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ABSTRACT

Deep neural networks (DNNs) have advanced predictive modeling for regulatory
genomics, but challenges remain in ensuring the reliability of their predictions and
understanding the key factors behind their decision making. Here, we introduce
DEGU (Distilling Ensembles for Genomic Uncertainty-aware models), a method
that integrates ensemble learning and knowledge distillation to improve the ro-
bustness and explainability of DNN predictions. DEGU distills the predictions of
an ensemble of DNNs into a single model, capturing both the average of the en-
semble’s predictions and the variability across them, with the latter representing
epistemic (or model-based) uncertainty. DEGU also includes an optional auxil-
iary task to estimate aleatoric, or data-based, uncertainty by modeling variability
across experimental replicates. By applying DEGU across various functional ge-
nomic prediction tasks, we demonstrate that DEGU-trained models inherit the per-
formance benefits of ensembles in a single model, with improved generalization to
out-of-distribution sequences and more consistent explanations of cis-regulatory
mechanisms through attribution analysis. Moreover, DEGU-trained models pro-
vide calibrated uncertainty estimates, with conformal prediction offering coverage
guarantees under minimal assumptions. Overall, DEGU paves the way for robust
and trustworthy applications of deep learning in genomics research.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated strong performance in predicting the results of
functional genomic experiments directly from DNA sequences (Avsec et al., 2021a; Chen et al.,
2022; Dudnyk et al., 2024). By approximating experimental assays, these DNNs enable virtual
experiments that explore the functional effects of genomic sequence perturbations. In these appli-
cations, high-performing DNNs serve as black-box in silico oracles or scoring functions, mapping
DNA sequence inputs to a target molecular phenotype such as gene expression or chromatin acces-
sibility. These models have the potential to improve hypothesis generation and guide more optimal
experimental design, setting the stage for efficient AI-guided biological discovery.

However, these downstream applications assume that DNNs maintain their predictive performance
even when the statistical properties of the input data differ from those seen during training, a phe-
nomenon known as a covariate shift (Shimodaira, 2000). Model generalization, or the ability of
models to make accurate predictions on these previously unseen out-of-distribution data points, is
often assessed using held-out sequences from the same experiment that generated the training data.
Although these held-out sequences come from different genomic regions, they are typically simi-
lar in genomic composition to the training data due to evolutionary constraints. Consequently, a
model’s performance on these in-distribution sequences may not accurately reflect their true gen-
eralizability. In fact, recent studies examining state-of-the-art genomic DNNs, such as Enformer
(Avsec et al., 2021a), have shown that while these models generalize well to single nucleotide vari-
ant effects within cis-regulatory elements (Karollus et al., 2023; Seitz et al., 2024), they struggle to
predict the effects of population-level genetic variations that involve only a few, sparse mutations
(Sasse et al., 2023; Huang et al., 2023). This raises an important question: which predictions can we
trust? Our inability to quantitatively assess the confidence of genomic DNN predictions undermines
their reliability in downstream applications. Thus, addressing and quantifying uncertainty remains
a key challenge for the field.
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One approach to quantifying uncertainty involves training deep ensembles, or ensembles of DNNs
wherein each model typically shares the same architecture but differs in their randomly initialized
parameters. This variation means that the variability across their predictions can serve as an empir-
ical measure of epistemic uncertainty, or model uncertainty due to limited data (Dietterich, 2000;
Lakshminarayanan et al., 2017). For example, a recent study leveraged deep ensembles of ge-
nomic DNNs to investigate relationships between small sequence perturbations (e.g., expression
quantitative-trait loci) and uncertainty in predictions (Bajwa et al., 2024). These deep ensembles
(Lakshminarayanan et al., 2017) also improve predictive performance by averaging the predictions
across the constituent models in the ensemble, with each model capturing a different aspect of the
data. Averaging reduces individual model errors and balances biases, leading to more accurate and
robust predictions than any single model alone. Ensembling has indeed proven to be an effective
strategy to improve predictive performance for genomic DNNs (Malina et al., 2022; Agarwal et al.,
2023; Linder et al., 2023b; He & Danko, 2024). Deep ensembles also provide more reliable post hoc
explanations when averaging the attribution maps from each model in the ensemble. These attribu-
tion maps assign importance scores to nucleotides in a given sequence, revealing sequence motifs
that are functionally relevant for the model’s predictions (Gyawali et al., 2022; Majdandzic et al.,
2023; Seitz et al., 2024; Novakovsky et al., 2023).

Despite these advantages, deep ensembles face several challenges that limit their practicality. One
major issue is the increased computational overhead required to train and deploy multiple models,
making large-scale inference tasks such as genome-wide variant effect predictions or extensive in
silico experiments computationally expensive. The need to manage and maintain multiple models
also adds substantial complexity to implementation, creating scalability challenges, especially as
model architectures continue to trend towards greater size and complexity (Avsec et al., 2021a;
Linder et al., 2023b; Zhou, 2022; Karbalayghareh et al., 2022; Hingerl et al., 2024; Lal et al., 2024).
Furthermore, while deep ensembles capture epistemic uncertainty, they fail to account for aleatoric
uncertainty (Hüllermeier & Waegeman, 2021; Der Kiureghian & Ditlevsen, 2009), the irreducible
noise that stems from the technical and biological variability inherent in sequencing data.

To address these limitations, we introduce DEGU (Distilling Ensembles for Genomic Uncertainty-
aware models), a method that combines ensemble learning and knowledge distillation (Hinton et al.,
2015) to improve the robustness and explainability of DNN predictions. DEGU leverages ensem-
ble distribution distillation (Malinin et al., 2019), a variant of knowledge distillation that focuses
on learning the distribution of predictions from the ensemble rather than individual point estimates.
This is accomplished by training a single student model in a multitask fashion to perform two pri-
mary tasks: 1) predict the mean of the ensemble’s predictions, and 2) estimate the corresponding
epistemic uncertainty based on the variability across the ensemble’s predictions. DEGU can also
incorporate an optional auxiliary prediction task for aleatoric uncertainty, estimated from the vari-
ability observed across experimental replicates.

By applying DEGU to different DNNs across various functional genomics prediction tasks, we
found that distilled models exhibit improved generalization and enhanced robustness in their attribu-
tion maps compared to standard training methods. Furthermore, DEGU-distilled models accurately
predict epistemic uncertainty. Together, DEGU provides the efficiency of a single model during in-
ference while preserving the performance and robustness of deep ensembles, with the added benefit
of generating calibrated uncertainty estimates.
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Figure 1: Schematic of ensemble distribution distillation with DEGU.
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2 RESULTS

2.1 DEGU: DISTILLING THE KNOWLEDGE OF ENSEMBLES INTO A SINGLE MODEL

DEGU employs ensemble distribution distillation (Malinin et al., 2019) to transfer the collective
knowledge from an ensemble of models, which we refer to as teacher models, to a single student
model (Fig. 1). The process begins with the creation of a teacher ensemble composed of multiple
DNNs trained independently with different random initializations. Through knowledge distillation,
the student model learns the distribution of predictions from the teacher ensemble by performing
multiple tasks concurrently: 1) predicting the mean of the ensemble’s predictions and 2) predicting
the variability across the ensemble’s predictions. This assumes that the predictions across the teacher
ensemble follow a normal distribution, where the mean is used to distill an ensemble’s predictions
and the standard deviation reflects epistemic uncertainty. When at least three experimental repli-
cates are available, the student model can optionally be trained to predict the aleatoric uncertainty
(Kendall & Gal, 2017) as well, which is approximated by the variability observed across replicates
in the training data. Our multitask learning approach ensures that DEGU captures the distribution
of the predictions of the ensemble along with variability inherent in the data. Altogether, DEGU
retain the performance and robustness advantages of deep ensembles while significantly reducing
computational overhead during downstream inference tasks.

2.2 DEGU APPROXIMATES THE PREDICTIVE PERFORMANCE OF DEEP ENSEMBLES

We applied DEGU to various genomic sequence DNNs for diverse datasets: fly enhancer activity
(STARR-seq) for developmental (Dev) and housekeeping (Hk) promoters (de Almeida et al., 2022),
human cis-regulatory sequence activity (lentiMPRA) for K562 and HepG2 cells (Agarwal et al.,
2023), and base-resolution ATAC-seq profiles from a human cell line (Buenrostro et al., 2015).
For each application, we constructed a teacher ensemble consisting of 10 models using established
architectures suited to each task: multi-task DeepSTARR (de Almeida et al., 2022) for fly enhancers,
single-task ResidualBind (Koo et al., 2021; Tang et al., 2024) for lentiMPRA (Agarwal et al., 2023),
and a standard convolutional neural network (CNN) for base-resolution ATAC-seq profiles (Toneyan
et al., 2022). Student DNNs with the same architecture as their respective teacher models were then
trained with DEGU’s ensemble distribution distillation procedure (see Appendix B).

Strikingly, the distilled student models outperformed the teacher models with standard training de-
spite sharing the same architecture, particularly in low data regimes (Fig. 2a-b, Appendix A Figs. 1
& 2a). For example, distilling DeepSTARR with only 25% of the STARR-seq training data yielded
performance comparable to standard training on the full dataset for both developmental and house-
keeping promoters (Fig. 2a-b). The benefits of DEGU were more nuanced for lentiMPRA data,
with substantial gains in K562 and more modest improvements in HepG2 (Appendix A Fig. 1). For
base-resolution ATAC-seq profiles, the performance of the distilled DNNs was comparable to that
of standard-trained DNNs (Appendix A Fig. 2a), albeit with a slight decrease in performance.

We observed additional performance gains when the performance of individual models within the
teacher ensemble were improved (Appendix A Fig. 3). In this scenario, all teacher and student
models were trained with evolution-inspired data augmentations generated with EvoAug (Lee et al.,
2023; Yu et al., 2024). This yielded performance gains across all models (Appendix A Fig. 3).
Moreover, as the number of models in the teacher ensemble increased, the ensemble’s predictive
performance improved and plateaued around n = 10 models. The performance of the distilled
models also plateaued but at smaller ensemble sizes of around n = 5 models (Appendix A Fig.
4). Notably, the performance gap between the ensemble and the distilled models widened as the
ensemble size increased beyond this range.

2.3 DEGU IMPROVES ATTRIBUTION ANALYSIS

Attribution methods assign an importance score to each nucleotide in a sequence, indicating how
much that nucleotide contributes to the model’s prediction or how sensitive the model’s output
is to changes at that nucleotide. Visualizing attribution scores as a sequence logo can reveal bi-
ologically meaningful patterns, such as transcription factor binding motifs (Avsec et al., 2021b;
de Almeida et al., 2022; Koo & Ploenzke, 2021). However, attribution methods can be sensitive to
local variations in the model’s learned function, which can arise when fitting to noise in the data.
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a b c d

Figure 2: Evaluating advantages of DEGU on DeepSTARR. (a,b) Performance of models trained
on random subsets of STARR-seq data for (a) developmental (Dev) and (b) housekeeping (Hk)
promoters. (c) Average RMSE between DeepSHAP scores for models with standard training (blue)
and DEGU distillation (orange) compared to the average scores across the teacher ensemble. RMSE
was calculated for n = 1000 high-activity test sequences. P-values indicate independent two-sided
t-tests (average RMSE) and paired two-sided t-tests (standard deviation). Box plots represent n = 10
models trained with different random initializations. (d) Scatterplots comparing standard deviation
of DeepSHAP scores across models trained with DEGU distillation and standard training (n = 10).

This variability may not affect a model’s ability to generalize to unseen data (i.e., benign overfit-
ting (Bartlett et al., 2020)), but it can lead to inconsistent explanations (Han et al., 2022; Wang
et al., 2020; Alvarez-Melis & Jaakkola, 2018), making it difficult to distinguish biologically rele-
vant patterns from spurious importance scores caused by non-biological fluctuations (Seitz et al.,
2024; Majdandzic et al., 2022). By averaging attribution maps across an ensemble of models, some
of these fluctuations may be reduced, leading to more robust explanations (Majdandzic et al., 2023;
Gyawali et al., 2022). We hypothesized that DEGU-distilled student models, which better approx-
imate the ensemble function, would produce more interpretable and robust attribution maps with
stronger motif signals compared to models with standard training.

To test this hypothesis, we generated attribution maps using DeepSHAP (Lundberg & Lee, 2017) and
Saliency Maps (Simonyan et al., 2013) for models trained with DEGU and with standard training.
A visual comparison revealed that the attribution maps from the DEGU-distilled student models
displayed more identifiable transcription factor motifs, such as GATA and AP-1, compared to models
with standard training (Appendix A Fig. 5).

Assuming that ensemble-averaged attribution maps best reflect underlying biology, we compared
the attribution maps generated by averaging across the ensemble and those from individual models
trained with either standard training or DEGU distillation (see Appendix B). We found that across
all prediction tasks evaluated, the attribution maps produced by distilled models were more closely
aligned with the ensemble-averaged attribution maps than those generated by models with standard
training (Fig. 2c, Appendix A Fig. 6, Appendix A Fig. 2b).

Additionally, attribution maps generated by different distilled student models were significantly
more consistent compared to models with standard training (Fig. 2c) across different models,
datasets, and attribution methods (Appendix A Fig. 7, Appendix A Fig. 2b). However, variabil-
ity across attribution maps from different models can stem from variability in the magnitude of the
attribution scores and/or the sequence content (i.e., distinct cis-regulatory mechanisms). To con-
trol for variability in attribution score magnitude, we normalized the attribution scores for each
sequence. We found that distilled models remained more consistent than the models with standard
training (Appendix A Fig. 7), suggesting that the distilled models offer more robust mechanistic
insights through their attribution maps.

2.4 DEGU IMPROVES GENERALIZATION UNDER COVARIATE SHIFTS

Most downstream applications of genomic DNNs require them to generalize well under covariate
shifts, especially when making predictions for sequence perturbations that were not represented in
the training data. Ensembles are typically expected to improve out-of-distribution (OOD) general-
ization (Arpit et al., 2022; Lakshminarayanan et al., 2017) because they aggregate variable predic-
tions for a given input, thereby smoothing out arbitrary behavior in regions with limited or no data

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review at the MLGenX workshop, ICLR 2025

a

b

Figure 3: DeepSTARR OOD generalization performance. (a) Schematic illustrating an ensemble of
functions learned from different random initializations (green lines) on training data alongside the
averaged ensemble function (black line). Generating labels for OOD data points using the ensem-
ble’s predictions stabilizes the distilled model’s function approximation in OOD regions. (b) MSE
between the teacher ensemble (trained with EvoAug) and individual models for Dev promoter ac-
tivity across different training procedures: standard training (blue), DEGU-distillation (orange), and
DEGU-distillation with dynamic EvoAug mutagenesis (green), partial random mutagenesis (red),
and randomly shuffled sequences (purple), evaluated for for sequences with varying degrees of dis-
tribution shift. Boxplots represent n = 10 models trained with different random initializations.

(Fig. 3a). Thus, we hypothesized that DEGU-distilled models, which approximate the ensemble’s
function, would also generalize better to OOD sequences. However, systematically assessing OOD
generalization is challenging due to the limited availability of appropriate OOD data; that is, exper-
imental measurements in the same biological system for sequences with matched levels of genetic
variability as the downstream task. Instead, we used a proxy for OOD generalization by evaluating
how closely the distilled models approximated the teacher ensemble’s behavior under varying lev-
els of simulated covariate shift. Specifically, we created three new variants of test sequences from
the original STARR-seq test sequences, each simulating a different degree of distribution shift: (1)
partial random mutagenesis at a rate of 0.05 at each position of the sequence to introduce a small
shift, (2) evolution-inspired mutagenesis provided by EvoAug (Lee et al., 2023; Yu et al., 2024) for
an intermediate shift, and (3) randomly shuffled sequences for a large shift (see Appendix B). The
small shift introduced by partial random mutagenesis likely preserved most key motifs and overall
sequence function. In contrast, the intermediate shift generated through evolution-inspired muta-
genesis created more substantial compositional rearrangements in regulatory sequences. The large
shift, created by randomly shuffling the sequences, likely disrupted and inactivated many functional
regions, resulting in lower predicted regulatory activity overall (Appendix A Fig. 8).

We then calculated the mean-squared error (MSE) between each model’s predictions and an ensem-
ble average of n = 10 EvoAug-trained DeepSTARR models, which we treat as an in silico oracle.
As expected, the distilled DeepSTARR models provided consistently closer approximations of the
teacher ensemble over standard-trained DeepSTARR models (Fig. 3b, Appendix A Fig. 9). Inter-
estingly, we observed lower MSE for inference on randomly shuffled sequences, possibly due to the
lower overall activity levels following this large covariate shift (Appendix A Fig. 8).

Next, we explored whether training with OOD data could improve model generalization (Fort et al.,
2021; Wilson & Izmailov, 2020; Hoffmann et al., 2021). Specifically, we hypothesized that intro-
ducing OOD sequences with ensemble-generated labels would help the model better approximate
the ensemble function in regions where training data is sparse. To test this, we applied the same
transformations used to simulate covariate shifts to each minibatch of sequences during training and
used the teacher ensemble to generate corresponding labels for these transformed sequences (see
Appendix B. The augmented sequences and their new target values replaced the original training
data, allowing us to train distilled DeepSTARR models with more diverse data points.
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Figure 4: Evaluating DEGU uncertainty estimation. (a,b) Predictive performance for (a) epis-
temic and (b) aleatoric uncertainty output heads of models trained with standard training (blue),
DEGU-distillation (orange), and the teacher ensemble (green). Markers represent average Pear-
son’s r across n = 10 models and shaded region indicates 95% confidence interval. Results shown
for the Dev epistemic uncertainty output head of DEGU-distilled DeepSTARR and the uncertainty
output heads of ResidualBind models trained on K562 lentiMPRA data. (c,d) Scatterplots of (c)
prediction interval coverage probability and (d) predictive accuracy versus average interval size for
different epistemic (left) and aleatoric (right) uncertainty quantification methods for ResidualBind
models trained on K562 lentiMPRA data. Red dashed line indicates calibration with a 95% interval
coverage probability. Each uncertainty quantification method is represented by n = 10 dots, each
indicating a model with different initializations, with the exception of deep ensemble (n = 1).

Training distilled student models with dynamic data augmentations provided consistent, though
modest, performance gains on the original test set (Appendix A Fig. 10). Furthermore, these aug-
mentations improved the student models’ function approximation to the teacher ensemble under
different levels of covariate shift, with slightly better performance when the augmentations closely
matched the degree of target covariate shift (Fig. 3b, Appendix A Fig. 9). These findings highlight
the importance of incorporating OOD training sequences to improve model reliability in downstream
applications that require robust generalization to covariate shifts.

2.5 DEGU PROVIDES CALIBRATED ESTIMATES OF TOTAL UNCERTAINTY

A key advantage of deep ensembles is their ability to quantify epistemic uncertainty from the vari-
ability of predictions across the ensemble. To evaluate DEGU’s ability to quantify this type of
uncertainty, we compared the standard deviation of predictions from the teacher ensemble with the
predicted standard deviations from the DEGU-distilled student models. Surprisingly, the epistemic
uncertainty estimates from the distilled student models were strongly correlated with the variation
observed across the teacher ensemble’s predictions, suggesting that DEGU distillation effectively
captures epistemic uncertainty (Fig. 4a, Appendix A Figs. 11a, 2a, & 12). We repeated this analysis
using log-variance as the measure of variation and observed similar results (Appendix A Fig. 13).

However, relying solely on epistemic uncertainty can lead to overconfident predictions (Bajwa et al.,
2024) as it does not capture the full spectrum of predictive uncertainty. DEGU addresses this lim-
itation by training models to also predict aleatoric uncertainty, which is estimated from the vari-
ability across experimental replicates (when sufficient replicates are available; see Appendix B).
We demonstrated this approach using the lentiMPRA (Agarwal et al., 2023) and ATAC-seq profile
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datasets, both of which had three experimental replicates. We found that predicting aleatoric un-
certainty from sequence data remains challenging (Fig. 4b, Appendix A Figs. 11b & 2a), which is
expected given that aleatoric uncertainty represents irreducible noise.

While accurately predicting aleatoric uncertainty is difficult, ensuring that uncertainty estimates are
well-calibrated is more important. To evaluate this, we analyzed prediction interval coverage prob-
ability. This metric measures how often the true target value for a given sequence falls within the
confidence interval estimated for its corresponding predictions of activity and uncertainty. A well-
calibrated model should achieve a coverage probability equal to the confidence interval percentage
(95% in this analysis) while minimizing the size of the interval. We benchmarked the calibration
of uncertainty estimates from DEGU-distilled models against various other uncertainty quantifica-
tion strategies (see Appendix B, including those that capture epistemic uncertainty, such as Monte
Carlo Dropout (MCDropout) (Gal & Ghahramani, 2016) and deep ensembles, as well as methods
for estimating aleatoric uncertainty, such as deep evidential regression (Amini et al., 2020) and
heteroscedastic regression (Nix & Weigend, 1994; Venkatesh & Thiagarajan, 2019). Methods ac-
counting for aleatoric uncertainty generally achieved better calibration with smaller average interval
sizes while methods relying solely on epistemic uncertainty exhibited severe under-calibration (Fig.
4c, Appendix A Fig. 14a). We also observed a trade-off between predictive accuracy and uncertainty
calibration across different methods (Fig. 4d, Appendix A Fig. 14b).

Models trained with heteroscedastic regression were well-calibrated but suffered from lower pre-
dictive accuracy compared to DEGU-distilled models (Fig. 4c-d, Appendix A Fig. 14). Based on
these observations, we investigated whether applying DEGU distillation to models trained with a
heteroscedastic loss could reconcile this performance gap. However, this approach did not fully
bridge the gap between heteroscedastic regression and DEGU (Appendix A Fig. 14).

To improve calibration, we applied conformal prediction (Barber et al., 2020; Papadopoulos et al.,
2002; Vovk et al., 2005) to adjust the uncertainty estimates. This resulted in nearly perfect calibration
for all uncertainty quantification methods evaluated (Fig. 4c, Appendix A Fig. 14), giving the
distilled models the best overall performance balancing high predictive accuracy and well-calibrated
uncertainty estimates.

2.6 UNCERTAINTY-AWARE ZERO-SHOT VARIANT EFFECT GENERALIZATION

Uncertainty quantification offers a valuable tool for informed decision making, particularly in sce-
narios where the reliability of model predictions is unclear, such as single-nucleotide variant effect
prediction. Previously, we demonstrated that data augmentations improved function approxima-
tion to the ensemble (Appendix A Fig. 9), suggesting the potential for better generalization. To
directly test this, we trained distilled ResidualBind models with dynamic augmentations on lentiM-
PRA data and evaluated their ability to predict single-nucleotide variant effects in matched cell types
by comparing against experimental measurements from massively parallel reporter assays (MPRAs)
(Critical Assessment of Genome Interpretation Consortium, 2024; Shigaki et al., 2019).

As expected, predicted variant effects from the distilled models generally showed stronger corre-
lation with experimentally measured variant effects compared to models with standard training,
with additional performance gains when distilled models were trained with data augmentations (Ap-
pendix A Figs. 15a & 16). Visual analysis indicated that aleatoric uncertainty predictions were
greater in magnitude and more consistent across nucleotides at a given position, whereas epistemic
uncertainty predictions exhibited greater variability across both nucleotides and positions (Appendix
A Fig. 15b). Further analysis revealed that aleatoric uncertainty was higher for variant effects close
to zero, while epistemic uncertainty increased as activity levels moved further from zero (Appendix
A Fig. 19).

To investigate the relationship between uncertainty and predictive accuracy, we stratified model
performance on total uncertainty, classifying predictions below this threshold as confident (see Ap-
pendix B. We focused on distilled ResidualBind models trained with random mutagenesis augmen-
tations as they yielded the best overall performance (Appendix A Figs. 15a & 16). This uncertainty-
based stratification revealed that the most confident predictions for variants in the PKLR locus from
ResidualBind models trained on K562 were associated with higher predictive accuracy (Appendix
A Fig. 15c), although these trends varied across different loci and models (Appendix A Fig. 18).
These findings highlight the potential of uncertainty quantification to enhance the reliability and in-
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terpretability of variant effect predictions, enabling more nuanced analysis and decision making in
genomics research.

3 DISCUSSION

DEGU presents a simple and effective approach for harnessing the benefits of deep ensembles
with just a single model, providing robust predictions alongside reliable uncertainty estimates. We
demonstrate that DEGU-distilled models generally outperform models with standard training and
provide more reliable post hoc explanations of cis-regulatory mechanisms through attribution analy-
sis. This makes DEGU particularly well-suited for large-scale inference tasks such as genome-wide
variant effect prediction and generating attribution maps for a large number of regulatory sequences.

A major strength of DEGU lies in its dual uncertainty estimation, addressing a key limitation of
current genomic deep learning models. By simultaneously estimating both epistemic and aleatoric
uncertainty, DEGU offers a comprehensive assessment of prediction reliability - an important factor
in enhancing confidence in model predictions.

DEGU excels in estimating epistemic uncertainty, which was straightforward to train using predic-
tion variability across the teacher ensemble. Estimating aleatoric uncertainty posed greater chal-
lenges due to inherent randomness in noisy data. To approximate this, we created a prediction task
to learn noise across experimental replicates, yielding aleatoric uncertainty estimates with well-
calibrated prediction intervals surpassing those based on epistemic uncertainty. We also evalu-
ated heteroscedastic regression as an alternative approach for aleatoric uncertainty estimation as
it avoids extra data processing steps and the inclusion of an additional prediction task. However,
heteroscedastic regression showed lower predictive performance on functional activities and proved
challenging to optimize due to an unstable loss function. Overall, aleatoric uncertainty estimates
based on replicate variability combined with epistemic uncertainty estimates achieved the best bal-
ance between calibration and predictive accuracy. Nevertheless, heteroscedastic regression loss can
serve as an alternative approach when the data contains insufficient replicates.

DEGU’s ability to approximate the teacher ensemble’s function suggests that distilled models gen-
eralize better under covariate shifts. Moreover, training with dynamic data augmentations further
improved approximation of the ensemble. This proved effective for improving zero-shot predic-
tions of single-nucleotide variant effects. Since most downstream applications of genomic DNNs
involve varying degrees of covariate shifts, DEGU-distilled models are well suited to provide robust
predictions with uncertainty estimates that reflect its confidence.

Our study focused solely on ensembles of models with the same architecture. It would also be worth
applying DEGU to more compact student architectures to distill large-scale DNNs such as Enformer
(Avsec et al., 2021a) and Borzoi (Linder et al., 2023a), both of which currently require high com-
putational costs. Making these models more computationally efficient would reduce the need for
extensive GPU resources, thereby democratizing access to state-of-the-art genomic prediction tools.
Further improvements could be achieved by increasing the diversity of models within the ensemble
and experimenting with different weighting methods for ensemble members.

In our study, DEGU primarily focused on approximating the ensemble’s function, leaving oppor-
tunities for further improvement by incorporating a mixed knowledge distillation loss function that
balances the use of real training data with the divergence between the ensemble and student models
(Hinton et al., 2015). A related approach to DEGU is self-distillation (Zhang et al., 2022), where
distillation occurs sequentially in an online manner. While self-distillation can offer benefits similar
to ensemble distillation (Allen-Zhu & Li, 2020), it struggles to capture epistemic uncertainty as it
relies on a single model’s training path rather than the multiple function approximations provided by
an ensemble. In the future, we plan to investigate the sequence features that contribute to uncertainty
in genomic predictions through comprehensive attribution analyses on the uncertainty head.

DEGU’s ability to provide insights into the confidence of its predictions represents an important step
toward making deep learning models more reliable and trustworthy. While our demonstration of
DEGU focused on deep learning models for regulatory genomics, this framework can be extended
to other models in other domains of biology. As the field continues to evolve, uncertainty-aware
models like DEGU will become essential for guiding research decisions and clinical applications,
highlighting the importance of further refining and expanding these techniques.
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a b

Appendix Figure 1: Comparing DEGU performance against benchmarks. (a,b) Performance of
ResidualBind models trained on subsets of randomly downsampled lentiMPRA data for(c) K562
and (d) HepG2 cell lines. (a-d) Plots reflect teacher models with standard training (blue; n = 10),
DEGU-distillation (orange; n = 10); and the ensemble average predictions (green). Shaded regions
indicate 95% confidence intervals. Red dashed lines in (c,d) indicate performance of MPRAnn
trained on full lentiMPRA dataset.
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a
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Appendix Figure 2: Performance on ATAC-seq profiles. (a) Boxplots of prediction performance of
base-resolution CNN model trained on ATAC-seq profiles with standard training (blue) and DEGU
distillation (orange) for the activity head (left), aleatoric head (middle) and epistemic head (right).
Green horizontal line indicates the teacher ensemble performance. Boxplots represent n = 10 mod-
els trained with different random initializations, with the boxes indicating the first and third quartiles,
the central line indicates the median, and whiskers denote the data range. (b) (left) Boxplot of av-
erage root mean squared error (RMSE) between attribution maps generated by individual models
trained with standard training (blue) and DEGU distillation (orange), compared to the average attri-
bution map across the teacher ensemble, and (right) scatter plot comparing the standard deviation
of attribution scores across individual models trained with standard training (n = 10) and DEGU
distillation (n = 10). Attribution scores were calculated with Saliency Maps for the activity output.
RMSE is calculated for 1,000 high-activity test sequences. P-values indicate independent two-sided
t-tests for average RMSE and paired two-sided t-tests for standard deviation. (a,b)Boxplots rep-
resent n = 10 models trained with different random initializations, with the boxes representing
the first and third quartiles, the central line indicating the median, and whiskers denoting the data
range. (c) Scatter plot of prediction interval coverage probability versus average interval size for
epistemic uncertainty (blue) and aleatoric uncertainty (orange) and total uncertainty (green). Red
dashed line indicates calibration with a 95% interval coverage probability. Each uncertainty quan-
tification method is represented by n = 10 dots, indicating a model with different initializations,
except for deep ensemble (n = 1).
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Appendix Figure 3: Comparison of model performance with downsampled training data using im-
proved teacher ensembles. (a,b) Predictive performance for activity (left) and epistemic uncertainty
(right) output heads of DeepSTARR models trained on different subsets of randomly downsampled
STARR-seq data for (a) developmental (Dev) and (b) housekeeping (Hk) promoters. Dashed lines
indicate DeepSTARR models trained with EvoAug data augmentations, while solid lines represent
DeepSTARR models without data augmentations during training. Markers represent the average
across 10 models with different random initializations and shaded region indicates 95% confidence
interval.
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Appendix Figure 4: Performance comparison for different teacher ensemble sizes. Boxplot com-
parison of the performance of DeepSTARR ensembles (green) and distilled DeepSTARR models
(orange) for different teacher ensembles comprised of varying number of models. The horizontal
blue line represents the average performance metric (Pearson’s r) of DeepSTARR with standard
training. Boxplots represent n = 10 models trained with different random initializations, with the
boxes indicating the first and third quartiles, the central line indicates the median, and whiskers de-
note the data range. Increasing the size of the teacher ensemble yields improvements in predictive
accuracy for the ensemble average, but the predictive accuracy of distilled models saturates at a
teacher ensemble size of n = 10.
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Appendix Figure 5: Attribution map for the Dev activity output head of an individual DeepSTARR
model with standard training (top) and a DEGU-distilled DeepSTARR model (bottom) for an ex-
emplary test sequence. Annotated boxes indicate binding sites for AP-1 (blue), GATA (red), and
ETS/Twist (green), with solid lines indicating a strong match and dashed lines indicating a weak
match.
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Appendix Figure 6: Additional attribution analysis performance comparisons. (left) Boxplots of
average root mean squared error (RMSE) between attribution maps generated by individual models
trained with standard training (blue) and DEGU distillation (orange), compared to the average attri-
bution map across the teacher ensemble, and (right) scatterplots comparing the standard deviation
of attribution scores across individual models trained with standard training (n = 10) and DEGU
distillation (n = 10). Attribution scores were calculated with: (a) DeepSHAP for the Hk activ-
ity output head of DeepSTARR, (b,c) Saliency Maps for the activity output heads of ResidualBind
models trained on (b) K562 and (c) HepG2 lentiMPRA data, (d, e) Saliency Maps for the (d) Dev
and (e) Hk activity output heads of DeepSTARR. RMSE is calculated for 1,000 high-activity test
sequences. P-values indicate independent two-sided t-tests for average RMSE and paired two-sided
t-tests for standard deviation. Boxplots represent n = 10 models trained with different random ini-
tializations, with the boxes representing the first and third quartiles, the central line indicating the
median, and whiskers denoting the data range.
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Appendix Figure 7: Magnitude-normalized attribution map consistency comparison. Scatter plots
comparing the standard deviation of magnitude-normalized attribution scores across individual mod-
els trained with standard training (n = 10) and DEGU distillation (n = 10) for DeepSHAP applied
(left) and Saliency Maps (right) applied to DeepSHAP for developmental promoters (top) and house-
keeping promoters (bottom). Dots represent n = 1, 000 high-activity test sequences.
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Appendix Figure 8: Distribution of predicted activity for STARR-seq test sequences under differ-
ent distribution shifts. Cumulative distribution plot of predictions given by an exemplary distilled
DeepSTARR model for sequences with different degrees of distribution shift: none (original test
sequences), small (random mutagenesis with a rate of 5%), moderate (EvoAug mutagenesis), and
large (random shuffling).
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Appendix Figure 9: MSE between the teacher ensemble (DeepSTARR trained with EvoAug) and in-
dividual DeepSTARR models for Hk promoter activity across different training procedures: standard
training (blue), DEGU-distillation (orange), and DEGU-distillation with dynamic EvoAug mutage-
nesis (green), partial random mutagenesis (red), and randomly shuffled sequences (purple). Results
shown for sequences with varying degrees of distribution shift: none (original test set), small (partial
random mutagenesis), intermediate (EvoAug mutagenesis), and large (random shuffle). Boxplots
represent n = 10 models trained with different random initializations, with the boxes indicating the
first and third quartiles, the central line indicating the median, and whiskers denote the data range.
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Appendix Figure 10: Performance of distilled DeepSTARR models trained with dynamic augmen-
tations. Boxplots of predictive performance of activity head (top) and epistemic uncertainty head
(bottom) from distilled DeepSTARR models trained with different dynamic sequence augmentations
for Dev (left) and Hk promoters (right). Boxplots represent n = 10 models trained with different
random initializations, with the boxes indicating the first and third quartiles, the central line indicates
the median, and whiskers denote the data range.
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Appendix Figure 11: Additional performance comparison of uncertainty estimates. (a,b) Predictive
performance for (a) epistemic and (b) aleatoric uncertainty for models with standard training (blue),
DEGU-distillation (orange), and the teacher ensemble (green), trained on subsets of randomly down-
sampled training data. Markers represent the average across n = 10 models with different random
initializations and shaded region indicates 95% confidence interval. Results are shown for (a) the
Hk epistemic uncertainty head of distilled DeepSTARR models and the epistemic uncertainty out-
put head of distilled ResidualBind models trained on HepG2 lentiMPRA data, and (b) the aleatoric
uncertainty output heads of ResidualBind models trained on HepG2 lentiMPRA data. (c,d) Scatter
plots of (c) prediction interval coverage probability and (d) predictive accuracy versus average inter-
val size for different uncertainty quantification methods for epistemic uncertainty (left) and aleatoric
uncertainty (right). Uncertainty quantification methods are based on ResidualBind model trained on
HepG2 lentiMPRA data. Red dashed line indicates calibration with a 95% interval coverage prob-
ability. Each uncertainty quantification method is represented by n = 10 dots, indicating a model
with different initializations, except for deep ensemble (n = 1).
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Appendix Figure 12: Prediction comparison for distilled DeepSTARR. Scatter plots comparing dis-
tilled DeepSTARR model predictions and target values for enhancer activity (top row) and epistemic
uncertainty (bottom row) for developmental (left) and housekeeping (right) promoters. Each dot rep-
resents a different test sequence (n = 41186)
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Appendix Figure 13: Comparison of different measures of variability. Boxplots of predictive per-
formance for the epistemic uncertainty output head of different distilled DeepSTARR models where
epistemic uncertainty ea trained on standard deviation (blue) versus log variance (orange) of the
predictions across the teacher ensemble. Boxplots represent n = 10 models trained with different
random initializations, with the boxes representing the first and third quartiles, the central line indi-
cating the median, and whiskers denoting the data range.
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Appendix Figure 14: Comparison of loss functions for training ResidualBind. Boxplots comparing
performance of ResidualBind trained on lentiMPRA data for K562 (top) and Hepg2 (bottom) using
MSE loss or heteroscedastic loss (columns). Models trained with MSE loss learn aleatoric uncer-
tainty from replicate level variation while models trained with heteroscedastic regression implicitly
learn aleatoric uncertainty during the training process (but replicate level variation is used to calcu-
late Pearson’s r). Boxplots represent n = 10 models with different random initializations, with the
boxes representing the first and third quartiles, the central line indicating the median, and whiskers
denoting the data range.
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Appendix Figure 15: Single-nucleotide variant effect generalization. (a) Boxplots of zero-shot vari-
ant effect predictive performance for models with standard training, DEGU-distillation, and DEGU-
distillation with dynamic augmentations. Predictive performance was evaluated using Pearson’s
r (top) and Spearman’s rho (bottom). (b) Boxplots of zero-shot variant effect predictive perfor-
mance for models with standard training (blue) and DEGU-distillation with random mutagenesis
augmentations (red) for variants filtered on different quantile thresholds of predicted total uncer-
tainty according to different correlation metrics: Pearson’s r (left) and Spearman’s rho (right).
(a,b) Green horizontal line indicates the performance of the teacher ensemble. Boxplots represent
n = 10 ResidualBind models trained on K562 lentiMPRA data with different random initializations,
with the boxes representing the first and third quartiles, the central line indicating the median, and
whiskers denoting the data range.(c) Heat map showing predicted effect size (top), aleatoric uncer-
tainty (middle), and epistemic uncertainty (bottom) given by a representative distilled ResidualBind
model trained on K562 lentiMPRA data for all CAGI variants provided for the PKLR locus.
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Appendix Figure 16: Single nucleotide variant effect prediction for HepG2 regulators. Box-
plots of zero-shot variant effect predictive performance for models with standard training (blue);
DEGU-distillation (orange); and DEGU-distillation with dynamic augmentations. Boxplots repre-
sent n = 10 models with different random initializations, with the boxes representing the first and
third quartiles, the central line indicating the median, and whiskers denoting the data range. Green
horizontal line indicates the performance of the teacher ensemble.
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Appendix Figure 17: Single-nucleotide variant effect prediction performance with uncertainty an-
notations. Scatter plots of predictive performance of ResidualBind trained with random mutagenesis
augmentations and single-nucleotide variant effects in the PKLR locus measured via an MPRA in
K562. The color of each dot represents the uncertainty according to total uncertainty (left), aleatoric
uncertainty (middle), and epistemic uncertainty (right).
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Appendix Figure 18: Conformal prediction analysis. Scatter plots of prediction interval coverage
probability (left) and predictive accuracy (right) versus average interval size for different uncertainty
quantification methods after conformalizing estimates on validation data. The results are shown for
ResidualBind models trained on (a) K562 and (b) HepG2 lentiMPRA data. (left) Red dashed line
indicates 95% interval. Each uncertainty quantification method is represented by n = 10 dots,
indicating a model with different initializations, except for deep ensemble (n = 1).
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Zero-shot variant effect prediction (HepG2 regulators)

Appendix Figure 19: Additional analysis for single-nucleotide variant effect generalization for
HepG2 regulators. Boxplots of zero-shot variant effect predictive performance for models with stan-
dard training (blue) and DEGU-distillation with mutagenesis augmentations (red) for all nucleotide
variants (left) and for variants filtered on different quantile thresholds of predicted total uncertainty
(middle, right). Boxplots represent n = 10 models with different random initializations, with the
boxes representing the first and third quartiles, the central line indicating the median, and whiskers
denoting the data range. Green horizontal line indicates the performance of the teacher ensemble.
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B METHODS

DATASETS

FLY ENHANCER ACTIVITY WITH STARR-SEQ

We obtained STARR-seq data for developmental (Dev) and housekeeping (Hk) promoters in D.
melanogaster S2 cells from de Almeida et al.de Almeida et al. (2022) Each sequence is 249 base
pairs (bp) long. Enhancer activity for both housekeeping and developmental classes was predicted
simultaneously as a multi-task regression. The data was split into train, test, and validation sets
containing 402296, 41186, and 40570 samples, respectively.

HUMAN REGULATORY SEQUENCES WITH LENTIMPRA

We used lentiMPRA data for K562 and HepG2 cell lines from Agarwal et al.Agarwal et al. (2023).
Each 230 bp cis-regulatory sequence was associated with a scalar activity measurement for three
biological replicates. The mean and standard deviation across the replicates was used as target
values for regulatory sequence activity and aleatoric uncertainty, respectively. For each cell type, we
performed two types of regressions: 1) a single-task regression for regulatory activity only, and 2) a
multi-task regression for both regulatory activity and aleatoric uncertainty. We generated a different
dataset for each regression task. For the single-task regression, we removed any samples for which
an activity measurements was provided without corresponding sequence data was not available. For
the multi-task regression, we also removed samples for which experimental data from at least two
replicates was not available, due to the inability to calculate aleatoric uncertainty. For each dataset,
we randomly split the training, validation, and test sets according to the fractions 0.8, 0.1, and 0.1,
respectively, ensuring that any forward and reverse complement sequence pairs would be assigned
to the same set to avoid data leakage. The HepG2 data for single-task regression (activity only) was
split into train, test, and validation sets containing 111901, 13988, and 13988 samples, respectively.
The HepG2 data for the multi-task regression (activity and aleatoric uncertainty) was split into train,
test, and validation sets containing 111518, 13939, and 13942 samples, respectively. The K562
data for single-task regression (activity only) was split into train, test, and validation sets containing
181002, 22626, and 22626 samples, respectively. The K562 data for multi-task regression (activity
and aleatoric uncertainty) was split into train, test, and validation sets containing 180564, 22571,
and 22570 samples, respectively.

PROFILE-BASED CHROMATIN ACCESSIBILITY WITH GOPHER

We acquired hg38-aligned ATAC-seq bigWig files for A549 cells (ENCSR032RGS) from ENCODE
The ENCODE Project Consortium (2012). We processed the 3 replicate fold change over control
bigwig files into 2 bigWig files: 1) average read coverage across replicates and 2) standard deviation
of read coverage across replicates. Wiggletools Zerbino et al. (2013) and UCSC’s bedGraphTo-
BigWig Kent et al. (2010) were used to wrangle the data into bigWig file formats. Following a
previously published data processing procedure Toneyan et al. (2022), we divided each chromo-
some into equal, non-overlapping 3072 bp bins. We one-hot encoded each sequence with matched
base-resolution coverage tracks from the average and standard deviation bigWig files. We split the
dataset into a test set comprising chromosome 8, a validation set comprising chromosome 9, and a
training set encompassing the remaining chromosomes, with the exclusion of chromosome Y and
contigs. Performance was assessed as the Pearson correlation across the whole chromosome as
outlined in Ref. Toneyan et al. (2022).

SINGLE-NUCLEOTIDE VARIANT EFFECT WITH CAGI5

The CAGI5 challenge dataset Critical Assessment of Genome Interpretation Consortium (2024);
Shigaki et al. (2019), which consists of experimentally measured saturation mutagenesis of a 230 bp
regulatory element via a MPRA, was used to evaluate the performance of the ResidualBind models
on zero-shot single-nucleotide variant effect generalization. We considered only experiments in
HepG2 (LDLR, F9, SORT1) and K562 (PKLR). We extracted 230 bp sequences from the reference
genome (hg19) centered on each single-nucleotide variant in the CAGI data. We calculated the
predicted effect of each allele as: ŷalt − ŷref , where ŷalt is the model’s activity prediction for
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the alternate allele and ŷ − ref is the model’s activity prediction for the corresponding reference
allele. Performance was evaluated as the Pearson correlation between the predicted effect and the
experimentally measured effect.

MODELS

DEEPSTARR FOR STARR-SEQ

We implemented DeepSTARR de Almeida et al. (2022) as described in Ref de Almeida et al. (2022),
according to:

1. 1D convolution (256 kernels, size 7, batch normalization, ReLU activation)
1D max-pooling (size 2)

2. 1D convolution (60 kernels, size 3, batch normalization, ReLU activation)
1D max-pooling (size 2)

3. 1D convolution (60 kernels, size 5, batch normalization, ReLU activation)
1D max-pooling (size 2)

4. 1D convolution (120 kernels, size 3, batch normalization, ReLU activation)
1D max-pooling (size 2)

5. flatten
6. linear (256 units, batch normalization, ReLU activation)

dropout(0.4)
7. linear (256 units, batch normalization, ReLU activation)

dropout(0.4)
8. output (2 units, linear)

The 2 units in the output layer represent the Dev and Hk enhancer activities. For distilled mod-
els which predict both activity and epistemic uncertainty, the output layer is increased to 4 units,
representing Dev activity, Hk activity, Dev epistemic uncertainty, and Hk epistemic uncertainty.

RESIDUALBIND FOR LENTIMPRA

We used a custom ResidualBind modelKoo et al. (2021); Tang et al. (2024), a CNN with dilated
residual blocks He et al. (2016); Yu et al. (2017), to model lentiMPRA data. The ResidualBind
architecture is as follows:

1. 1D convolution (196 kernels, size 19, batch normalization, SiLU activation)
dropout (0.2)

2. Dilated residual block (5 dilations)
1D convolution (196 kernels, size 3, batch normalization, ReLU activation)

dropout (0.1)
1D convolution (196 kernels, size 3, dilation rate 1, batch normalization, ReLU acti-

vation)
dropout (0.1)

1D convolution (196 kernels, size 3, dilation rate 2, batch normalization, ReLU acti-
vation)
dropout (0.1)

1D convolution (196 kernels, size 3, dilation rate 4, batch normalization, ReLU acti-
vation)
dropout (0.1)

1D convolution (196 kernels, size 3, dilation rate 8, batch normalization, ReLU acti-
vation)
dropout (0.1)

1D convolution (196 kernels, size 3, dilation rate 16, batch normalization, ReLU acti-
vation)
dropout (0.1)
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skip connection to input
SiLU activation

dropout (0.2)
1D max-pooling (size 5)

3. 1D convolution (256 kernels, size 7, batch normalization, SiLU activation)
dropout (0.2)
1D max-pooling (size 5)

4. linear (256 units, batch normalization, SiLU activation)
dropout(0.5)

5. 1D global average pooling

6. flatten

7. linear (256 units, batch normalization, SiLU activation)
dropout(0.5)

8. output (1 unit, linear)

For ResidualBind models trained on both the replicate average and standard deviation, the output
layer is increased to 2 units representing activity and aleatoric uncertainty, respectively. For dis-
tilled ResidualBind models, the output layer is increased to 3 units representing activity, aleatoric
uncertainty, and epistemic uncertainty.

CNN-TASK-BASE

A base-resolution CNN from Ref. Toneyan et al. (2022) was used to fit the ATAC-seq profile data.
Briefly, CNN-task-base is composed of 3 convolutional blocks, which consist of a 1D convolution,
batch normalization, activation, max pooling and dropout, followed by 2 fully-connected blocks,
which includes a dense layer, batch normalization, activation, and dropout. The first fully con-
nected block scales down the size of the representation, serving as a bottleneck layer. The second
fully-connected block rescales the bottleneck to the target resolution. This is followed by another
convolutional block. The representations from the outputs of the convolutional block is then input
into task-specific output heads; each head consists of a convolutional block followed by a linear
output layer with softplus activations. The activation of all hidden layers are ReLU.

TRAINING MODELS

STANDARD TRAINING OF DEEPSTARR AND RESIDUALBIND

We uniformly trained each model by minimizing the mean-squared error loss function with mini-
batch stochastic gradient descent (100 sequences) for 100 epochs with Adam updates using default
parameters Kingma & Ba (2017). The learning rate was initialized to 0.001 and was decayed by
a factor of 0.1 when the validation loss did not improve for 5 epochs. All reported performance
metrics are drawn from the test set using the model parameters from the epoch which yielded the
lowest loss on the validation set. For each model, we trained 10 different individual models with
different random initializations.

STANDARD TRAINING OF CNN-TASK-BASE

CNN-task-base models were trained using a Poisson loss and Adam with default parameters and a
minibatch size of 100. The learning rate was initialized to 0.001 and was decayed by a factor of
0.3 when the validation loss did not improve for 5 epochs. All reported performance metrics are
drawn from the test set using the model parameters from the epoch which yielded the lowest loss on
the validation set. During training, random shift and stochastic reverse-complement data augmen-
tations were used Toneyan et al. (2022). Random shift is a data augmentation that randomly trans-
lates the input sequence (and corresponding targets) online during training. For each mini-batch,
a random sub-sequence of 2048 bp and its corresponding target profile was selected separately for
each sequence. Reverse-complement data augmentation is also employed online during training.
During each mini-batch, half of training sequences were randomly selected and replaced by their
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reverse-complement sequence. For those sequences that were selected, the training target was cor-
respondingly replaced by the reverse of original coverage distribution. For each model, we trained
10 different individual models with different random initializations.

TRAINING DEEPSTARR WITH EVOAUG

Models trained with EvoAug-TF Yu et al. (2024) use the following augmentation settings:

• random deletions with a size range of 0-20bp (applied per batch)
• random translocation with a size range of 0-20bp (applied per batch)
• random Gaussian noise with µ = 0 and σ = 0.2 added to each variant in the input sequence

(applied per sequence)
• random mutation of 5% of nucleotides in sequence (applied per sequence)

For each minibatch during training, one of the augmentations is randomly selected from the list
of possible augmentations described above and applied to every sequence in the minibatch. Both
teacher and student models were trained with the same optimizer, learning rate decay, and early
stopping hyperparameters described for standard training.

DEGU: DISTILLING KNOWLEDGE OF ENSEMBLES TO UNCERTAINTY-AWARE GENOMIC DNNS

Ensemble Training. For each prediction task, we trained an ensemble of M models, each denoted
as fθm , where m = 1, 2, . . . ,M , with identical architectures but different random initializations,
θm. Each model in the ensemble outputs a prediction fθm(xi) for a given input sequence xi∀i =
1, 2, . . . , N .

The predictions across the ensemble for input xi are aggregated to compute the ensemble mean µi

and standard deviation σi, defined as:

µi =
1

M

M∑
m=1

fθm(xi)

σi =

√√√√ 1

M

M∑
m=1

(fθm(xi)− µi)
2

Here, µi represents the mean prediction (capturing the central tendency of the ensemble), while σi

captures the epistemic uncertainty (i.e., the variability across the ensemble’s predictions).

Distilled Model Training. To train the distilled model, we introduce multitask learning by incor-
porating the ensemble mean µi and standard deviation σi into the loss function. Let the distilled
model be denoted by gϕ(xi), parameterized by ϕ. The distilled model is trained with two output
heads:

• A mean prediction head g
(µ)
ϕ (xi) that approximates the ensemble mean µi.

• An uncertainty prediction head g
(σ)
ϕ (xi) that predicts the ensemble standard deviation σi,

capturing the epistemic uncertainty.

Thus, the complete output of the distilled model for sequence xi is given by:

gϕ(xi) =
(
g
(µ)
ϕ (xi), g

(σ)
ϕ (xi)

)
Loss Function. The training objective for the distilled model is defined as a multitask loss function
that includes the error in predicting both the ensemble mean and the epistemic uncertainty. The loss
function L can be written as:
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L =
1

N

N∑
i=1

(
Lmean(g

(µ)
ϕ (xi), µi) + λLuncertainty(g

(σ)
ϕ (xi), σi)

)
Where:

• Lmean is the loss for the mean prediction, e.g., mean squared error (MSE):

Lmean =
1

2

(
g
(µ)
ϕ (xi)− µi

)2

• Luncertainty is the loss for predicting the epistemic uncertainty, e.g., MSE:

Luncertainty =
1

2

(
g
(σ)
ϕ (xi)− σi

)2

• λ is a hyperparameter that controls the weighting of the uncertainty prediction loss. In this
study, we use λ = 1

Aleatoric Uncertainty (Optional). In cases where at least 3 experimental replicates are available,
aleatoric uncertainty σaleatoric can also be predicted. The aleatoric uncertainty is approximated by the
variability across the experimental replicates and incorporated into the training of the student model
through an additional output head. The loss function can be extended as:

Ltotal = L+ γLaleatoric(g
(aleatoric)
ϕ (xi), σaleatoric)

Where γ is a hyperparameter controlling the contribution of aleatoric uncertainty to the overall loss.
In this study, we use γ = 1.

Model Architecture. While the distilled models can be comprised of any architecture, in this
study, the distilled models share the same architecture as the original ensemble models, with the
exception of the final layer. If the original models had Nout output heads, the distilled models will
have 2Nout heads to account for both the mean and epistemic uncertainty predictions. In cases where
aleatoric uncertainty is also modeled, the distilled models will have 3Nout output heads.

DISTILLING DEEPSTARR

We first trained an ensemble of 10 DeepSTARR models with different random initializations on
STARR-seq data. We then used each individual model in the ensemble to make predictions on the
training sequences and calculated the average and standard deviation across the 10 models. These
values were used as target values for activity and epistemic uncertainty, respectively. Then, we
trained 10 distilled models with different random initializations following the same procedure as
standard training using the new target labels generated by the teacher ensemble.

DISTILLING RESIDUALBIND

For each cell type, we also trained an ensemble of 10 ResidualBind models with different random
initializations on both the mean and standard deviation of experimental activity values across the
biological replicates in the lentiMPRA data, with the latter value representing aleatoric uncertainty.
The averages of the activity and aleatoric uncertainty predictions from this ensemble were used as
new target values for training the distilled models. Moreover, the standard deviation of the activity
predictions were also used to generate labels for the epistemic uncertainty as with DeepSTARR.
Then, we trained 10 distilled models with different random initializations following the same proce-
dure as standard training using the new target labels generated by the teacher ensemble.

DISTILLING CNN-TASK-BASE

We first trained an ensemble of 10 CNN-task-base models with different random initializations on
profile-based ATAC-seq data. These models were trained to predict the mean and standard deviation
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of the profiles across the three biological replicates. We then used the ensemble of models to gener-
ate new bigWig tracks based on the mean and standard deviation of the profiles across the 10 models,
using wiggletools. We also included the mean of the aleatoric uncertainty head, resulting in 3 bigWig
tracks all generated by the predictions of the ensemble. Each bigWig was processed following the
same procedure as the original ATAC-seq profiles. Distilled models used the same architecture and
training procedure as the standard CNN-task-base with the exception of using ensemble-generated
labels and the addition of the epistemic profile prediction task, resulting in 3 prediction tasks, includ-
ing the mean profile, the aleatoric uncertainty profile, and the epistemic uncertainty profile. Then,
we trained 10 distilled models with different random initializations following the same procedure as
standard training using the new target labels generated by the teacher ensemble.

DISTILLING MODELS WITH DYNAMIC AUGMENTATIONS

During distillation, we generated data augmentations following three different augmentation
schemes:

1. EvoAug-TFYu et al. (2024), with n augmentations selected from the same augmentation
list described above where n is randomly selected from 0 to 2.

2. Random mutagenesis using the EvoAug-TF implementation with a mutation fraction of 5%
3. Random shuffling

The augmentation is applied to each minibatch during training, replacing the original training se-
quences. The ensemble of teacher models is used to make predictions on the augmented sequences,
and the average and standard deviation of these predictions are used as target values for activity and
uncertainty, respectively. The original validation and test sequences were used for early stopping
and evaluations. Student models were trained with the same optimizer, learning rate decay, and
early stopping hyperparameters described for standard training.

OOD GENERALIZATION ANALYSIS

We generated out-of-distribution (OOD) sequences using the following sampling methods:

1. Small distribution shift: random mutagenesis with a mutation fraction of 5% generated
with EvoAugLee et al. (2023).

2. Moderate distribution shift: evolution-inspired mutagenesis generated with 2 augmenta-
tions selected from the same augmentation list described above using EvoAugLee et al.
(2023)

3. Large distribution shift: random shuffling of the test sequences.

Activity labels for these OOD sequences were obtained by averaging the predictions from an in
silico oracle comprised of an ensemble of DeepSTARR models trained with EvoAug (with the same
hyperparameters as stated above).

ATTRIBUTION ANALYSIS

Saliency Maps Simonyan et al. (2013) and DeepSHAP Lundberg & Lee (2017) scores were em-
ployed for attribution analysis to elucidate the input nucleotides most influential model predictions.
For each sequence activity output head of each model, we generated attribution maps for 1000 se-
quences from the test set associated with the largest target values. Each method yielded a 4 × L
map where L is the length of the input sequence. For DeepSHAP, background sequences were com-
prised of 100 randomly selected sequences from the test set. Gradient correction was applied to
all attribution maps by subtracting the average attribution score across all channels (nucleotides) at
each position Majdandzic et al. (2023). For profile-based models, we transformed the predictions to
a scalar through a global average along the length dimension.

CALCULATING SIMILARITY OF ATTRIBUTION SCORES TO ENSEMBLE AVERAGE

For each individual model, we calculated the root mean squared error (RMSE) of the attribution
maps for the 1000 sequences evaluated between the individual models and the average attribution
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maps of the teacher ensemble. Individual models refer to those trained with either DEGU distillation
or standard training from random initializations. The teacher ensemble was calculated by averaging
the attribution maps across the 10 individual models with standard training.

CALCULATING VARIABILITY OF ATTRIBUTION SCORES ACROSS DIFFERENT INITIALIZATIONS

For each of the 1000 sequences evaluated, we calculated the variance of their attribution scores for
each nucleotide and position in each sequence across 10 individual models (trained with different
random initializations). These per-nucleotide and per-position variances are then summed across the
sequence to calculate the total variance, followed by a square root operation to provide a measure of
the standard deviation of attribution scores across different initializations.

CONTROL EXPERIMENT WITH NORMALIZED ATTRIBUTION SCORES

For the control experiment that isolated mechanistic variability, we obtained the per-sequence max-
imum attribution score magnitude across nucleotides and positions for each of the 1000 sequences
evaluated and then divided all attribution scores by this value to obtain an attribution-magnitude
normalized set of attribution score.

EVALUATION OF THE SIZE OF THE TEACHER ENSEMBLE FOR DEEPSTARR

We trained an additional 15 DeepSTARR models using different random initializations using the
entire STARR-seq training set for a total of 25 models. We then performed ensemble distribution
distillation for subsets of 2, 3, 4, 5, 15, and 20 of these replicates, as well as for the entire set of 25
replicates. We evaluated the predictive accuracy of the activity predictions for the individual models
in these ensembles, the ensemble average, and the distilled models derived from the respective
teacher ensembles and compared them across different teacher ensemble sizes.

UNCERTAINTY-AWARE MODELS

HETEROSCEDASTIC REGRESSION

ResidualBind models trained with heteroscedastic regression utilized a Gaussian negative log-
likelihood loss function. The final output layer was modified to a linear layer with 2 output heads
representing the mean (µ) and log variance (log σ2). The use of log variance ensures numerical
stability during training and guarantees positive variance predictions. The loss function is defined
as:

L =
1

N

N∑
i=1

1

2

[
log(2πσ2

i ) +
(yi − µi)

2

σ2
i

]
,

where µi and log σ2
i are predicted by the model and N is the number of samples in the batch. The

model was trained using mini-batch stochastic gradient descent with the same optimizer, learning
rate decay, and early stopping settings as used for standard training of the models described above.
The variance predicted by heteroscedastic regression represents aleatoric uncertainty.

DEEP EVIDENTIAL REGRESSION

ResidualBind models trained with deep evidential regressionAmini et al. (2020) were modified so
that their output layer considers the mean (µ) and log-variance (log σ2), which represents an estimate
of the aleatoric uncertainty. The loss function is defined as:

L = E
[
1

2

(
(µ− y)2

σ2
+ log(2π) + log σ2

)]
,

where E[·] denotes the expectation (average) over all dimensions and samples in the batch. The
terms µ and log σ2 are predicted by the model and y is the true value.

MC DROPOUT

We implemented Monte Carlo (MC) dropout as described by Gal and Ghahramani Gal & Ghahra-
mani (2016). This method leverages dropout at inference time to estimate predictive uncertainty.
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For each input, we performed 100 stochastic forward passes through the model, with dropout re-
maining active during inference. We then calculated the mean and standard deviation across the
predictions for each input. The mean prediction represents the model’s best estimate, while the
standard deviation quantifies the epistemic uncertainty associated with that prediction.

UNCERTAINTY CALIBRATION ANALYSIS

INTERVAL COVERAGE ANALYSIS

For each uncertainty quantification method, we calculated a 95% confidence interval using the
model’s prediction of sequence activity and uncertainty for the test sequences in model’s corre-
sponding dataset. For uncertainty quantification methods that yielded both aleatoric and epistemic
uncertainty estimates, we calculated intervals based on each of the two different uncertainty esti-
mates as well as the total uncertainty calculated as the sum of the variances, according to:

σT =
√

(σ2
E + σ2

A) ,

where σT is total uncertainty, σ2
E is epistemic uncertainty, and σ2

A is aleatoric uncertainty. For
models where the uncertainty prediction was given as log-variance (i.e. models trained with het-
eroscedastic regression), the output was accordingly transformed for compatibility with total un-
certainty as a measure of standard deviation. The interval coverage probability was calculated as
the fraction of cases where the experimental activity value fell within the 95% confidence interval
constructed from the predicted activity and uncertainty values. Assuming a Gaussian distribution,
the 95% confidence interval was calculated as µ̂± 1.96σ̂, where µ̂ and σ̂ represent the estimates of
activity and uncertainty for the method being evaluated.

CONFORMAL PREDICTIONS

Conformal prediction was used to calibrate the predicted uncertainties, according to:

λ = quantile1−α

(
|yi − ŷi|

σi

)
,

where yi are the true target values for the calibration sequence i, ŷi are the predicted values for the
calibration sequence i, σ̂i are the uncertainty estimates for the calibration sequence i, and α is the
desired confidence threshold, set to 0.05.

Calibration sequences were taken from the validation set. The calibration factor λ is then multiplied
by the predicted uncertainty estimates for the test sequences.
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