

p(x, y)`(y′, y).

C Proofs for structured max losses

Theorem 4 (Negative results of Lmax). Assume that n > 2 and that Φu(v) is convex and non-
increasing for u = 1. Then, the max structured loss Lmax is not Bayes-consistent.

Proof. For the structured max loss Lmax, the conditional Lmax-risk can be expressed as follows:
CLmax(h,x) = ∑

y∈Y
p(x, y)max

y′≠y
Φ`(y′,y)(h(x, y) − h(x, y

′
)).

Take `(y′, y) = 1y≠y′ to be the zero-one loss. Since `(y′, y) = 1 for any y ≠ y′, the conditional
Lmax-risk can be reformulated as follows:

CLmax(h,x) = ∑
y∈Y

p(x, y)max
y′≠y

Φ1(h(x, y) − h(x, y
′
)).

Consider the distribution that supports on a singleton domain {x}. Take y1 ≠ y2 ∈ Y such that y1 ≠ n
and y2 ≠ n. We define the conditional distribution as p(x, y1) = p(x, y2) =

1
2

and p(x, y) = 0 for
other y ∈ Y. Then, by using the fact that Φ1(v) is convex and non-increasing, we obtain

RLmax(h) = CLmax(h,x) =
1

2
max
y′≠y1

Φ1(h(x, y1) − h(x, y
′
)) +

1

2
max
y′≠y2

Φ1(h(x, y2) − h(x, y
′
))

=
1

2
Φ1(h(x, y1) −max

y′≠y1

h(x, y′)) +
1

2
Φ1(h(x, y2) −max

y′≠y2

h(x, y′))

(Φ1(v) is non-increasing)

≥ Φ1(
1

2
h(x, y1) −

1

2
max
y′≠y2

h(x, y′) +
1

2
h(x, y2) −

1

2
max
y′≠y1

h(x, y′))

(Φ1(v) is convex)
≥ Φ1(0) (Φ1(v) is non-increasing)
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where the equality can be achieved by h∗ ∈ H, defined as h∗(x,1) = h∗(x,2) = . . . = h∗(x,n).
Therefore, h∗ is a Bayes classifier of the structured max loss. Note that h∗(x) = n. However, by
Lemma 3, in such a case, the Bayes classifier h∗` of the target loss satisfies that

h∗` (x) = argmin
y′∈Y

∑
y∈Y

p(x, y)`(y′, y) = argmin
y′∈Y

(p(x, y1)1y′≠y1 + p(x, y2)1y′≠y2) = y1 or y2.

Thus, we obtain h∗ ≠ h∗` . Therefore, Lmax is not Bayes-consistent.

D Proofs for Voted Conditional Random Field

Theorem 5 (Negative result of LVCRF). The Voted Conditional Random Field LVCRF is not Bayes-
consistent.

Proof. For the Voted Conditional Random Field LVCRF, the conditional LVCRF-risk can be expressed
as follows:

CLVCRF(h,x) = ∑
y∈Y

p(x, y) log
⎛

⎝
∑
y′∈Y

e`(y,y
′)+h(x,y′)−h(x,y)⎞

⎠
.

Consider the distribution that supports on a singleton domain {x}. Note that RLVCRF = CLVCRF is convex
with respect to h(x, y), y = 1, . . . , n. To find the global minimum, we will differentiate CLVCRF with
respect to h(x, y) for any y ∈ Y and setting the derivatives to zero. Thus, we obtain for any y ∈ Y,

p(x, y)
−∑y′≠y e

`(y,y′)+h(x,y′)−h(x,y)

∑y′∈Y e
`(y,y′)+h(x,y′)−h(x,y) + ∑

y′≠y
p(x, y′)

e`(y
′,y)+h(x,y)−h(x,y′)

∑y′′∈Y e
`(y′,y′′)+h(x,y′′)−h(x,y′) = 0. (16)

Using the fact that∑y′≠y e
`(y,y′)+h(x,y′)−h(x,y) = ∑y′∈Y e

`(y,y′)+h(x,y′)−h(x,y) − e`(y,y)+h(x,y)−h(x,y)

to further simplify the LHS of (16), we obtain for any y ∈ Y,

p(x, y) = ∑
y′∈Y

p(x, y′)
e`(y

′,y)+h(x,y)−h(x,y′)

∑y′′∈Y e
`(y′,y′′)+h(x,y′′)−h(x,y′) = ∑

y′∈Y
p(x, y′)

e`(y
′,y)+h(x,y)

∑y′′∈Y e
`(y′,y′′)+h(x,y′′) . (17)

Consider a target loss function L such that e`(y,y
′) = ΦyΦy′ , that is `(y, y′) = log(Φy) + log(Φy′),

where Φy is a function mapping from Y to R+. For this special choice of the target loss function, the
expression of `(y, y′) decouple and (17) can be simplified to

p(x, y) = ∑
y′∈Y

p(x, y′)
ΦyΦy′e

h(x,y)

∑y′′∈Y Φy′Φy′′eh(x,y
′′) =

Φye
h(x,y)

∑y′∈Y Φy′eh(x,y
′) . (18)

Therefore, for the Bayes classifier h∗ of Voted Conditional Random Field, by (18), we have

Φye
h∗(x,1)

p(x,1)
= . . . =

Φye
h∗(x,n)

p(x,n)

which implies that

h∗(x) = argmax
y′∈Y

h∗(x, y′) = argmax
y′∈Y

eh
∗(x,y′)

= argmax
y′∈Y

p(x, y′)

Φy′
.

However, by Lemma 3, in such a case, the Bayes classifier h∗` of the target loss satisfies that

h∗` (x) = argmin
y′∈Y

∑
y∈Y

p(x, y)`(y′, y) = argmin
y′∈Y

∑
y∈Y

p(x, y)(log(Φy) + log(Φy′)) = argmin
y′∈Y

Φy′ .

Thus, we obtain h∗ ≠ h∗` in general. Indeed, consider the case where p(x, y) =
Φ2
y

∑nk=1 Φ2
k

, y ∈ Y. Then,

h∗(x) = argmaxy′∈Y
Φy′

∑nk=1 Φ2
k

= argmaxy′∈Y Φy′ ≠ argminy′∈Y Φy′ = h∗` (x) when {Φy ∶ y ∈ Y} are
not equal. Therefore, LVCRF is not Bayes-consistent.
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E Proofs for structured comp-sum losses

E.1 Structured logistic loss

Theorem 11 (H-consistency bound of Lcomp
log ). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ 2(RLcomp

log
(h) −R∗

Lcomp
log

,H +MLcomp
log

,H)

1
2
−ML,H. (19)

Proof. For the comp-sum structured loss Lcomp
log , the conditional Lcomp

log -risk can be expressed as
follows:

CLcomp
log

(h,x) = −∑
y∈Y

p(x, y) ∑
y′∈Y

`(y′, y) log(
eh(x,y

′)

∑y′′∈Y e
h(x,y′′) )

= − ∑
y′∈Y

log(
eh(x,y

′)

∑y′′∈Y e
h(x,y′′) )∑

y∈Y
p(x, y)`(y′, y)

= − ∑
y′∈Y

log(S(x, y′))q(x, y′),

where we denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0,1] and S(x, y) = eh(x,y)

∑y′′∈Y eh(x,y
′′
)
∈ [0,1]

with the constraint that ∑y∈Y S(x, y) = 1. Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we

choose the label with the highest index under the natural ordering of labels as the tie-breaking
strategy. For any h ∈ H such that h(x) ≠ ymin and x ∈ X, by the symmetry and completeness of
H, we can always find a family of hypotheses {hµ ∶ µ ∈ [−S(x, ymin),S(x,h(x))]} ⊂ H such that

Sµ(x, ⋅) =
ehµ(x,⋅)

∑y′∈Y ehµ(x,y
′
)

take the following values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymin,h(x)}

S(x, ymin) + µ if y = h(x)

S(x,h(x)) − µ if y = ymin.

(20)

Note that Sµ satisfies the constraint:

∑
y∈Y

Sµ(x, y) = ∑
y∈Y

S(x, y) = 1, ∀µ ∈ [−S(x, ymin),S(x,h(x))].

By (20) and using the fact that H(x) = Y when H is symmetric, we obtain

∆CLcomp,H(h,x) = CLcomp(h,x) − C∗Lcomp(H, x)

≥ CLcomp(h,x) − inf
µ∈R

CLcomp(hµ, x)

= sup
µ∈[−S(x,ymin),S(x,h(x))]

{q(x, ymin)[− log(S(x, ymin)) + log(S(x,h(x)) − µ)]

+ q(x,h(x))[− log(S(x,h(x))) + log(S(x, ymin) + µ)]}.

Differentiating with respect to µ yields the optimal value µ∗ = q(x,h(x))S(x,h(x))−q(x,ymin)S(x,ymin)
q(x,ymin)+q(x,h(x)) .

Plugging in that value gives:

∆CLcomp,H(h,x) ≥ q(x, ymin) log
(S(x,h(x)) + S(x, ymin))q(x, ymin)

S(x, ymin)(q(x, ymin) + q(x,h(x)))

+ q(x,h(x)) log
(S(x,h(x)) + S(x, ymin))q(x,h(x))

S(x,h(x))(q(x, ymin) + q(x,h(x)))
.
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Differentiating with respect to S shows that the minimum is attained for S(x,h(x)) = S(x, ymin),
which gives:

∆CLcomp,H(h,x) ≥ q(x, ymin) log
2q(x, ymin)

q(x, ymin) + q(x,h(x))
+ q(x,h(x)) log

2q(x,h(x))

q(x, ymin) + q(x,h(x))

≥
(q(x,h(x)) − q(x, ymin))

2

2(q(x,h(x)) + q(x, ymin))

(a log 2a
a+b + b log 2b

a+b ≥
(a−b)2

2(a+b) ,∀a, b ∈ [0,1] [Mohri et al., 2018, Proposition E.7])

≥
(q(x,h(x)) − q(x, ymin))

2

4
(0 ≤ q(x,h(x)) + q(x, ymin) ≤ 2)

=
(∑y∈Y p(x, y)`(h(x), y) −∑y∈Y p(x, y)`(ymin, y))

2

4

=
1

4
∆CL,H(h,x)2. (by Lemma 3 and H(x) = Y)

Since the function t↦ t2

4
is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and

any distribution,

(RL(h) −R∗
L,H +ML,H)

2

4
=

(EX[∆CL,H(h,x)])
2

4

≤ E
X
[

∆CL,H(h,x)2

4
]

≤ E
X
[∆CLcomp,H(h,x)]

= RLcomp(h) −R∗
Lcomp,H +MLcomp,H,

which leads to

RL(h) −R∗
L,H ≤ 2(RLcomp

log
(h) −R∗

Lcomp
log

,H +MLcomp
log

,H)

1
2
−ML,H.

E.2 Structured sum-exponential loss

Theorem 12 (H-consistency bound of Lcomp
exp ). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ 2(RLcomp

exp
(h) −R∗

Lcomp
exp ,H +MLcomp

exp ,H)

1
2
−ML,H. (21)

Proof. For the comp-sum structured loss Lcomp
exp , the conditional Lcomp

exp -risk can be expressed as
follows:

CLcomp
exp

(h,x) = ∑
y∈Y

p(x, y) ∑
y′∈Y

`(y′, y) ∑
y′′≠y′

eh(x,y
′′)−h(x,y′)

= ∑
y′∈Y

(
1

S(x, y′)
− 1)q(x, y′),

where we denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0,1] and S(x, y) = eh(x,y)

∑y′′∈Y eh(x,y
′′
)
∈ [0,1]

with the constraint that ∑y∈Y S(x, y) = 1. Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we

choose the label with the highest index under the natural ordering of labels as the tie-breaking
strategy. For any h ∈ H such that h(x) ≠ ymin and x ∈ X, by the symmetry and completeness of
H, we can always find a family of hypotheses {hµ ∶ µ ∈ [−S(x, ymin),S(x,h(x))]} ⊂ H such that

Sµ(x, ⋅) =
ehµ(x,⋅)

∑y′∈Y ehµ(x,y
′
)

take the following values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymin,h(x)}

S(x, ymin) + µ if y = h(x)

S(x,h(x)) − µ if y = ymin.

(22)
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Note that Sµ satisfies the constraint:

∑
y∈Y

Sµ(x, y) = ∑
y∈Y

S(x, y) = 1, ∀µ ∈ [−S(x, ymin),S(x,h(x))].

By (22) and using the fact that H(x) = Y when H is symmetric, we obtain

∆CLcomp,H(h,x)

= CLcomp(h,x) − C∗Lcomp(H, x)

≥ CLcomp(h,x) − inf
µ∈R

CLcomp(hµ, x)

= sup
µ∈[−S(x,ymin),S(x,h(x))]

{q(x, ymin)[
1

S(x, ymin)
−

1

S(x,h(x)) − µ
]

+ q(x,h(x))[
1

S(x,h(x))
−

1

S(x, ymin) + µ
]}

=
q(x, ymin)

S(x, ymin)
+
q(x,h(x))

S(x,h(x))
−

(
√
q(x, ymin) +

√
q(x,h(x)))

2

S(x, ymin) + S(x,h(x))

(differentiating with respect to µ to optimize, optimal µ∗ =
√
q(x,h(x))S(x,h(x))−

√
q(x,ymin)S(x,ymin)√

q(x,ymin)+
√
q(x,h(x))

)

≥ (
√
q(x, ymin) −

√
q(x,h(x)))

2

(differentiating with respect to S to minimize, minimum is attained when S(x,h(x)) = S(x, ymin) =
1
2

)

≥
(q(x,h(x)) − q(x, ymin))

2

(
√
q(x,h(x)) +

√
q(x, ymin))

2

≥
(q(x,h(x)) − q(x, ymin))

2

4
(
√
a +

√
b ≤ 2,∀a, b ∈ [0,1], a + b ≤ 2)

=
(∑y∈Y p(x, y)`(h(x), y) −∑y∈Y p(x, y)`(ymin, y))

2

4

=
1

4
∆CL,H(h,x)2. (by Lemma 3 and H(x) = Y)

Since the function t↦ t2

4
is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and

any distribution,

(RL(h) −R∗
L,H +ML,H)

2

4
=

(EX[∆CL,H(h,x)])
2

4

≤ E
X
[

∆CL,H(h,x)2

4
]

≤ E
X
[∆CLcomp,H(h,x)]

= RLcomp(h) −R∗
Lcomp,H +MLcomp,H,

which leads to

RL(h) −R∗
L,H ≤ 2(RLcomp

exp
(h) −R∗

Lcomp
exp ,H +MLcomp

exp ,H)

1
2
−ML,H.

E.3 Structured generalized cross-entropy loss

Theorem 13 (H-consistency bound of Lcomp
gce ). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ 2n

α
2 (RLcomp

gce
(h) −R∗

Lcomp
gce ,H +MLcomp

gce ,H)

1
2
−ML,H. (23)
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Proof. For the comp-sum structured loss Lcomp
gce , the conditional Lcomp

gce -risk can be expressed as
follows:

CLcomp
gce

(h,x) = ∑
y∈Y

p(x, y) ∑
y′∈Y

`(y′, y)
1

α

⎛

⎝
1 − (

eh(x,y
′)

∑y′′∈Y e
h(x,y′′) )

α
⎞

⎠

=
1

α
∑
y′∈Y

⎛

⎝
1 − (

eh(x,y
′)

∑y′′∈Y e
h(x,y′′) )

α
⎞

⎠
∑
y∈Y

p(x, y)`(y′, y)

=
1

α
∑
y′∈Y

(1 − S(x, y′)α)q(x, y′),

where we denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0,1] and S(x, y) = eh(x,y)

∑y′′∈Y eh(x,y
′′
)
∈ [0,1]

with the constraint that ∑y∈Y S(x, y) = 1. Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we

choose the label with the highest index under the natural ordering of labels as the tie-breaking
strategy. For any h ∈ H such that h(x) ≠ ymin and x ∈ X, by the symmetry and completeness of
H, we can always find a family of hypotheses {hµ ∶ µ ∈ [−S(x, ymin),S(x,h(x))]} ⊂ H such that

Sµ(x, ⋅) =
ehµ(x,⋅)

∑y′∈Y ehµ(x,y
′
)

take the following values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymin,h(x)}

S(x, ymin) + µ if y = h(x)

S(x,h(x)) − µ if y = ymin.

(24)

Note that Sµ satisfies the constraint:

∑
y∈Y

Sµ(x, y) = ∑
y∈Y

S(x, y) = 1, ∀µ ∈ [−S(x, ymin),S(x,h(x))].

By (24) and using the fact that H(x) = Y when H is symmetric, we obtain

∆CLcomp,H(h,x)

= CLcomp(h,x) − C∗Lcomp(H, x)

≥ CLcomp(h,x) − inf
µ∈R

CLcomp(hµ, x)

=
1

α
sup

µ∈[−S(x,ymin),S(x,h(x))]
{q(x, ymin)[−S(x, ymin)

α
+ (S(x,h(x)) − µ)

α
]

+ q(x,h(x))[−S(x,h(x))α + (S(x, ymin) + µ)
α
]}

=
1

α
(S(x,h(x)) + S(x, ymin))

α
(q(x, ymin)

1
1−α + q(x,h(x))

1
1−α )

1−α

−
1

α
q(x, ymin)S(x, ymin)

α
−

1

α
q(x,h(x))S(x,h(x))α

(differentiating with respect to µ to optimize, optimum µ∗ = q(x,h(x))
1

1−α S(x,h(x))−q(x,ymin)
1

1−α S(x,ymin)
q(x,ymin)

1
1−α +q(x,h(x))

1
1−α

)

≥
1

αnα
[2α(q(x, ymin)

1
1−α + q(x,h(x))

1
1−α )

1−α
− q(x, ymin) − q(x,h(x))]

(differentiating with respect to S to minimize, minimum is attained when S(x,h(x)) = S(x, ymin) =
1
n

)

≥
(q(x,h(x)) − q(x, ymin))

2

4nα
((a

1
1−α +b

1
1−α

2
)

1−α
− a+b

2
≥ α

4
(a − b)2,∀a, b ∈ [0,1], 0 ≤ a + b ≤ 1)

=
(∑y∈Y p(x, y)`(h(x), y) −∑y∈Y p(x, y)`(ymin, y))

2

4nα

=
∆CL,H(h,x)2

4nα
. (by Lemma 3 and H(x) = Y)
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Since the function t↦ t2

4nα
is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and

any distribution,

(RL(h) −R∗
L,H +ML,H)

2

4nα
=

(EX[∆CL,H(h,x)])
2

4nα

≤ E
X
[

∆CL,H(h,x)2

4nα
]

≤ E
X
[∆CLcomp,H(h,x)]

= RLcomp(h) −R∗
Lcomp,H +MLcomp,H,

which leads to

RL(h) −R∗
L,H ≤ 2n

α
2 (RLcomp

gce
(h) −R∗

Lcomp
gce ,H +MLcomp

gce ,H)

1
2
−ML,H.

E.4 Structured mean absolute error loss

Theorem 14 (H-consistency bound of Lcomp
mae ). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ n(RLcomp

mae
(h) −R∗

Lcomp
mae ,H +MLcomp

mae ,H) −ML,H. (25)

Proof. For the comp-sum structured loss Lcomp
mae , the conditional Lcomp

mae -risk can be expressed as
follows:

CLcomp
mae

(h,x) = ∑
y∈Y

p(x, y) ∑
y′∈Y

`(y′, y)(1 −
eh(x,y

′)

∑y′′∈Y e
h(x,y′′) )

= ∑
y′∈Y

(1 −
eh(x,y

′)

∑y′′∈Y e
h(x,y′′) )∑

y∈Y
p(x, y)`(y′, y)

= ∑
y′∈Y

(1 − S(x, y′))q(x, y′),

where we denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0,1] and S(x, y) = eh(x,y)

∑y′′∈Y eh(x,y
′′
)
∈ [0,1]

with the constraint that ∑y∈Y S(x, y) = 1. Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we

choose the label with the highest index under the natural ordering of labels as the tie-breaking
strategy. For any h ∈ H such that h(x) ≠ ymin and x ∈ X, by the symmetry and completeness of
H, we can always find a family of hypotheses {hµ ∶ µ ∈ [−S(x, ymin),S(x,h(x))]} ⊂ H such that

Sµ(x, ⋅) =
ehµ(x,⋅)

∑y′∈Y ehµ(x,y
′
)

take the following values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymin,h(x)}

S(x, ymin) + µ if y = h(x)

S(x,h(x)) − µ if y = ymin.

(26)

Note that Sµ satisfies the constraint:

∑
y∈Y

Sµ(x, y) = ∑
y∈Y

S(x, y) = 1, ∀µ ∈ [−S(x, ymin),S(x,h(x))].
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By (26) and using the fact that H(x) = Y when H is symmetric, we obtain

∆CLcomp,H(h,x)

= CLcomp(h,x) − C∗Lcomp(H, x)

≥ CLcomp(h,x) − inf
µ∈R

CLcomp(hµ, x)

= sup
µ∈[−S(x,ymin),S(x,h(x))]

{q(x, ymin)[−S(x, ymin) + S(x,h(x)) − µ]

+ q(x,h(x))[−S(x,h(x)) + S(x, ymin) + µ]}

= q(x, ymin)S(x,h(x)) − q(x,h(x))S(x,h(x))
(differentiating with respect to µ to optimize, optimum µ∗ = −S(x, ymin))

≥
1

n
(q(x, ymin) − q(x,h(x)))

(differentiating with respect to S to minimize, minimum is attained when S(x,h(x)) = 1
n

)

=
∑y∈Y p(x, y)`(h(x), y) −∑y∈Y p(x, y)`(ymin, y)

n

=
∆CL,H(h,x)

n
(by Lemma 3 and H(x) = Y)

Therefore, we obtain for any hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H +ML,H

n
=
EX[∆CL,H(h,x)]

n
= E
X
[∆CLcomp,H(h,x)]

= RLcomp(h) −R∗
Lcomp,H +MLcomp,H,

which leads to

RL(h) −R∗
L,H ≤ n(RLcomp

mae
(h) −R∗

Lcomp
mae ,H +MLcomp

mae ,H) −ML,H.

F Proofs for structured constrained losses

F.1 Structured constrained exponential loss

Theorem 15 (H-consistency bound of Lcstnd
exp ). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ 2

√
`max(RLcstnd

exp
(h) −R∗

Lcstnd
exp ,H +MLcstnd

exp ,H)

1
2
−ML,H. (27)

Proof. Denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0, `max]. For the constrained structured loss

Lcstnd
exp , the conditional Lcstnd

exp -risk can be expressed as follows:

CLcstnd
exp

(h,x) = ∑
y∈Y

p(x, y) ∑
y′∈Y

`(y, y′)eh(x,y
′)
= ∑
y′∈Y

eh(x,y
′)q(x, y′).

Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we choose the label with the highest index under

the natural ordering of labels as the tie-breaking strategy. For any h ∈ H such that h(x) ≠ ymin

and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses
{hµ ∶ µ ∈ R} ⊂H such that hµ(x, ⋅) take the following values:

hµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymin,h(x)}

h(x, ymin) + µ if y = h(x)

h(x,h(x)) − µ if y = ymin.

(28)
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Note that the hypotheses hµ satisfies the constraint:

∑
y∈Y

hµ(x, y) = ∑
y∈Y

h(x, y) = 0, ∀µ ∈ R.

Since ∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we
must thus have h(x,h(x)) ≥ 0. By (28) and using the fact that H(x) = Y when H is symmetric, we
obtain

∆CLcstnd,H(h,x)

= CLcstnd(h,x) − C∗Lcstnd(H, x)

≥ CLcstnd(h,x) − inf
µ∈R

CLcstnd(hµ, x)

= sup
µ∈R

{q(x, ymin)(e
h(x,ymin) − eh(x,h(x))−µ) + q(x,h(x))(eh(x,h(x)) − eh(x,ymin)+µ)}

= (

√

q(x,h(x))eh(x,h(x)) −
√

q(x, ymin)eh(x,ymin))
2

(differentiating with respect to µ to optimize, optimum µ∗ = 1
2

log q(x,ymin)eh(x,h(x))
q(x,h(x))eh(x,ymin)

)

≥ eh(x,h(x))(
√
q(x, ymin) −

√
q(x,h(x)))

2

(eh(x,h(x)) ≥ eh(x,ymin) and q(x,h(x)) ≥ q(x, ymin))

≥ (
√
q(x, ymin) −

√
q(x,h(x)))

2
(h(x,h(x)) ≥ 0)

=
⎛

⎝

q(x,h(x)) − q(x, ymin)
√
q(x, ymin) +

√
q(x,h(x))

⎞

⎠

2

≥
1

4`max
(q(x,h(x)) − q(x, ymin))

2 (0 ≤ q(x, y) ≤ `max)

=
1

4`max
∆CL,H(h,x)2. (by Lemma 3 and H(x) = Y)

Since the function t↦ t2

4`max
is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H

and any distribution,

(RL(h) −R∗
L,H +ML,H)

2

4`max
=

(EX[∆CL,H(h,x)])
2

4`max

≤ E
X
[

∆CL,H(h,x)2

4`max
]

≤ E
X
[∆CLcstnd,H(h,x)]

= RLcstnd(h) −R∗
Lcstnd,H +MLcstnd,H,

which leads to

RL(h) −R∗
L,H ≤ 2

√
`max(RLcstnd

exp
(h) −R∗

Lcstnd
exp ,H +MLcstnd

exp ,H)

1
2
−ML,H.

F.2 Structured constrained squared-hinge loss

Theorem 16 (H-consistency bound of Lcstnd
sq−hinge). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ (RLcstnd

sq−hinge
(h) −R∗

Lcstnd
sq−hinge

,H +MLcstnd
sq−hinge

,H)

1
2

−ML,H. (29)
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Proof. Denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0, `max]. For the constrained structured loss

Lcstnd
sq−hinge, the conditional Lcstnd

sq−hinge-risk can be expressed as follows:

CLcstnd
sq−hinge

(h,x) = ∑
y∈Y

p(x, y) ∑
y′∈Y

`(y′, y)max{0,1 + h(x, y′)}
2

= ∑
y′∈Y

max{0,1 + h(x, y′)}
2
q(x, y′).

Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we choose the label with the highest index under

the natural ordering of labels as the tie-breaking strategy. For any h ∈ H such that h(x) ≠ ymin

and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses
{hµ ∶ µ ∈ R} ⊂H such that hµ(x, ⋅) take the following values:

hµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymin,h(x)}

h(x, ymin) + µ if y = h(x)

h(x,h(x)) − µ if y = ymin.

(30)

Note that the hypotheses hµ satisfies the constraint:

∑
y∈Y

hµ(x, y) = ∑
y∈Y

h(x, y) = 0, ∀µ ∈ R.

Since ∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we
must thus have h(x,h(x)) ≥ 0. By (30) and using the fact that H(x) = Y when H is symmetric, we
obtain

∆CLcstnd,H(h,x)

= CLcstnd(h,x) − C∗Lcstnd(H, x)

≥ CLcstnd(h,x) − inf
µ∈R

CLcstnd(hµ, x)

= sup
µ∈R

{q(x, ymin)(max{0,1 + h(x, ymin)}
2
−max{0,1 + h(x,h(x)) − µ}

2
)

+ q(x,h(x))(max{0,1 + h(x,h(x))}
2
−max{0,1 + h(x, ymin) + µ}

2
)}

≥ (1 + h(x,h(x)))
2
(q(x, ymin) − q(x,h(x)))

2 (differentiating with respect to µ to optimize)

≥ (q(x,h(x)) − q(x, ymin))
2 (h(x,h(x)) ≥ 0)

=
⎛

⎝
∑
y∈Y

p(x, y)`(h(x), y) −∑
y∈Y

p(x, y)`(ymin, y)
⎞

⎠

2

= ∆CL,H(h,x)2. (by Lemma 3 and H(x) = Y)

Since the function t↦ t2 is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and
any distribution,

(RL(h) −R∗
L,H +ML,H)

2
= (E

X
[∆CL,H(h,x)])

2

≤ E
X
[∆CL,H(h,x)2]

≤ E
X
[∆CLcstnd,H(h,x)]

= RLcstnd(h) −R∗
Lcstnd,H +MLcstnd,H,

which leads to

RL(h) −R∗
L,H ≤ (RLcstnd

sq−hinge
(h) −R∗

Lcstnd
sq−hinge

,H +MLcstnd
sq−hinge

,H)

1
2

−ML,H.
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F.3 Structured constrained hinge loss

Theorem 17 (H-consistency bound of Lcstnd
hinge). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ RLcstnd

hinge
(h) −R∗

Lcstnd
hinge

,H +MLcstnd
hinge

,H −ML,H. (31)

Proof. Denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0, `max]. For the constrained structured loss

Lcstnd
hinge, the conditional Lcstnd

hinge-risk can be expressed as follows:

CLcstnd
hinge

(h,x) = ∑
y∈Y

p(x, y) ∑
y′∈Y

`(y′, y)max{0,1 + h(x, y′)}

= ∑
y′∈Y

max{0,1 + h(x, y′)}q(x, y′).

Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we choose the label with the highest index under

the natural ordering of labels as the tie-breaking strategy. For any h ∈ H such that h(x) ≠ ymin

and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses
{hµ ∶ µ ∈ R} ⊂H such that hµ(x, ⋅) take the following values:

hµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymin,h(x)}

h(x, ymin) + µ if y = h(x)

h(x,h(x)) − µ if y = ymin.

(32)

Note that the hypotheses hµ satisfies the constraint:

∑
y∈Y

hµ(x, y) = ∑
y∈Y

h(x, y) = 0, ∀µ ∈ R.

Since ∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we
must thus have h(x,h(x)) ≥ 0. By (32) and using the fact that H(x) = Y when H is symmetric, we
obtain

∆CLcstnd,H(h,x)

= CLcstnd(h,x) − C∗Lcstnd(H, x)

≥ CLcstnd(h,x) − inf
µ∈R

CLcstnd(hµ, x)

= sup
µ∈R

{q(x, ymin)(max{0,1 + h(x, ymin)} −max{0,1 + h(x,h(x)) − µ})

+ q(x,h(x))(max{0,1 + h(x,h(x))} −max{0,1 + h(x, ymin) + µ})}

≥ (1 + h(x,h(x)))(q(x,h(x)) − q(x, ymin)) (differentiating with respect to µ to optimize)
≥ q(x,h(x)) − q(x, ymin) (h(x,h(x)) ≥ 0)

= ∑
y∈Y

p(x, y)`(h(x), y) −∑
y∈Y

p(x, y)`(ymin, y)

= ∆CL,H(h,x). (by Lemma 3 and H(x) = Y)

Therefore, we obtain for any hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H +ML,H = E

X
[∆CL,H(h,x)]

≤ E
X
[∆CLcstnd,H(h,x)]

= RLcstnd(h) −R∗
Lcstnd,H +MLcstnd,H,

which leads to

RL(h) −R∗
L,H ≤ RLcstnd

hinge
(h) −R∗

Lcstnd
hinge

,H +MLcstnd
hinge

,H −ML,H.
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F.4 Structured constrained ρ-margin loss

Theorem 18 (H-consistency bound of Lcstnd
ρ ). Assume that H is symmetric and complete. Then,

for any target loss `, hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H ≤ RLcstnd

ρ
(h) −R∗

Lcstnd
ρ ,H +MLcstnd

ρ ,H −ML,H. (33)

Proof. Denote by q(x, y′) = ∑y∈Y p(x, y)`(y
′, y) ∈ [0, `max]. For the constrained structured loss

Lcstnd
ρ , the conditional Lcstnd

ρ -risk can be expressed as follows:

CLcstnd
ρ

(h,x) = ∑
y∈Y

p(x, y) ∑
y′∈Y

`(y′, y)max{0,1 + h(x, y′)}

= ∑
y′∈Y

max{0,1 + h(x, y′)}q(x, y′).

Let ymin = argminy′∈Y∑y∈Y p(x, y)`(y
′, y), where we choose the label with the highest index under

the natural ordering of labels as the tie-breaking strategy. For any h ∈ H such that h(x) ≠ ymin

and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses
{hµ ∶ µ ∈ R} ⊂H such that hµ(x, ⋅) take the following values:

hµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymin,h(x)}

h(x, ymin) + µ if y = h(x)

h(x,h(x)) − µ if y = ymin.

(34)

Note that the hypotheses hµ satisfies the constraint:

∑
y∈Y

hµ(x, y) = ∑
y∈Y

h(x, y) = 0, ∀µ ∈ R.

Since ∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we
must thus have h(x,h(x)) ≥ 0. By (34) and using the fact that H(x) = Y when H is symmetric, we
obtain

∆CLcstnd,H(h,x)

= CLcstnd(h,x) − C∗Lcstnd(H, x)

≥ CLcstnd(h,x) − inf
µ∈R

CLcstnd(hµ, x)

= sup
µ∈R

{q(x, ymin)(min{max{0,1 +
h(x, ymin)

ρ
},1} −min{max{0,1 +

h(x,h(x)) − µ

ρ
},1})

+ q(x,h(x))(min{max{0,1 +
h(x,h(x))

ρ
},1} −min{max{0,1 +

h(x, ymin) + µ

ρ
},1})}

≥ q(x,h(x)) − q(x, ymin) (differentiating with respect to µ to optimize)

= ∑
y∈Y

p(x, y)`(h(x), y) −∑
y∈Y

p(x, y)`(ymin, y)

= ∆CL,H(h,x). (by Lemma 3 and H(x) = Y)

Therefore, we obtain for any hypothesis h ∈H and any distribution,

RL(h) −R∗
L,H +ML,H = E

X
[∆CL,H(h,x)]

≤ E
X
[∆CLcstnd,H(h,x)]

= RLcstnd(h) −R∗
Lcstnd,H +MLcstnd,H,

which leads to

RL(h) −R∗
L,H ≤ RLcstnd

ρ
(h) −R∗

Lcstnd
ρ ,H +MLcstnd

ρ ,H −ML,H.
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G Efficient gradient computation and inference

Here, we describe efficient algorithms for the computation of the gradients for the loss functions
Lcomp

log and Lcomp
exp . We also briefly discuss an efficient algorithm for inference.

G.1 Efficient gradient computation for Lcomp
log

We first present an efficient algorithm for the computation of the quantities L(z, s) in the important
case of rational losses, next in the case of Markovian losses.

Rational losses. Rational losses form a general family of loss functions based on rational kernels
[Cortes et al., 2004] that includes, in particular, n-gram losses, which can be defined for a pair of
sequences (y, y′) as the negative inner product of the vectors of n-gram counts of y and y′.

Our algorithm bears some similarity to that of Cortes et al. [2018] for the computation of the gradient
of the VCRF loss function. It is however distinct because the structured prediction loss function we
are considering and our definition of rational loss are both different. We will adopt a similar notation
and terminology. Recall that for any sequence y, we denote by yi the symbol in its ith position and
by yji = yiyi+1⋯yj the substring of y starting at position i and ending at j. We denote by EA the set
of transitions of a WFA A.

Let U be a weighted finite-state transducer (WFST) over the (+,×) semiring over the reals, with ∆ as
both the input and output alphabet. Then, we define the rational loss associated to U for all y, y′ ∈ ∆∗

by `(y, y′) = U(y, y′).

0 1

a:a/1

b:b/1
2

a:a/1

b:b/1
3/1

a:a/1

b:b/1

0 1
a:a/1

2
b:b/1

3/1
a:a/1

Figure 3: Illustration of the
WFA Y for ∆ = {a, b} and l = 3,
and the WFA Yi, where yi =

aba.

Let Y denote a WFA over the (+,×) semiring accepting the set of
all sequences of length l with weight one and let Yi denote the WFA
accepting only yi with weight one. Then, by definition, the weighted
transducer Y○U○Yi obtained by composition maps each sequence y
in ∆l to yi with weight U(y, yi). The WFA Π1(Y ○U ○Yi) derived
from that transducer by projection on the input (that is by removing
output labels) is associating to each sequence y weight U(y, yi).
We use weighted determinization [Mohri, 1997] to compute an
equivalent deterministic WFA denote M. As shown by Cortes et al.
[2015][Theorem 3], M can be computed in polynomial time. M
admits a unique path labeled with any sequence y ∈ ∆l and the weight of that path is U(y, yi). The
weight of that accepting path is obtained by multiplying the weights of its transitions and that of the
final state.

(ε, 0)

(a, 1)
a:a/1

(b, 1)

b:b/1

(a, 2)

a:a/1 (b, 2)

b:b/1

a:a/1

b:b/1

Figure 4: Illustration of the
WFA N for ∆ = {a, b}, p = 2
and l = 2.

We now define a deterministic p-gram WFA N that accepts all
sequences y ∈ ∆l with each of its states (z′, s) encoding a (p − 1)-
gram z′ read to reach it and the position s in the sequence y at
which it is reached. The transitions of N are therefore defined as
follows with weight one:

EN = {((ys−1
s−p+1, s − 1), a,1, (ys−1

s−p+2a, s))∶ y ∈ ∆l, a ∈ ∆, s ∈ [l]}.

The initial state is (ε,0) and the final states are those with the second
element of the pair (the position) being l. Note that, by construction,
N is deterministic. Then, the composition (or intersection) WFA
N ○M still associates the same weight as M to each input string
y ∈ ∆l. However, the states in that composition help us compute
L(z, s). In particular, for any z ∈ ∆p and s ∈ [l], let E(z, s) be
the set of transitions of N ○M constructed by pairing the transition
((zp−1

1 , s − 1), zp, ω(z, s), (z
p
2, s)) in N with a transition (qM, zp, ω, q

′
M) in M. They admit the

following form:

E(z, s) ={((qN, qM), zp, ω, (q
′
N, q

′
M)) ∈ EN○M∶ qN = (zp−1

1 , s − 1)}. (35)

The WFA N ○M is deterministic as a composition of two deterministic WFAs. Thus, there is a
unique path labeled with a sequence y ∈ ∆l in N ○M and y admits the substring z ending at position
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s iff that path goes through a transition in E(z, s) when reaching position s. Therefore, to compute
L(z, s), it suffices for us to compute the sum of the weights of all paths in N ○M going through a
transition in E(z, s). This can be done straightforwardly using the forward-backward algorithm or
two single-source shortest-distance algorithm over the (+,×) semiring [Mohri, 2002a], one from
the initial state, the other one from the final states. Since N ○M is acyclic and admits O(l∣∆∣p)

transitions, we can compute all the quantities L(z, s), s ∈ [l] and z ∈ ∆p, in time O(l∣∆∣p).

Markovian loss. We consider adopting a Markovian assumption, which is commonly adopted in
natural language processing [Manning and Schütze, 1999]. We will assume that ` can be decomposed
as follows for all y, y′ ∈ ∆l: `(y, y′) =∏lt=1 `t(y

t
t−p+1, y

′). Thus, we can write:

L(z, s) = ∑
y∶yss−p+1=z

l

∏
t=1

`t(y
t
t−p+1, yi).

To efficiently compute L(z, s), we will use a WFA representation similar to the one used by Cortes
et al. [2016, 2018] and, for convenience, will adopt a similar notation. L(z, s) coincides with a flow
computation in a WFA A that we now define. A has the following set of states:

QA = {(ytt−p+1, t)∶ y ∈ ∆l, t = 0, . . . , l},

with IA = (ε,0) its single initial state, FA = {(yll−p+1, l)∶ y ∈ ∆l} its set of final states, and a transition
from state (yt−1

t−p+1, t−1) to state (yt−1
t−p+2 b, t) with label b and weight ω(yt−1

t−p+1 b, t) = `t(y
t−1
t−p+1b, yi),

that is the following set of transitions:

EA = {((yt−1
t−p+1, t − 1), b, ω(yt−1

t−p+1 b, t), (y
t−1
t−p+2 b, t))∶ y ∈ ∆l, b ∈ ∆, t ∈ [l]}.

By construction, A is deterministic. The weight of a path in A is obtained by multiplying the weights
of its constituent transitions. In view of that, L(z, s) can be seen as the sum of the weights of all
paths in A going through the transition from state (zp−1

1 , s − 1) to (zp2, s) with label zp.

For any state (ytt−p+1, t) ∈ QA, we denote by α((ytt−p+1, t)) the sum of the weights of all paths in A

from the initial state IA to (ytt−p+1, t) and by β((ytt−p+1, t)) the sum of the weights of all paths from
(ytt−p+1, t) to a final state. Then, L(z, s) is given by

L(z, s) = α((zp−1
1 , s − 1)) × ω(z, s) × β((zp2, s)).

Since A is acyclic, α and β can be computed for all states in linear time in the size of A using a
single-source shortest-distance algorithm over the (+,×) semiring or the so-called forward-backward
algorithm. Thus, since A admits O(l∣∆∣p) transitions, we can also compute all quantities L(z, s),
s ∈ [l] and z ∈ ∆p, in time O(lrp).

G.2 Efficient gradient computation for Lcomp
exp

In this section, we provide a brief overview of the gradient computation for Lcomp
exp , which is similar

to the approach used for Lcomp
log .

Note that the loss Lcomp
exp on a given point (xi, yi) can be expressed as follows:

Lcomp
exp = ∑

y′∈∆l

`(y′, yi) ∑
y′′≠y′

eh(xi,y
′′)−h(xi,y′)

= ∑
y′∈∆l

`(y′, yi) ∑
y′′∈∆l

eh(xi,y
′′)−h(xi,y′) − ∑

y′∈∆l

`(y′, yi)

=

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′′∈∆l

eh(xi,y
′′)
⎤
⎥
⎥
⎥
⎥
⎦

∑
y′∈∆l

`(y′, yi)e
−h(xi,y′) − ∑

y′∈∆l

`(y′, yi)

=

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′′∈∆l

ew⋅Ψ(xi,y′′)
⎤
⎥
⎥
⎥
⎥
⎦

∑
y′∈∆l

`(y′, yi)e
−w⋅Ψ(xi,y′) − ∑

y′∈∆l

`(y′, yi).
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The gradient of Lcomp
exp is therefore given by

∇Lcomp
exp (w) =

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′′∈∆l

ew⋅Ψ(xi,y′′)Ψ(xi, y
′′
)

⎤
⎥
⎥
⎥
⎥
⎦

∑
y′∈∆l

`(y′, yi)e
−w⋅Ψ(xi,y′)

−

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′′∈∆l

ew⋅Ψ(xi,y′′)
⎤
⎥
⎥
⎥
⎥
⎦

∑
y′∈∆l

`(y′, yi)e
−w⋅Ψ(xi,y′)Ψ(xi, y

′
).

(36)

An efficient computation of these terms is not straightforward since the summations run over an
exponential number of sequences for y. However, we will leverage the Markovian property of the
features to design an efficient computation. This approach is similar to what we demonstrated earlier
for Lcomp

log . We start with identifying the most computationally challenging terms by rewriting the
expression of the gradient of Lcomp

exp in the following lemma.

Lemma 19. For any w ∈ Rd, the gradient of Lcomp
exp can be expressed as follows:

∇Lcomp
exp (w) =

l

∑
s=1
∑

z∈∆p

[NwQ′
w(z, s) −ZwCw(z, s)]ψ̃(xi,z, s),

where Q′
w(z, s) = ∑y∶yss−p+1=z e

w⋅Ψ(xi,y), Cw(z, s) = ∑y∶yss−p+1=z `(y, yi)e
−w⋅Ψ(xi,y) and Nw =

∑y∈∆l `(y, yi)e
−w⋅Ψ(xi,y).

Proof. Using the decomposition of the feature vector, we can write:

∑
y∈∆l

ew⋅Ψ(xi,y)Ψ(xi, y) = ∑
y∈∆l

ew⋅Ψ(xi,y)
l

∑
s=1

ψ̃(xi, y
s
s−p+1, s)

=
l

∑
s=1
∑

z∈∆p

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∶yss−p+1=z

ew⋅Ψ(xi,y)
⎤
⎥
⎥
⎥
⎥
⎦

ψ̃(xi,z, s)

∑
y∈∆l

`(y, yi)e
−w⋅Ψ(xi,y)Ψ(xi, y) = ∑

y∈∆l

`(y, yi)e
−w⋅Ψ(xi,y)

l

∑
s=1

ψ̃(xi, y
s
s−p+1, s)

=
l

∑
s=1
∑

z∈∆p

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∶yss−p+1=z

`(y, yi)e
−w⋅Ψ(xi,y)

⎤
⎥
⎥
⎥
⎥
⎦

ψ̃(xi,z, s).

This completes the proof.

It was shown by Cortes et al. [2016, 2018] that all of the quantities Q′
w(z, s) for z ∈ ∆p and s ∈ [l]

and Zw can be computed efficiently in time O(lrp), where r = ∣∆∣. Thus, the remaining bottleneck
in the gradient computation suggested by Lemma 19 is the evaluation of the quantities Cw(z, s) for
z ∈ ∆p and s ∈ [l] and Nw. As with the loss function Lcomp

log discussed in the previous section, we
will analyze the computation of these quantities first in the case of rational losses, next in that of
Markovian loss.

Rational losses. We will adopt the same notation as in the case of the Lcomp
log loss with the same

definition of a rational loss: ` is a rational loss if there exists a WFST over the (+,×) semiring
over the reals with ∆ as both the input and output alphabet such that for all y, y′ ∈ ∆∗, we have
`(y, y′) = U(y, y′).

Our algorithm is also somewhat similar to the one described for the Lcomp
log loss or that of Cortes et al.

[2018] for the computation of the gradient of the VCRF loss function. There are, however, several
differences here too because the quantities computed and thus the automata operations required are
distinct.

Exactly as in the case of Lcomp
log loss, we first define a deterministic WFA M over the (+,×) semiring

that can be computed in polynomial time and that admits a unique path labeled with any sequence
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y ∈ ∆l, whose weight is U(y, yi). Next, as in [Cortes et al., 2018], we define a deterministic WFA A
such that

A(y) = e−w⋅Ψ(xi,y) =
l

∏
s=1

e−w⋅ψ̃(xi,yss−p+1,s).

The set of states QA of A are defined as QA = {(yss−p+1, s)∶ y ∈ ∆l, s = 0, . . . , l}, with IA = (ε,0) its

single initial state, FA = {(yll−p+1, l)∶ y ∈ ∆l} its set of final states, and with a transition from state
(ys−1
s−p+1, s − 1) to state (ys−1

s−p+2 a, s) with label a and weight, that is, the following set of transitions:

EA = {((ys−1
s−p+1, s − 1), a, e−w⋅ψ̃(xi,ys−1

s−p+1a,s), (ys−1
s−p+2 a, s))∶ y ∈ ∆l, a ∈ ∆, s ∈ [l]}.

Then, by definition of composition or intersection [Mohri, 2009], the WFA (M ○A) is deterministic
and admits a unique path labeled with any given y ∈ ∆l whose weight is (M○A)(y) =M(y) ⋅A(y) =

`(y, yi)e
−w⋅Ψ(xi,y).

(ε, 0)

(a, 1)a:a/exp(-w·ψ(x,εa,1))

(b, 1)

b:b/exp(-w·ψ(x,εb,1))

(a, 2)a:a/exp(-w·ψ(x,aa,2))

(b, 2)

b:b/exp(-w·ψ(x,ab,2))

a:a/exp(-w·ψ(x,ba,2))

b:b/exp(-w·ψ(x,bb,2))

Figure 5: Illustration of the WFA A for ∆ =

{a, b}, p = 2 and l = 2.

Now, Nw coincides with the sum of the weights of all
accepted paths in this WFA. Thus, since (M ○A) is
acyclic, it can be computed in time linear in the size
of (M ○A), that is its number of transitions. For any
s ∈ [l] and z ∈ ∆p, Cw(z, s) is the sum of the weights
of all paths in (M ○ A) labeled with a sequence y
admitting z as a substring ending at position s. The
states in the composition (M ○ A) help us compute
Cw(z, s). As in the case of the Lcomp

log loss, for any z ∈ ∆p and s ∈ [l], we define E(z, s) as the set of
transitions of (M ○A) constructed by pairing a transition (qM, zp, ωM, q

′
M) in M with the transition

((zp−1
1 , s − 1), zp, ω(z, s), (z

p
2, s)) in A. They admit the following form:

E(z, s) ={((qM, qA), zp, ωM ⋅ ω(z, s), (q′M, q
′
A)) ∈ EM○A∶ qA = (zp−1

1 , s − 1)}. (37)

The WFA (M ○A) is deterministic as a composition of two deterministic WFAs. Thus, there is a
unique path labeled with a sequence y ∈ ∆l in (M○A) and y admits the substring z ending at position
s iff that path goes through a transition in E(z, s) when reaching position s. Therefore, to compute
Cw(z, s), it suffices for us to compute the sum of the weights of all paths in Cw(z, s) going through
a transition in E(z, s). This can be done straightforwardly using the forward-backward algorithm
or two single-source shortest-distance algorithm over the (+,×) semiring [Mohri, 2002a], one from
the initial state, the other one from the final states. Since (M ○A) is acyclic and admits O(l∣∆∣p)

transitions, we can compute all the quantities Cw(z, s), s ∈ [l] and z ∈ ∆p, in time O(l∣∆∣p).

Markovian loss. Here, we adopt the Markovian assumption and assume that ` can be decomposed as
follows for all y, y′ ∈ ∆l: `(y, y′) =∏lt=1 `t(y

t
t−p+1, y

′). Thus, the quantity Cw(z, s) can be written
as:

Cw(z, s) = ∑
y∶yss−p+1=z

l

∏
t=1

`t(y
t
t−p+1, yi)e

−w⋅∑lk=1 ψ̃(xi,ykk−p+1,k)

= ∑
y∶yss−p+1=z

l

∏
t=1

`t(y
t
t−p+1, yi)

l

∏
k=1

e−w⋅ψ̃(xi,ykk−p+1,k)

= ∑
y∶yss−p+1=z

l

∏
t=1

`t(y
t
t−p+1, yi)e

−w⋅ψ̃(xi,ytt−p+1,t).

Then, we can proceed as in the Markovian loss case for the loss function Lcomp
log except that

instead of the WFA A used there, we define here a similar WFA A′. The only difference is
that the weight ω(yt−1

t−p+1 b, t) = `t(y
t−1
t−p+1b, yi) for the WFA A is replaced with ω′(yt−1

t−p+1 b, t) =

`t(y
t−1
t−p+1b, yi)e

−w⋅ψ̃(xi,yt−1
t−p+1b,t). With the same argument, we can compute all quantities Cw(z, s),

s ∈ [l] and z ∈ ∆p, in time O(lrp). The quantity Nw can also be efficiently computed in time O(lrp)
since it is the sum of the weights of all paths in A′.

34



G.3 Efficient Inference

We focused on the problem of efficient computation of the gradient. Inference is also a key problem in
structured prediction since the label with a highest score must be determined out of an exponentially
large set of possible ones. However, for the linear hypotheses considered in the previous sections,
this problem can be efficiently tackled since it can be cast as a shortest-distance problem in a directed
acyclic graph, as in [Cortes, Kuznetsov, Mohri, and Yang, 2016].

More generally, an efficient gradient computation, efficient inference and other related algorithms can
benefit from standard weighted automata and transducer optimization algorithms such as ε-removal
[Mohri, 2000, 2002b] and determinization [Mohri, 1997, Mohri and Riley, 1997, Allauzen and Mohri,
2003, 2004] (see also the survey chapter [Mohri, 2009]).
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