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ABSTRACT

As large language models (LLMs) continue to scale, model compression becomes
increasingly important for enabling edge deployment and ensuring accessibility
to users with limited resources. Weight-only quantization is a key technique
for model compression, allowing for a substantial reduction in model size while
preserving performance. However, as bit-width decreases, the performance of
quantized LLMs tends to degrade significantly. Additionally, due to the non-
differentiable operation in quantization, standard finetuning on quantized LLMs
is unsupported, and alternative finetuning approaches often fail to match the ef-
fectiveness of full finetuning. In this paper, we introduce ClusComp, a novel and
simple model compression paradigm. ClusComp first clusters the weight matrices
to generate codebooks, and then tunes these codebooks block-by-block to recon-
struct intermediate activations. Despite its simplicity, ClusComp (1) consistently
achieves better performance in 2-4 bit precision; (2) pushes the compression limit
to the 1-bit level, and outperforms existing ultra-low-bit methods with limited
finetuning steps; (3) facilitates seamless and efficient finetuning, surpasses exist-
ing quantization-based or memory-efficient finetuning methods, and even rivals
full finetuning of the FP16 model. Notably, these procedures can be executed on
a single NVIDIA A6000-48GB GPU for LLMs with as many as 70B parameters.
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Figure 1: Compression quality and efficiency of ClusComp, consisting of a sequential clustering
and reconstruction. Methods in triangle use more number of calibration samples. Some results are
divided by a factor for better visualization. E.g. “AQ/4” indicates that the perplexity is divided by 4.

1 INTRODUCTION

Large language models (LLMs) have garnered significant acclaim and success across various do-
mains and applications (Touvron et al., 2023a; Brown et al., 2020; Raffel et al., 2020b). With
ongoing advancements, the scope and complexity of released LLMs have witnessed exponential
growth, with some LLMs encompassing >50B parameters (Dubey et al., 2024; Zhang et al., 2022;
Scao et al., 2022). This remarkable upscaling introduces considerable challenges, particularly when
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deploying these models or granting their accessibility to users with constrained resources. To ad-
dress these challenges, weight-only post-training quantization (PTQ) has emerged as a promising
approach, effectively compressing LLMs to a lower bit while preserving the FP16 performance.

PTQ methods can generally be classified into three categories: statistic-based, gradient-based, and
codebook-based approaches. Statistic-based methods (Dettmers et al., 2024; Lin et al., 2024; Frantar
et al., 2022) determine the quantization grid based on the distribution of the weight values, whereas
gradient-based methods (Shao et al., 2024; Ma et al., 2024) optimize the quantization grid with
some calibration samples. Codebook-based methods (Egiazarian et al., 2024; van Baalen et al.,
2024; Kim et al., 2024; Park et al., 2024) cluster similar weight elements to the shared quantized
centroids, employing non-uniform quantization and pushing the limits to extremely low bit levels.
However, these methods continue to struggle with low-bit quantization and the presence of outliers,
leading to significant performance degradation, especially in models like Llama-3 (Dubey et al.,
2024), which exhibit a large number of outliers in their weight matrices (Huang et al., 2024c).

Another challenge PTQs encounter is their limited support for finetuning, which is crucial for adapt-
ing LLMs to various downstream tasks. Finetuning LLMs is computationally expensive due to
their large scale and the need to cache activations and store optimizer states. PTQ, which com-
presses LLMs, appears to be a promising approach for finetuning as it reduces memory require-
ments for loading these LLMs. However, most quantization techniques use a round-to-nearest op-
eration, which does not support gradient back-propagation. Typically, parameter-efficient methods
(Dettmers et al., 2023; Li et al., 2024c; Liao & Monz, 2024a) are employed to train the added pa-
rameters while keeping the quantized LLMs frozen, bypassing this limitation. Nonetheless, this
finetuning approach presents two major drawbacks: (1) Freezing the quantized LLMs prevents fur-
ther reduction of quantization errors during finetuning; (2) The low-rank nature of most parameter-
efficient methods restricts their expressiveness (Biderman et al., 2024; Liao & Monz, 2024b).

In this paper, we propose a simple while effective paradigm that mainly applies Clustering to
Compress LLMs, referred to as ClusComp. Additionally, ClusComp can function as a parame-
ter and memory-efficient finetuning method. Our preliminary experiments reveal that open-source
LLMs are increasingly difficult to quantize, primarily due to the growing frequency of outliers in
their weight matrices (§3.1). Based on this observation, we propose using clustering instead of quan-
tization to compress LLMs, retaining all values in FP16 format to circumvent issues arising from
outlier quantization (§3.2.1). To further reduce compression errors, we minimize block-wise output
discrepancies between the compressed and uncompressed blocks, using a limited set of calibration
samples (§3.2.3). Since all parameters remain in FP16 after compression, ClusComp fully supports
standard neural network training. By incorporating an inexpensive, end-to-end recovery finetuning
step, we can push compression rates to the 1-bit level. Additionally, ClusComp allows for finetuning
compressed LLMs on various downstream tasks (§3.2.4).

We begin by evaluating the effectiveness of ClusComp in the context of model compression across 2
language modeling tasks and 6 zero-shot reasoning tasks. ClusComp consistently surpasses various
baselines at 2-4 levels, even achieving a perplexity of <13 at the 2-bit level on WikiText2 (Merity
et al., 2017) for all LLMs (§4.1). Following recovery finetuning, ClusComp’s performance at 2-bit
and 1-bit levels approaches that of the FP16 model, with an accuracy of 57.8 vs 68.6 for the 2-bit
Llama-3-8B and 51.4 vs 75.4 for the 1-bit Llama-3-70B (§4.2). Additionally, ClusComp demon-
strates its utility as a parameter-efficient (< 1%) and memory-efficient (42GB for Llama-3-70B)
finetuning method, outperforming quantization-based and memory-efficient finetuning approaches,
while matching the performance of full finetuning (§4.3).

2 RELATED WORKS

2.1 MODEL COMPRESSION

Quantization and pruning are two typical and effective methods for model compression.

Quantization refers to the process of converting floating-point values into discrete levels, thereby
reducing the bit-width required and minimizing memory consumption during model loading. Taking
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the symmetric uniform quantization as an example, a weight matrix W is quantized as follows:

Wq = clamp(⌊W
s
⌉,−2b−1, 2b−1 − 1) with s =

max(|Wmin|, |Wmax|)
2b − 1

(1)

where b denotes the bit-width, s is the scale factor, and ⌊⌉ represents the round-to-nearest (RTN)
operation. Since the quantization grid is uniform, its effectiveness is contingent on the distribution
of the weight values. In cases where the weight matrix contains a significant number of outliers or
is quantized to lower bit-widths, the resulting quantization error may be substantial.

Post-training quantization (PTQ) methods, such as GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2024), and OmniQuant (Shao et al., 2024), apply quantization to a model after training with mini-
mal computational resources. However, these approaches, which rely on uniform quantization, are
significantly impacted by the presence of outliers in the weight matrices. Recent methods (Dettmers
et al., 2024; Yuan et al., 2024; Huang et al., 2024a) address this challenge by retaining salient weights
in FP16 format, thereby maintaining strong performance at lower bit widths. Nonetheless, these
mixed-precision quantization techniques require specially optimized CUDA kernels to either en-
hance or preserve inference speed. Closely related to our proposed method, ClusComp, are works
such as GPTVQ (van Baalen et al., 2024), QuIP# (Tseng et al., 2024) and SqueezeLLM (Kim et al.,
2024) which implement quantized codebooks for non-uniform quantization, achieving state-of-the-
art performance for ultra-low-bit quantization. ClusComp, however, differs in two significant ways:
(1) The codebook in ClusComp is stored in FP16, offering additional advantages for subsequent re-
covery training and finetuning; (2) While other methods face limitations similar to those in VAE-like
approaches (Kingma & Welling, 2014), where large and high-dimensional codebooks are infeasible
due to mode collapse, ClusComp circumvents this issue. Our fixed-code design allows us to utilize
a codebook size of 216 in 4-16D without encountering such difficulty.

Pruning is a widely used model compression technique that removes redundant weights or struc-
tures from the model (Sun et al., 2024a; Xia et al., 2024; Frantar & Alistarh, 2023; Liao et al.,
2023). It often leads to significant degradation as sparsity increases, and generally yields inferior
results at equivalent compression rates compared to quantization. Nevertheless, pruning offers an
advantage for training, as all parameters remain in high precision, allowing for seamless integration
with continuous pretraining or finetuning. Similarly, ClusComp retains high-precision parameters,
and naturally supports standard finetuning.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation is a technique used to enhance the performance of smaller models by trans-
ferring knowledge from larger, more complex models (Hinton et al., 2015). Most state-of-the-art
quantization methods leverage either block-wise or model-wise distillation. Block-wise distillation
(as employed in OmniQuant, GPTVQ, AQLM and QuiP#) focuses on minimizing errors between
the FP16 and quantized models on a block-by-block basis. This approach is more memory-efficient
than model-wise distillation, as it requires loading only two blocks into the GPU at the same time.
In contrast, model-wise distillation (used in QuiP# and LLM-QAT (Liu et al., 2024)) minimizes the
error across the entire model output, necessitating the loading of at least one full FP16 model into the
GPU. ClusComp adopts block-wise distillation, significantly reducing GPU memory requirements
compared to loading an FP16 model. As demonstrated in Figure 1, ClusComp consumes only 26GB
memory for a 70B LLM, which would otherwise require 140GB in FP16 for loading, making our
technique more accessible to users with limited computational resources.

2.3 FINETUNE QUANTIZED MODEL

Finetuning is crucial for adapting LLMs to various domains and applications. Quantization, which
reduces model size, is theoretically more conducive to finetuning. However, directly finetuning a
quantized model is not a standard approach, as RTN does not support gradient back-propagation.
Finetuning using a straight-through estimator (STE) (Bengio et al., 2013) is relatively under-
explored and may lead to catastrophic forgetting (Malinovskii et al., 2024). Previous works (Xu
et al., 2024a; Liao & Monz, 2024a; Dettmers et al., 2023) propose freezing the quantized model
while updating newly added LoRAs (Hu et al., 2022). However, these approaches suffer from
two key limitations: (1) Freezing the quantized model prevents the mitigation of quantization er-
rors during finetuning. Moreover, not all quantization methods are suitable for finetuning. Popular
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Figure 2: The Llama series becomes increasingly difficult to quantize. Left & Middle: From Llama-
2 to Llama-3, all methods show increasing difficulty in quantization at lower bit levels. Right: From
Llama-1 to Llama-3, the average kurtosis on weights of most layers is increasing.

techniques like GPTQ and QLoRA, while widely used, exhibit significant quantization errors below
4-bit. (2) The expressiveness of LoRA is constrained by its bottleneck design (Biderman et al., 2024;
Liao & Monz, 2024b). In contrast, ClusComp, where all parameters are maintained in high preci-
sion, inherently supports seamless finetuning. Additionally, updating the codebook in ClusComp
results in modifying all parameters in the weight matrices, even offering superior performance com-
pared to full finetuning while maintaining a similar number of trainable parameters as LoRA.

3 METHOD

3.1 PILOT STUDY

Before introducing ClusComp, we present a key observation from our experiments on different
Llama series. As depicted in Figure 2 (Left & Middle), when reducing the bit-width, the perfor-
mance of various quantization methods (RTN, GPTQ, and AWQ) follows a similar trend: Llama-3
(Dubey et al., 2024) proves more challenging to quantize than Llama-2 (Touvron et al., 2023b).

We hypothesize that the increased difficulty arises from a higher frequency of outliers in the linear
layers of Llama-3. Since these quantization methods rely on uniform quantization, they are particu-
larly sensitive to outliers in the weight matrices. To test this hypothesis, we analyzed the kurtosis of
the weight matrices—a well-established metric for identifying the presence of outliers (Bondarenko
et al., 2023). As shown in Figure 2 (Right), we have two key observations: (1) All models exhibit
higher kurtosis at the beginning and end of the model; (2) From Llama-1 to Llama-3, the kurtosis
increases in most layers, indicating a rise in the frequency of outliers in the linear layers. This trend
provides a potential explanation for our quantization difficulties. It also implies that the future Llama
series might be even more difficult for quantization.1

Given that the quantization performance is impacted by outliers, could an alternative approach for
model compression involve storing all weight values in FP16 instead of applying quantization?

3.2 CLUSCOMP

The first idea that comes to our mind is clustering, where similar weight values are represented
by a single identified value. This method enables model compression while preserving all weight
values in FP16 format. In this section, we introduce three variants of ClusComp that primarily
utilize clustering for compressing LLMs: ClusComp−, which applies clustering alone; ClusComp,
which enhances ClusComp− with block-wise error minimization; and ClusComp+, which further
improves the compressed LLMs through next-token prediction training based on ClusComp.

3.2.1 CLUSTERING

Consider a weight matrix W ∈ Rdin×dout , direct clustering along either dimension of W is subopti-
mal as it leads to a significant reconstruction error, particularly due to the large values of din and dout
in LLMs. To mitigate this issue, we reshape W into a set of lower-dimensional vectors, denoted as

1We present the kurtosis for different types of layers and a promising quantization idea in Figure C.1.
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Table 1: Bits for W with din, dout = 4096 (16.78M).

Setting #Params. for codes #Params. for codebook b̄

g4n65500 4.19M 0.26M (1.55%) 4.25
g6n65500 2.80M 0.39M (2.32%) 3.04
g9n65500 1.86M 0.59M (3.52%) 2.34
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Figure 3: Histogram of the codes.

W ′ = {w1,w2, . . . ,wk}, where each wi ∈ Rg and k = din·dout
g .2 The goal is to partition W ′ into

n clusters {C1, C2, . . . , Cn} by solving the following optimization problem:

arg min{C1,C2,...,Cn}

n∑
j=1

∑
wi∈Cj

||wi − cj ||2 (2)

where cj ∈ Rg denotes the centroid of cluster Cj . This clustering problem is well-established in the
machine learning literature and can be iteratively addressed using K-means (Lloyd, 1982) with the
Expectation-Maximization (EM) algorithm:

• E-step: Each vector wi is assigned to the cluster whose centroid cj minimizes the Eu-
clidean distance, i.e., C(t)

j = {wi : ||wi − c
(t)
j ||2 ≤ ||wi − c

(t)
l ||2 ∀l}.

• M-step: The centroid of each cluster is updated as the mean of the vectors assigned to that
cluster, i.e., c(t+1)

j = (
∑

wi∈C
(t)
j

wi)/|C(t)
j |.

Upon completion, two key elements are obtained for each weight matrix: (1) a codebook C =
{c1, c2, . . . , cn} ∈ Rg×n that contains all centroids, and (2) a set of codes q = {q1, q2, . . . , qk} ∈
{1, 2, . . . , n}k that records the assignment of each vector wi to the closest centroid, where qi =
q(wi) = j if cj = argmincl∈C ||wi − cl||2. Using the codes q and the codebook C, the weight
matrix W ′ can be reconstructed as Ŵ ′ = {cq1 , cq2 , . . . , cqk}. In PyTorch (Paszke et al., 2017), the
linear layer is adapted in Listing C.1.

Remark: ClusComp, when applied solely with clustering, is referred to as ClusComp−. In this
configuration, only the weight matrices are utilized, leading to substantial memory efficiency, with
a mere 2GB memory consumption on 1 GPU as shown in Figure 1. Moreover, this process can be
considerably accelerated with more GPUs, as the clustering of different matrices is independent.

3.2.2 ESTIMATE MODEL SIZE

After clustering, it is sufficient to store the codes q ∈ {1, 2, . . . , n}k and the codebook C ∈ Rg×n.
Unlike prior works (van Baalen et al., 2024; Egiazarian et al., 2024; Tseng et al., 2024), we don’t
quantize the codebook; instead, we store it in FP16 format. The bit-width required for the codes
depends on the range of n. To maintain efficiency, we set n < 216 and use unsigned 16-bit integers
to represent the codes. Thus, the average bits-per-parameter can be calculated as:

b̄ =
size in bits

number of parameters
=

16 · k + 16 · g · n
din · dout

=
16

g
+

16 · g · n
din · dout

(3)

In the right-most of Equation (3), the first term corresponds to the bit-width allocated to the codes,
and the second term corresponds to the bit-width of the codebook. As an example, for a linear layer
W with din = dout = 4096, clustering with g = 4 and n = 216 − 1 results in b̄ ≈ 4 + 0.25 = 4.25.
This demonstrates that the majority of the bit-width is allocated to the codes, which is a primary
reason for constraining n < 216, so we can use 16 instead of 32-bit integers to represent the code.
Further reducing n to a smaller range leads to fewer centroids, which in turn increases reconstruction
error. More settings can be found in Table 1 and C.1.

Remark: While we express the model size in terms of bits-per-parameter, it is important to note that
no quantization is applied in ClusComp. Instead, we reduce the number of parameters in W from

2In cases where the dimensions are not divisible, zero-padding is applied to W . In PyTorch, the matrix is
reshaped as W ′ = W .transpose(1, 0).view(-1, g), where transposing W offers slightly better performance.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

din ·dout to k+ g ·n. Utilizing bits-per-parameter allows for a direct comparison between ClusComp
and quantization-based methods. Surprisingly, ClusComp−, which only incorporates the clustering
step without employing any calibration data, already surpasses RTN, GPTQ and AWQ, as illustrated
in Figure 2 (Left & Middle). These results highlight its effectiveness in model compression.

3.2.3 BLOCK-WISE ERROR MINIMIZATION

Block-wise error minimization (block-wise reconstruction or knowledge distillation) has emerged as
a standard, efficient and effective approach to reducing quantization error (Egiazarian et al., 2024;
Tseng et al., 2024; van Baalen et al., 2024; Shao et al., 2024; Liao & Monz, 2024a). To further
mitigate the compression error caused by clustering, we incorporate block-wise error minimization
into ClusComp− using a limited set of calibration samples, expressed as:

arg minCs||F(W s,X)−F(Cs, qs,X ′)|| (4)
Here, F denotes a Transformer block (Vaswani et al., 2017), W s represent the weight matrices in
the uncompressed block, and Cs and qs denote the codebooks and codes in the compressed block.
X refers to the input of the uncompressed block, which is also the output from the previous un-
compressed block, while X ′ is the input to the compressed block, originating from the output of the
preceding compressed block. For the first block, we have X = X ′. Block-wise error minimization
is memory-efficient as it only requires loading two blocks into the GPU simultaneously.

Remark: In Equation (4), we only train the codebook Cs while keeping the codes qs fixed as indices.
This design offers two key advantages: (1) It enhances data efficiency. As illustrated in Table 1, the
majority of parameters are represented by the codes. Training both the codebooks and codes with a
limited number of calibration samples (128) leads to overfitting; (2) More importantly, training the
codes with a large number of centroids (216) can result in mode collapse (Sun et al., 2024b; Kingma
& Welling, 2014). Since the codes already exhibit a uniform distribution after clustering (see Figure
3), keeping the codes fixed indicates that all centroids in the codebook can be trained uniformly.
Such a code-fixed design is also applied to the following recovery and finetuning step. Combining
both clustering and block-wise error minimization steps, we term this method ClusComp.

3.2.4 RECOVERY AND FINETUNING

We present the adapted linear layer for ClusComp in Listing C.1, which can be seamlessly integrated
as a replacement for the original linear layer in LLMs. As the codebook is represented in FP16, this
new layer inherently supports training without requiring additional tricks, like STE.

Recovery training. The compressed LLMs can be further trained by predicting the next token to
recover information lost due to compression. This is achieved by finetuning the codebook parame-
ters. This form of training is memory-efficient in two distinct ways: (1) Since the LLM is already
compressed, loading it onto the GPU consumes less memory compared to the FP16 version; (2)
As illustrated in Table 1, the parameters in the codebook account for < 5% of the total parameters
in the FP16 version, making the training both parameter-efficient and memory-efficient (with the
optimizer states being smaller). We refer to ClusComp with recovery training as ClusComp+.

Finetuning. Like recovery training, finetuning the compressed LLM on downstream tasks can also
be performed efficiently. Unlike QLoRA (Dettmers et al., 2023), which freezes the quantized LLM
and trains only the LoRA (Hu et al., 2022) modules, finetuning the codebook alone eliminates the
need for this additional constraint. This approach offers two key advantages over QLoRA: (1) Freez-
ing the quantized LLM prevents mitigation of quantization errors, whereas finetuning the codebook
can further address compression errors for downstream tasks; (2) The low-rank bottleneck of LoRA
limits its expressiveness (Biderman et al., 2024). In contrast, finetuning the codebook is analogous
to adapting the entire high-rank weight matrix, providing greater flexibility and expressiveness.

4 EXPERIMENTS

4.1 COMPRESSION RESULTS

LLMs and evaluation. We evaluate ClusComp on widely adopted LLM families: Llama-1-7B,
Llama-2-7B/13B/70B and Llama-3-8B/70B (Touvron et al., 2023a;b; Dubey et al., 2024). We mea-
sure the performance of compressed LLMs on zero-shot and language modeling tasks. For zero-shot

6
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Table 2: The perplexity of Llama series on WikiText2 and C4. Only the competitive baselines are
shown here for a compact representation. Refer to Table C.1 and C.2 for all results and settings.

Method #Bit Wiki2 (PPL↓) C4 (PPL↓)
1-7B 2-7B 2-13B 2-70B 3-8B 3-70B 1-7B 2-7B 2-13B 2-70B 3-8B 3-70B

- 16.00 5.68 5.47 4.88 3.31 6.12 2.90 7.08 6.97 6.46 5.52 9.20 5.87

GPTQ 4.13 5.85 5.61 4.98 3.42 6.50 3.30 7.21 7.12 6.56 5.58 10.40 6.94
AffineQuant 4.13 5.77 5.58 4.95 - - - 7.20 7.12 6.56 - - -
GPTVQ 4.13 - 5.68 4.97 3.39 - - - - - - - -
OmniQuant 4.16 5.77 5.58 4.95 3.40 - - 7.21 7.12 6.56 5.58 - -
ClusComp− ≤ 4.14 5.88 5.67 5.04 3.44 6.59 3.28 7.27 7.16 6.63 5.61 9.39 7.02
ClusComp ≤ 4.14 5.73 5.54 4.94 3.40 6.39 3.12 7.17 7.09 6.55 5.61 9.27 6.99

RTN 3.13 7.01 6.66 5.51 3.97 27.91 11.84 8.62 8.40 7.18 6.02 27.9 22.39
GPTQ 3.00 8.06 8.37 6.44 4.82 13.0 - 9.49 9.81 8.02 6.57 13.00 -
OmniQuant 3.00 6.49 6.58 5.58 3.92 - - 8.19 8.65 7.44 6.06 - -
AffineQuant 3.00 6.30 6.55 5.62 - - - 8.03 8.57 7.56 - - -
QuIP 3.00 - - - 3.85 7.50 - - - - 6.14 - -
ClusComp− ≤ 2.89 6.74 6.54 6.27 4.02 8.77 4.98 8.14 8.19 8.21 6.06 12.41 8.26
ClusComp ≤ 2.89 6.01 5.86 5.18 3.72 7.34 4.63 7.64 7.61 6.91 5.86 11.31 8.26

GPTQ 2.13 44.01 36.77 28.14 NAN 2.1e2 11.90 27.71 33.70 20.97 NAN 2.1e2 -
SliM-LLM+ 2.13 9.68 10.87 7.59 6.44 - - 14.99 18.18 10.24 8.40 - -
QuIP 2.13 - 39.73 13.48 6.64 84.97 13.03 - 31.94 16.16 8.17 1.3e2 22.24
PB-LLM 2.13 - 25.37 49.81 NAN 44.12 11.68 - 29.84 19.82 8.95 79.21 33.91
GPTVQ 2.13 - 8.23 6.50 4.64 - - - - - - - -
AffineQuant 2.13 13.51 10.87 7.64 - - - - 16.02 10.98 - - -
OmniQuant 2.14 9.72 11.06 8.26 6.55 - - 12.97 15.02 11.05 8.52 - -
ClusComp− ≤ 2.15 28.76 21.90 14.50 5.43 2.1e2 11.40 29.67 25.26 18.83 7.59 1.9e2 16.52
ClusComp ≤ 2.15 7.06 7.04 5.85 4.37 11.57 7.61 9.33 9.49 7.92 6.44 17.89 10.81

GPTQ 2.00 2.1e3 7.7e3 2.1e3 77.95 5.7e4 - 6.9e2 NAN 3.2e2 48.82 5.7e4 -
QuIP 2.00 - - - 6.33 85.10 - - - - - 1.3e2 -
AffineQuant 2.00 9.53 35.07 12.42 - - - - - - - - -
OmniQuant 2.00 15.47 37.37 17.21 7.81 - - 24.89 90.64 26.76 12.28 8.2e5 -
ClusComp− ≤ 2.01 65.09 52.38 22.90 9.84 3.1e2 - 74.61 50.08 24.47 13.96 2.2e2 -
ClusComp ≤ 2.01 7.49 7.50 6.17 4.83 12.33 - 10.11 10.29 8.49 7.02 21.45 -

evaluation, we apply 6 tasks from lm-eval v0.4.4 (Gao et al., 2024), i.e. PIQA (Bisk et al., 2020),
ARC-e/c (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019) and Wino-
Grande (Sakaguchi et al., 2020). For language modeling, we report the perplexity on the whole test
set of WikiText2 (Merity et al., 2017) and on 256 samples from the validation set of C4 (Raffel et al.,
2020a) with a sequence length of 2048 as our baselines. We also apply ClusComp to LLaVA-Next-
8B (Li et al., 2024b), and evaluate it on 5 multimodal tasks from lmms-eval v0.2.3 (Li et al., 2024a)
to show its broad applicability, i.e. AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022),
DocVQA (Mathew et al., 2021), MMBench (Liu et al., 2023) and MME (Yin et al., 2023).3

Baselines. Here we primarily compare ClusComp with three categories of baselines: (1) statistic-
based methods without neural training, including vanilla RTN, GPTQ (Frantar et al., 2022), AWQ
(Lin et al., 2024), and PB-LLM (Yuan et al., 2024);4 (2) gradient-based methods with neural training
(such as block-wise distillation), including OmniQuant (Shao et al., 2024), AffineQuant (Ma et al.,
2024), and SliM-LLM+ (Huang et al., 2024b); and (3) quantized codebook-based methods, includ-
ing QuIP (Chee et al., 2023) and GPTVQ (van Baalen et al., 2024). All baseline results are directly
borrowed from the original works or their follow-up works.

Settings. We begin by applying K-means clustering to the weight matrices of all linear layers,
referring to this method as ClusComp−. Next, we use 128 calibration sentences from the Wiki-
Text2 training set to minimize block-wise error through codebook training only, which we denote
as ClusComp. It is important to highlight that the majority of the aforementioned baselines uti-
lize comparable resources (GPU memory and the number of calibration sentences) to those used in
ClusComp. All detailed experimental settings in this section are provided in §B.

Results. The language modeling results are presented in Table 2. At the 4-bit level, ClusComp
demonstrates superior performance by achieving the lowest perplexity in 9 out of 12 cases, while
maintaining a negligible perplexity difference (≤ 0.05) compared to the best baselines in the remain-

3We observed that different studies may report varying zero-shot accuracy for the FP16 model, which can
be attributed to the lm-eval version or the choice of evaluation metric (accuracy or normalized accuracy). We
recommend that future researchers first reproduce the FP16 accuracy before making comparisons.

4ClusComp− is also a statistic-based method.
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Figure 4: Average zero-shot accuracy over 5/6 commonsense reasoning tasks, only including com-
petitive baselines. Please refer to Table C.3 and C.4 for detailed numbers and the full comparison.

Table 3: Zero-shot multimodal evaluation, with baseline results from Huang et al. (2024c).

Method #Bit AI2D ↑ ChartQA ↑ DocVQA ↑ MMBench ↑ Avg ↑ MME (cog / per) ↑

LLaVA-Next-8B 16.00 71.7 69.2 78.2 72.2 72.8 1965.1 (376.8 / 1588.3)

GPTQ 4.13 70.7 67.4 77.4 71.0 71.6 1895.0 (331.6 / 1563.4)
AWQ 4.13 70.6 68.0 77.2 71.1 71.7 1888.4 (325.7 / 1562.7)
ClusComp 4.13 70.0 68.7 77.6 71.1 71.8 1915.7 (322.1 / 1593.6)

GPTQ 3.13 66.2 65.1 75.6 67.4 68.6 1831.8 (290.1 / 1541.7)
AWQ 3.13 67.7 65.4 74.4 68.0 68.9 1840.3 (298.6 / 1541.7)
ClusComp 2.87 68.7 65.8 74.8 67.7 69.3 1872.6 (331.1 / 1541.5)

GPTQ 2.13 0.0 0.0 0.0 0.0 0.0 0.0 (0.0 / 0.0)
AWQ 2.13 0.0 0.0 0.0 0.0 0.0 0.0 (0.0 / 0.0)
ClusComp 2.14 53.9 53.1 56.7 50.1 53.5 1673.0 (294.6 / 1378.4)

ing 3 cases. At bit-widths < 4, ClusComp consistently outperforms all baselines. Notably, even at
the 2-bit level, ClusComp’s perplexity remains within a functional range, < 13 on Wikitext2. Figure
4 presents the zero-shot evaluation results, where ClusComp again consistently surpasses all base-
lines across different bit-widths. Furthermore, ClusComp exhibits significantly less sensitivity to
bit-width variations, as indicated by the flatter slope of its accuracy curve.

We also compress the Llama-3-8B backbone in LLaVA-Next-8B, and report the zero-short perfor-
mance in Table 3. On average, ClusComp continues to outperform both GPTQ and AWQ, while
using a comparable or even lower number of bits. A particularly noteworthy observation occurs
at the 2-bit level, where none of the baselines produce correct outputs, whereas ClusComp retains
strong performance. In comparison to the 2-bit results for Llama-3-8B in Figure 4 (Right), this
suggests that quantizing multimodal models presents unique challenges, warranting further study.

4.2 PUSH THE LIMIT OF MODEL COMPRESSION

We further enhance the performance of 2-bit LLMs and extend the compression boundary to the 1-
bit level through efficient recovery training. This is achieved by optimizing the codebook parameters
in an end-to-end manner during a next-token prediction task.

Baselines. We include BiLLM (Huang et al., 2024a), which performs effectively at the 1-bit com-
pression level. Additionally, three more resource-intensive PTQ baselines are considered: AQLM
(Egiazarian et al., 2024), which utilizes a larger number of calibration samples (4-16M tokens);
QuIP# (Tseng et al., 2024) and DB-LLM (Chen et al., 2024), both of which employ model-wise
distillation and a larger number of calibration samples (24-48M tokens).

Settings. ClusComp employs only 0.3M tokens for its compression. In this experiment, we further
finetune the compressed LLM generated by ClusComp through end-to-end training, optimizing the
codebook parameters using 16M tokens from a subset of the RedPajama dataset (Computer, 2023).
This extended method is referred to as ClusComp+.

Results. We report the zero-shot accuracy of ultra-low-bit LLMs in Table 4. On both Llama-2-7B
and Llama-2-13B, ClusComp already performs comparably to, or surpasses AQLM and QuiP#.
With minimal recovery training, ClusComp+ consistently outperforms these baselines on aver-
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Table 4: Zero-shot accuracy on ultra-low-bit LLMs.

Method #Bit PIQA ArcE ArcC Hella. Wino. Avg

Llama-2-7B 16.00 78.1 76.3 43.4 57.1 69.1 64.8
QuIP# 2.02 75.1 64.6 34.6 48.3 64.9 57.5
AQLM 2.02 73.6 61.9 33.3 49.5 64.2 56.5
ClusComp 2.00 72.6 67.0 32.9 47.2 63.4 56.6
ClusComp+ 2.00 73.5 67.2 33.9 49.3 65.1 57.8

Llama-2-13B 16.00 79.1 79.4 48.4 60.0 72.2 67.8
QuIP# 2.01 77.3 69.3 39.5 53.4 67.7 61.5
AQLM 1.97 76.2 69.8 37.8 53.7 65.4 60.6
ClusComp 1.99 75.6 74.7 39.9 53.0 67.1 62.0
ClusComp+ 1.99 76.8 74.9 40.7 54.5 68.4 63.1

Llama-3-8B 16.00 79.7 80.1 50.4 60.2 72.6 68.6
QuiP 2.00 52.9 29.0 21.3 29.2 51.7 36.8
PB-LLM 2.00 57.0 37.8 17.2 29.8 52.5 38.8
DB-LLM 2.00 68.9 59.1 28.2 42.1 60.4 51.8
ClusComp 2.01 70.1 63.3 31.9 44.4 58.4 53.6
ClusComp+ 2.01 74.8 66.7 34.8 49.6 63.4 57.8

Llama-3-70B 16.00 82.5 86.7 60.4 66.3 80.9 75.4
QuIP 2.00 65.3 48.9 26.5 40.9 61.7 48.7
PB-LLM 1.70 56.5 49.9 25.8 34.9 53.1 44.1
BiLLM 1.10 58.2 46.4 25.1 37.5 53.6 44.2
ClusComp 1.14 56.9 32.5 20.6 32.3 51.6 39.7
ClusComp+ 1.14 69.5 57.2 30.1 44.2 56.0 51.4

Table 5: In-domain finetuning perfor-
mance on Llama-2-7B. Two bits are
shown for baselines, since the LoRA
modules aren’t merged to the quantized
LLMs. The first and second numbers
denote the quantized LLM and the con-
verted bits from LoRA modules.

Method #Bit WikiText2 GSM8K
PPL ↓ ACC ↑

LoRA 16.00 5.08 36.9

QLoRA 4.25 + 0.40 5.70 35.1
LoftQ 4.25 + 0.40 5.24 35.0
ClusComp 4.15 5.26 41.0

QLoRA 3.25 + 0.40 5.73 32.1
LoftQ 3.25 + 0.40 5.63 32.9
ClusComp 3.38 5.37 39.9

QLoRA 2.25 + 0.40 NAN NAN
LoftQ 2.25 + 0.40 7.85 20.9
ClusComp 2.54 5.78 37.2
ClusComp 2.29 6.10 36.0

Table 6: General-domain finetuning performance, with baseline results from Xu et al. (2024b).

Method #Bit
MMLU (0-shot, ACC ↑) MMLU (5-shot, ACC ↑)

Hums. STEM Social Other Avg Hums. STEM Social Other Avg

Llama-1-7B 16.00 32.4 26.6 31.4 37.2 32.1 33.3 29.8 37.8 38.0 34.6

GPTQ-LoRA 4.50 35.7 30.9 38.0 44.0 37.1 33.8 31.3 37.4 42.2 36.0
QA-LoRA 4.50 36.9 31.4 40.3 44.9 38.3 36.6 32.4 44.8 44.9 39.4
PEQA 4.00 - - - - - 34.9 28.9 37.5 40.1 34.8
ClusComp 4.15 36.9 31.4 40.0 44.2 38.0 36.8 34.1 42.7 43.9 39.1

GPTQ-LoRA 3.50 31.5 28.9 31.8 36.8 32.2 31.6 30.1 35.6 39.8 34.0
QA-LoRA 3.50 36.0 34.1 42.0 42.3 38.3 35.6 30.5 41.5 42.7 37.4
ClusComp 3.38 38.2 32.7 41.2 45.4 39.2 36.3 31.4 41.3 43.0 37.8

GPTQ-LoRA 2.50 24.1 22.1 22.5 23.7 23.2 23.4 26.2 26.4 28.4 25.8
QA-LoRA 2.50 26.4 25.5 25.6 28.7 26.5 27.3 26.1 26.1 30.3 27.5
ClusComp 2.29 32.6 29.7 34.4 37.0 33.3 31.1 30.1 37.8 37.2 33.7

Llama-2-7B 16.00 38.9 32.9 46.6 44.9 40.7 43.0 36.4 51.4 52.2 45.5

QA-LoRA 4.50 41.1 35.4 50.2 50.1 43.9 42.1 34.4 49.1 50.3 43.9
ClusComp 4.15 41.6 36.3 52.3 51.1 44.9 42.8 38.1 52.2 53.1 46.1

Llama-2-13B 16.00 48.1 42.7 60.5 59.5 52.3 53.3 44.1 63.3 61.0 55.3

QA-LoRA 4.50 48.2 41.7 60.4 58.7 51.9 48.0 43.0 59.7 57.4 51.7
ClusComp 4.09 49.2 42.9 61.6 60.2 52.9 52.4 43.2 62.9 61.6 54.7

age, with the performance gap increasing for larger LLMs, indicating the robust scalability of
ClusComp+. On Llama-3-8B, ClusComp already exceeds all baselines, and ClusComp+ further
widens this margin. On Llama-3-70B, ClusComp+ achieves remarkable accuracy at the 1-bit level.
Furthermore, when comparing the improvements from ClusComp to ClusComp+ across different
Llama series, a notably larger performance gain is observed on the Llama-3 models, underscoring
the effectiveness of ClusComp+ on LLMs with a higher frequency of outliers.

4.3 FINETUNING QUALITY AND EFFICIENCY

We can finetune the compressed LLMs on downstream tasks by only training the codebooks.

In-domain finetuning. We finetune Llama-2-7B on the training sets of WikiText2 and GSM8K
(Cobbe et al., 2021), and report the perplexity and accuracy on their respective validation/test set.
ClusComp is compared with two LoRA-based techniques: QLoRA (Dettmers et al., 2023) and
LoftQ (Li et al., 2024c). As shown in Table 5, ClusComp consistently achieves superior results with
fewer bits (except at the 4-bit level on WikiText2, where it performs comparably to LoftQ), even
outperforming LoRA-finetuning of the FP16 model on GSM8K with a 2.54-bit compressed LLM.
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Table 7: ClusComp performance against efficient full
finetuning, with baseline results from (Pan et al., 2024).

Method Bit #Trained MMLU AGIEval
5-shot ↑ 3-shot ↑

Llama-2-7B 16.00 - 45.9 25.7
Full FT 16.00 100% 45.7 27.0

LoRA (r = 128) 16.00 4.9% 45.5 24.7
GaLore 16.00 100.0% 45.5 24.4
LISA 16.00 100.0% 46.2 26.1
ClusComp 4.15 0.9% 47.0 26.5
ClusComp 2.88 1.4% 45.1 25.6
ClusComp 2.00 1.4% 30.7 21.8
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Figure 5: Memory consumption for re-
covery training or finetuning. 4-bit
LLMs are used for ClusComp here.

General-domain finetuning. We finetune the compressed LLMs on Alpaca-GPT3.5 (Taori et al.,
2023) and evaluate them using the MMLU benchmark (Hendrycks et al., 2021). ClusComp is com-
pared against baseline methods that merge trained LoRA modules into the quantized linear layers
after finetuning, i.e. GPTQ-LoRA, QA-LoRA (Xu et al., 2024b) and PEQA (Kim et al., 2023).

As shown in Table 6, ClusComp consistently outperforms the baseline methods across different
LLMs and bit-widths, while using fewer bits. The only exception occurs at the 4-bit level for
Llama-1-7B, where ClusComp underperforms QA-LoRA by a small margin of 0.3 accuracy. The
performance gap between ClusComp and baselines is enlarged for lower bits or recent LLM series.

Compared to full finetuning. Similar to the general-domain finetuning, we finetune the compressed
LLMs on a new version of Alpaca, i.e. Alpaca-GPT4 (Peng et al., 2023), and evaluate them on both
MMLU and AGIEval (Zhong et al., 2024). Here we mainly compare ClusComp to some memory-
efficient finetuning methods that fully finetune the FP16 version, i.e. GaLore (Zhao et al., 2024) and
LISA (Pan et al., 2024). As shown in Table 7, finetuning the compressed LLMs at the 4-bit level
from ClusComp outperforms all memory-efficient finetuning methods, and rivals full finetuning. In
addition, the finetuned LLMs can be used in a low bit, friendly for inference.

The superior finetuning performance can be attributed to three key advantages of ClusComp: (1)
ClusComp introduces smaller compression errors; (2) Unlike QLoRA, where compressed LLMs
are frozen during finetuning, ClusComp allows for the model to remain unfrozen by training the
codebook parameters, enabling further mitigation of compression errors; (3) The low-rank design
of LoRA limits its expressiveness. In contrast, updating the codebook in ClusComp is analogous to
updating a high-rank weight matrix. In addition, the fixed-code design allows uniform training of
all centroids, providing greater expressiveness and can even rival full finetuning.

Efficiency discussion. Figure 5 illustrates the memory efficiency of ClusComp during training, with
a batch size of 1 and a sequence length of 1024. For the 70B LLM, we apply gradient checkpointing
(this is not used for the 7B LLM), while omitting any additional memory-saving techniques.

Finetuning the LLM compressed by ClusComp demonstrates memory efficiency in two key ways:
(1) The compressed LLM requires less memory for loading onto the GPU compared to the FP16
model; and (2) Only the codebook parameters, which contain a limited number of trainable param-
eters (< 1%), are updated, as detailed in Table 7. Consequently, the optimizer state size remains
small. ClusComp can serve not only as a model compression technique but also as an effective
method for both memory- and parameter-efficient finetuning.

5 CONCLUSION

The newly introduced model compression technique, ClusComp, operates by (1) independently ap-
plying clustering to the weight matrices to produce both the codebook and corresponding codes,
(2) reducing compression error through block-wise knowledge distillation, and (3) enhancing model
performance via efficient recovery finetuning. Comprehensive experiments demonstrate its effec-
tiveness as a compression method at 1-4 bit levels, while also showcasing its parameter and memory
efficiency for finetuning, with a competitive performance with full finetuning.
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A LIMITATION AND FUTURE WORK

Limitation. Although ClusComp demonstrates strong performance in both model compression and
finetuning tasks, its inference speed remains similar to that of FP16 models. As illustrated in Listing
C.1, ClusComp introduces two additional operations—indexing and reshaping—beyond those found
in a standard linear layer. These operations are computationally efficient, resulting in an inference
speed that is similar to that of the original linear layer. Since no quantization techniques are applied,
the transfer of weight tensors does not contribute to time savings, resulting in a smaller inference
speed than the uniform quantization methods. Nevertheless, we consider this trade-off acceptable
given the model’s notable performance in compression and finetuning.

Future work. The following list of tasks is in our plan:

• Design a new CUDA kernel that is more efficient for ClusComp.

• Apply ClusComp to reduce the memory requirement for caching the keys and values, which
facilitates LLMs for long-context tasks.

• Apply the fixed-code idea to a VAE-like method to scale up the size and dimension of the
codebook for the image generation task.

• Study the quantization of large multimodal models, since they show different behaviors
from LLMs (see Table 3).

B EXPERIMENTAL DETAILS

B.1 CLUSTERING

We use the K-means implementation from the Faiss library (Douze et al., 2024). The number of
iterations is set to 20, with all default settings for other arguments.

B.2 BLOCK-WISE ERROR MINIMIZATION

For all LLMs, 128 calibration sentences with a length of 2048 tokens are randomly selected from
the WikiText-2 training set (Merity et al., 2017). The detailed hyper-parameters are listed in Table
B.1. Only the codebooks are trained, while keeping all other parameters (from the embedding layer,
output layer and normalization layers) frozen.

Table B.1: Hyper-parameters used for the block-wise error minimization and recovery training steps.
The underlined settings generally perform well for different scales of LLMs.

Hyper-parameter Block-wise error minimization Recovery training

Optimizer AdamW (Loshchilov & Hutter, 2019; Kingma & Ba, 2015)
Weight decay {0, 0.1, 0.01} 0
LR {1e-5, 5e-5, 1e-4, 5e-4} 1e-5
LR scheduler constant cosine
Warmup ratio 0 0
Max grad norm - 0.3
Sequence length 2048 4096
Number of samples 128 8192
Epochs 20 1
Batch size 8 8

B.3 RECOVERY TRAINING

For the recovery training, we randomly sample 1024 sentences with a length of 4096 tokens from a
subset of RedPajama (Computer, 2023).5 Then we train the compressed LLMs to predict the next
token by only tuning the codebook parameters. The hyperparameters used in this step are listed in
Table B.1.

5https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
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B.4 IN-DOMAIN FINETUNING

We follow the settings from (Li et al., 2024c), and finetune the compressed LLM on the training set
of WikiText2 and on the training set of GSM8K. The hyperparameters for finetuning are listed in
Table B.2. We evaluate the finetuned model on the validation set of WikiText2 and on the test set of
GSM8K every epoch and report the best perplexity or accuracy.

Table B.2: Hyperparameters for the finetuning on Llama-2-7B. The underlined settings generally
performs well for different bit levels.

Hyper-parameter WikiText-2 GSM8K Alpaca-GPT3.5 Alpaca-GPT4

Optimizer AdamW AdamW
Weight decay 0.1 0
LR {0.7, 1, 3}×10−4 {2, 4, 6, 8}×10−5

LR scheduler cosine cosine
Warmup ratio 3% 6%
Epochs or max steps 3 epochs 6 epochs 10K steps 2 epochs
Batch size 64 16 16
Max sequence length 1024 512 2048

B.5 GENERAL-DOMAIN FINETUNING

The finetuning hyper-parameters are listed in Table B.2, which is similar to the ones in QA-LoRA
(Xu et al., 2024b) on Alpaca-GPT3.5, or to the ones in LISA (Pan et al., 2024) on Alpaca-GPT4.

C MORE RESULTS

In this section, we provide the detailed numbers for the figures in the main pages and more results:

• We present the kurtosis of various types of layers in Figure C.1, as a complement to Figure
2 (Right). We hypothesize that the higher kurtosis observed in Llama-3 may be attributed
to two factors: the larger pretraining steps (Bondarenko et al., 2023) and the inclusion of
multilingual data. However, as this is beyond the scope of the current study, we defer
further investigation to future work.

• The modified linear layer is illustrated in Listing C.1.
• We present the full perplexity results on WikiText2 and C4 in Table C.1 and C.2, as a

complement to Table 2.
• We present the full zero-shot evaluation accuracy and the reported metrics in Table C.3 and

C.4, as a complement to Figure 4.
• The quantization quality of the Llama-3-8B backbone in LLaVA-Next-8B on WikiText2

and C4 is shown in Table C.5.
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Figure C.1: The kurtosis across various layers in different Llama series reveals three key observa-
tions: (1) Layers at either the beginning or the end of LLMs tend to exhibit higher kurtosis values;
(2) In the majority of layers, the kurtosis follows a consistent trend across Llama series, with Llama-
3 showing the highest values, followed by Llama-2, and then Llama-1; (3) Different types of layers
display varying scales of kurtosis, suggesting that a bit allocation strategy that accounts for quanti-
zation difficulty could yield better results. We leave the exploration of this idea to future work.
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class ClusCompLinear(nn.Module):
def __init__(self, in_features, out_features, num_clusters, cluster_dim, bias):

super().__init__()
self.out_features = out_features
self.in_features = in_features
self.deficiency = out_features % cluster_dim # If the out_features is not dividable by cluster_dim
if self.deficiency > 0:

self.deficiency = cluster_dim - self.deficiency

num_codes = in_features * (out_features + self.deficiency) // cluster_dim
self.codebook = nn.Parameter(torch.empty((num_clusters, cluster_dim), dtype=torch.bfloat16) #

trainable
code = torch.empty((num_codes,), dtype=torch.uint16)
self.register_buffer(’code’, code) # non-trainable
if bias:

self.bias = nn.Parameter(torch.empty(out_features))
else:

self.register_parameter(’bias’, None)

def forward(self, x):
vectors = self.codebook[self.code]
if self.deficiency > 0:

weight = vectors.view(self.in_features, -1)[:, :-self.deficiency]
else:

weight = vectors.view(self.in_features, -1)

if self.bias is not None:
out = torch.matmul(x, weight) + self.bias

else:
out = torch.matmul(x, weight)

return out

Listing C.1: PyTorch code for the linear layer of ClusComp. All data type is 16-bit.
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Table C.1: The full perplexity results of Llama series on WikiText2. “g” and “n” denote the dimen-
sion and number of centroids in the codebook, respectively. The number in the brackets is the exact
bits of different settings for different LLMs.

Method Setting #Bit 1-7B 2-7B 2-13B 2-70B 3-8B 3-70B

- - 16.00 5.68 5.47 4.88 3.31 6.12 2.90

RTN w4g128 4.13 5.96 5.72 4.98 3.46 8.50 3.60
GPTQ w4g128 4.13 5.85 5.61 4.98 3.42 6.50 3.30
AWQ w4g128 4.13 5.81 5.62 4.97 - 6.60 3.30
GPTVQ w4g128 4.13 - 5.68 4.97 3.39 - -
AffineQuant w4g128 4.13 5.77 5.58 4.95 - - -
OmniQuant w4g128 4.16 5.77 5.58 4.95 3.40 - -
ClusComp− g4n65500 ≤4.14 5.88 (4.14) 5.67 (4.14) 5.04 (4.09) 3.44 (4.03) 6.59 (4.13) 3.28 (4.03)
ClusComp g4n65500 ≤4.14 5.73 (4.14) 5.54 (4.14) 4.94 (4.09) 3.40 (4.03) 6.39 (4.13) 3.12 (4.03)

RTN w4 4.00 6.43 6.11 5.20 3.67 8.70 -
GPTQ w4 4.00 6.13 5.83 5.13 3.58 7.00 -
AWQ w4 4.00 6.08 6.15 5.12 - 7.10 -
QuIP w4 4.00 - - - 3.53 - -
AffineQuant w4 4.00 5.84 5.69 5.01 - - -
OmniQuant w4 4.00 5.86 5.74 5.02 3.47 - -
ClusComp− g5n65500 3.38 6.27 5.90 - - - -
ClusComp g5n65500 3.38 5.84 5.67 - - - -

RTN w3g128 3.13 7.01 6.66 5.51 3.97 27.91 11.84
GPTQ w3g128 3.13 6.55 6.29 5.42 3.85 8.22 5.22
AWQ w3g128 3.13 6.46 6.24 5.32 - 8.19 4.81
SliM-LLM+ w3g128 3.13 6.07 5.94 5.11 3.35 - -
AffineQuant w3g128 3.13 6.14 6.08 5.28 - - -
GPTVQ w3g128 3.13 - 5.82 5.10 3.55 - -
OmniQuant w3g128 3.15 6.15 6.03 5.28 3.78 - -

RTN w3 3.00 25.73 5.4e2 10.68 7.52 2.2e3 -
GPTQ w3 3.00 8.06 8.37 6.44 4.82 13.0 -
AWQ w3 3.00 11.88 24.00 10.45 - 12.8 -
QuIP w3 3.00 - - - 3.85 7.5 -
AffineQuant w3 3.00 6.30 6.55 5.62 - - -
OmniQuant w3 3.00 6.49 6.58 5.58 3.92 - -
ClusComp− g6n65500 ≤2.89 6.74 (2.89) 6.54 (2.89) 6.27 (2.81) 4.02 (2.72) 8.77 (2.87) 4.98 (2.72)
ClusComp g6n65500 ≤2.89 6.01 (2.89) 5.86 (2.89) 5.18 (2.81) 3.72 (2.72) 7.34 (2.87) 4.63 (2.72)

ClusComp− g7n65500 2.54 7.79 7.64 - - - -
ClusComp g7n65500 2.54 6.28 6.15 - - - -

RTN w2g64 2.25 1.9e2 4.3e2 26.22 10.31 - -
GPTQ w2g64 2.25 22.10 20.85 22.44 NAN 1.8e2 -
AWQ w2g64 2.25 2.5e5 2.1e5 1.2e5 - - -
GPTVQ w2g64 2.25 - 7.22 6.08 4.39 - -
AffineQuant w2g64 2.25 8.35 9.05 7.11 - - -
OmniQuant w2g64 2.28 8.90 9.62 7.56 6.11 - -
ClusComp− g8n65500 ≤2.29 10.25 (2.29) 11.10 (2.29) 14.39 (2.19) - 29.20 (2.27) -
ClusComp g8n65500 ≤2.29 6.66 (2.29) 6.61 (2.29) 5.74 (2.19) - 9.68 (2.27) -

RTN w2g128 2.13 1.9e3 4.2e3 1.2e2 27.27 1.9e3 4.6e5
GPTQ w2g128 2.13 44.01 36.77 28.14 NAN 2.1e2 11.9
AWQ w2g128 2.13 2.6e5 2.2e5 1.2e5 - 1.7e6 1.7e6
SliM-LLM+ w2g128 2.13 9.68 10.87 7.59 6.44 - -
QuIP w2g128 2.13 - 39.73 13.48 6.64 84.97 13.03
PB-LLM w2g128 2.13 - 25.37 49.81 NAN 44.12 11.68
GPTVQ w2g128 2.13 - 8.23 6.50 4.64 - -
AffineQuant w2g128 2.13 13.51 10.87 7.64 - -
OmniQuant w2g128 2.14 9.72 11.06 8.26 6.55 - -
ClusComp− g8 ≤2.15 28.76 21.9 14.50 5.43 2.1e2 11.40
ClusComp g8 ≤2.15 7.06 7.04 5.85 4.37 11.57 7.61

(2.15,n35000) (2.15,n35000) (2.14,n50000) (2.07,n65500) (2.14,n35000) (2.07,n65500)

ClusComp− g9n65500 2.11 - 22.71 - - - -
ClusComp g9n65500 2.11 - 7.12 - - - -

RTN w2 2.00 1.1e5 3.8e4 5.6e4 2.0e4 2.7e6 -
GPTQ w2 2.00 2.1e3 7.7e3 2.1e3 77.95 5.7e4 -
QuIP w2 2.00 - - - 6.33 85.1 -
AffineQuant w2 2.00 9.53 35.07 12.42 - - -
OmniQuant w2 2.00 15.47 37.37 17.21 7.81 - -
ClusComp− g9 ≤2.01 65.09 52.38 22.90 9.84 3.1e2 -
ClusComp g9 ≤2.01 7.49 7.50 6.17 4.83 12.33 -

(2.00,n45000) (2.00,n45000) (1.99,n65500) (1.85,n65500) (2.01,n50000) -
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Table C.2: The full perplexity results of Llama series on C4. “g” and “n” denote the dimension and
number of centroids in the codebook, respectively. The number in the brackets is the exact bits of
different settings for different LLMs.

Method Setting #Bit 1-7B 2-7B 2-13B 2-70B 3-8B 3-70B

- - 16.00 7.08 6.97 6.46 5.52 9.20 5.87

RTN w4g128 4.13 7.37 7.24 6.58 5.63 13.40 8.90
GPTQ w4g128 4.13 7.21 7.12 6.56 5.58 10.40 6.94
AWQ w4g128 4.13 7.21 7.13 6.56 - 9.40 7.00
AffineQuant w4g128 4.13 7.20 7.12 6.56 - - -
OmniQuant w4g128 4.16 7.21 7.12 6.56 5.58 - -
ClusComp− g4n65500 ≤4.14 7.27 (4.14) 7.16 (4.14) 6.63 (4.09) 5.61 (4.03) 9.39 (4.13) 7.02 (4.03)
ClusComp g4n65500 ≤4.13 7.17 (4.14) 7.09 (4.14) 6.55 (4.09) 5.61 (4.03) 9.27 (4.13) 6.99 (4.03)

RTN w3 3.00 28.26 4.0e2 12.51 10.02 2.2e3 -
GPTQ w3 3.00 9.49 9.81 8.02 6.57 13.0 -
AWQ w3 3.00 13.26 23.85 13.07 - 12.8 -
QuIP w3 3.00 - - - 6.14 - -
AffineQuant w3 3.00 8.03 8.57 7.56 - - -
OmniQuant w3 3.00 8.19 8.65 7.44 6.06 - -
ClusComp− g6n65500 ≤2.89 8.14 (2.89) 8.19 (2.89) 8.21 (2.81) 6.06 (2.72) 12.41 (2.87) 8.26 (2.72)
ClusComp g6n65500 ≤2.89 7.64 (2.89) 7.61 (2.89) 6.91 (2.81) 5.86 (2.72) 11.31 (2.87) 8.26 (2.72)

ClusComp− g7n65500 2.54 9.46 9.51 - - - -
ClusComp g7n65500 2.54 8.10 8.13 - - - -

RTN w2g64 2.25 1.5e2 4.8e2 28.69 13.43 - -
GPTQ w2g64 2.25 17.71 19.40 12.48 NAN - -
AWQ w2g64 2.25 2.8e5 1.6e5 9.5e4 - - -
OmniQuant w2g64 2.28 11.78 12.72 10.05 7.88 - -
ClusComp− g8n65500 ≤2.29 13.06 (2.29) 14.07 (2.29) 19.75 (2.19) - 38.68 (2.27) -
ClusComp g8n65500 ≤2.29 8.76 (2.29) 8.88 (2.29) 7.75 (2.19) - 15.57 (2.27) -

RTN w2g128 2.13 1.0e3 4.9e3 1.4e2 42.13 1.9e3 -
GPTQ w2g128 2.13 27.71 33.70 20.97 NAN 2.1e2 -
AWQ w2g128 2.13 1.9e5 1.7e5 9.4e4 - 1.7e6 -
SliM-LLM+ w2g128 2.13 14.99 18.18 10.24 8.40 - -
QuIP w2g128 2.13 - 31.94 16.16 8.17 1.3e2 22.24
PB-LLM w2g128 2.13 - 29.84 19.82 8.95 79.21 33.91
AffineQuant w2g128 2.13 - 16.02 10.98 - - -
OmniQuant w2g128 2.14 12.97 15.02 11.05 8.52 - -
ClusComp− g8 ≤2.15 29.67 25.26 18.83 7.59 1.9e2 16.52
ClusComp g8 ≤2.15 9.33 9.49 7.92 6.44 17.89 10.81

(2.15,n35000) (2.15,n35000) (2.14,n50000) (2.07,n65500) (2.14,n35000) (2.07,n65500)

ClusComp− g9n65500 2.11 - 27.37 - - - -
ClusComp g9n65500 2.11 - 9.73 - - - -

RTN w2 2.00 1.3e5 4.8e4 7.2e4 2.4e4 2.7e6 -
GPTQ w2 2.00 6.9e2 NAN 3.2e2 48.82 5.7e4 -
QuIP w2 2.00 - - - - 1.3e2 -
OmniQuant w2 2.00 24.89 90.64 26.76 12.28 8.2e5
ClusComp− g9 ≤2.01 74.61 50.08 24.47 13.96 2.2e2 -
ClusComp g9 ≤2.01 10.11 10.29 8.49 7.02 21.45 -

(2.00,n45000) (2.00,n45000) (1.99,n65500) (1.85,n65500) (2.01,n50000) -
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Table C.3: Zero-shot evaluation of the quantized Llama-2-7B and Llama-2-13B, with baseline re-
sults taken from van Baalen et al. (2024). “acc” and “acc n” mean accuracy and normalized accu-
racy, respectively. We offer the results of all metrics for a convenient comparison of the follow-up
works. But only the highlighted metrics are used to calculate the average accuracy.

Method #Bit
PIQA ARC-e ARC-c BoolQ HellaSwag WinoGrande

Avg
acc acc n acc acc n acc acc n acc acc acc n acc

Llama-2-7B 16.00 - 79.1 - 74.6 - 46.3 77.7 - 76.0 69.1 70.5

ClusComp 4.14 77.5 79.2 75.3 72.8 42.7 45.3 76.2 56.5 75.1 68.9 69.6

RTN 3.13 - 76.8 - 70.5 - 42.9 71.7 - 74.0 67.6 67.3
GPTQ 3.13 - 77.4 - 68.1 - 40.7 71.0 - 72.5 67.3 66.2
GPTVQ 3.13 - 77.6 - 72.7 - 43.7 71.7 - 72.7 67.6 67.7
ClusComp 2.89 76.8 77.6 74.4 71.3 42.3 42.9 74.6 54.4 72.4 68.8 67.9

RTN 2.25 - 58.8 - 36.7 - 24.8 41.9 - 40.4 51.9 42.4
GPTQ 2.25 - 60.8 - 39.0 - 25.2 59.3 - 45.8 55.5 47.6
GPTVQ 2.25 - 73.3 - 63.4 - 35.9 66.3 - 63.9 66.1 61.5
ClusComp 2.29 74.9 76.0 69.8 65.2 37.7 37.4 73.0 51.1 68.4 65.0 64.1

ClusComp 2.15 74.3 75.1 69.6 65.2 35.7 38.4 69.5 49.2 66.4 63.5 63.0

RTN 2.13 - 51.1 - 28.0 - 25.0 41.1 - 26.6 49.9 36.9
GPTQ 2.13 - 54.8 - 30.6 - 25.1 53.4 - 33.1 51.5 41.4
GPTVQ 2.13 - 70.7 - 58.1 - 31.5 63.7 - 58.5 60.9 57.2
ClusComp 2.00 72.6 73.7 67.0 62.8 32.9 36.6 70.9 47.2 63.5 63.4 61.8

Llama-2-13B 16.00 - 80.5 - 77.5 - 49.2 80.5 - 79.4 72.1 73.2

ClusComp 4.09 78.9 79.9 78.9 76.9 47.7 49.2 81.4 60.0 79.0 72.4 73.1

RTN 3.13 - 78.9 - 74.3 - 46.8 77.3 - 76.5 70.8 70.8
GPTQ 3.13 - 79.3 - 75.8 - 47.0 78.9 - 77.2 70.4 71.4
GPTVQ 3.13 - 79.4 - 75.3 - 48.1 79.0 - 77.0 71.7 71.8
ClusComp 2.81 78.7 79.7 78.5 76.7 45.9 47.8 80.7 58.3 76.8 71.4 72.2

RTN 2.25 - 61.6 - 41.6 - 25.4 49.8 - 48.2 51.9 46.4
GPTQ 2.25 - 70.1 - 56.7 - 31.6 51.1 - 56.6 58.9 54.2
GPTVQ 2.25 - 76.2 - 71.9 - 43.3 67.6 - 70.0 68.2 66.2
ClusComp 2.19 76.6 77.3 75.0 72.9 40.8 43.9 78.1 55.3 73.3 68.4 69.0

ClusComp 2.14 76.7 77.1 73.5 71.6 39.9 42.8 77.5 54.6 73.1 68.0 68.4

RTN 2.13 - 58.4 - 32.3 - 25.5 47.9 - 39.4 48.9 42.1
GPTQ 2.13 - 59.5 - 40.2 - 27.7 57.1 - 41.6 53.4 46.6
GPTVQ 2.13 - 75.2 - 68.3 - 39.5 70.7 - 65.7 67.5 64.5
ClusComp 1.99 75.6 77.7 74.7 73.6 39.9 42.1 74.0 53.0 71.0 67.1 67.6
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Table C.4: Zero-shot evaluation of the quantized Llama-3-8B, with baseline results taken from
(Huang et al., 2024c). “acc” and “acc n” mean accuracy and normalized accuracy, respectively. We
offer the results of all metrics for a convenient comparison of the follow-up works. But only the
highlighted metrics (excluding BoolQ) are used to calculate the average accuracy.

Method #Bit
PIQA ARC-e ARC-c BoolQ HellaSwag WinoGrande

Avg
acc acc n acc acc n acc acc n acc acc acc n acc

Llama-3-8B 16.00 79.9 - 80.1 - 50.4 - - 60.2 - 72.8 68.6

RTN 4.13 76.6 - 70.1 - 45.0 - - 56.8 - 71.0 63.9
GPTQ 4.13 78.4 - 78.8 - 47.7 - - 59.0 - 72.6 67.3
AWQ 4.13 79.1 - 79.7 - 49.3 - - 59.1 - 74.0 68.2
SliM-LLM 4.13 78.9 - 79.9 - 49.4 - - 58.7 - 72.6 67.9
ClusComp 4.13 79.1 80.5 80.9 79.6 49.7 54.1 81.1 59.3 78.3 72.9 68.4

RTN 3.13 62.3 - 32.1 - 22.5 - - 29.1 - 54.7 40.2
GPTQ 3.13 74.9 - 70.5 - 37.7 - - 54.3 - 71.1 61.7
AWQ 3.13 77.7 - 74.0 - 43.2 - - 55.1 - 72.1 64.4
SliM-LLM 3.13 77.8 - 73.7 - 42.9 - - 55.5 - 72.8 64.5
RTN 3.00 56.2 - 31.1 - 20.0 - - 27.5 - 53.1 35.6
GPTQ 3.00 60.8 - 38.8 - 22.3 - - 41.8 - 60.9 44.9
AWQ 3.00 71.9 - 66.7 - 35.1 - - 50.7 - 64.7 57.8
QuIP 3.00 76.8 - 72.9 - 41.0 - - 55.4 - 72.5 63.7
ClusComp 2.87 77.7 78.8 76.0 74.5 43.9 47.6 79.0 56.0 74.6 71.0 64.9

ClusComp 2.27 70.6 71.8 63.5 57.4 31.4 35.5 74.7 49.6 66.1 67.1 56.4

RTN 2.13 53.1 - 24.8 - 22.1 - - 26.9 - 53.1 36.0
GPTQ 2.13 53.9 - 28.8 - 19.9 - - 27.7 - 50.5 36.2
AWQ 2.13 52.4 - 24.2 - 21.5 - - 25.6 - 50.7 34.9
SliM-LLM 2.13 57.1 - 35.4 - 26.1 - - 28.9 - 56.6 40.8
PB-LLM 2.13 57.0 - 37.8 - 17.2 - - 29.8 - 52.5 38.8
ClusComp 2.14 68.0 67.1 54.7 49.0 26.4 28.8 71.5 47.0 63.0 62.4 51.7

RTN 2.00 53.1 - 24.7 - 21.9 - - 25.6 - 51.1 35.3
GPTQ 2.00 52.8 - 25.0 - 20.5 - - 26.6 - 49.6 34.9
AWQ 2.00 55.2 - 25.2 - 21.3 - - 25.4 - 50.4 35.5
QuIP 2.00 52.9 - 29.0 - 21.3 - - 29.2 - 51.7 36.8
ClusComp 2.01 70.1 69.6 63.3 57.7 31.9 34.2 66.6 44.4 58.0 58.4 53.6

Table C.5: The perplexity of the Llama-3-8B backbone in LLaVA-Next-8B, with baseline results
from Huang et al. (2024c).

Method Setting Bit WikiText2 ↓ C4 ↓ PTB ↓

- - 16.00 9.5 14.8 16.3

GPTQ w4g128 4.13 9.5 14.8 17.1
AWQ w4g128 4.13 9.9 15.3 16.9
ClusComp− s4n65500 4.13 9.9 13.6 17.6
ClusComp s4n65500 4.13 9.7 13.6 17.7

GPTQ w3g128 3.13 13.0 19.5 28.4
AWQ w3g128 3.13 11.7 17.9 20.2
ClusComp− s6n65500 2.87 14.3 16.2 31.9
ClusComp s6n65500 2.87 10.7 15.3 22.0

GPTQ w2g128 2.13 83.7 3.1e3 2.0e2
AWQ w2g128 2.13 1.6e6 2.0e6 2.2e6
ClusComp− s8n35000 2.14 7.7e2 6.1e3 9.2e2
ClusComp s8n35000 2.14 14.6 21.8 27.5
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D NEW RESULTS

D.1 MORE BASELINES

In this section, we compare ClusComp against SqueezeLLM (Kim et al., 2024) and AdaDim (Heo
et al., 2024). As presented in Table D.1, ClusComp consistently achieves lower perplexity than
SqueezeLLM, at comparable or even lower bit precision. Similarly, as shown in Table D.2, Clus-
Comp outperforms AdaDim on both MMLU and CSR benchmarks.

Table D.1: The perplexity of Llama-2 on WikiText2. The values in the brackets are the exact bits of
ClusComp for different LLMs. The SqueezeLLM results are taken from Kim et al. (2024).

Method #Bit Llama-2-7B Llama-2-13B Llama-2-70B

- 16.00 5.47 4.88 3.31

SqueezeLLM 4.27 5.57 4.96 -
ClusComp ≤ 4.14 5.54 (4.14) 4.94 (4.09) -

SqueezeLLM 3.02 6.18 5.36 3.77
ClusComp ≤ 2.89 5.86 (2.89) 5.18 (2.81) 3.72 (2.72)

SqueezeLLM 2.22 10.79 7.91 4.99
SqueezeLLM 2.05 13.64 8.56 5.38
SqueezeLLM 2.01 35.49 41.02 9.44
ClusComp ≤ 2.00 7.50 (2.00) 6.17 (1.99) 4.83 (1.85)

Table D.2: The accuracy of quantized LLMs on MMLU and four commonsense reasoning (CSR)
tasks (PIQA, HellaSwag, WinoGrande and ARC-easy). Following AdaDim, we use lm-eval v0.3.0
(Gao et al., 2024) for the evaluation. The GPTQ-AdaDim results are taken from Heo et al. (2024).

Method #Bit
Llama-2-7B Llama-2-13B

MMLU (5-shot ↑) CSR (0-shot ↑) MMLU (5-shot ↑) CSR (0-shot ↑)

- 16.00 46.0 67.9 55.6 70.3

GPTQ-AdaDim 4.13 45.3 67.7 54.6 70.1
ClusComp ≤ 4.14 45.6 68.2 55.1 70.8

GPTQ-AdaDim 3.13 41.3 66.4 52.3 68.7
ClusComp ≤ 2.89 43.2 67.2 52.3 69.5

D.2 VISUALIZATION OF CLUSCOMP

To illustrate how ClusComp effectively simulates the original weight distribution, we compare it
(non-uniform compression) to OmniQuant (uniform quantization) in Figure D.1. The figures demon-
strate that ClusComp more closely approximates the 16-bit weight distribution, primarily due to its
non-uniform compression approach. Specifically, ClusComp clusters similar vectors over groups of
length g across different rows and columns of the weight matrix.

D.3 QUANTIZATION DIFFICULTY TREND OF LLAMA SERIES

Previous works (Lin et al., 2024; Sun et al., 2024a; Heo et al., 2024) suggest that weight patterns can
be identified based on activations rather than relying solely on weight magnitudes. Following a rec-
ommendation from Reviewer wLyR at ICLR 2025, we incorporate an additional analysis based on
the Wanda score (Sun et al., 2024a) distribution to illustrate the increasing challenges of quantization
across the Llama series.

Given the weight matrix W ∈ Rdout×din of a linear layer and the input activations X ∈ RNL×din ,
where N and L represent the batch and sequence dimensions, the Wanda score S ∈ Rdout×din is
computed as Sij = |Wij | · ||Xj ||2. A smaller Wanda score within a row of W (on a per-output
basis) indicates a less significant weight element.
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(a) The query projection layer in the first block. Surprisingly, even the 4-bit OmniQuant (uniform
quantization) could not simulate the original weight distribution, demonstrating that the first query
layer is difficult for quantization. We also observe this for the first key projection layer in Figure
D.4(b). However, ClusComp with 4-2 bits perfectly simulates the original weight distribution.

(b) The output projection layer in the last block. Compared to OmniQuant (uniform quantization),
ClusComp can better simulate the weight distribution, more evident for the 3 and 2-bit levels.

Figure D.1: Weight patterns of two cherry-picked layers of Llama-2-7B. Darker red and blue indicate
larger and smaller weight values, respectively. To make the weight pattern more obvious, we apply
these sequential processing steps: (1) take the absolute weight values; (2) downsample the grids with
8 × 8 maxpool kernels; (3) calculate the logarithm of these values; (4) normalize the log-values. We
also offer the visualization of all layers in the first and last blocks of Llama-2-7B in Figure D.4 and
D.5. Overall, ClusComp’s weight distribution of different bit-levels can better simulate the original
weight distribution.

In Figure D.2 (Right), we present the standard deviation of the Wanda scores across different lay-
ers. The results show that Llama-2 exhibits a larger standard deviation compared to Llama-1, while
Llama-3 exceeds Llama-2 in this metric. A higher standard deviation reflects a more dispersed
Wanda score distribution, indicating that a greater proportion of weight elements are effective and di-
verse. Consequently, quantization becomes more challenging, as the expanded distribution stretches
the quantization grid.
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Figure D.2: From Llama-1 to Llama-3, LLMs exhibit increasing challenges for quantization. Left:
The average kurtosis of weights across various layers in the Llama series, previously shown in Figure
2 (Right). Right: The average standard deviation of the Wanda score across various layers. Please
refer to Figure D.6 for the Wanda scores of different layer types. Both metrics indicate that Llama-3
has higher variance in most layers, reflecting the presence of more outliers and thus greater difficulty
for quantization.

D.4 QUANTIZATION OF THE CODEBOOK

Thanks to the suggestion of Reviewer h5Zw at ICLR 2025, we conduct further quantization on the
codebook C. Originally, the data type in the codebook was 16-bit, which facilitates our following
recovery training or finetuning step. However, if we can further quantize the codebook, we have
two additional advantages: (1) The model size can be further slightly reduced (Only slightly, since
the majority of bits is allocated to the code q.); (2) The inference can speed up, since the codebook
becomes smaller. In sum, we can keep the codebook in 16-bit if we want to do the recovery training
or finetuning. If we are only interested in inference, we can further quantize the codebook to a lower
bit.

As shown in Table D.3, the performance doesn’t change if we quantize the codebook from 16-
bit to 8-bit. When quantizing the codebook to 4-bit, the perplexity slightly increases, but is still
comparable to the best baseline at the 4-bit level and outperforms the best baseline at the 2-bit level.
However, if we further quantize the codebook to the 2-bit level, the perplexity increases significantly.
Therefore, we can safely quantize the codebook to 8-bit or 4-bit.

Table D.3: The perplexity of ClusComp with quantized codebook on WikiText2. The results of the
best baseline are taken from Table C.1. The values in the brackets are the exact bits for different
LLMs. We can observe: (1) 8-bit codebook offers the same perplexity as 16-bit’s; (2) 4-bit code-
book slightly hurts the performance, but is still comparable to the best baseline at the 4-bit level
and outperforms the best baseline at the 2-bit level. (3) The results of the 2-bit codebook are not
acceptable.

Method Bit for codebook Avg. Bit 2-7B 2-70B 3-8B 3-70B

- - 16.00 5.47 3.31 6.12 2.90

Best baseline - 4.13 5.58 3.39 6.50 3.30
ClusComp 16 ≤ 4.14 5.54 (4.14) 3.40 (4.03) 6.39 (4.13) 3.12 (4.03)
ClusComp 8 ≤ 4.11 5.54 (4.11) 3.40 (4.03) 6.39 (4.10) 3.13 (4.03)
ClusComp 4 ≤ 4.07 5.59 (4.07) 3.43 (4.02) 6.52 (4.07) 3.26 (4.02)
ClusComp 2 ≤ 4.05 25.44 (4.05) 5.64 (4.01) 1.2e5 (4.05) 96.52 (4.01)

Best baseline - ≤ 2.13 35.07 (2.00) 4.64 (2.13) 85.10 (2.00) 11.68 (2.13)
ClusComp 16 ≤ 2.07 7.50 (2.00) 4.37 (2.07) 12.33 (2.01) 7.61 (2.07)
ClusComp 8 ≤ 2.04 7.50 (1.92) 4.37 (2.04) 12.33 (1.92) 7.63 (2.04)
ClusComp 4 ≤ 2.03 7.63 (1.86) 4.42 (2.03) 12.77 (1.86) 7.64 (2.03)
ClusComp 2 ≤ 2.02 6.5e3 (1.83) 21.07 (2.02) 1.7e5 (1.83) 2.3e4 (2.02)
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D.5 ABLATION STUDY ON THE GROUP SIZE AND NUMBER OF CLUSTERS

Thanks to the suggestion of Reviewer h5Zw at ICLR 2025, we conducted experiments to determine
whether the number of clusters n or the cluster dimension g has a greater impact on the performance
of quantized LLMs. As shown in Table D.4, increasing n positively affects performance more than
reducing g. This finding underpins our choice of n ≈ 216. However, while n plays a crucial
role in enhancing performance, selecting n > 216 would necessitate using 32-bit storage for the
code q, substantially increasing the bits-per-parameter and adversely affecting memory efficiency.
Therefore, we always choose n < 216.

Table D.4: Ablation study of ClusComp− on the number of clusters n and the cluster dimension
g in the codebook reveals that n plays a more significant role in the performance of the quantized
LLM. (a) The perplexity remains relatively stable with variations in g, although changes in g lead to
substantial differences in the bit requirement, as most bits are used to store the codes q. Specifically,
smaller g values result in larger q. Refer to Table 1 for detailed examples. (b) In contrast, perplexity
is highly sensitive to changes in n. Adjusting n causes only a minor change in the bit requirement,
as storing the codebook is memory-efficient. (c) For comparable bit budgets, n has a greater impact
on performance than g.

(a) n = 65500. Perplexity
changes smoothly.

Setting #Bit Wiki2

g4 4.14 5.67
g5 3.38 5.90
g6 2.89 6.54
g7 2.54 7.64
g8 2.29 11.10

(b) Same g. Perplexity changes
dramatically.

Setting #Bit Wiki2

g7n16384 2.35 23.14
g7n4096 2.30 9.4e2

g8n65500 2.29 11.10
g8n50000 2.15 21.90
g8n4096 2.02 5.4e3

(c) Similar bit level. Perplexity is
more sensitive to n.

Setting #Bit Wiki2

g7n16384 2.35 23.14
g7n4096 2.30 9.4e2
g8n65500 2.29 11.10
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Figure D.3: Perplexity of various methods on Llama-2-70B. Compared to Figure 1, we add three
new baselines: GPTQ (Frantar et al., 2022), QuIP (Chee et al., 2023) and SqueezeLLM (Kim et al.,
2024). For GPTQ, we only show the results ≥ 3-bit, since its perplexity under 3-bit is large.
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(a) Query projection layer. (b) Key projection layer.

(c) Value projection layer. (d) Output projection layer.

(e) Up projection layer. (f) Gate projection layer.

(g) Down projection layer.

Figure D.4: Weight patterns of all layers in the first block (0-th block) of Llama-2-7B. Darker red
and blue indicate larger and smaller weight values, respectively. ClusComp’s weight distribution of
different bit levels can better simulate the original weight distribution.
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(a) Query projection layer. (b) Key projection layer.

(c) Value projection layer. (d) Output projection layer.

(e) Up projection layer. (f) Gate projection layer.

(g) Down projection layer.

Figure D.5: Weight patterns of all layers in the last block (31-st block) of Llama-2-7B. Darker red
and blue indicate larger and smaller weight values, respectively. ClusComp’s weight distribution of
different bit levels can better simulate the original weight distribution.
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Figure D.6: The standard deviation of Wanda score across various layers in different Llama series
reveals three key observations: (1) Deeper layers tend to exhibit higher standard deviation; (2)
Three layers (query, key and gate) show a clear trend across Llama series, with Llama-3 showing
the highest standard deviation, followed by Llama-2, and then Llama-1; (3) The other four layers
show a similar standard deviation for all Llama series.
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