
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CLUSCOMP: A SIMPLE PARADIGM FOR MODEL COM-
PRESSION AND EFFICIENT FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to scale, model compression becomes
increasingly important for enabling edge deployment and ensuring accessibility
to users with limited resources. Weight-only quantization is a key technique
for model compression, allowing for a substantial reduction in model size while
preserving performance. However, as bit-width decreases, the performance of
quantized LLMs tends to degrade significantly. Additionally, due to the non-
differentiable operation in quantization, standard finetuning on quantized LLMs
is unsupported, and alternative finetuning approaches often fail to match the ef-
fectiveness of full finetuning. In this paper, we introduce ClusComp, a novel and
simple model compression paradigm. ClusComp first clusters the weight matrices
to generate codebooks, and then tunes these codebooks block-by-block to recon-
struct intermediate activations. Despite its simplicity, ClusComp (1) consistently
achieves better performance in 2-4 bit precision; (2) pushes the compression limit
to the 1-bit level, and outperforms existing ultra-low-bit methods with limited
finetuning steps; (3) facilitates seamless and efficient finetuning, surpasses exist-
ing quantization-based or memory-efficient finetuning methods, and even rivals
full finetuning of the FP16 model. Notably, these procedures can be executed on
a single NVIDIA A6000-48GB GPU for LLMs with as many as 70B parameters.

2.0 2.5 3.0 3.5 4.0

6

7

8

AQAQGPTVQ
AQ (=AffineQuant)

GPTVQ

GPTVQ
AQ/4

ClusComp
Competitive baseline
FP16

7B 70B0

10

20

30

GP
U

M
em

or
y

(G
B)

2 2

11

26
Tesla V100-32GB

cluster
reconstruction

1.0 1.5 2.0 2.5 3.0 3.5 4.0
#Bit

5.0

7.5

10.0

12.5

BiLLM

ClusComp+

GPTVQOQOQ (=OmniQuant)GPTVQGPTVQ

PB-LLM/2

QuIP

7B 70B0

10

20

30

40

GP
U-

ho
ur

2.6 ± 1.2
0.4

25.6 ± 15.0
3.5W

ik
i2

 (P
PL

)

Llama-2-70B

Llama-2-7B

Figure 1: Compression quality and efficiency of ClusComp, consisting of a sequential clustering
and reconstruction. Methods in triangle use more number of calibration samples. Some results are
divided by a factor for better visualization. E.g. “AQ/4” indicates that the perplexity is divided by 4.

1 INTRODUCTION

Large language models (LLMs) have garnered significant acclaim and success across various do-
mains and applications (Touvron et al., 2023a; Brown et al., 2020; Raffel et al., 2020b). With
ongoing advancements, the scope and complexity of released LLMs have witnessed exponential
growth, with some LLMs encompassing >50B parameters (Dubey et al., 2024; Zhang et al., 2022;
Scao et al., 2022). This remarkable upscaling introduces considerable challenges, particularly when

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

deploying these models or granting their accessibility to users with constrained resources. To ad-
dress these challenges, weight-only post-training quantization (PTQ) has emerged as a promising
approach, effectively compressing LLMs to a lower bit while preserving the FP16 performance.

PTQ methods can generally be classified into three categories: statistic-based, gradient-based, and
codebook-based approaches. Statistic-based methods (Dettmers et al., 2024; Lin et al., 2024; Frantar
et al., 2022) determine the quantization grid based on the distribution of the weight values, whereas
gradient-based methods (Shao et al., 2024; Ma et al., 2024) optimize the quantization grid with
some calibration samples. Codebook-based methods (Egiazarian et al., 2024; van Baalen et al.,
2024; Kim et al., 2024; Park et al., 2024) cluster similar weight elements to the shared quantized
centroids, employing non-uniform quantization and pushing the limits to extremely low bit levels.
However, these methods continue to struggle with low-bit quantization and the presence of outliers,
leading to significant performance degradation, especially in models like Llama-3 (Dubey et al.,
2024), which exhibit a large number of outliers in their weight matrices (Huang et al., 2024c).

Another challenge PTQs encounter is their limited support for finetuning, which is crucial for adapt-
ing LLMs to various downstream tasks. Finetuning LLMs is computationally expensive due to
their large scale and the need to cache activations and store optimizer states. PTQ, which com-
presses LLMs, appears to be a promising approach for finetuning as it reduces memory require-
ments for loading these LLMs. However, most quantization techniques use a round-to-nearest op-
eration, which does not support gradient back-propagation. Typically, parameter-efficient methods
(Dettmers et al., 2023; Li et al., 2024c; Liao & Monz, 2024a) are employed to train the added pa-
rameters while keeping the quantized LLMs frozen, bypassing this limitation. Nonetheless, this
finetuning approach presents two major drawbacks: (1) Freezing the quantized LLMs prevents fur-
ther reduction of quantization errors during finetuning; (2) The low-rank nature of most parameter-
efficient methods restricts their expressiveness (Biderman et al., 2024; Liao & Monz, 2024b).

In this paper, we propose a simple while effective paradigm that mainly applies Clustering to
Compress LLMs, referred to as ClusComp. Additionally, ClusComp can function as a parame-
ter and memory-efficient finetuning method. Our preliminary experiments reveal that open-source
LLMs are increasingly difficult to quantize, primarily due to the growing frequency of outliers in
their weight matrices (§3.1). Based on this observation, we propose using clustering instead of quan-
tization to compress LLMs, retaining all values in FP16 format to circumvent issues arising from
outlier quantization (§3.2.1). To further reduce compression errors, we minimize block-wise output
discrepancies between the compressed and uncompressed blocks, using a limited set of calibration
samples (§3.2.3). Since all parameters remain in FP16 after compression, ClusComp fully supports
standard neural network training. By incorporating an inexpensive, end-to-end recovery finetuning
step, we can push compression rates to the 1-bit level. Additionally, ClusComp allows for finetuning
compressed LLMs on various downstream tasks (§3.2.4).

We begin by evaluating the effectiveness of ClusComp in the context of model compression across 2
language modeling tasks and 6 zero-shot reasoning tasks. ClusComp consistently surpasses various
baselines at 2-4 levels, even achieving a perplexity of <13 at the 2-bit level on WikiText2 (Merity
et al., 2017) for all LLMs (§4.1). Following recovery finetuning, ClusComp’s performance at 2-bit
and 1-bit levels approaches that of the FP16 model, with an accuracy of 57.8 vs 68.6 for the 2-bit
Llama-3-8B and 51.4 vs 75.4 for the 1-bit Llama-3-70B (§4.2). Additionally, ClusComp demon-
strates its utility as a parameter-efficient (< 1%) and memory-efficient (42GB for Llama-3-70B)
finetuning method, outperforming quantization-based and memory-efficient finetuning approaches,
while matching the performance of full finetuning (§4.3).

2 RELATED WORKS

2.1 MODEL COMPRESSION

Quantization and pruning are two typical and effective methods for model compression.

Quantization refers to the process of converting floating-point values into discrete levels, thereby
reducing the bit-width required and minimizing memory consumption during model loading. Taking

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the symmetric uniform quantization as an example, a weight matrix W is quantized as follows:

Wq = clamp(⌊W
s
⌉,−2b−1, 2b−1 − 1) with s =

max(|Wmin|, |Wmax|)
2b − 1

(1)

where b denotes the bit-width, s is the scale factor, and ⌊⌉ represents the round-to-nearest (RTN)
operation. Since the quantization grid is uniform, its effectiveness is contingent on the distribution
of the weight values. In cases where the weight matrix contains a significant number of outliers or
is quantized to lower bit-widths, the resulting quantization error may be substantial.

Post-training quantization (PTQ) methods, such as GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2024), and OmniQuant (Shao et al., 2024), apply quantization to a model after training with mini-
mal computational resources. However, these approaches, which rely on uniform quantization, are
significantly impacted by the presence of outliers in the weight matrices. Recent methods (Dettmers
et al., 2024; Yuan et al., 2024; Huang et al., 2024a) address this challenge by retaining salient weights
in FP16 format, thereby maintaining strong performance at lower bit widths. Nonetheless, these
mixed-precision quantization techniques require specially optimized CUDA kernels to either en-
hance or preserve inference speed. Closely related to our proposed method, ClusComp, are works
such as GPTVQ (van Baalen et al., 2024), QuIP# (Tseng et al., 2024) and SqueezeLLM (Kim et al.,
2024) which implement quantized codebooks for non-uniform quantization, achieving state-of-the-
art performance for ultra-low-bit quantization. ClusComp, however, differs in two significant ways:
(1) The codebook in ClusComp is stored in FP16, offering additional advantages for subsequent re-
covery training and finetuning; (2) While other methods face limitations similar to those in VAE-like
approaches (Kingma & Welling, 2014), where large and high-dimensional codebooks are infeasible
due to mode collapse, ClusComp circumvents this issue. Our fixed-code design allows us to utilize
a codebook size of 216 in 4-16D without encountering such difficulty.

Pruning is a widely used model compression technique that removes redundant weights or struc-
tures from the model (Sun et al., 2024a; Xia et al., 2024; Frantar & Alistarh, 2023; Liao et al.,
2023). It often leads to significant degradation as sparsity increases, and generally yields inferior
results at equivalent compression rates compared to quantization. Nevertheless, pruning offers an
advantage for training, as all parameters remain in high precision, allowing for seamless integration
with continuous pretraining or finetuning. Similarly, ClusComp retains high-precision parameters,
and naturally supports standard finetuning.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation is a technique used to enhance the performance of smaller models by trans-
ferring knowledge from larger, more complex models (Hinton et al., 2015). Most state-of-the-art
quantization methods leverage either block-wise or model-wise distillation. Block-wise distillation
(as employed in OmniQuant, GPTVQ, AQLM and QuiP#) focuses on minimizing errors between
the FP16 and quantized models on a block-by-block basis. This approach is more memory-efficient
than model-wise distillation, as it requires loading only two blocks into the GPU at the same time.
In contrast, model-wise distillation (used in QuiP# and LLM-QAT (Liu et al., 2024)) minimizes the
error across the entire model output, necessitating the loading of at least one full FP16 model into the
GPU. ClusComp adopts block-wise distillation, significantly reducing GPU memory requirements
compared to loading an FP16 model. As demonstrated in Figure 1, ClusComp consumes only 26GB
memory for a 70B LLM, which would otherwise require 140GB in FP16 for loading, making our
technique more accessible to users with limited computational resources.

2.3 FINETUNE QUANTIZED MODEL

Finetuning is crucial for adapting LLMs to various domains and applications. Quantization, which
reduces model size, is theoretically more conducive to finetuning. However, directly finetuning a
quantized model is not a standard approach, as RTN does not support gradient back-propagation.
Finetuning using a straight-through estimator (STE) (Bengio et al., 2013) is relatively under-
explored and may lead to catastrophic forgetting (Malinovskii et al., 2024). Previous works (Xu
et al., 2024a; Liao & Monz, 2024a; Dettmers et al., 2023) propose freezing the quantized model
while updating newly added LoRAs (Hu et al., 2022). However, these approaches suffer from
two key limitations: (1) Freezing the quantized model prevents the mitigation of quantization er-
rors during finetuning. Moreover, not all quantization methods are suitable for finetuning. Popular

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.0 2.5 3.0 3.5 4.0
#Bit

102

104

106

W
ik

i2
 (l

og
 P

PL
)

Llama-2-7B
RTN
GPTQ
AWQ
ClusComp

2.0 2.5 3.0 3.5 4.0
#Bit

102

104

106

W
ik

i2
 (l

og
 P

PL
)

Llama-3-8B

0 5 10 15 20 25 30
Layer Index

0

2

4

6

8

Av
er

ag
e

Ku
rto

sis

Llama-1-7B
Llama-2-7B
Llama-3-8B

Figure 2: The Llama series becomes increasingly difficult to quantize. Left & Middle: From Llama-
2 to Llama-3, all methods show increasing difficulty in quantization at lower bit levels. Right: From
Llama-1 to Llama-3, the average kurtosis on weights of most layers is increasing.

techniques like GPTQ and QLoRA, while widely used, exhibit significant quantization errors below
4-bit. (2) The expressiveness of LoRA is constrained by its bottleneck design (Biderman et al., 2024;
Liao & Monz, 2024b). In contrast, ClusComp, where all parameters are maintained in high preci-
sion, inherently supports seamless finetuning. Additionally, updating the codebook in ClusComp
results in modifying all parameters in the weight matrices, even offering superior performance com-
pared to full finetuning while maintaining a similar number of trainable parameters as LoRA.

3 METHOD

3.1 PILOT STUDY

Before introducing ClusComp, we present a key observation from our experiments on different
Llama series. As depicted in Figure 2 (Left & Middle), when reducing the bit-width, the perfor-
mance of various quantization methods (RTN, GPTQ, and AWQ) follows a similar trend: Llama-3
(Dubey et al., 2024) proves more challenging to quantize than Llama-2 (Touvron et al., 2023b).

We hypothesize that the increased difficulty arises from a higher frequency of outliers in the linear
layers of Llama-3. Since these quantization methods rely on uniform quantization, they are particu-
larly sensitive to outliers in the weight matrices. To test this hypothesis, we analyzed the kurtosis of
the weight matrices—a well-established metric for identifying the presence of outliers (Bondarenko
et al., 2023). As shown in Figure 2 (Right), we have two key observations: (1) All models exhibit
higher kurtosis at the beginning and end of the model; (2) From Llama-1 to Llama-3, the kurtosis
increases in most layers, indicating a rise in the frequency of outliers in the linear layers. This trend
provides a potential explanation for our quantization difficulties. It also implies that the future Llama
series might be even more difficult for quantization.1

Given that the quantization performance is impacted by outliers, could an alternative approach for
model compression involve storing all weight values in FP16 instead of applying quantization?

3.2 CLUSCOMP

The first idea that comes to our mind is clustering, where similar weight values are represented
by a single identified value. This method enables model compression while preserving all weight
values in FP16 format. In this section, we introduce three variants of ClusComp that primarily
utilize clustering for compressing LLMs: ClusComp−, which applies clustering alone; ClusComp,
which enhances ClusComp− with block-wise error minimization; and ClusComp+, which further
improves the compressed LLMs through next-token prediction training based on ClusComp.

3.2.1 CLUSTERING

Consider a weight matrix W ∈ Rdin×dout , direct clustering along either dimension of W is subopti-
mal as it leads to a significant reconstruction error, particularly due to the large values of din and dout
in LLMs. To mitigate this issue, we reshape W into a set of lower-dimensional vectors, denoted as

1We present the kurtosis for different types of layers and a promising quantization idea in Figure C.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Bits for W with din, dout = 4096 (16.78M).

Setting #Params. for codes #Params. for codebook b̄

g4n65500 4.19M 0.26M (1.55%) 4.25
g6n65500 2.80M 0.39M (2.32%) 3.04
g9n65500 1.86M 0.59M (3.52%) 2.34

0 10000 20000 30000 40000 50000 60000
Centroid Index

0.0

0.5

1.0

1.5

De
ns

ity

1e 5

Figure 3: Histogram of the codes.

W ′ = {w1,w2, . . . ,wk}, where each wi ∈ Rg and k = din·dout
g .2 The goal is to partition W ′ into

n clusters {C1, C2, . . . , Cn} by solving the following optimization problem:

arg min{C1,C2,...,Cn}

n∑
j=1

∑
wi∈Cj

||wi − cj ||2 (2)

where cj ∈ Rg denotes the centroid of cluster Cj . This clustering problem is well-established in the
machine learning literature and can be iteratively addressed using K-means (Lloyd, 1982) with the
Expectation-Maximization (EM) algorithm:

• E-step: Each vector wi is assigned to the cluster whose centroid cj minimizes the Eu-
clidean distance, i.e., C(t)

j = {wi : ||wi − c
(t)
j ||2 ≤ ||wi − c

(t)
l ||2 ∀l}.

• M-step: The centroid of each cluster is updated as the mean of the vectors assigned to that
cluster, i.e., c(t+1)

j = (
∑

wi∈C
(t)
j

wi)/|C(t)
j |.

Upon completion, two key elements are obtained for each weight matrix: (1) a codebook C =
{c1, c2, . . . , cn} ∈ Rg×n that contains all centroids, and (2) a set of codes q = {q1, q2, . . . , qk} ∈
{1, 2, . . . , n}k that records the assignment of each vector wi to the closest centroid, where qi =
q(wi) = j if cj = argmincl∈C ||wi − cl||2. Using the codes q and the codebook C, the weight
matrix W ′ can be reconstructed as Ŵ ′ = {cq1 , cq2 , . . . , cqk}. In PyTorch (Paszke et al., 2017), the
linear layer is adapted in Listing C.1.

Remark: ClusComp, when applied solely with clustering, is referred to as ClusComp−. In this
configuration, only the weight matrices are utilized, leading to substantial memory efficiency, with
a mere 2GB memory consumption on 1 GPU as shown in Figure 1. Moreover, this process can be
considerably accelerated with more GPUs, as the clustering of different matrices is independent.

3.2.2 ESTIMATE MODEL SIZE

After clustering, it is sufficient to store the codes q ∈ {1, 2, . . . , n}k and the codebook C ∈ Rg×n.
Unlike prior works (van Baalen et al., 2024; Egiazarian et al., 2024; Tseng et al., 2024), we don’t
quantize the codebook; instead, we store it in FP16 format. The bit-width required for the codes
depends on the range of n. To maintain efficiency, we set n < 216 and use unsigned 16-bit integers
to represent the codes. Thus, the average bits-per-parameter can be calculated as:

b̄ =
size in bits

number of parameters
=

16 · k + 16 · g · n
din · dout

=
16

g
+

16 · g · n
din · dout

(3)

In the right-most of Equation (3), the first term corresponds to the bit-width allocated to the codes,
and the second term corresponds to the bit-width of the codebook. As an example, for a linear layer
W with din = dout = 4096, clustering with g = 4 and n = 216 − 1 results in b̄ ≈ 4 + 0.25 = 4.25.
This demonstrates that the majority of the bit-width is allocated to the codes, which is a primary
reason for constraining n < 216, so we can use 16 instead of 32-bit integers to represent the code.
Further reducing n to a smaller range leads to fewer centroids, which in turn increases reconstruction
error. More settings can be found in Table 1 and C.1.

Remark: While we express the model size in terms of bits-per-parameter, it is important to note that
no quantization is applied in ClusComp. Instead, we reduce the number of parameters in W from

2In cases where the dimensions are not divisible, zero-padding is applied to W . In PyTorch, the matrix is
reshaped as W ′ = W .transpose(1, 0).view(-1, g), where transposing W offers slightly better performance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

din ·dout to k+ g ·n. Utilizing bits-per-parameter allows for a direct comparison between ClusComp
and quantization-based methods. Surprisingly, ClusComp−, which only incorporates the clustering
step without employing any calibration data, already surpasses RTN, GPTQ and AWQ, as illustrated
in Figure 2 (Left & Middle). These results highlight its effectiveness in model compression.

3.2.3 BLOCK-WISE ERROR MINIMIZATION

Block-wise error minimization (block-wise reconstruction or knowledge distillation) has emerged as
a standard, efficient and effective approach to reducing quantization error (Egiazarian et al., 2024;
Tseng et al., 2024; van Baalen et al., 2024; Shao et al., 2024; Liao & Monz, 2024a). To further
mitigate the compression error caused by clustering, we incorporate block-wise error minimization
into ClusComp− using a limited set of calibration samples, expressed as:

arg minCs||F(W s,X)−F(Cs, qs,X ′)|| (4)
Here, F denotes a Transformer block (Vaswani et al., 2017), W s represent the weight matrices in
the uncompressed block, and Cs and qs denote the codebooks and codes in the compressed block.
X refers to the input of the uncompressed block, which is also the output from the previous un-
compressed block, while X ′ is the input to the compressed block, originating from the output of the
preceding compressed block. For the first block, we have X = X ′. Block-wise error minimization
is memory-efficient as it only requires loading two blocks into the GPU simultaneously.

Remark: In Equation (4), we only train the codebook Cs while keeping the codes qs fixed as indices.
This design offers two key advantages: (1) It enhances data efficiency. As illustrated in Table 1, the
majority of parameters are represented by the codes. Training both the codebooks and codes with a
limited number of calibration samples (128) leads to overfitting; (2) More importantly, training the
codes with a large number of centroids (216) can result in mode collapse (Sun et al., 2024b; Kingma
& Welling, 2014). Since the codes already exhibit a uniform distribution after clustering (see Figure
3), keeping the codes fixed indicates that all centroids in the codebook can be trained uniformly.
Such a code-fixed design is also applied to the following recovery and finetuning step. Combining
both clustering and block-wise error minimization steps, we term this method ClusComp.

3.2.4 RECOVERY AND FINETUNING

We present the adapted linear layer for ClusComp in Listing C.1, which can be seamlessly integrated
as a replacement for the original linear layer in LLMs. As the codebook is represented in FP16, this
new layer inherently supports training without requiring additional tricks, like STE.

Recovery training. The compressed LLMs can be further trained by predicting the next token to
recover information lost due to compression. This is achieved by finetuning the codebook parame-
ters. This form of training is memory-efficient in two distinct ways: (1) Since the LLM is already
compressed, loading it onto the GPU consumes less memory compared to the FP16 version; (2)
As illustrated in Table 1, the parameters in the codebook account for < 5% of the total parameters
in the FP16 version, making the training both parameter-efficient and memory-efficient (with the
optimizer states being smaller). We refer to ClusComp with recovery training as ClusComp+.

Finetuning. Like recovery training, finetuning the compressed LLM on downstream tasks can also
be performed efficiently. Unlike QLoRA (Dettmers et al., 2023), which freezes the quantized LLM
and trains only the LoRA (Hu et al., 2022) modules, finetuning the codebook alone eliminates the
need for this additional constraint. This approach offers two key advantages over QLoRA: (1) Freez-
ing the quantized LLM prevents mitigation of quantization errors, whereas finetuning the codebook
can further address compression errors for downstream tasks; (2) The low-rank bottleneck of LoRA
limits its expressiveness (Biderman et al., 2024). In contrast, finetuning the codebook is analogous
to adapting the entire high-rank weight matrix, providing greater flexibility and expressiveness.

4 EXPERIMENTS

4.1 COMPRESSION RESULTS

LLMs and evaluation. We evaluate ClusComp on widely adopted LLM families: Llama-1-7B,
Llama-2-7B/13B/70B and Llama-3-8B/70B (Touvron et al., 2023a;b; Dubey et al., 2024). We mea-
sure the performance of compressed LLMs on zero-shot and language modeling tasks. For zero-shot

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: The perplexity of Llama series on WikiText2 and C4. Only the competitive baselines are
shown here for a compact representation. Refer to Table C.1 and C.2 for all results and settings.

Method #Bit Wiki2 (PPL↓) C4 (PPL↓)
1-7B 2-7B 2-13B 2-70B 3-8B 3-70B 1-7B 2-7B 2-13B 2-70B 3-8B 3-70B

- 16.00 5.68 5.47 4.88 3.31 6.12 2.90 7.08 6.97 6.46 5.52 9.20 5.87

GPTQ 4.13 5.85 5.61 4.98 3.42 6.50 3.30 7.21 7.12 6.56 5.58 10.40 6.94
AffineQuant 4.13 5.77 5.58 4.95 - - - 7.20 7.12 6.56 - - -
GPTVQ 4.13 - 5.68 4.97 3.39 - - - - - - - -
OmniQuant 4.16 5.77 5.58 4.95 3.40 - - 7.21 7.12 6.56 5.58 - -
ClusComp− ≤ 4.14 5.88 5.67 5.04 3.44 6.59 3.28 7.27 7.16 6.63 5.61 9.39 7.02
ClusComp ≤ 4.14 5.73 5.54 4.94 3.40 6.39 3.12 7.17 7.09 6.55 5.61 9.27 6.99

RTN 3.13 7.01 6.66 5.51 3.97 27.91 11.84 8.62 8.40 7.18 6.02 27.9 22.39
GPTQ 3.00 8.06 8.37 6.44 4.82 13.0 - 9.49 9.81 8.02 6.57 13.00 -
OmniQuant 3.00 6.49 6.58 5.58 3.92 - - 8.19 8.65 7.44 6.06 - -
AffineQuant 3.00 6.30 6.55 5.62 - - - 8.03 8.57 7.56 - - -
QuIP 3.00 - - - 3.85 7.50 - - - - 6.14 - -
ClusComp− ≤ 2.89 6.74 6.54 6.27 4.02 8.77 4.98 8.14 8.19 8.21 6.06 12.41 8.26
ClusComp ≤ 2.89 6.01 5.86 5.18 3.72 7.34 4.63 7.64 7.61 6.91 5.86 11.31 8.26

GPTQ 2.13 44.01 36.77 28.14 NAN 2.1e2 11.90 27.71 33.70 20.97 NAN 2.1e2 -
SliM-LLM+ 2.13 9.68 10.87 7.59 6.44 - - 14.99 18.18 10.24 8.40 - -
QuIP 2.13 - 39.73 13.48 6.64 84.97 13.03 - 31.94 16.16 8.17 1.3e2 22.24
PB-LLM 2.13 - 25.37 49.81 NAN 44.12 11.68 - 29.84 19.82 8.95 79.21 33.91
GPTVQ 2.13 - 8.23 6.50 4.64 - - - - - - - -
AffineQuant 2.13 13.51 10.87 7.64 - - - - 16.02 10.98 - - -
OmniQuant 2.14 9.72 11.06 8.26 6.55 - - 12.97 15.02 11.05 8.52 - -
ClusComp− ≤ 2.15 28.76 21.90 14.50 5.43 2.1e2 11.40 29.67 25.26 18.83 7.59 1.9e2 16.52
ClusComp ≤ 2.15 7.06 7.04 5.85 4.37 11.57 7.61 9.33 9.49 7.92 6.44 17.89 10.81

GPTQ 2.00 2.1e3 7.7e3 2.1e3 77.95 5.7e4 - 6.9e2 NAN 3.2e2 48.82 5.7e4 -
QuIP 2.00 - - - 6.33 85.10 - - - - - 1.3e2 -
AffineQuant 2.00 9.53 35.07 12.42 - - - - - - - - -
OmniQuant 2.00 15.47 37.37 17.21 7.81 - - 24.89 90.64 26.76 12.28 8.2e5 -
ClusComp− ≤ 2.01 65.09 52.38 22.90 9.84 3.1e2 - 74.61 50.08 24.47 13.96 2.2e2 -
ClusComp ≤ 2.01 7.49 7.50 6.17 4.83 12.33 - 10.11 10.29 8.49 7.02 21.45 -

evaluation, we apply 6 tasks from lm-eval v0.4.4 (Gao et al., 2024), i.e. PIQA (Bisk et al., 2020),
ARC-e/c (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019) and Wino-
Grande (Sakaguchi et al., 2020). For language modeling, we report the perplexity on the whole test
set of WikiText2 (Merity et al., 2017) and on 256 samples from the validation set of C4 (Raffel et al.,
2020a) with a sequence length of 2048 as our baselines. We also apply ClusComp to LLaVA-Next-
8B (Li et al., 2024b), and evaluate it on 5 multimodal tasks from lmms-eval v0.2.3 (Li et al., 2024a)
to show its broad applicability, i.e. AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022),
DocVQA (Mathew et al., 2021), MMBench (Liu et al., 2023) and MME (Yin et al., 2023).3

Baselines. Here we primarily compare ClusComp with three categories of baselines: (1) statistic-
based methods without neural training, including vanilla RTN, GPTQ (Frantar et al., 2022), AWQ
(Lin et al., 2024), and PB-LLM (Yuan et al., 2024);4 (2) gradient-based methods with neural training
(such as block-wise distillation), including OmniQuant (Shao et al., 2024), AffineQuant (Ma et al.,
2024), and SliM-LLM+ (Huang et al., 2024b); and (3) quantized codebook-based methods, includ-
ing QuIP (Chee et al., 2023) and GPTVQ (van Baalen et al., 2024). All baseline results are directly
borrowed from the original works or their follow-up works.

Settings. We begin by applying K-means clustering to the weight matrices of all linear layers,
referring to this method as ClusComp−. Next, we use 128 calibration sentences from the Wiki-
Text2 training set to minimize block-wise error through codebook training only, which we denote
as ClusComp. It is important to highlight that the majority of the aforementioned baselines uti-
lize comparable resources (GPU memory and the number of calibration sentences) to those used in
ClusComp. All detailed experimental settings in this section are provided in §B.

Results. The language modeling results are presented in Table 2. At the 4-bit level, ClusComp
demonstrates superior performance by achieving the lowest perplexity in 9 out of 12 cases, while
maintaining a negligible perplexity difference (≤ 0.05) compared to the best baselines in the remain-

3We observed that different studies may report varying zero-shot accuracy for the FP16 model, which can
be attributed to the lm-eval version or the choice of evaluation metric (accuracy or normalized accuracy). We
recommend that future researchers first reproduce the FP16 accuracy before making comparisons.

4ClusComp− is also a statistic-based method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2.00 2.25 2.50 2.75 3.00

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

67.7

61.5
57.2

67.9
64.163.061.8

Llama-2-7B

FP16
RTN
GPTQ
GPTVQ
ClusComp

2.00 2.25 2.50 2.75 3.00
#Bit

45

50

55

60

65

70
71.8

66.264.5

72.269.0
68.4

67.6

Llama-2-13B

2.0 2.5 3.0 3.5 4.0

40

50

60

70 68.4
64.9

56.4

51.7

53.6

67.9
64.5

40.8

63.7

36.8

Llama-3-8B

QuIP
SliM-LLM

Figure 4: Average zero-shot accuracy over 5/6 commonsense reasoning tasks, only including com-
petitive baselines. Please refer to Table C.3 and C.4 for detailed numbers and the full comparison.

Table 3: Zero-shot multimodal evaluation, with baseline results from Huang et al. (2024c).

Method #Bit AI2D ↑ ChartQA ↑ DocVQA ↑ MMBench ↑ Avg ↑ MME (cog / per) ↑

LLaVA-Next-8B 16.00 71.7 69.2 78.2 72.2 72.8 1965.1 (376.8 / 1588.3)

GPTQ 4.13 70.7 67.4 77.4 71.0 71.6 1895.0 (331.6 / 1563.4)
AWQ 4.13 70.6 68.0 77.2 71.1 71.7 1888.4 (325.7 / 1562.7)
ClusComp 4.13 70.0 68.7 77.6 71.1 71.8 1915.7 (322.1 / 1593.6)

GPTQ 3.13 66.2 65.1 75.6 67.4 68.6 1831.8 (290.1 / 1541.7)
AWQ 3.13 67.7 65.4 74.4 68.0 68.9 1840.3 (298.6 / 1541.7)
ClusComp 2.87 68.7 65.8 74.8 67.7 69.3 1872.6 (331.1 / 1541.5)

GPTQ 2.13 0.0 0.0 0.0 0.0 0.0 0.0 (0.0 / 0.0)
AWQ 2.13 0.0 0.0 0.0 0.0 0.0 0.0 (0.0 / 0.0)
ClusComp 2.14 53.9 53.1 56.7 50.1 53.5 1673.0 (294.6 / 1378.4)

ing 3 cases. At bit-widths < 4, ClusComp consistently outperforms all baselines. Notably, even at
the 2-bit level, ClusComp’s perplexity remains within a functional range, < 13 on Wikitext2. Figure
4 presents the zero-shot evaluation results, where ClusComp again consistently surpasses all base-
lines across different bit-widths. Furthermore, ClusComp exhibits significantly less sensitivity to
bit-width variations, as indicated by the flatter slope of its accuracy curve.

We also compress the Llama-3-8B backbone in LLaVA-Next-8B, and report the zero-short perfor-
mance in Table 3. On average, ClusComp continues to outperform both GPTQ and AWQ, while
using a comparable or even lower number of bits. A particularly noteworthy observation occurs
at the 2-bit level, where none of the baselines produce correct outputs, whereas ClusComp retains
strong performance. In comparison to the 2-bit results for Llama-3-8B in Figure 4 (Right), this
suggests that quantizing multimodal models presents unique challenges, warranting further study.

4.2 PUSH THE LIMIT OF MODEL COMPRESSION

We further enhance the performance of 2-bit LLMs and extend the compression boundary to the 1-
bit level through efficient recovery training. This is achieved by optimizing the codebook parameters
in an end-to-end manner during a next-token prediction task.

Baselines. We include BiLLM (Huang et al., 2024a), which performs effectively at the 1-bit com-
pression level. Additionally, three more resource-intensive PTQ baselines are considered: AQLM
(Egiazarian et al., 2024), which utilizes a larger number of calibration samples (4-16M tokens);
QuIP# (Tseng et al., 2024) and DB-LLM (Chen et al., 2024), both of which employ model-wise
distillation and a larger number of calibration samples (24-48M tokens).

Settings. ClusComp employs only 0.3M tokens for its compression. In this experiment, we further
finetune the compressed LLM generated by ClusComp through end-to-end training, optimizing the
codebook parameters using 16M tokens from a subset of the RedPajama dataset (Computer, 2023).
This extended method is referred to as ClusComp+.

Results. We report the zero-shot accuracy of ultra-low-bit LLMs in Table 4. On both Llama-2-7B
and Llama-2-13B, ClusComp already performs comparably to, or surpasses AQLM and QuiP#.
With minimal recovery training, ClusComp+ consistently outperforms these baselines on aver-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Zero-shot accuracy on ultra-low-bit LLMs.

Method #Bit PIQA ArcE ArcC Hella. Wino. Avg

Llama-2-7B 16.00 78.1 76.3 43.4 57.1 69.1 64.8
QuIP# 2.02 75.1 64.6 34.6 48.3 64.9 57.5
AQLM 2.02 73.6 61.9 33.3 49.5 64.2 56.5
ClusComp 2.00 72.6 67.0 32.9 47.2 63.4 56.6
ClusComp+ 2.00 73.5 67.2 33.9 49.3 65.1 57.8

Llama-2-13B 16.00 79.1 79.4 48.4 60.0 72.2 67.8
QuIP# 2.01 77.3 69.3 39.5 53.4 67.7 61.5
AQLM 1.97 76.2 69.8 37.8 53.7 65.4 60.6
ClusComp 1.99 75.6 74.7 39.9 53.0 67.1 62.0
ClusComp+ 1.99 76.8 74.9 40.7 54.5 68.4 63.1

Llama-3-8B 16.00 79.7 80.1 50.4 60.2 72.6 68.6
QuiP 2.00 52.9 29.0 21.3 29.2 51.7 36.8
PB-LLM 2.00 57.0 37.8 17.2 29.8 52.5 38.8
DB-LLM 2.00 68.9 59.1 28.2 42.1 60.4 51.8
ClusComp 2.01 70.1 63.3 31.9 44.4 58.4 53.6
ClusComp+ 2.01 74.8 66.7 34.8 49.6 63.4 57.8

Llama-3-70B 16.00 82.5 86.7 60.4 66.3 80.9 75.4
QuIP 2.00 65.3 48.9 26.5 40.9 61.7 48.7
PB-LLM 1.70 56.5 49.9 25.8 34.9 53.1 44.1
BiLLM 1.10 58.2 46.4 25.1 37.5 53.6 44.2
ClusComp 1.14 56.9 32.5 20.6 32.3 51.6 39.7
ClusComp+ 1.14 69.5 57.2 30.1 44.2 56.0 51.4

Table 5: In-domain finetuning perfor-
mance on Llama-2-7B. Two bits are
shown for baselines, since the LoRA
modules aren’t merged to the quantized
LLMs. The first and second numbers
denote the quantized LLM and the con-
verted bits from LoRA modules.

Method #Bit WikiText2 GSM8K
PPL ↓ ACC ↑

LoRA 16.00 5.08 36.9

QLoRA 4.25 + 0.40 5.70 35.1
LoftQ 4.25 + 0.40 5.24 35.0
ClusComp 4.15 5.26 41.0

QLoRA 3.25 + 0.40 5.73 32.1
LoftQ 3.25 + 0.40 5.63 32.9
ClusComp 3.38 5.37 39.9

QLoRA 2.25 + 0.40 NAN NAN
LoftQ 2.25 + 0.40 7.85 20.9
ClusComp 2.54 5.78 37.2
ClusComp 2.29 6.10 36.0

Table 6: General-domain finetuning performance, with baseline results from Xu et al. (2024b).

Method #Bit
MMLU (0-shot, ACC ↑) MMLU (5-shot, ACC ↑)

Hums. STEM Social Other Avg Hums. STEM Social Other Avg

Llama-1-7B 16.00 32.4 26.6 31.4 37.2 32.1 33.3 29.8 37.8 38.0 34.6

GPTQ-LoRA 4.50 35.7 30.9 38.0 44.0 37.1 33.8 31.3 37.4 42.2 36.0
QA-LoRA 4.50 36.9 31.4 40.3 44.9 38.3 36.6 32.4 44.8 44.9 39.4
PEQA 4.00 - - - - - 34.9 28.9 37.5 40.1 34.8
ClusComp 4.15 36.9 31.4 40.0 44.2 38.0 36.8 34.1 42.7 43.9 39.1

GPTQ-LoRA 3.50 31.5 28.9 31.8 36.8 32.2 31.6 30.1 35.6 39.8 34.0
QA-LoRA 3.50 36.0 34.1 42.0 42.3 38.3 35.6 30.5 41.5 42.7 37.4
ClusComp 3.38 38.2 32.7 41.2 45.4 39.2 36.3 31.4 41.3 43.0 37.8

GPTQ-LoRA 2.50 24.1 22.1 22.5 23.7 23.2 23.4 26.2 26.4 28.4 25.8
QA-LoRA 2.50 26.4 25.5 25.6 28.7 26.5 27.3 26.1 26.1 30.3 27.5
ClusComp 2.29 32.6 29.7 34.4 37.0 33.3 31.1 30.1 37.8 37.2 33.7

Llama-2-7B 16.00 38.9 32.9 46.6 44.9 40.7 43.0 36.4 51.4 52.2 45.5

QA-LoRA 4.50 41.1 35.4 50.2 50.1 43.9 42.1 34.4 49.1 50.3 43.9
ClusComp 4.15 41.6 36.3 52.3 51.1 44.9 42.8 38.1 52.2 53.1 46.1

Llama-2-13B 16.00 48.1 42.7 60.5 59.5 52.3 53.3 44.1 63.3 61.0 55.3

QA-LoRA 4.50 48.2 41.7 60.4 58.7 51.9 48.0 43.0 59.7 57.4 51.7
ClusComp 4.09 49.2 42.9 61.6 60.2 52.9 52.4 43.2 62.9 61.6 54.7

age, with the performance gap increasing for larger LLMs, indicating the robust scalability of
ClusComp+. On Llama-3-8B, ClusComp already exceeds all baselines, and ClusComp+ further
widens this margin. On Llama-3-70B, ClusComp+ achieves remarkable accuracy at the 1-bit level.
Furthermore, when comparing the improvements from ClusComp to ClusComp+ across different
Llama series, a notably larger performance gain is observed on the Llama-3 models, underscoring
the effectiveness of ClusComp+ on LLMs with a higher frequency of outliers.

4.3 FINETUNING QUALITY AND EFFICIENCY

We can finetune the compressed LLMs on downstream tasks by only training the codebooks.

In-domain finetuning. We finetune Llama-2-7B on the training sets of WikiText2 and GSM8K
(Cobbe et al., 2021), and report the perplexity and accuracy on their respective validation/test set.
ClusComp is compared with two LoRA-based techniques: QLoRA (Dettmers et al., 2023) and
LoftQ (Li et al., 2024c). As shown in Table 5, ClusComp consistently achieves superior results with
fewer bits (except at the 4-bit level on WikiText2, where it performs comparably to LoftQ), even
outperforming LoRA-finetuning of the FP16 model on GSM8K with a 2.54-bit compressed LLM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: ClusComp performance against efficient full
finetuning, with baseline results from (Pan et al., 2024).

Method Bit #Trained MMLU AGIEval
5-shot ↑ 3-shot ↑

Llama-2-7B 16.00 - 45.9 25.7
Full FT 16.00 100% 45.7 27.0

LoRA (r = 128) 16.00 4.9% 45.5 24.7
GaLore 16.00 100.0% 45.5 24.4
LISA 16.00 100.0% 46.2 26.1
ClusComp 4.15 0.9% 47.0 26.5
ClusComp 2.88 1.4% 45.1 25.6
ClusComp 2.00 1.4% 30.7 21.8

7B 70B0
25
50
75

100
125

GP
U

M
em

or
y

(G
B)

23 23 22

>140

42A6000-48GB

LoRA
LISA
ClusComp

Figure 5: Memory consumption for re-
covery training or finetuning. 4-bit
LLMs are used for ClusComp here.

General-domain finetuning. We finetune the compressed LLMs on Alpaca-GPT3.5 (Taori et al.,
2023) and evaluate them using the MMLU benchmark (Hendrycks et al., 2021). ClusComp is com-
pared against baseline methods that merge trained LoRA modules into the quantized linear layers
after finetuning, i.e. GPTQ-LoRA, QA-LoRA (Xu et al., 2024b) and PEQA (Kim et al., 2023).

As shown in Table 6, ClusComp consistently outperforms the baseline methods across different
LLMs and bit-widths, while using fewer bits. The only exception occurs at the 4-bit level for
Llama-1-7B, where ClusComp underperforms QA-LoRA by a small margin of 0.3 accuracy. The
performance gap between ClusComp and baselines is enlarged for lower bits or recent LLM series.

Compared to full finetuning. Similar to the general-domain finetuning, we finetune the compressed
LLMs on a new version of Alpaca, i.e. Alpaca-GPT4 (Peng et al., 2023), and evaluate them on both
MMLU and AGIEval (Zhong et al., 2024). Here we mainly compare ClusComp to some memory-
efficient finetuning methods that fully finetune the FP16 version, i.e. GaLore (Zhao et al., 2024) and
LISA (Pan et al., 2024). As shown in Table 7, finetuning the compressed LLMs at the 4-bit level
from ClusComp outperforms all memory-efficient finetuning methods, and rivals full finetuning. In
addition, the finetuned LLMs can be used in a low bit, friendly for inference.

The superior finetuning performance can be attributed to three key advantages of ClusComp: (1)
ClusComp introduces smaller compression errors; (2) Unlike QLoRA, where compressed LLMs
are frozen during finetuning, ClusComp allows for the model to remain unfrozen by training the
codebook parameters, enabling further mitigation of compression errors; (3) The low-rank design
of LoRA limits its expressiveness. In contrast, updating the codebook in ClusComp is analogous to
updating a high-rank weight matrix. In addition, the fixed-code design allows uniform training of
all centroids, providing greater expressiveness and can even rival full finetuning.

Efficiency discussion. Figure 5 illustrates the memory efficiency of ClusComp during training, with
a batch size of 1 and a sequence length of 1024. For the 70B LLM, we apply gradient checkpointing
(this is not used for the 7B LLM), while omitting any additional memory-saving techniques.

Finetuning the LLM compressed by ClusComp demonstrates memory efficiency in two key ways:
(1) The compressed LLM requires less memory for loading onto the GPU compared to the FP16
model; and (2) Only the codebook parameters, which contain a limited number of trainable param-
eters (< 1%), are updated, as detailed in Table 7. Consequently, the optimizer state size remains
small. ClusComp can serve not only as a model compression technique but also as an effective
method for both memory- and parameter-efficient finetuning.

5 CONCLUSION

The newly introduced model compression technique, ClusComp, operates by (1) independently ap-
plying clustering to the weight matrices to produce both the codebook and corresponding codes,
(2) reducing compression error through block-wise knowledge distillation, and (3) enhancing model
performance via efficient recovery finetuning. Comprehensive experiments demonstrate its effec-
tiveness as a compression method at 1-4 bit levels, while also showcasing its parameter and memory
efficiency for finetuning, with a competitive performance with full finetuning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We explain all experimental details in Section §B, and guarantee the open source of our code upon
decision notification.

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Dan Biderman, Jose Javier Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
Cunningham. Lora learns less and forgets less. CoRR, abs/2405.09673, 2024. doi: 10.48550/
ARXIV.2405.09673. URL https://doi.org/10.48550/arXiv.2405.09673.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 7432–7439. AAAI
Press, 2020. doi: 10.1609/AAAI.V34I05.6239. URL https://doi.org/10.1609/aaai.
v34i05.6239.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers:
Removing outliers by helping attention heads do nothing. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
edbcb7583fd8921dad78adecfe06a99b-Abstract-Conference.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quan-
tization of large language models with guarantees. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
0df38cd13520747e1e64e5b123a78ef8-Abstract-Conference.html.

Hong Chen, Chengtao Lv, Liang Ding, Haotong Qin, Xiabin Zhou, Yifu Ding, Xuebo Liu, Min
Zhang, Jinyang Guo, Xianglong Liu, and Dacheng Tao. DB-LLM: accurate dual-binarization
for efficient llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 8719–8730. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024.FINDINGS-ACL.516. URL https://doi.org/10.18653/v1/
2024.findings-acl.516.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),

11

http://arxiv.org/abs/1308.3432
https://doi.org/10.48550/arXiv.2405.09673
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
http://papers.nips.cc/paper_files/paper/2023/hash/edbcb7583fd8921dad78adecfe06a99b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/edbcb7583fd8921dad78adecfe06a99b-Abstract-Conference.html
https://arxiv.org/abs/2005.14165
http://papers.nips.cc/paper_files/paper/2023/hash/0df38cd13520747e1e64e5b123a78ef8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0df38cd13520747e1e64e5b123a78ef8-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.findings-acl.516
https://doi.org/10.18653/v1/2024.findings-acl.516

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

pp. 2924–2936. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1300.
URL https://doi.org/10.18653/v1/n19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Ef-
ficient finetuning of quantized llms. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless LLM weight compression. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=Q1u25ahSuy.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. CoRR,
abs/2401.08281, 2024. doi: 10.48550/ARXIV.2401.08281. URL https://doi.org/10.
48550/arXiv.2401.08281.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, and et al. The llama 3 herd
of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=5mCaITRTmO.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 10323–10337. PMLR, 2023. URL https://proceedings.mlr.press/
v202/frantar23a.html.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022. doi: 10.
48550/ARXIV.2210.17323. URL https://doi.org/10.48550/arXiv.2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

12

https://doi.org/10.18653/v1/n19-1300
http://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://github.com/togethercomputer/RedPajama-Data
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://openreview.net/forum?id=Q1u25ahSuy
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://openreview.net/forum?id=5mCaITRTmO
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://doi.org/10.48550/arXiv.2210.17323
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Jung Hwan Heo, Jeonghoon Kim, Beomseok Kwon, Byeongwook Kim, Se Jung Kwon, and Dong-
soo Lee. Rethinking channel dimensions to isolate outliers for low-bit weight quantization
of large language models. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=JzG7kSpjJk.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024a. URL https://openreview.net/forum?id=qOl2WWOqFg.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language
models. CoRR, abs/2405.14917, 2024b. doi: 10.48550/ARXIV.2405.14917. URL https:
//doi.org/10.48550/arXiv.2405.14917.

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. An empirical study of llama3 quantization: From llms
to mllms, 2024c. URL https://arxiv.org/abs/2404.14047.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min Joon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling (eds.), Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV, volume 9908 of Lecture Notes in
Computer Science, pp. 235–251. Springer, 2016. doi: 10.1007/978-3-319-46493-0\ 15. URL
https://doi.org/10.1007/978-3-319-46493-0_15.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung
Kwon, and Dongsoo Lee. Memory-efficient fine-tuning of compressed large language
models via sub-4-bit integer quantization. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
7183f4fc87598f6c6e947b96714acbd6-Abstract-Conference.html.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=0jpbpFia8m.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

13

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=JzG7kSpjJk
https://openreview.net/forum?id=JzG7kSpjJk
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=qOl2WWOqFg
https://doi.org/10.48550/arXiv.2405.14917
https://doi.org/10.48550/arXiv.2405.14917
https://arxiv.org/abs/2404.14047
https://doi.org/10.1007/978-3-319-46493-0_15
http://papers.nips.cc/paper_files/paper/2023/hash/7183f4fc87598f6c6e947b96714acbd6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7183f4fc87598f6c6e947b96714acbd6-Abstract-Conference.html
https://openreview.net/forum?id=0jpbpFia8m
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bo Li, Peiyuan Zhang, Kaichen Zhang, Fanyi Pu, Xinrun Du, Yuhao Dong, Haotian Liu,
Yuanhan Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating the
development of large multimoal models, March 2024a. URL https://github.com/
EvolvingLMMs-Lab/lmms-eval.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. CoRR,
abs/2407.07895, 2024b. doi: 10.48550/ARXIV.2407.07895. URL https://doi.org/10.
48550/arXiv.2407.07895.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth Inter-
national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024c. URL https://openreview.net/forum?id=LzPWWPAdY4.

Baohao Liao and Christof Monz. Apiq: Finetuning of 2-bit quantized large language model. CoRR,
abs/2402.05147, 2024a. doi: 10.48550/ARXIV.2402.05147. URL https://doi.org/10.
48550/arXiv.2402.05147.

Baohao Liao and Christof Monz. 3-in-1: 2d rotary adaptation for efficient finetuning, efficient
batching and composability, 2024b. URL https://arxiv.org/abs/2409.00119.

Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introduc-
ing new latency. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 4242–4260. Asso-
ciation for Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.233. URL
https://doi.org/10.18653/v1/2023.acl-long.233.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantiza-
tion for on-device LLM compression and acceleration. In Phillip B. Gibbons, Gennady Pekhi-
menko, and Christopher De Sa (eds.), Proceedings of the Seventh Annual Conference on Ma-
chine Learning and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024. mlsys.org,
2024. URL https://proceedings.mlsys.org/paper_files/paper/2024/
hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
model an all-around player? CoRR, abs/2307.06281, 2023. doi: 10.48550/ARXIV.2307.06281.
URL https://doi.org/10.48550/arXiv.2307.06281.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: data-free quantization aware
training for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and
virtual meeting, August 11-16, 2024, pp. 467–484. Association for Computational Linguistics,
2024. doi: 10.18653/V1/2024.FINDINGS-ACL.26. URL https://doi.org/10.18653/
v1/2024.findings-acl.26.

Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–136,
1982. doi: 10.1109/TIT.1982.1056489. URL https://doi.org/10.1109/TIT.1982.
1056489.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
of2rhALq8l.

14

https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval
https://doi.org/10.48550/arXiv.2407.07895
https://doi.org/10.48550/arXiv.2407.07895
https://openreview.net/forum?id=LzPWWPAdY4
https://doi.org/10.48550/arXiv.2402.05147
https://doi.org/10.48550/arXiv.2402.05147
https://arxiv.org/abs/2409.00119
https://doi.org/10.18653/v1/2023.acl-long.233
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2307.06281
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=of2rhALq8l
https://openreview.net/forum?id=of2rhALq8l

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko, Kai Yi,
Dan Alistarh, and Peter Richtárik. Pv-tuning: Beyond straight-through estimation for extreme
LLM compression. CoRR, abs/2405.14852, 2024. doi: 10.48550/ARXIV.2405.14852. URL
https://doi.org/10.48550/arXiv.2405.14852.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. Joty, and Enamul Hoque. Chartqa: A
benchmark for question answering about charts with visual and logical reasoning. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 2263–2279. Associa-
tion for Computational Linguistics, 2022. doi: 10.18653/V1/2022.FINDINGS-ACL.177. URL
https://doi.org/10.18653/v1/2022.findings-acl.177.

Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for VQA on doc-
ument images. In IEEE Winter Conference on Applications of Computer Vision, WACV 2021,
Waikoloa, HI, USA, January 3-8, 2021, pp. 2199–2208. IEEE, 2021. doi: 10.1109/WACV48630.
2021.00225. URL https://doi.org/10.1109/WACV48630.2021.00225.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. LISA:
layerwise importance sampling for memory-efficient large language model fine-tuning. CoRR,
abs/2403.17919, 2024. doi: 10.48550/ARXIV.2403.17919. URL https://doi.org/10.
48550/arXiv.2403.17919.

Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun Sim, and Jae W. Lee. Any-precision LLM:
low-cost deployment of multiple, different-sized llms. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=u09gadH3BU.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020a. URL http://jmlr.org/
papers/v21/20-074.html.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020b. URL http://jmlr.org/
papers/v21/20-074.html.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
versarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732–8740. AAAI Press, 2020.
doi: 10.1609/AAAI.V34I05.6399. URL https://doi.org/10.1609/aaai.v34i05.
6399.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, and et al. BLOOM: A
176b-parameter open-access multilingual language model. CoRR, abs/2211.05100, 2022. doi: 10.
48550/ARXIV.2211.05100. URL https://doi.org/10.48550/arXiv.2211.05100.

15

https://doi.org/10.48550/arXiv.2405.14852
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.1109/WACV48630.2021.00225
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.48550/arXiv.2403.17919
https://doi.org/10.48550/arXiv.2403.17919
https://openreview.net/forum?id=u09gadH3BU
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.48550/arXiv.2211.05100

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization
for large language models. In The Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=8Wuvhh0LYW.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning ap-
proach for large language models. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL
https://openreview.net/forum?id=PxoFut3dWW.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Au-
toregressive model beats diffusion: Llama for scalable image generation. CoRR, abs/2406.06525,
2024b. doi: 10.48550/ARXIV.2406.06525. URL https://doi.org/10.48550/arXiv.
2406.06525.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and et al. Llama 2: Open
foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023b. doi: 10.48550/ARXIV.
2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=9BrydUVcoe.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cédric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul N. Whatmough. GPTVQ: the blessing of dimensionality for LLM
quantization. CoRR, abs/2402.15319, 2024. doi: 10.48550/ARXIV.2402.15319. URL https:
//doi.org/10.48550/arXiv.2402.15319.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=09iOdaeOzp.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL https://openreview.net/
forum?id=WvFoJccpo8.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language

16

https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=PxoFut3dWW
https://doi.org/10.48550/arXiv.2406.06525
https://doi.org/10.48550/arXiv.2406.06525
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://openreview.net/forum?id=9BrydUVcoe
https://doi.org/10.48550/arXiv.2402.15319
https://doi.org/10.48550/arXiv.2402.15319
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

models. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024b. URL https://openreview.net/
forum?id=WvFoJccpo8.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. CoRR, abs/2306.13549, 2023. doi: 10.48550/ARXIV.2306.
13549. URL https://doi.org/10.48550/arXiv.2306.13549.

Zhihang Yuan, Yuzhang Shang, and Zhen Dong. PB-LLM: partially binarized large language
models. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=BifeBRhikU.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–
4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
https://doi.org/10.18653/v1/p19-1472.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022.
doi: 10.48550/ARXIV.2205.01068. URL https://doi.org/10.48550/arXiv.2205.
01068.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=hYHsrKDiX7.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foun-
dation models. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), Find-
ings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, pp. 2299–2314. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.FINDINGS-NAACL.149. URL https://doi.org/10.18653/v1/
2024.findings-naacl.149.

17

https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://doi.org/10.48550/arXiv.2306.13549
https://openreview.net/forum?id=BifeBRhikU
https://openreview.net/forum?id=BifeBRhikU
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://openreview.net/forum?id=hYHsrKDiX7
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A LIMITATION AND FUTURE WORK

Limitation. Although ClusComp demonstrates strong performance in both model compression and
finetuning tasks, its inference speed remains similar to that of FP16 models. As illustrated in Listing
C.1, ClusComp introduces two additional operations—indexing and reshaping—beyond those found
in a standard linear layer. These operations are computationally efficient, resulting in an inference
speed that is similar to that of the original linear layer. Since no quantization techniques are applied,
the transfer of weight tensors does not contribute to time savings, resulting in a smaller inference
speed than the uniform quantization methods. Nevertheless, we consider this trade-off acceptable
given the model’s notable performance in compression and finetuning.

Future work. The following list of tasks is in our plan:

• Design a new CUDA kernel that is more efficient for ClusComp.

• Apply ClusComp to reduce the memory requirement for caching the keys and values, which
facilitates LLMs for long-context tasks.

• Apply the fixed-code idea to a VAE-like method to scale up the size and dimension of the
codebook for the image generation task.

• Study the quantization of large multimodal models, since they show different behaviors
from LLMs (see Table 3).

B EXPERIMENTAL DETAILS

B.1 CLUSTERING

We use the K-means implementation from the Faiss library (Douze et al., 2024). The number of
iterations is set to 20, with all default settings for other arguments.

B.2 BLOCK-WISE ERROR MINIMIZATION

For all LLMs, 128 calibration sentences with a length of 2048 tokens are randomly selected from
the WikiText-2 training set (Merity et al., 2017). The detailed hyper-parameters are listed in Table
B.1. Only the codebooks are trained, while keeping all other parameters (from the embedding layer,
output layer and normalization layers) frozen.

Table B.1: Hyper-parameters used for the block-wise error minimization and recovery training steps.
The underlined settings generally perform well for different scales of LLMs.

Hyper-parameter Block-wise error minimization Recovery training

Optimizer AdamW (Loshchilov & Hutter, 2019; Kingma & Ba, 2015)
Weight decay {0, 0.1, 0.01} 0
LR {1e-5, 5e-5, 1e-4, 5e-4} 1e-5
LR scheduler constant cosine
Warmup ratio 0 0
Max grad norm - 0.3
Sequence length 2048 4096
Number of samples 128 8192
Epochs 20 1
Batch size 8 8

B.3 RECOVERY TRAINING

For the recovery training, we randomly sample 1024 sentences with a length of 4096 tokens from a
subset of RedPajama (Computer, 2023).5 Then we train the compressed LLMs to predict the next
token by only tuning the codebook parameters. The hyperparameters used in this step are listed in
Table B.1.

5https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

18

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.4 IN-DOMAIN FINETUNING

We follow the settings from (Li et al., 2024c), and finetune the compressed LLM on the training set
of WikiText2 and on the training set of GSM8K. The hyperparameters for finetuning are listed in
Table B.2. We evaluate the finetuned model on the validation set of WikiText2 and on the test set of
GSM8K every epoch and report the best perplexity or accuracy.

Table B.2: Hyperparameters for the finetuning on Llama-2-7B. The underlined settings generally
performs well for different bit levels.

Hyper-parameter WikiText-2 GSM8K Alpaca-GPT3.5 Alpaca-GPT4

Optimizer AdamW AdamW
Weight decay 0.1 0
LR {0.7, 1, 3}×10−4 {2, 4, 6, 8}×10−5

LR scheduler cosine cosine
Warmup ratio 3% 6%
Epochs or max steps 3 epochs 6 epochs 10K steps 2 epochs
Batch size 64 16 16
Max sequence length 1024 512 2048

B.5 GENERAL-DOMAIN FINETUNING

The finetuning hyper-parameters are listed in Table B.2, which is similar to the ones in QA-LoRA
(Xu et al., 2024b) on Alpaca-GPT3.5, or to the ones in LISA (Pan et al., 2024) on Alpaca-GPT4.

C MORE RESULTS

In this section, we provide the detailed numbers for the figures in the main pages and more results:

• We present the kurtosis of various types of layers in Figure C.1, as a complement to Figure
2 (Right). We hypothesize that the higher kurtosis observed in Llama-3 may be attributed
to two factors: the larger pretraining steps (Bondarenko et al., 2023) and the inclusion of
multilingual data. However, as this is beyond the scope of the current study, we defer
further investigation to future work.

• The modified linear layer is illustrated in Listing C.1.
• We present the full perplexity results on WikiText2 and C4 in Table C.1 and C.2, as a

complement to Table 2.
• We present the full zero-shot evaluation accuracy and the reported metrics in Table C.3 and

C.4, as a complement to Figure 4.
• The quantization quality of the Llama-3-8B backbone in LLaVA-Next-8B on WikiText2

and C4 is shown in Table C.5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0

2

4

6 q_proj
Llama-1-7B
Llama-2-7B
Llama-3-8B

0

2

4

6 k_proj

0.0
0.5
1.0
1.5
2.0
2.5 v_proj

0
2
4
6
8

10

Ku
rto

sis

o_proj

0 10 20 30
0.0

0.5

1.0

1.5 up_proj

0 10 20 30
0

1

2

3

4 gate_proj

0 10 20 30
Layer Index

0

2

4

6

8 down_proj

Figure C.1: The kurtosis across various layers in different Llama series reveals three key observa-
tions: (1) Layers at either the beginning or the end of LLMs tend to exhibit higher kurtosis values;
(2) In the majority of layers, the kurtosis follows a consistent trend across Llama series, with Llama-
3 showing the highest values, followed by Llama-2, and then Llama-1; (3) Different types of layers
display varying scales of kurtosis, suggesting that a bit allocation strategy that accounts for quanti-
zation difficulty could yield better results. We leave the exploration of this idea to future work.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

class ClusCompLinear(nn.Module):
def __init__(self, in_features, out_features, num_clusters, cluster_dim, bias):

super().__init__()
self.out_features = out_features
self.in_features = in_features
self.deficiency = out_features % cluster_dim # If the out_features is not dividable by cluster_dim
if self.deficiency > 0:

self.deficiency = cluster_dim - self.deficiency

num_codes = in_features * (out_features + self.deficiency) // cluster_dim
self.codebook = nn.Parameter(torch.empty((num_clusters, cluster_dim), dtype=torch.bfloat16) #

trainable
code = torch.empty((num_codes,), dtype=torch.uint16)
self.register_buffer(’code’, code) # non-trainable
if bias:

self.bias = nn.Parameter(torch.empty(out_features))
else:

self.register_parameter(’bias’, None)

def forward(self, x):
vectors = self.codebook[self.code]
if self.deficiency > 0:

weight = vectors.view(self.in_features, -1)[:, :-self.deficiency]
else:

weight = vectors.view(self.in_features, -1)

if self.bias is not None:
out = torch.matmul(x, weight) + self.bias

else:
out = torch.matmul(x, weight)

return out

Listing C.1: PyTorch code for the linear layer of ClusComp. All data type is 16-bit.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table C.1: The full perplexity results of Llama series on WikiText2. “g” and “n” denote the dimen-
sion and number of centroids in the codebook, respectively. The number in the brackets is the exact
bits of different settings for different LLMs.

Method Setting #Bit 1-7B 2-7B 2-13B 2-70B 3-8B 3-70B

- - 16.00 5.68 5.47 4.88 3.31 6.12 2.90

RTN w4g128 4.13 5.96 5.72 4.98 3.46 8.50 3.60
GPTQ w4g128 4.13 5.85 5.61 4.98 3.42 6.50 3.30
AWQ w4g128 4.13 5.81 5.62 4.97 - 6.60 3.30
GPTVQ w4g128 4.13 - 5.68 4.97 3.39 - -
AffineQuant w4g128 4.13 5.77 5.58 4.95 - - -
OmniQuant w4g128 4.16 5.77 5.58 4.95 3.40 - -
ClusComp− g4n65500 ≤4.14 5.88 (4.14) 5.67 (4.14) 5.04 (4.09) 3.44 (4.03) 6.59 (4.13) 3.28 (4.03)
ClusComp g4n65500 ≤4.14 5.73 (4.14) 5.54 (4.14) 4.94 (4.09) 3.40 (4.03) 6.39 (4.13) 3.12 (4.03)

RTN w4 4.00 6.43 6.11 5.20 3.67 8.70 -
GPTQ w4 4.00 6.13 5.83 5.13 3.58 7.00 -
AWQ w4 4.00 6.08 6.15 5.12 - 7.10 -
QuIP w4 4.00 - - - 3.53 - -
AffineQuant w4 4.00 5.84 5.69 5.01 - - -
OmniQuant w4 4.00 5.86 5.74 5.02 3.47 - -
ClusComp− g5n65500 3.38 6.27 5.90 - - - -
ClusComp g5n65500 3.38 5.84 5.67 - - - -

RTN w3g128 3.13 7.01 6.66 5.51 3.97 27.91 11.84
GPTQ w3g128 3.13 6.55 6.29 5.42 3.85 8.22 5.22
AWQ w3g128 3.13 6.46 6.24 5.32 - 8.19 4.81
SliM-LLM+ w3g128 3.13 6.07 5.94 5.11 3.35 - -
AffineQuant w3g128 3.13 6.14 6.08 5.28 - - -
GPTVQ w3g128 3.13 - 5.82 5.10 3.55 - -
OmniQuant w3g128 3.15 6.15 6.03 5.28 3.78 - -

RTN w3 3.00 25.73 5.4e2 10.68 7.52 2.2e3 -
GPTQ w3 3.00 8.06 8.37 6.44 4.82 13.0 -
AWQ w3 3.00 11.88 24.00 10.45 - 12.8 -
QuIP w3 3.00 - - - 3.85 7.5 -
AffineQuant w3 3.00 6.30 6.55 5.62 - - -
OmniQuant w3 3.00 6.49 6.58 5.58 3.92 - -
ClusComp− g6n65500 ≤2.89 6.74 (2.89) 6.54 (2.89) 6.27 (2.81) 4.02 (2.72) 8.77 (2.87) 4.98 (2.72)
ClusComp g6n65500 ≤2.89 6.01 (2.89) 5.86 (2.89) 5.18 (2.81) 3.72 (2.72) 7.34 (2.87) 4.63 (2.72)

ClusComp− g7n65500 2.54 7.79 7.64 - - - -
ClusComp g7n65500 2.54 6.28 6.15 - - - -

RTN w2g64 2.25 1.9e2 4.3e2 26.22 10.31 - -
GPTQ w2g64 2.25 22.10 20.85 22.44 NAN 1.8e2 -
AWQ w2g64 2.25 2.5e5 2.1e5 1.2e5 - - -
GPTVQ w2g64 2.25 - 7.22 6.08 4.39 - -
AffineQuant w2g64 2.25 8.35 9.05 7.11 - - -
OmniQuant w2g64 2.28 8.90 9.62 7.56 6.11 - -
ClusComp− g8n65500 ≤2.29 10.25 (2.29) 11.10 (2.29) 14.39 (2.19) - 29.20 (2.27) -
ClusComp g8n65500 ≤2.29 6.66 (2.29) 6.61 (2.29) 5.74 (2.19) - 9.68 (2.27) -

RTN w2g128 2.13 1.9e3 4.2e3 1.2e2 27.27 1.9e3 4.6e5
GPTQ w2g128 2.13 44.01 36.77 28.14 NAN 2.1e2 11.9
AWQ w2g128 2.13 2.6e5 2.2e5 1.2e5 - 1.7e6 1.7e6
SliM-LLM+ w2g128 2.13 9.68 10.87 7.59 6.44 - -
QuIP w2g128 2.13 - 39.73 13.48 6.64 84.97 13.03
PB-LLM w2g128 2.13 - 25.37 49.81 NAN 44.12 11.68
GPTVQ w2g128 2.13 - 8.23 6.50 4.64 - -
AffineQuant w2g128 2.13 13.51 10.87 7.64 - -
OmniQuant w2g128 2.14 9.72 11.06 8.26 6.55 - -
ClusComp− g8 ≤2.15 28.76 21.9 14.50 5.43 2.1e2 11.40
ClusComp g8 ≤2.15 7.06 7.04 5.85 4.37 11.57 7.61

(2.15,n35000) (2.15,n35000) (2.14,n50000) (2.07,n65500) (2.14,n35000) (2.07,n65500)

ClusComp− g9n65500 2.11 - 22.71 - - - -
ClusComp g9n65500 2.11 - 7.12 - - - -

RTN w2 2.00 1.1e5 3.8e4 5.6e4 2.0e4 2.7e6 -
GPTQ w2 2.00 2.1e3 7.7e3 2.1e3 77.95 5.7e4 -
QuIP w2 2.00 - - - 6.33 85.1 -
AffineQuant w2 2.00 9.53 35.07 12.42 - - -
OmniQuant w2 2.00 15.47 37.37 17.21 7.81 - -
ClusComp− g9 ≤2.01 65.09 52.38 22.90 9.84 3.1e2 -
ClusComp g9 ≤2.01 7.49 7.50 6.17 4.83 12.33 -

(2.00,n45000) (2.00,n45000) (1.99,n65500) (1.85,n65500) (2.01,n50000) -

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table C.2: The full perplexity results of Llama series on C4. “g” and “n” denote the dimension and
number of centroids in the codebook, respectively. The number in the brackets is the exact bits of
different settings for different LLMs.

Method Setting #Bit 1-7B 2-7B 2-13B 2-70B 3-8B 3-70B

- - 16.00 7.08 6.97 6.46 5.52 9.20 5.87

RTN w4g128 4.13 7.37 7.24 6.58 5.63 13.40 8.90
GPTQ w4g128 4.13 7.21 7.12 6.56 5.58 10.40 6.94
AWQ w4g128 4.13 7.21 7.13 6.56 - 9.40 7.00
AffineQuant w4g128 4.13 7.20 7.12 6.56 - - -
OmniQuant w4g128 4.16 7.21 7.12 6.56 5.58 - -
ClusComp− g4n65500 ≤4.14 7.27 (4.14) 7.16 (4.14) 6.63 (4.09) 5.61 (4.03) 9.39 (4.13) 7.02 (4.03)
ClusComp g4n65500 ≤4.13 7.17 (4.14) 7.09 (4.14) 6.55 (4.09) 5.61 (4.03) 9.27 (4.13) 6.99 (4.03)

RTN w3 3.00 28.26 4.0e2 12.51 10.02 2.2e3 -
GPTQ w3 3.00 9.49 9.81 8.02 6.57 13.0 -
AWQ w3 3.00 13.26 23.85 13.07 - 12.8 -
QuIP w3 3.00 - - - 6.14 - -
AffineQuant w3 3.00 8.03 8.57 7.56 - - -
OmniQuant w3 3.00 8.19 8.65 7.44 6.06 - -
ClusComp− g6n65500 ≤2.89 8.14 (2.89) 8.19 (2.89) 8.21 (2.81) 6.06 (2.72) 12.41 (2.87) 8.26 (2.72)
ClusComp g6n65500 ≤2.89 7.64 (2.89) 7.61 (2.89) 6.91 (2.81) 5.86 (2.72) 11.31 (2.87) 8.26 (2.72)

ClusComp− g7n65500 2.54 9.46 9.51 - - - -
ClusComp g7n65500 2.54 8.10 8.13 - - - -

RTN w2g64 2.25 1.5e2 4.8e2 28.69 13.43 - -
GPTQ w2g64 2.25 17.71 19.40 12.48 NAN - -
AWQ w2g64 2.25 2.8e5 1.6e5 9.5e4 - - -
OmniQuant w2g64 2.28 11.78 12.72 10.05 7.88 - -
ClusComp− g8n65500 ≤2.29 13.06 (2.29) 14.07 (2.29) 19.75 (2.19) - 38.68 (2.27) -
ClusComp g8n65500 ≤2.29 8.76 (2.29) 8.88 (2.29) 7.75 (2.19) - 15.57 (2.27) -

RTN w2g128 2.13 1.0e3 4.9e3 1.4e2 42.13 1.9e3 -
GPTQ w2g128 2.13 27.71 33.70 20.97 NAN 2.1e2 -
AWQ w2g128 2.13 1.9e5 1.7e5 9.4e4 - 1.7e6 -
SliM-LLM+ w2g128 2.13 14.99 18.18 10.24 8.40 - -
QuIP w2g128 2.13 - 31.94 16.16 8.17 1.3e2 22.24
PB-LLM w2g128 2.13 - 29.84 19.82 8.95 79.21 33.91
AffineQuant w2g128 2.13 - 16.02 10.98 - - -
OmniQuant w2g128 2.14 12.97 15.02 11.05 8.52 - -
ClusComp− g8 ≤2.15 29.67 25.26 18.83 7.59 1.9e2 16.52
ClusComp g8 ≤2.15 9.33 9.49 7.92 6.44 17.89 10.81

(2.15,n35000) (2.15,n35000) (2.14,n50000) (2.07,n65500) (2.14,n35000) (2.07,n65500)

ClusComp− g9n65500 2.11 - 27.37 - - - -
ClusComp g9n65500 2.11 - 9.73 - - - -

RTN w2 2.00 1.3e5 4.8e4 7.2e4 2.4e4 2.7e6 -
GPTQ w2 2.00 6.9e2 NAN 3.2e2 48.82 5.7e4 -
QuIP w2 2.00 - - - - 1.3e2 -
OmniQuant w2 2.00 24.89 90.64 26.76 12.28 8.2e5
ClusComp− g9 ≤2.01 74.61 50.08 24.47 13.96 2.2e2 -
ClusComp g9 ≤2.01 10.11 10.29 8.49 7.02 21.45 -

(2.00,n45000) (2.00,n45000) (1.99,n65500) (1.85,n65500) (2.01,n50000) -

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table C.3: Zero-shot evaluation of the quantized Llama-2-7B and Llama-2-13B, with baseline re-
sults taken from van Baalen et al. (2024). “acc” and “acc n” mean accuracy and normalized accu-
racy, respectively. We offer the results of all metrics for a convenient comparison of the follow-up
works. But only the highlighted metrics are used to calculate the average accuracy.

Method #Bit
PIQA ARC-e ARC-c BoolQ HellaSwag WinoGrande

Avg
acc acc n acc acc n acc acc n acc acc acc n acc

Llama-2-7B 16.00 - 79.1 - 74.6 - 46.3 77.7 - 76.0 69.1 70.5

ClusComp 4.14 77.5 79.2 75.3 72.8 42.7 45.3 76.2 56.5 75.1 68.9 69.6

RTN 3.13 - 76.8 - 70.5 - 42.9 71.7 - 74.0 67.6 67.3
GPTQ 3.13 - 77.4 - 68.1 - 40.7 71.0 - 72.5 67.3 66.2
GPTVQ 3.13 - 77.6 - 72.7 - 43.7 71.7 - 72.7 67.6 67.7
ClusComp 2.89 76.8 77.6 74.4 71.3 42.3 42.9 74.6 54.4 72.4 68.8 67.9

RTN 2.25 - 58.8 - 36.7 - 24.8 41.9 - 40.4 51.9 42.4
GPTQ 2.25 - 60.8 - 39.0 - 25.2 59.3 - 45.8 55.5 47.6
GPTVQ 2.25 - 73.3 - 63.4 - 35.9 66.3 - 63.9 66.1 61.5
ClusComp 2.29 74.9 76.0 69.8 65.2 37.7 37.4 73.0 51.1 68.4 65.0 64.1

ClusComp 2.15 74.3 75.1 69.6 65.2 35.7 38.4 69.5 49.2 66.4 63.5 63.0

RTN 2.13 - 51.1 - 28.0 - 25.0 41.1 - 26.6 49.9 36.9
GPTQ 2.13 - 54.8 - 30.6 - 25.1 53.4 - 33.1 51.5 41.4
GPTVQ 2.13 - 70.7 - 58.1 - 31.5 63.7 - 58.5 60.9 57.2
ClusComp 2.00 72.6 73.7 67.0 62.8 32.9 36.6 70.9 47.2 63.5 63.4 61.8

Llama-2-13B 16.00 - 80.5 - 77.5 - 49.2 80.5 - 79.4 72.1 73.2

ClusComp 4.09 78.9 79.9 78.9 76.9 47.7 49.2 81.4 60.0 79.0 72.4 73.1

RTN 3.13 - 78.9 - 74.3 - 46.8 77.3 - 76.5 70.8 70.8
GPTQ 3.13 - 79.3 - 75.8 - 47.0 78.9 - 77.2 70.4 71.4
GPTVQ 3.13 - 79.4 - 75.3 - 48.1 79.0 - 77.0 71.7 71.8
ClusComp 2.81 78.7 79.7 78.5 76.7 45.9 47.8 80.7 58.3 76.8 71.4 72.2

RTN 2.25 - 61.6 - 41.6 - 25.4 49.8 - 48.2 51.9 46.4
GPTQ 2.25 - 70.1 - 56.7 - 31.6 51.1 - 56.6 58.9 54.2
GPTVQ 2.25 - 76.2 - 71.9 - 43.3 67.6 - 70.0 68.2 66.2
ClusComp 2.19 76.6 77.3 75.0 72.9 40.8 43.9 78.1 55.3 73.3 68.4 69.0

ClusComp 2.14 76.7 77.1 73.5 71.6 39.9 42.8 77.5 54.6 73.1 68.0 68.4

RTN 2.13 - 58.4 - 32.3 - 25.5 47.9 - 39.4 48.9 42.1
GPTQ 2.13 - 59.5 - 40.2 - 27.7 57.1 - 41.6 53.4 46.6
GPTVQ 2.13 - 75.2 - 68.3 - 39.5 70.7 - 65.7 67.5 64.5
ClusComp 1.99 75.6 77.7 74.7 73.6 39.9 42.1 74.0 53.0 71.0 67.1 67.6

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table C.4: Zero-shot evaluation of the quantized Llama-3-8B, with baseline results taken from
(Huang et al., 2024c). “acc” and “acc n” mean accuracy and normalized accuracy, respectively. We
offer the results of all metrics for a convenient comparison of the follow-up works. But only the
highlighted metrics (excluding BoolQ) are used to calculate the average accuracy.

Method #Bit
PIQA ARC-e ARC-c BoolQ HellaSwag WinoGrande

Avg
acc acc n acc acc n acc acc n acc acc acc n acc

Llama-3-8B 16.00 79.9 - 80.1 - 50.4 - - 60.2 - 72.8 68.6

RTN 4.13 76.6 - 70.1 - 45.0 - - 56.8 - 71.0 63.9
GPTQ 4.13 78.4 - 78.8 - 47.7 - - 59.0 - 72.6 67.3
AWQ 4.13 79.1 - 79.7 - 49.3 - - 59.1 - 74.0 68.2
SliM-LLM 4.13 78.9 - 79.9 - 49.4 - - 58.7 - 72.6 67.9
ClusComp 4.13 79.1 80.5 80.9 79.6 49.7 54.1 81.1 59.3 78.3 72.9 68.4

RTN 3.13 62.3 - 32.1 - 22.5 - - 29.1 - 54.7 40.2
GPTQ 3.13 74.9 - 70.5 - 37.7 - - 54.3 - 71.1 61.7
AWQ 3.13 77.7 - 74.0 - 43.2 - - 55.1 - 72.1 64.4
SliM-LLM 3.13 77.8 - 73.7 - 42.9 - - 55.5 - 72.8 64.5
RTN 3.00 56.2 - 31.1 - 20.0 - - 27.5 - 53.1 35.6
GPTQ 3.00 60.8 - 38.8 - 22.3 - - 41.8 - 60.9 44.9
AWQ 3.00 71.9 - 66.7 - 35.1 - - 50.7 - 64.7 57.8
QuIP 3.00 76.8 - 72.9 - 41.0 - - 55.4 - 72.5 63.7
ClusComp 2.87 77.7 78.8 76.0 74.5 43.9 47.6 79.0 56.0 74.6 71.0 64.9

ClusComp 2.27 70.6 71.8 63.5 57.4 31.4 35.5 74.7 49.6 66.1 67.1 56.4

RTN 2.13 53.1 - 24.8 - 22.1 - - 26.9 - 53.1 36.0
GPTQ 2.13 53.9 - 28.8 - 19.9 - - 27.7 - 50.5 36.2
AWQ 2.13 52.4 - 24.2 - 21.5 - - 25.6 - 50.7 34.9
SliM-LLM 2.13 57.1 - 35.4 - 26.1 - - 28.9 - 56.6 40.8
PB-LLM 2.13 57.0 - 37.8 - 17.2 - - 29.8 - 52.5 38.8
ClusComp 2.14 68.0 67.1 54.7 49.0 26.4 28.8 71.5 47.0 63.0 62.4 51.7

RTN 2.00 53.1 - 24.7 - 21.9 - - 25.6 - 51.1 35.3
GPTQ 2.00 52.8 - 25.0 - 20.5 - - 26.6 - 49.6 34.9
AWQ 2.00 55.2 - 25.2 - 21.3 - - 25.4 - 50.4 35.5
QuIP 2.00 52.9 - 29.0 - 21.3 - - 29.2 - 51.7 36.8
ClusComp 2.01 70.1 69.6 63.3 57.7 31.9 34.2 66.6 44.4 58.0 58.4 53.6

Table C.5: The perplexity of the Llama-3-8B backbone in LLaVA-Next-8B, with baseline results
from Huang et al. (2024c).

Method Setting Bit WikiText2 ↓ C4 ↓ PTB ↓

- - 16.00 9.5 14.8 16.3

GPTQ w4g128 4.13 9.5 14.8 17.1
AWQ w4g128 4.13 9.9 15.3 16.9
ClusComp− s4n65500 4.13 9.9 13.6 17.6
ClusComp s4n65500 4.13 9.7 13.6 17.7

GPTQ w3g128 3.13 13.0 19.5 28.4
AWQ w3g128 3.13 11.7 17.9 20.2
ClusComp− s6n65500 2.87 14.3 16.2 31.9
ClusComp s6n65500 2.87 10.7 15.3 22.0

GPTQ w2g128 2.13 83.7 3.1e3 2.0e2
AWQ w2g128 2.13 1.6e6 2.0e6 2.2e6
ClusComp− s8n35000 2.14 7.7e2 6.1e3 9.2e2
ClusComp s8n35000 2.14 14.6 21.8 27.5

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D NEW RESULTS

D.1 MORE BASELINES

In this section, we compare ClusComp against SqueezeLLM (Kim et al., 2024) and AdaDim (Heo
et al., 2024). As presented in Table D.1, ClusComp consistently achieves lower perplexity than
SqueezeLLM, at comparable or even lower bit precision. Similarly, as shown in Table D.2, Clus-
Comp outperforms AdaDim on both MMLU and CSR benchmarks.

Table D.1: The perplexity of Llama-2 on WikiText2. The values in the brackets are the exact bits of
ClusComp for different LLMs. The SqueezeLLM results are taken from Kim et al. (2024).

Method #Bit Llama-2-7B Llama-2-13B Llama-2-70B

- 16.00 5.47 4.88 3.31

SqueezeLLM 4.27 5.57 4.96 -
ClusComp ≤ 4.14 5.54 (4.14) 4.94 (4.09) -

SqueezeLLM 3.02 6.18 5.36 3.77
ClusComp ≤ 2.89 5.86 (2.89) 5.18 (2.81) 3.72 (2.72)

SqueezeLLM 2.22 10.79 7.91 4.99
SqueezeLLM 2.05 13.64 8.56 5.38
SqueezeLLM 2.01 35.49 41.02 9.44
ClusComp ≤ 2.00 7.50 (2.00) 6.17 (1.99) 4.83 (1.85)

Table D.2: The accuracy of quantized LLMs on MMLU and four commonsense reasoning (CSR)
tasks (PIQA, HellaSwag, WinoGrande and ARC-easy). Following AdaDim, we use lm-eval v0.3.0
(Gao et al., 2024) for the evaluation. The GPTQ-AdaDim results are taken from Heo et al. (2024).

Method #Bit
Llama-2-7B Llama-2-13B

MMLU (5-shot ↑) CSR (0-shot ↑) MMLU (5-shot ↑) CSR (0-shot ↑)

- 16.00 46.0 67.9 55.6 70.3

GPTQ-AdaDim 4.13 45.3 67.7 54.6 70.1
ClusComp ≤ 4.14 45.6 68.2 55.1 70.8

GPTQ-AdaDim 3.13 41.3 66.4 52.3 68.7
ClusComp ≤ 2.89 43.2 67.2 52.3 69.5

D.2 VISUALIZATION OF CLUSCOMP

To illustrate how ClusComp effectively simulates the original weight distribution, we compare it
(non-uniform compression) to OmniQuant (uniform quantization) in Figure D.1. The figures demon-
strate that ClusComp more closely approximates the 16-bit weight distribution, primarily due to its
non-uniform compression approach. Specifically, ClusComp clusters similar vectors over groups of
length g across different rows and columns of the weight matrix.

D.3 QUANTIZATION DIFFICULTY TREND OF LLAMA SERIES

Previous works (Lin et al., 2024; Sun et al., 2024a; Heo et al., 2024) suggest that weight patterns can
be identified based on activations rather than relying solely on weight magnitudes. Following a rec-
ommendation from Reviewer wLyR at ICLR 2025, we incorporate an additional analysis based on
the Wanda score (Sun et al., 2024a) distribution to illustrate the increasing challenges of quantization
across the Llama series.

Given the weight matrix W ∈ Rdout×din of a linear layer and the input activations X ∈ RNL×din ,
where N and L represent the batch and sequence dimensions, the Wanda score S ∈ Rdout×din is
computed as Sij = |Wij | · ||Xj ||2. A smaller Wanda score within a row of W (on a per-output
basis) indicates a less significant weight element.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) The query projection layer in the first block. Surprisingly, even the 4-bit OmniQuant (uniform
quantization) could not simulate the original weight distribution, demonstrating that the first query
layer is difficult for quantization. We also observe this for the first key projection layer in Figure
D.4(b). However, ClusComp with 4-2 bits perfectly simulates the original weight distribution.

(b) The output projection layer in the last block. Compared to OmniQuant (uniform quantization),
ClusComp can better simulate the weight distribution, more evident for the 3 and 2-bit levels.

Figure D.1: Weight patterns of two cherry-picked layers of Llama-2-7B. Darker red and blue indicate
larger and smaller weight values, respectively. To make the weight pattern more obvious, we apply
these sequential processing steps: (1) take the absolute weight values; (2) downsample the grids with
8 × 8 maxpool kernels; (3) calculate the logarithm of these values; (4) normalize the log-values. We
also offer the visualization of all layers in the first and last blocks of Llama-2-7B in Figure D.4 and
D.5. Overall, ClusComp’s weight distribution of different bit-levels can better simulate the original
weight distribution.

In Figure D.2 (Right), we present the standard deviation of the Wanda scores across different lay-
ers. The results show that Llama-2 exhibits a larger standard deviation compared to Llama-1, while
Llama-3 exceeds Llama-2 in this metric. A higher standard deviation reflects a more dispersed
Wanda score distribution, indicating that a greater proportion of weight elements are effective and di-
verse. Consequently, quantization becomes more challenging, as the expanded distribution stretches
the quantization grid.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer index

0

2

4

6

8

Av
g.

 k
ur

to
sis

Llama-1-7B
Llama-2-7B
Llama-3-8B

0 5 10 15 20 25 30
Layer index

0.2

0.4

Av
g.

 st
d

of
 W

an
da

Figure D.2: From Llama-1 to Llama-3, LLMs exhibit increasing challenges for quantization. Left:
The average kurtosis of weights across various layers in the Llama series, previously shown in Figure
2 (Right). Right: The average standard deviation of the Wanda score across various layers. Please
refer to Figure D.6 for the Wanda scores of different layer types. Both metrics indicate that Llama-3
has higher variance in most layers, reflecting the presence of more outliers and thus greater difficulty
for quantization.

D.4 QUANTIZATION OF THE CODEBOOK

Thanks to the suggestion of Reviewer h5Zw at ICLR 2025, we conduct further quantization on the
codebook C. Originally, the data type in the codebook was 16-bit, which facilitates our following
recovery training or finetuning step. However, if we can further quantize the codebook, we have
two additional advantages: (1) The model size can be further slightly reduced (Only slightly, since
the majority of bits is allocated to the code q.); (2) The inference can speed up, since the codebook
becomes smaller. In sum, we can keep the codebook in 16-bit if we want to do the recovery training
or finetuning. If we are only interested in inference, we can further quantize the codebook to a lower
bit.

As shown in Table D.3, the performance doesn’t change if we quantize the codebook from 16-
bit to 8-bit. When quantizing the codebook to 4-bit, the perplexity slightly increases, but is still
comparable to the best baseline at the 4-bit level and outperforms the best baseline at the 2-bit level.
However, if we further quantize the codebook to the 2-bit level, the perplexity increases significantly.
Therefore, we can safely quantize the codebook to 8-bit or 4-bit.

Table D.3: The perplexity of ClusComp with quantized codebook on WikiText2. The results of the
best baseline are taken from Table C.1. The values in the brackets are the exact bits for different
LLMs. We can observe: (1) 8-bit codebook offers the same perplexity as 16-bit’s; (2) 4-bit code-
book slightly hurts the performance, but is still comparable to the best baseline at the 4-bit level
and outperforms the best baseline at the 2-bit level. (3) The results of the 2-bit codebook are not
acceptable.

Method Bit for codebook Avg. Bit 2-7B 2-70B 3-8B 3-70B

- - 16.00 5.47 3.31 6.12 2.90

Best baseline - 4.13 5.58 3.39 6.50 3.30
ClusComp 16 ≤ 4.14 5.54 (4.14) 3.40 (4.03) 6.39 (4.13) 3.12 (4.03)
ClusComp 8 ≤ 4.11 5.54 (4.11) 3.40 (4.03) 6.39 (4.10) 3.13 (4.03)
ClusComp 4 ≤ 4.07 5.59 (4.07) 3.43 (4.02) 6.52 (4.07) 3.26 (4.02)
ClusComp 2 ≤ 4.05 25.44 (4.05) 5.64 (4.01) 1.2e5 (4.05) 96.52 (4.01)

Best baseline - ≤ 2.13 35.07 (2.00) 4.64 (2.13) 85.10 (2.00) 11.68 (2.13)
ClusComp 16 ≤ 2.07 7.50 (2.00) 4.37 (2.07) 12.33 (2.01) 7.61 (2.07)
ClusComp 8 ≤ 2.04 7.50 (1.92) 4.37 (2.04) 12.33 (1.92) 7.63 (2.04)
ClusComp 4 ≤ 2.03 7.63 (1.86) 4.42 (2.03) 12.77 (1.86) 7.64 (2.03)
ClusComp 2 ≤ 2.02 6.5e3 (1.83) 21.07 (2.02) 1.7e5 (1.83) 2.3e4 (2.02)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.5 ABLATION STUDY ON THE GROUP SIZE AND NUMBER OF CLUSTERS

Thanks to the suggestion of Reviewer h5Zw at ICLR 2025, we conducted experiments to determine
whether the number of clusters n or the cluster dimension g has a greater impact on the performance
of quantized LLMs. As shown in Table D.4, increasing n positively affects performance more than
reducing g. This finding underpins our choice of n ≈ 216. However, while n plays a crucial
role in enhancing performance, selecting n > 216 would necessitate using 32-bit storage for the
code q, substantially increasing the bits-per-parameter and adversely affecting memory efficiency.
Therefore, we always choose n < 216.

Table D.4: Ablation study of ClusComp− on the number of clusters n and the cluster dimension
g in the codebook reveals that n plays a more significant role in the performance of the quantized
LLM. (a) The perplexity remains relatively stable with variations in g, although changes in g lead to
substantial differences in the bit requirement, as most bits are used to store the codes q. Specifically,
smaller g values result in larger q. Refer to Table 1 for detailed examples. (b) In contrast, perplexity
is highly sensitive to changes in n. Adjusting n causes only a minor change in the bit requirement,
as storing the codebook is memory-efficient. (c) For comparable bit budgets, n has a greater impact
on performance than g.

(a) n = 65500. Perplexity
changes smoothly.

Setting #Bit Wiki2

g4 4.14 5.67
g5 3.38 5.90
g6 2.89 6.54
g7 2.54 7.64
g8 2.29 11.10

(b) Same g. Perplexity changes
dramatically.

Setting #Bit Wiki2

g7n16384 2.35 23.14
g7n4096 2.30 9.4e2

g8n65500 2.29 11.10
g8n50000 2.15 21.90
g8n4096 2.02 5.4e3

(c) Similar bit level. Perplexity is
more sensitive to n.

Setting #Bit Wiki2

g7n16384 2.35 23.14
g7n4096 2.30 9.4e2
g8n65500 2.29 11.10

1.0 1.5 2.0 2.5 3.0 3.5 4.0
#Bit

4

6

8

10

12

14

W
ik

i2
 (P

PL
)

BiLLM

ClusComp+

GPTVQOQOQGPTVQ
GPTVQ

OQ (=OmniQuant)

PB-LLM/2 ClusComp
Competitive baseline
QuIP
GPTQ
SqueezeLLM

Figure D.3: Perplexity of various methods on Llama-2-70B. Compared to Figure 1, we add three
new baselines: GPTQ (Frantar et al., 2022), QuIP (Chee et al., 2023) and SqueezeLLM (Kim et al.,
2024). For GPTQ, we only show the results ≥ 3-bit, since its perplexity under 3-bit is large.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Query projection layer. (b) Key projection layer.

(c) Value projection layer. (d) Output projection layer.

(e) Up projection layer. (f) Gate projection layer.

(g) Down projection layer.

Figure D.4: Weight patterns of all layers in the first block (0-th block) of Llama-2-7B. Darker red
and blue indicate larger and smaller weight values, respectively. ClusComp’s weight distribution of
different bit levels can better simulate the original weight distribution.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Query projection layer. (b) Key projection layer.

(c) Value projection layer. (d) Output projection layer.

(e) Up projection layer. (f) Gate projection layer.

(g) Down projection layer.

Figure D.5: Weight patterns of all layers in the last block (31-st block) of Llama-2-7B. Darker red
and blue indicate larger and smaller weight values, respectively. ClusComp’s weight distribution of
different bit levels can better simulate the original weight distribution.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0.0

0.5

1.0

1.5 q_proj

0.0

0.5

1.0

1.5 k_proj

0.0

0.5

1.0

1.5 v_proj

0.0

0.5

1.0

1.5

St
an

da
rd

 d
ev

ia
tio

n
of

 W
an

da
 sc

or
e

o_proj
Llama-1-7B
Llama-2-7B
Llama-3-8B

0 10 20 30
0.0

0.5

1.0

1.5 up_proj

0 10 20 30
0.0

0.5

1.0

1.5 gate_proj

0 10 20 30
Layer index

0.0

0.5

1.0

1.5 down_proj

Figure D.6: The standard deviation of Wanda score across various layers in different Llama series
reveals three key observations: (1) Deeper layers tend to exhibit higher standard deviation; (2)
Three layers (query, key and gate) show a clear trend across Llama series, with Llama-3 showing
the highest standard deviation, followed by Llama-2, and then Llama-1; (3) The other four layers
show a similar standard deviation for all Llama series.

32

	Introduction
	Related works
	Model compression
	Knowledge distillation
	Finetune quantized model

	Method
	Pilot study
	ClusComp
	Clustering
	Estimate model size
	Block-wise error minimization
	Recovery and finetuning

	Experiments
	Compression results
	Push the limit of model compression
	Finetuning quality and efficiency

	Conclusion
	Limitation and future work
	Experimental details
	Clustering
	Block-wise error minimization
	Recovery training
	In-domain finetuning
	General-domain finetuning

	More results
	New results
	More baselines
	Visualization of ClusComp
	Quantization difficulty trend of Llama series
	Quantization of the codebook
	Ablation study on the group size and number of clusters

