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Abstract

Neural networks trained with ERM (empirical
risk minimization) sometimes learn unintended
decision rules, in particular when their training
data is biased, i.e., when training labels are cor-
related with undesirable features. Techniques
have been proposed to prevent a network from
learning such features, using the heuristic that
spurious correlations are “simple” and learned
preferentially during training by SGD. Recent
methods resample or augment training data such
that examples displaying spurious correlations
(a.k.a. bias-aligned examples) become a minor-
ity, whereas the other, bias-conflicting examples
become prevalent. These approaches are difficult
to train and scale to real-world data, e.g., because
they rely on disentangled representations. We
propose an alternative based on mixup that aug-
ments the bias-conflicting training data with con-
vex combinations of existing examples and their
labels. Our method, named SelecMix, applies
mixup to selected pairs of examples, which show
either (i) the same label but dissimilar biased fea-
tures, or (ii) a different label but similar biased
features. To compare examples with respect to
the biased features, we use an auxiliary model
relying on the heuristic that biased features are
learned preferentially during training by SGD. On
semi-synthetic benchmarks where this heuristic is
valid, we obtain results superior to existing meth-
ods, in particular in the presence of label noise
that makes the identification of bias-conflicting
examples challenging.
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1. Introduction
The inductive biases contributing to the success of deep
neural networks (DNNs) can sometimes limit their capabil-
ities for out-of-distribution (OOD) generalization. DNNs
are prone to learn preferentially simple, linear predictive
correlations from their training data, sometimes ignoring
more complex but important patterns (Shah et al., 2020).
It has been suggested that simple correlations in the data
are often spurious (Dagaev et al., 2021). Consequently, a
DNN relying on these spurious correlations will display
poor OOD generalization. Spurious correlations in a dataset
are often the result of a selection bias, and such datasets are
therefore said to be biased.

Biased datasets typically contain a majority of so-called
bias-aligned examples and a minority of bias-conflicting
ones. In bias-aligned examples, ground truth labels are
correlated with both robust and biased features.1 In bias-
conflicting examples, labels are correlated only with robust
features. Clearly, the issues of models trained on biased
datasets stem from the prevalence of bias-aligned examples.
Various approaches for debiased learning have been pro-
posed. They encourage models trained on biased datasets
to ignore biased features. However, the identification of
biased features from i.i.d. data is ill-defined, and requires
additional assumptions or supervision with heterogeneous
(non-i.i.d.) training examples (Schölkopf et al., 2021).

In this work, we approach debiased learning with the popu-
lar heuristic that biased features are “easier to learn” than
robust ones, meaning that they are incorporated in the model
earlier during training by SGD (Shah et al., 2020). The intu-
ition is that spurious correlations often result from selection
biases that induce linear relationships between biased fea-
tures and the target variable. In comparison, the target task
is assumed to be a more complex, non-linear function of
the inputs (Dagaev et al., 2021). In addition, DNNs were
shown to preferentially learn linear predictive patterns (Shah
et al., 2020). See Zhang et al. (2022) for a discussion of the

1A feature is biased if it displays a pattern that is statistically
predictive of the labels over the dataset, though not necessarily on
every example. For instance, a green background may be present
in most (but not all) images of cows. These images are said to be
bias-aligned.
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disputed relevance of this heuristic to real-world data.

Existing works that use this heuristic typically train two
separate models: (i) an auxiliary model that purposefully
relies on biased features, and (ii) the desired debiased model.
The auxiliary model serves to guide the training of the de-
biased one. Nam et al. (2020) train the auxiliary model
with the generalized cross-entropy (GCE) loss (Zhang &
Sabuncu, 2018) that strengthens its reliance on biased, easy-
to-learn features. The simultaneous/subsequent training of
the debiased model either augments the data with novel
bias-conflicting examples (Kim et al., 2021; Lee et al.,
2021) or upweights/oversamples existing ones (Nam et al.,
2020). Augmentation can be more effective than upweight-
ing/oversampling but it requires careful tuning and/or disen-
tangled representations that makes the application to real-
world data difficult.

We propose a simple and effective method based on
the mixup (Zhang et al., 2018) that generates new bias-
conflicting examples. Mixup is a general data augmentation
that creates convex combinations of randomly-chosen pairs
of examples and their labels. A naive application of mixup
to a biased dataset is likely to combine bias-aligned exam-
ples – the majority of the data – and therefore aggravate
bias issues. Instead, we propose SelecMix, an application of
mixup to selected contradicting pairs of examples. We de-
fine contradicting pairs as having either (i) the same ground
truth label but dissimilar biased features, or (ii) different la-
bels but similar biased features. To compare examples with
respect to their biased features, we use an auxiliary model.
We train this model to implicitly identify the biased features
with the heuristic that they are “easier to learn” than robust
ones. We train this auxiliary model with a novel generalized
supervised contrastive (GSC) loss which is the modification
of supervised contrastive (SC) loss (Khosla et al., 2020). It
serves to amplify the reliance on easy-to-learn features.

We evaluate our method on standard debiasing benchmarks.
SelecMix consistently outperforms prior methods, in partic-
ular in the presence of label noise. Label noise is particularly
challenging because it increases the difficulty of identifying
bias-conflicting examples. We demonstrate this capabil-
ity on novel versions of standard benchmarks modified to
include label noise.

2. Related work
Debiasing with known forms of bias or bias labels.
Early works on debiasing assume some knowledge about the
bias. Some methods require labels for the bias features with
every training example (Hong & Yang, 2021; Tartaglione
et al., 2021; Kim et al., 2019; Sagawa et al., 2019; Li &
Vasconcelos, 2019). Other methods use knowledge of the
general form of the bias, such as color or texture in images.

This information is typically used to design custom architec-
tures (Wang et al., 2018; Bahng et al., 2020; Cadene et al.,
2019). For example, ReBias (Bahng et al., 2020) uses a
BagNet architecture (Brendel & Bethge, 2018) as an aux-
iliary model because it focuses mainly on texture, which
is assumed to be the biased feature. The auxiliary model
then guides the training of a debiased model that is robust
to unusual variations in texture.

Debiasing with the easy-to-learn heuristic. A number of
recent works assume that biased features are learned more
quickly than robust ones (Lee et al., 2021; Nam et al., 2020).
A popular approach is to train an auxiliary model that inten-
tionally relies primarily on biased features, e.g., through
a noise-robust loss function (Zhang & Sabuncu, 2018).
The auxiliary model then guides the training of a debiased
model that focuses on other, presumably non-biased features.
For example, “Learning from Failure” (LfF) (Nam et al.,
2020) learns biased and debiased models simultaneously.
Bias-conflicting training examples are then upweighted us-
ing the relative losses from the biased and debiased mod-
els. Building on LfF, “Disentangled Feature Augmentation”
(DFA) (Lee et al., 2021) argues for the importance of di-
versifying bias-conflicting examples. The method uses data
augmentation. It assumes that biases and robust features
can be disentangled and swaps them randomly to generate
new bias-conflicting training examples. The disentangle-
ment required by augmentation methods (Kim et al., 2021;
Lee et al., 2021) is however a challenge with real-world
data and it is often an ill-posed problem in itself (Locatello
et al., 2019). Our method also augments the data by mix-
ing existing examples but it does not relies on disentangled
representations.

3. Method
We first briefly describe the possible use of mixup as a
debiasing strategy, assuming that the biased features are pre-
cisely identified and that each training example is provided
with a bias label that indicates a precise value for its biased
features. Next, we move to a more realistic scenario where
such labels are unavailable. We then implicitly infer bias
labels with an auxiliary model that compares examples with
respect to biased features that are assumed to be “easier to
learn” than robust ones.

3.1. Mixup for augmenting bias-conflicting examples

We call bias-aligned examples the data exhibiting spurious
correlations between labels and some biased features. We
call bias-conflicting examples the remaining part of the data,
which does not contain such spurious correlations. Training
a model on bias-conflicting examples alone would avoid the
bias issues, but these only constitute a small fraction of the
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Figure 1. Preliminary experiment on Corrupted CIFAR-10: we
train our auxiliary model and examine the similarity of posi-
tive, negative, and contradicting pairs during training with the
SC loss (left) and GSC (right). The solid line shows the average
cosine similarity of (i) pairs with the same label (positives) and
(ii) pairs with different labels (negatives). The dotted line repre-
sents (iii) pairs with the same label but different biased features
(contradicting positives), and (iv) pairs with different labels but
similar biased features (contradicting negatives). Observations: as
training proceeds with the SC loss, the similarity of contradicting
positives increases while it decreases for contradicting negatives.
In contrast, the proposed GSC loss amplifies the reliance on biased
features. Therefore, the clustering in embedding space remains a
good indicator of the similarity of biased features during the whole
training process.

training data in the problematic cases that we consider. Our
general idea is to use mixup (Zhang et al., 2018) to augment
the pool of bias-conflicting examples. Standard mixup is a
popular augmentation technique known to improve various
measures of robustness and generalization (Zhang et al.,
2018; 2020). It builds convex combinations of pairs of
examples and their labels. A generated example is given as:

(
x̄, ȳ

)
←

(
λx1 + (1−λ)x2, λy1 + (1−λ)y2

)
(1)

where (x1, y1) and (x2, y2) are two original training exam-
ples (e.g. image and one-hot label vector) and λ is a random
mixing coefficient, λ ∼ U [0, 1]. Our goal is to augment the
fraction of bias-conflicting examples in the training data and
thereby reduce the reliance of the model on biased features.
Assuming for now that bias labels are available, we can
generate bias-conflicting examples by applying mixup on
the pairs having either (i) the same ground truth label but
different bias labels or (ii) different labels but the same bias
label. Any such pair includes at least one bias-conflicting
example, such that mixup will generate additional ones as
long as this original example is assigned a higher mixing
weight in Eq.1.

3.2. Replacing bias labels with an auxiliary model

Bias labels are usually not available. We now show how
to train an auxiliary model to compare training examples
with respect to their biased features, without explicitly iden-
tifying these features. We make the assumption that biased

features are easier to learn than robust ones, because they
are involved in simpler (e.g., linear) predictive patterns. Our
auxiliary model is trained to rely primarily on biased fea-
tures.

We train the auxiliary model with a contrastive objec-
tive (He et al., 2020; Chen et al., 2020; Khosla et al.,
2020) because it is known to induce a clustering in em-
bedding space (better than standard cross-entropy) that
reflects the similarity of training examples in terms of
learned features. These are biased features by our as-
sumption, such that the clustering reflects the similar-
ity of examples w.r.t. their (unknown) bias labels. We
use the supervised contrastive (SC) loss of Khosla et al.
(2020): LSC = −

∑
i∈B (1/|Pi|)

∑
k∈Pi

log pi,k where

pi,k =
exp(zi·zk/τ)∑

j∈B\{i} exp(zi·zj/τ)
, zi is the normalized embed-

ding of image xi, B = {1, 2, ..., B} is the set of indices
in the current mini-batch, Pi = {k ∈ B\{i} | yi = yk}
is the set of positive examples relative to the example i
(i.e., with the same label), and the scalar τ is a temperature
hyperparameter.

As an experiment to confirm that the clustering of training
examples in embedding space is based on biased features,
we train the auxiliary model on all available (biased) data
from the Corrupted CIFAR-10 dataset with the SC loss and
compute the cosine similarity (zi · zj) of the embeddings
of all pairs of examples. Fig. 1 confirms that the data is
clustered according to biased features early in the training.
In other words, predictive rules involving biased features
are learned faster than those involving robust features, as
desired. Since the higher cosine similarity zi · zj implies a
high probability pi,j , we interpret it as the likelihood of the
pair (i, j) having similar biased features.

To further amplify the reliance of the auxiliary model on
biased features, we define the generalized SC (GSC) loss as
follows:

LGSC = −
∑
i∈B

1

|Pi|
∑
k∈Pi

p̂qi,k log pi,k, (2)

where p̂qi,k is a scalar having the same value as pqi,k, meaning
that the gradient is not back-propagated through it. The
term p̂qi,k assigns higher weight to sample pairs with a high
probability pi,k and thus amplifies the reliance on biased
features. We further compare the GCE and GSC losses in
Appendix A.2.

3.3. Training a debiased model

Equipped with our auxiliary model to quantifying the simi-
larity of training examples in terms of biased features, we
can now apply the mixup on pairs having either (i) the same
label but dissimilar biased features (contradicting positives)
or (ii) different labels but similar biased features (contra-
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Table 1. Main results. For Colored MNIST and Corrupted CIFAR10, the numbers denote the unbiased test accuracy. For BFFHQ, the
numbers denote the accuracy on the test set of bias-conflicting examples. (*): Methods tailored to hard-coded forms of biases (e.g. image
texture). (◦): Methods using explicit bias labels. (†): Methods using the “easy-to-learn” heuristic. Numbers for HEX come from Lee et al.
(2021).

Dataset Ratio (%) Baseline HEX * ReBias * EnD ◦ LfF † DFA † Baseline + Ours † LfF + Ours †

Colored
MNIST

0.5 35.71±0.83 30.33±0.76 71.42±1.41 56.98±4.85 63.86±2.81 67.37±1.61 70.47±1.66 70.00±0.52

1.0 50.51±2.17 43.73±5.50 86.50±0.97 73.83±2.09 78.64±1.51 80.20±1.86 83.55±0.42 82.80±0.71

2.0 65.40±1.63 56.85±2.58 92.95±0.21 82.28±1.08 84.95±1.71 85.61±0.76 87.03±0.58 87.16±0.62

5.0 82.12±1.52 74.62±3.20 96.92±0.09 89.26±0.27 89.42±0.65 89.86±0.80 91.56±0.17 91.57±0.20

Corrupted
CIFAR-10

0.5 23.26±0.29 13.87±0.06 22.13±0.23 22.54±0.65 29.36±0.18 30.04±0.66 38.14±0.15 39.44±0.22

1.0 26.10±0.72 14.81±0.42 26.05±0.10 26.20±0.39 33.50±0.52 33.80±1.83 41.87±0.14 43.68±0.51

2.0 31.04±0.44 15.20±0.54 32.00±0.81 32.99±0.33 40.65±1.23 42.10±1.04 47.70±1.35 49.70±0.54

5.0 41.98±0.12 16.04±0.63 44.00±0.66 44.90±0.37 50.95±0.40 49.23±0.63 54.00±0.38 57.03±0.48

BFFHQ 0.5 56.20±0.35 52.83±0.90 56.80±1.56 56.53±0.61 65.60±1.40 61.60±1.97 71.60±1.91 70.80±2.95

dicting negatives).

Contradicting positives. For each instance (xi, yi) in the
current mini-batch (i.e., the “query”), we pick another one
with the lowest cosine similarity (measured in the space of
their embeddings produced by the auxiliary model) among
the set of positive examples (i.e., with the same label as xi):

k = argmin
j∈Pi

pi,j = argmin
j∈Pi

cos(gϕ(xi), gϕ(xj)), (3)

where Pi = {j ∈ B \ {i} | yi = yj}, B = {1, 2, ..., B}
is the set of the sample indices in the current mini-batch,
and gϕ is the part of our auxiliary model producing embed-
dings, i.e., gϕ(xi) = zi. Since we select the pair among
the set of positives, the training loss of the mixed exam-
ple is l(x̃i, ỹi) = l(λxi + (1 − λ)xk, λyi + (1 − λ)yk) =
l(λxi+(1−λ)xk, yk). Since most of the examples are bias-
aligned in the training set, the query (xi, yi) is likely to be
bias-aligned. Since xi and the selected sample xk have the
same label but dissimilar biased features, it is also likely that
the biased features of xk are not correlated with the label.
Thus, to effectively generate an example that contradicts the
prediction based on biased features, we sample λ ∼ U [0, 1]
and assign the smaller value among λ and 1− λ to xi and
the larger one to xk.

Contradicting negatives. For each query xi, we select an-
other one with the highest cosine similarity among negative
examples (i.e., with a different label) as follows:

k = argmax
j∈Ni

pi,j = argmax
j∈Ni

cos(gϕ(xi), gϕ(xj)), (4)

where Ni = {j ∈ B | yi ̸= yj}. Similarly, we sample
λ ∼ U [0, 1] and let λ← min(λ, 1− λ). In standard mixup,
the training CE loss of the mixed sample is: l(x̃i, ỹi) =
l(λxi + (1 − λ)xk, λyi + (1 − λ)yk) = λ · l(λxi + (1 −
λ)xk, yi) + (1 − λ) · l(λxi + (1 − λ)xk, yk). However,
considering the fact that (i) the query (xi, yi) is likely to be

bias-aligned, and (ii) the query xi and the selected sample
xk share similar biased features, the first term λ · l(λxi +
(1− λ)xk, yi) does not contradict the prediction based on
biased features. Thus, rather than interpolating the label, we
assign ỹi ← yk.

4. Experiments
In this section, we evaluate the proposed method on standard
datasets used in the debiasing literature. We also perform
experiments on novel versions of these datasets that include
label noise. See Appendix A.1 for experimental details.

Description of the datasets. Colored MNIST is a modi-
fied version of MNIST (LeCun & Cortes, 2010). It consists
of colored images of ten digits where each digit is correlated
with the color (e.g., most images of 1 are colored with red).
Target labels are the digit identity (i.e., 0 to 9). The color is
the biased feature. Corrupted CIFAR10 is constructed by
applying different types of corruptions to images of differ-
ent types of objects from CIFAR-10 (Krizhevsky & Hinton,
2009). For example, most images of dogs are corrupted with
a Gaussian blur. Biased FFHQ (BFFHQ) (Lee et al., 2021)
is constructed from the dataset of human faces FFHQ (Kar-
ras et al., 2019). The target label in BFFHQ is the age, and
the biased feature is the gender, which is a binary annota-
tion in the original dataset. The ratio of bias-conflicting
samples in the training set is α ∈ {0.5%, 1%, 2%, 5%} in
{Colored MNIST, Corrupted CIFAR10} and α = 0.5% in
BFFHQ. For the Colored MNIST and Corrupted CIFAR10,
the test set is unbiased, meaning that the biased features are
not correlated to the label in the test set. For the BFFHQ,
the test set consists of bias-conflicting samples, following
the previous work (Lee et al., 2021). Low accuracy on the
test set implies that the model relies on the simple biased
features and fails to learn the robust features. All datasets
are available in the official repository of DFA (Lee et al.,
2021).
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Figure 2. Unbiased accuracy under the presence of label noise. In
the training data, the ratio of bias-conflicting samples is fixed at
1% and we report results for a ratios of samples with incorrect
labels of {0.5%, 1%, 2%, 5%}. The accuracy of the proposed
method degrades less than existing methods that also rely on the
“easy-to-learn” heuristic. Note that V+mixup denotes the vanilla
mixup (Zhang et al., 2018).

Existing methods. We compare our approach to the prior
works Learning from failure (LfF) (Nam et al., 2020) and
Disentangled feature augmentation (DFA) (Lee et al., 2021).
Both also rely on the heuristic “easy-to-learn” property of
biased features. LfF trains an auxiliary model with a gener-
alized cross-entropy (GCE) loss to amplify its reliance on
biased features, then reweights examples for training a debi-
ased model. DFA disentangles biased and robust features
with a similar principle as LfF, then augments the data for
training a debiased model by swapping the biased features
across examples. We also include the Entangling and dis-
entangling (EnD) (Tartaglione et al., 2021), Rebias (Bahng
et al., 2020) and HEX (Wang et al., 2018). EnD leverages
explicit bias labels. Rebias and Hex are designed for a
specific, known form of biased features such as texture in
images.

Setup. The backbone architecture used of all methods is a
3-layer MLP for the Colored MNIST, and a ResNet18 (He
et al., 2016) for the Corrupted CIFAR10 and BFFHQ. We
set the batch size of 256 for {Colored MNIST, Corrupted
CIFAR-10} and 64 for BFFHQ. We train the models for
200 epochs for {Colored MNIST, BFFHQ} and 300 epochs
for Corrupted CIFAR-10.

4.1. Main results

We apply our method to a vanilla ResNet18 (Baseline +
Ours) as well as on top of the LfF method (LfF + Ours).
We evaluate methods on the Colored MNIST, Corrupted
CIFAR10, and BFFHQ. As shown in Table 1, our method
consistently outperforms existing ones, except ReBias on
Colored MNIST. Their bias-capturing model BagNet (Bren-
del & Bethge, 2018)) is specifically tailored to color and
texture as biased features by relying on local image patches
as input. Both DFA and our method augment the pool of

bias-conflicting training examples, but DFA’s reliance on
disentangled representations seems problematic on the more
complex datasets. Our method performs well on all datasets,
owing to the simplicity of the mixup strategy. Our method
outperforms DFA by a large margin on BFFHQ while the
gap is smaller on Colored MNIST where the disentangle-
ment is easier.

4.2. Results under the presence of label noise

Label noise can negatively affect methods relying on the
identification of bias-conflicting examples. The reason is
that training examples with noisy (i.e. incorrect) labels are
difficult to distinguish from the bias-conflicting examples
that we wish to upweight. Fig. 2 shows that our method
maintains better performance under label noise than compet-
ing ones. We hypothesize that the robustness of our method
comes from the nature of mixup, which is known to improve
robustness (Zhang et al., 2020). Note that we used the same
hyperparameters for the label noise experiments and the
main experiments.

5. Conclusions
We presented a method for debiased learning that augments
the training data using mixup on selected pairs of exam-
ples. The selection of these pairs is critical. It uses an
auxiliary model that implicity identifies biases in the data
by optimizing a loss designed to amplify reliance on biased
features. The whole approach relies on the heuristic that
spurious correlations are “easy to learn” and that biased
features are therefore incorporated earlier than others during
training by SGD. While this property is disputed (Zhang
et al., 2022), our method outperforms existing approaches
on semi-synthetic datasets designed to display this prop-
erty. Unlike existing methods, ours remains effective in the
presence of label noise.
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A. Appendix
A.1. Experimental details

Implementation details. To train the debiased model, we use the Adam optimizer with learning rates of 0.005, 0.001, and
0.0001 for the Colored MNIST, Corrupted CIFAR-10, and BFFHQ, respectively. To train the auxiliary model, we use the
Adam optimizer with learning rates of 0.01 and 0.001 for the Colored MNIST and Corrupted CIFAR-10, respectively and
standard SGD with a learning rates of 0.4 for BFFHQ. All experiments were performed with a single NVIDIA RTX 3090
GPU. Regarding the hyperparameters of our method, we fixed the temperature of the contrastive loss at τ = 0.2, and the
hyperparameter of the GCE/GSC losses q = 0.7 for all datasets. For the baselines, we follow the hyperparameters suggested
by the original (Nam et al., 2020; Lee et al., 2021), even if they used different hyperparameter configurations for the different
ratios in the same dataset. Since there is no provision for an unbiased validation set in most existing benchmarks, we follow
the evaluation protocol of prior works (Bahng et al., 2020; Nam et al., 2020; Kim et al., 2021; Lee et al., 2021) and report
the best test set accuracy (i.e., an “oracle” model selection).

Details of experiments with label noise (Sec. 4.2) We modified the Colored MNIST (α = 1%) and Corrupted CIFAR-10
(α = 1%) by replacing the label with a random one for a portion β ∈ {0.5%, 1%, 2%, 5%} of the training examples.

A.2. Discussion on the relationship between the GCE and GSC losses

We discuss below the differences between the generalized cross-entropy (GCE) (Zhang & Sabuncu, 2018) and GSC losses.
To begin with, we first explain how GCE loss amplifies the reliance of the auxiliary model on biased features, compared
to the standard cross-entropy (CE) loss. It is defined as LGCE(p, y) = (1 − pq

y)/q where p is the softmaxed vector of
predictions from the model and py its yth component, y is the ground truth class ID, and q ∈ (0, 1] a scalar hyperparameter.
The GCE simplifies to the CE loss as q→0. Assuming that the predictions are produced by a model of parameters θ, the
gradients of GCE and CE losses are related as follows: ∂

∂θLGCEθ
(p, y) = pq

y .
∂
∂θLCEθ

(p, y). Here, the term pq
y assigns the

higher weight to the samples with a high probability py, thus upweights the ”easy” samples and amplifies the reliance on
biased features. While the model trained with CE also focuses on biased features since they are learned first, the GCE was
shown to be more effective in identifying bias-conflicting examples by Nam et al. (2020).

Similar to the GCE/CE, our GSC loss improves over the SC loss in encouraging the model to rely primarily on biased
features. The term p̂qi,k in Eq. (2) plays the same role as the term pq

y in the GCE.


