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ABSTRACT

Knowledge Distillation (KD) is a central paradigm for transferring knowledge from
a large teacher network to a typically smaller student model, often by leveraging soft
probabilistic outputs. While KD has shown strong empirical success in numerous
applications, its theoretical underpinnings remain only partially understood. In this
work, we adopt a Bayesian perspective on KD to rigorously analyze the convergence
behavior of students trained with Stochastic Gradient Descent (SGD). We study two
regimes: (i) when the teacher provides the exact Bayes Class Probabilities (BCPs);
and (ii) supervision with noisy approximations of the BCPs. Our analysis shows that
learning from BCPs yields variance reduction and removes neighborhood terms in the
convergence bounds compared to one-hot supervision. We further characterize how
the level of noise affects generalization and accuracy. Motivated by these insights,
we advocate the use of Bayesian deep learning models, which typically provide
improved estimates of the BCPs, as teachers in KD. Consistent with our analysis, we
experimentally demonstrate that students distilled from Bayesian teachers not only
achieve higher accuracies (up to +4.27%), but also exhibit more stable convergence
(up to 30% less noise), compared to students distilled from deterministic teachers.

1 INTRODUCTION

Knowledge Distillation (KD) Hinton et al. (2015) is a fundamental technique in machine learning,
widely used for model compression, transfer learning, and improving generalization Gou et al. (2021);
Yim et al. (2017). A core idea in KD is to transfer knowledge from a "teacher" model to a (typically
smaller) "student" model by training the student to match the teacher’s output probabilities rather than
categorical outputs (one-hot labels). This softened supervision has been shown to lead to improved
performance across a range of tasks Mansourian et al. (2025). Consequently, a substantial body of
research has focused on designing KD mechanisms, including strategies for dynamic temperature
scaling, feature-based distillation, and task-aware teacher-student matching Zhu et al. (2024); Wang
et al. (2024), typically assuming a large teacher which is optimized to maximize its own performance.

Despite its widespread adoption, the theoretical foundations of KD remain only partially understood
Phuong & Lampert (2019). In particular, the impact of the teacher’s output probabilities on the student’s
optimization trajectory and generalization has not been fully characterized. While insights have been
developed for special cases such as self-distillation Safaryan et al. (2024), a principled understanding
of how KD affects common learning algorithms, such as Stochastic Gradient Descent (SGD) and its
variants, is still lacking. Recent works have begun to explore KD through a Bayesian lens Menon
et al. (2021); Ye et al. (2024), interpreting the teacher’s outputs as (possibly noisy) estimates of the
true class posterior. This probabilistic perspective gives rise to the possibility of analyzing relatively
unexplored aspects of KD; particularly in terms of the dynamics of SGD-based learning, as well as
the statistical calibration of the teacher and its influence on the student.

Contributions Motivated by the Bayesian viewpoint of KD, our work provides a rigorous analysis of
the interaction between probabilistic supervision and SGD-based learning. Our analysis considers two
regimes: (i) supervision with the Bayes Class Probability (BCP), i.e., the exact posterior probabilities,
which correspond to a perfect teacher from the Bayesian perspective on KD; and (ii) supervision with
noisy estimates of the BCP, i.e., a realistic imperfect teacher. Based on this modeling, we are able to
show variance reduction compared to one-hot supervision in SGD-based learning. Through a numerical
study, we show that this variance reduction translates into improved performance of the trained student.
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Based on our analysis, which indicates that the effectiveness of KD depends on how well the teacher
approximates the BCP (i.e., how well-calibrated the teacher is), we advocate the use of Bayesian deep
learning models as teachers Gawlikowski et al. (2023) in KD. Bayesian deep learning brings forth
a key advantage, as it typically results in better-calibrated probabilistic predictions, thereby producing
more faithful approximations of the BCPs Jospin et al. (2022). We show this benefit can be effectively
harnessed in KD, through two complementary strategies: (i) training the teacher directly using
Bayesian learning techniques, or (ii) converting an existing deterministic (frequentist) pre-trained
teacher into a Bayesian model via posterior approximation techniques. Our experimental study
demonstrates the effectiveness of this approach, both empirically validating our theoretical analysis,
as well as showing the usefulness of Bayesian teachers. Our results show consistent improvements
in accuracy and variance reduction when distillation is performed with properly calibrated teachers.
These empirical findings align with our theoretical analysis, supporting our claim that leveraging
Bayesian teachers in KD improves both the convergence and generalization of SGD-based learners.

2 RELATED WORKS

Theoretical Justification for KD Since the introduction of KD Hinton et al. (2015), several works
focused on explaining its mechanisms from different theoretical perspectives. A common approach
attributes its usefulness to the soft estimates of the teacher regularizing the learning procedure Dong et al.
(2019); Yuan et al. (2020). Recently, Cha & Cho (2025) provided a minimal working explanation of KD
through a precision–recall trade-off. Huang et al. (2021) framed KD as a trade-off between knowledge
inheritance and exploration. Phuong & Lampert (2019) provided generalization bounds and identified
factors explaining the success of KD, namely data geometry and optimization bias, and Lopez-Paz
et al. (2015) connected KD to privileged information. In contrast to these works, both our theoretical
analysis and our algorithmic contributions are based on a Bayesian perspective on KD, which facilitates
characterizing the learning dynamics, as well as unveil how one can enhance a teacher model for KD.

Bayesian Perspective on KD Menon et al. (2021) inspected the soft estimates of the teacher from a
Bayesian perspective, aiming to provide theoretical justification for its empirical success. There, it
was shown that learning from accurate BCPs can reduce the variance of the student’s objective, and
excess risk bounds were derived, depending on the ℓ2 distance between the teacher’s predictions and
the true BCPs. Similarly, Dao et al. (2021) provided generalization bounds on the student including
terms such as the ℓ2 distance between the true BCPs and the teacher’s predictions. While our work is
motivated by this Bayesian viewpoint, we differ in focus: rather than analyzing the statistical properties
of the risk, we study how the probabilistic teacher outputs affect the behavior of learning algorithms.
Safaryan et al. (2024) is, to our knowledge, the first to examine the impact of distillation on SGD.
However, their analysis considers specific scenarios such as self-distillation or having the student be
a compressed version of the teacher, for which a dedicated gradient approximation is formulated. In
contrast, our results hold for arbitrary teachers, do not rely on gradient approximations, and explicitly
model the teacher’s predictions as BCP estimates. Furthermore, our analysis reveals that learning from
BCPs holds the desired interpolation property under mild assumptions, which allows student Neural
Networks (NNs) to generalize in settings where learning from one-hot labels results in overfitting.

Distilling from Calibrated Teachers Beyond theory, our work also contributes to the design of
teacher models for KD, advocating for the use of Bayesian teachers to enhance calibration. Recently,
Kim et al. (2025) and Fan et al. (2024b) recognized calibration as a key driver in KD and suggested
algorithms to enhance calibration of deterministic models. Related recent works Ye et al. (2024),
Hamidi et al. (2024) aimed to improve teacher calibration by modifying the training objective,
encouraging predictions that better approximate the true BCPs. While these approaches operate by
altering loss functions or improving calibration of a deterministic model, we instead adopt the Bayesian
deep learning paradigm, which naturally yields calibrated predictions and quantifiable uncertainty
measures. This both improves the accuracy of the distilled student and provides an indication of
the calibration of the teacher. Other works have considered the intersection of Bayesian models and
distillation, but with fundamentally different goals. For instance, Bulò et al. (2016), Gurau et al. (2018),
and Korattikara Balan et al. (2015) focused on distilling Monte Carlo dropout ensembles to reduce
inference cost or to improve uncertainty estimation in the student model. Similarly, Lee et al. (2023)
studied self-distillation under dropout. In contrast, our work focuses on leveraging Bayesian teachers
as a means to enhance student learning performance as a direct consequence of our theoretical analysis.
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3 ANALYSIS OF SGD-BASED LEARNING FROM PROBABILITY ESTIMATES

This section characterizes the impact of supervision with BCP estimates on SGD-based learning.
Specifically, we provide convergence guarantees for both cases of supervision with perfect and with
noisy probability estimates, and compare the results to the standard case of learning from one-hot
labels. We show that under common assumptions, learning in all cases converges in expectation to
the same model, but with potentially better convergence rate and lower stochastic noise at the optimum
when supervising with probability estimates. Intuitively, as the probability estimates become noisier,
the convergence of SGD worsens, up to a point where it is no longer beneficial to supervise with
probability estimates. The proofs of the results presented in this section are delegated to Appendix C.

3.1 PRELIMINARIES

Learning Framework We consider the supervised learning of a classification task, where each input
x ∈ X ⊆ Rd is associated with one of K classes, represented by the one-hot label y ∈ Y . The inputs
are related to the labels via a data generating distribution P Shalev-Shwartz & Ben-David (2014),
which dictates true BCPs P(y|x), i.e., the conditional distribution of a label (in one-hot form) y given
an input x. The target model, referred to as the student model, is a mapping ϕθ : X → Y , typically
a NN, parameterized by θ ∈ Rd, where Y is the K-category statistical manifold. The desired model
is one that minimizes the risk, also referred to as the generalization error, namely,

min
θ∈Rd

fP(θ) := E(x,y)∼P [ℓ(ϕθ(x),y)] . (1)

Here, ℓ : Y × Y → R is a loss function, typically the Cross-Entropy (CE), defined henceforth as ℓCE.

The learning procedure aims to approach (1) without knowing P by seeking Empirical Risk
Minimization (ERM), formulated using a labeled dataset D = {(xn,yn)}Nn=1, i.e.,

min
θ∈Rd

fD(θ) :=
1

|D|

|D|∑
n=1

ℓ(ϕθ(xn),yn). (2)

Clearly, E[fζ(θ)] = fP(θ) for a random sample (or an i.i.d. batch) ζ = (x,y) distributed via ζ ∼ P .

SGD-based KD In KD, a teacher model Φ (often pretrained) is used along with the dataset D. The
teacher model usually has larger capacity and is a more complex model compared to the student. The
softmax predictions of the teacher, Φ(xn) ∈ Y , are used as additional soft labels in training the student.
The student model is then trained with distillation parameter λ ∈ [0, 1], modifying (2) into

min
θ∈Rd

fΦ
D(θ) :=

1

|D|

|D|∑
n=1

[(1− λ)ℓ(ϕθ(xn),yn) + λℓ(ϕθ(xn),Φ(xn))] . (3)

When ℓ is linear in the second argument (e.g., CE or KL-divergence loss), the objective (3) simplifies into

min
θ∈Rd

fΦ
D(θ) =

1

|D|

|D|∑
n=1

ℓ(ϕθ(xn), (1− λ)yn + λΦ(xn)). (4)

The standard SGD framework can then be readily applied by iterating over

θt+1 = θt − α∇fΦ
ξt(θ

t), (5)

where α > 0 is the learning rate, and ξt ⊂ D is a randomly sampled data point or mini-batch from D.

Assumptions & Definitions To analyze the convergence profile of the student model in SGD-based
probabilistic supervision, we define the desired student parameters as θ∗ ∈ argminθ∈Rd fP(θ)
and their corresponding risk f∗

P := fP(θ
∗). We make use of the following standard assumptions,

commonly adopted in the analysis of SGD.

AS1 (Strong quasi-convexity). The risk function fP : Rd → R is differentiable and µ-strongly
quasi-convex for some constant µ > 0, i.e., for any θ ∈ Rd it holds that

f∗
P ≥ fP(θ) + ⟨∇fP(θ),θ

∗ − θ⟩+ µ

2
∥θ∗ − θ∥2.

3
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A weaker assumption is the Polyak-Łojasiewicz (PL) condition.

AS2 (Polyak-Łojasiewicz condition). The risk function fP : Rd → R is differentiable and
satisfies the PL condition with parameter µ > 0, i.e., for any θ ∈ Rd it holds that

∥∇fP(θ)∥2 ≥ 2µ(fP(θ)− f∗
P).

Since strong quasi-convexity implies the PL condition, we use either AS1 or AS2 in our analysis, in
addition to the following assumptions:

AS3 (Expected smoothness). The loss fξ(θ) is differentiable and L-smooth in expectation (for
some constant L) for ξ ∼ P , i.e., for any θ ∈ Rd it holds that

Eξ∼P
[
∥∇fξ(θ)−∇fξ(θ

∗)∥2
]
≤ 2L(fP(θ)− f∗

P).

AS4 (Student expressiveness) The student model ϕθ is sufficiently expressive such that it can real-
ize the true BCP, i.e., there exists some θ ∈ Rd such that ϕθ(x) ≡ [P(y1|x), . . . ,P(yK |x)]
for all x ∈ supp(P), where yk is the one-hot encoding of the kth label.

The above assumptions are used to maintain a tractable analysis of SGD-based probabilistic
supervision. Moreover, the design guidelines that arise from our analysis are empirically shown in
Section 4 to enhance SGD-based KD even in settings where AS1-AS4 do not necessarily hold.

Our analysis also uses the notions of interpolation and gradient noise, defined as follows:
Definition 1 (Interpolation). The optimization problem (1) satisfies the interpolation property if there
exists some θ∗

int ∈ Rd such that for all (x,y) ∈ supp(P), the model perfectly fits the data, i.e.,

ℓ(ϕθ∗
int
(x),y) = min

θ∈Rd
ℓ(ϕθ(x),y), ∀(x,y) ∈ supp(P).

By Definition 1, interpolation holds if there exists θ∗
int which minimizes the loss for every input-label

pair in the support of the data generating distribution P . When this condition holds, we clearly have
that θ∗

int ∈ argminθ∈Rd fP(θ), meaning that the interpolating model is also a global minimizer of
the generalization error. This formulation is valid in expectation, and naturally extends the classical
finite-sum interpolation definition to continuous distributions Garrigos & Gower (2023).
Definition 2 (Gradient noise). We define the gradient noise of the optimization problem (1) as

σ∗
f = inf

θ∗∈argmin fP
E(x,y)∼P

[
∥∇θℓ(ϕθ∗(x),y)∥2

]
.

The gradient noise controls the variance of the gradients at the optimum and can be seen as a measure
of how far one is from interpolation.

3.2 SUPERVISION WITH PERFECT BCPS

We proceed to examine the effects of distilling from a perfect teacher (from the Bayesian KD per-
spective) on the training dynamics of the student. In this case, the student is supervised with the true
BCPs. The resulting setup can be viewed as distilling from a teacher whose mapping is given by
Φ(x) ≡ [P(y1|x), . . . ,P(yK |x)]. In our analysis, we first show that the formulation of the generaliza-
tion error using the BCPs yields the same optimal model as the one using one-hot labels in (1), and then
we analyze the convergence of SGD-based learning of the empirical version of the BCP-based risk.

BCP-Based Risk To formulate the BCP-based risk function, we replace the one-hot labels y in the
stochastic optimization problem (1) with the true BCPs. The resulting objective is given by

min
θ̂∈Rd

f̂P(θ̂) := E(x,y)∼P
[
ℓ(ϕθ̂(x),P(y|x))

]
. (6)

The loss landscape of f̂P over Rd may differ from that of fP . The convergence of SGD-based learning
is analyzed w.r.t. the optimal value and weights of the considered objective function. Therefore, before
studying convergence, we compare f̂∗

P and its minimizer θ̂∗ to f∗
P and its minimizer θ∗, respectively.

4
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Proposition 1. When AS4 holds, the inference rule which minimizes both (1) and (6) is the true BCP,
i.e., ϕ(x) ≡ [P(y1|x), . . . ,P(yK |x)], and the minimal loss is the conditional entropy of y given x.

Proposition 1, also claimed in a different form in Menon et al. (2021), proves that both (1) and (6)
share the same minimum and the same minimizer. The key benefit of learning with true BCPs instead
of one-hot labels comes from Proposition 2.
Proposition 2. When AS4 holds, the stochastic optimization in (6) satisfies the interpolation property.

Proposition 2 indicates that the stochastic optimization task (6) has several benefits over (1).
Particularly, when learning from data using an empirical risk measure, Proposition 2 implies that the
model that minimizes the risk also minimizes the corresponding empirical risk, i.e., it achieves

min
θ̂∈Rd

f̂D(θ̂) :=
1

|D|

|D|∑
n=1

ℓ(ϕθ̂(xn),P(yn|xn)), (7)

for any data set D ⊂ supp(P). This property does not hold when learning from one-hot labels, where
the empirical risk is often minimized by an overfitted model which does not generalize.

BCP-Based SGD Learning The observation in Proposition 2 motivates analyzing the convergence
profile (in the sense of the risk function f̂P ) of SGD based on the empirical version of (7). We note that
such learning coincides with SGD-based KD with a perfect teacher (in the BCP sense), as (3) reduces
to (7) when Φ outputs the true BCPs and λ = 1. Specifically, using the Assumptions described in
Subsection 3.1, we obtain convergence guarantees for SGD-based learning starting from an arbitrary
student model θ̂0. The resulting bounds, formulated in the sense of both the model parameters
difference, as well as the resulting risk function, are stated in the following theorems:

Theorem 1. Let Assumptions AS1, AS3, and AS4 hold. For any step-size α ≤ 1

L
, the parameters

learned via SGD (5) with true BCPs instead of one-hot labels converge as

E[∥θ̂t − θ∗∥2] ≤ (1− αµ)t∥θ̂0 − θ∗∥2. (8)

Theorem 2. Let Assumptions AS2, AS3, and AS4 hold. For any step-size α ≤ µ

LL
, the risk achieved

by the model learned via SGD (5) with true BCPs instead of one-hot labels converges as

E[f̂P(θ̂
t)− f∗

P ] ≤ (1− αµ)t(f̂P(θ̂
0)− f∗

P). (9)

Theorems 1-2 showcase the usefulness of SGD-based learning from true BCPs by comparing them
with the corresponding bounds in the general gradient-based stochastic optimization literature Garrigos
& Gower (2023). The standard SGD convergence bounds, which hold for similar constraints on the
learning rate, are made up of the convergence speed term, dictating the rate of convergence, and the
neighborhood term, corresponding to learning stability. Contrasting these with Theorems 1-2 reveals
two main differences:

1. Model Variance: Theorems 1-2 include only a convergence speed term, which decays with (1−αµ)t

as in standard SGD Garrigos & Gower (2023). The neighborhood term, which in standard SGD is
proportional to α

µσ
∗
f (Garrigos & Gower, 2023, Thm. 5.8), vanishes, indicating stable learning.

2. Supported Learning Rates: The range of learning rates α for which convergence can be guaranteed
is twice as large compared to (Garrigos & Gower, 2023, Sec. 5), allowing the usage of larger
step-sizes which in turn lead to faster convergence.

Overall, the results indicate that distilling from a well-trained teacher that sufficiently estimates the
BCPs alters the optimization task from seeking to fit the one-hot labels to an interpolation task.

3.3 SUPERVISION WITH NOISY BCPS

While distilling from perfect BCPs yields desirable convergence guarantees, KD is typically done
with an imperfect teacher. Here, we examine the effects on the training dynamics of the student when
distilling from an imperfect teacher, i.e., when the student is supervised with noisy BCPs. Such noise
corresponds to modeling errors, limited training data, or flawed training of the teacher. We show that
even with noisy BCPs, we are able to achieve variance reduction and improved generalization under
certain conditions.

5
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Noisy BCP-Based Risk We model the noisy BCPs as the true BCPs with additive distortion ϵ. This
can be viewed as having the teacher mapping beΦ(x) ≡ [P(y1|x)+ϵ1, . . . ,P(yK |x)+ϵK ], where we
model ϵ ∼ Pϵ as zero-mean noise with variance ν and uncorrelated entries. This representation facili-
tates incorporating the deviation of the teacher from the BCPs while maintaining analytical tractability1.

The noisy BCP-based risk function is formulated in a similar fashion to the BCP-based risk (6), but
with the noisy BCPs instead of the perfect ones. The resulting objective is given by

min
θ̃∈Rd

f̃P,Pϵ(θ̃) := E(x,y)∼P,ϵ∼Pϵ

[
ℓ(ϕθ̃(x),P(y|x) + ϵ)

]
. (10)

Noisy BCP-Based SGD Learning We now analyze the impact of noisy BCPs on the convergence
of SGD-based learning. We again employ the assumptions described in Subsection 3.1, and start
from an arbitrary student model θ̃0. The resulting bounds, formulated in the sense of both the model
parameters difference, as well as the resulting risk function, are stated in the following theorems:

Theorem 3. Let Assumptions AS1, AS3, and AS4 hold. For any step-size α ≤ 1

2L
, the parameters

learned via SGD (5) with noisy BCPs instead of one-hot labels converge as

E[∥θ̃t − θ∗∥2] ≤ (1− αµ)t∥θ̃0 − θ∗∥2 + 2α

µ
σ∗
f̃
, (11)

where σ∗
f̃

is the gradient noise (Definition 2) for the noisy BCP risk of (10).

Theorem 4. Let Assumptions AS2, AS3, and AS4 hold. For any step-size α ≤ µ

2LL
, the risk

achieved by the model via SGD (5) with noisy BCPs instead of one-hot labels converges as

E[f̃P,Pϵ(θ̃
t)− f∗

P ] ≤ (1− αµ)t(f̃P,Pϵ(θ̃
0)− f∗

P) +
Lα

µ
σ∗
f̃
. (12)

Theorems 3-4 mirror the standard SGD convergence bounds Garrigos & Gower (2023), with one main
difference: the gradient noise σ∗

f̃
reflects the variance induced by distilling from noisy BCPs. To under-

stand this term, we compare it with the gradient noise in the standard case of learning with one-hot labels.
Proposition 3. Under AS4 with K classes, let Jθ,k[ϕθ(x)] denote the k-th column of the Jacobian
of the student model, i.e., ∇θϕ(x) = [Jθ,1[ϕθ(x)], . . . , Jθ,K [ϕθ(x)]]. Then, for the CE loss, the
gradient noise of the one-hot risk (1) is

σ∗
f = Ex∼P

[ K∑
k=1

1

P(yk|x)
· ∥Jθ,k[ϕθ∗(x)]∥2

]
, (13)

and the gradient noise of the noisy BCP risk (10) is

σ∗
f̃
= ν · Ex∼P

[ K∑
k=1

1

[P(yk|x)]2
· ∥Jθ̃,k[ϕθ̃∗(x)]∥2

]
. (14)

The expressions above demonstrate how gradient noise is affected by the form of supervision. In both
cases, the resulting gradient noise is a weighted average of the K columns of the Jacobian matrix
evaluated at the optimum. In the standard case, the weights are the inverse of the K entries of the true
BCPsP(y|x). When distilling from noisy BCPs, the weights are the noise variance ν multiplied by the
inverse of the squared entries of the true BCPsP(y|x). Since ν is a measure of how well the teacher esti-
mates the true BCPs, as ν decreases, so does the gradient noise, and convergence becomes tighter. Note
that when ν → 0, i.e., the teacher outputs the true BCPs, then (11) reduces to (8) and (12) reduces to (9).

An alternative point of view stems from Definition 1. Since the gradient noise is a measure of distance
from interpolation, the gradient noise in the standard case can be seen as a measure of how far the
one-hot labels are from the true BCPs, i.e., how noisy the data generating distribution is. Similarly,
the gradient noise in (14) can be seen as a measure of how far the noisy BCPs are from the true BCPs.

Proposition 3 indicates that supervision with noisy BCPs is beneficial (under the above modeling
assumptions) when σ∗

f̃
< σ∗

f . That is, when the noise level is smaller than the inherent variance
from one-hot labels. The point at which this balance flips depends on the data generating distribution
(through P), model smoothness (through the Jacobian), and teacher quality (through ν).

1While our formulation focuses on modeling BCP deviation as additive noise, similar findings can also be
obtained for alternative models for noisy probability, such as Dirichlet-distributed, as shown in Appendix D.
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Figure 1: Learning curves, test accuracies, and average generalization error gaps in the learning curves
when training with one-hot labels, when supervised with the true BCPs, when supervised with true
BCPs corrupted with different noise levels, and supervision by combinations of one-hot labels and noisy
BCPs adjusted based on several λ values. Complete experimental details are provided in Appendix E.

Numerical Study The effects of the vanishing neighborhood term when supervising with true BCPs,
as well as the neighborhood term when supervising with noisy BCPs on student performance, are
demonstrated and explored in a synthetic experiment. We compare student models trained using SGD
based on (i) one-hot labels; (ii) true BCPs; and (iii) BCPs corrupted with two noise levels (denoted
more noisy and less noisy). The latter are also compared with different combinations of one-hot labels
and noisy BCPs adjusted based on λ values. The complete details of the study, alongside additional ex-
periments, correlation analysis, and numerical validation of Proposition 3, are provided in Appendix E.

The learning curves in Figure 1 demonstrate that all students converge to the minimal loss at the same
speed (for a given learning rate). Nevertheless, the loss of the student trained with true BCPs converges
smoothly and exactly to the minimal loss, while students trained with one-hot labels or noisy BCPs
converge only up to a neighborhood term, which depends on the noise level. The smaller neighborhood
term demonstrated in Theorem 4 and Proposition 3 is reflected in the experiments as both a lower error
floor and reduced variance in the generalization error curves. The middle plot of Figure 1 shows that
accuracy behaves in the same way: less noisy BCPs yield higher and more stable accuracy, while noisier
BCPs result in larger fluctuations. This indicates that the variance reduction predicted by our analysis
not only improves convergence in terms of loss but also translates directly into improved student
performance. It is also demonstrated in the right plot in Figure 1 that the value of λ that yields the
best student performance depends on the level of noise in the BCP, i.e., on how calibrated the teacher
is. This motivates future work to of finding optimal λ values, possibly based on uncertainty measures
provided by the teacher. In summary, supervision with noisy BCPs reshapes SGD convergence by
changing the gradient noise, in a manner that depends on the data, the model structure, and the teacher
calibration. Yet, KD with an imperfect teacher (providing noisy BCPs) can still outperform learning
from one-hot labels, offering improved convergence and performance in SGD-based learning.

4 GUIDELINES FOR DESIGNING TEACHERS

4.1 METHOD

Rationale The characterization of supervision with BCP estimates on SGD-based learning gives
rise to concrete guidelines for designing teacher models in KD. Specifically, it implies that having a
more calibrated teacher (in the sense of producing accurate BCP estimates), improves the convergence
of the student model in SGD-based learning, aligning with the observations made by Menon et al.
(2021) and Dao et al. (2021), which analyzed the KD-risk with the true BCPs. This motivates using
teacher models based on Bayesian deep learning, as Bayesian Neural Networks (BNNs) are known to
be better calibrated compared to standard (frequentist) NNs Jospin et al. (2022); Kristiadi et al. (2020);
Gawlikowski et al. (2023).

Bayesian Deep Learning BNNs extend traditional NNs by modeling the network parameters
as random variables. Unlike traditional NNs which view learning from data D as seeking a single
deterministic parameter vector, BNNs learn a posterior distribution over the parameter space. After
the posterior distribution over the weights is estimated, inference is carried out by marginalizing the
likelihood, typically by aggregating multiple realizations of the stochastic forward pass. Existing
approaches to approximate such Bayesian inference by inferring the posterior distribution employ
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Table 1: Test accuracy (%) of student networks on the CIFAR-100 dataset, averaged over 5 runs.
Results are reported for teacher-student pairs with both matching and different architectures. The
subscript denotes changes relative to the corresponding deterministic teacher/student.

Teachers and students with matching architectures
Teacher ResNet-18 ResNet-50 ResNet-50 WRN-40-2 WRN-40-2 VGG-13
Student ResNet-18 ResNet-18 ResNet-34 WRN-16-2 WRN-40-1 VGG-8
Student accuracy (no KD) 73.23 73.23 73.61 67.70 65.03 73.52

Teacher Type Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student

Deterministic 73.23 75.92 75.41 76.26 75.41 76.82 70.97 70.80 70.97 68.92 74.46 76.08

Bayesian (Ours) 74.61
+1.38

76.92
+1.00

75.67
+0.26

77.27
+1.01

75.67
+0.26

77.63
+0.81

74.27
+3.30

72.94
+2.14

74.27
+3.30

70.77
+1.85

74.72
+0.27

77.61
+1.53

Laplace (Ours) 72.72
-0.50

76.30
+0.38

74.83
-0.58

76.69
+0.43

74.83
-0.58

76.23
-0.59

70.45
-0.51

71.80
+0.99

70.45
-0.51

70.04
+1.12

73.95
-0.50

76.09
+0.01

MCMI Ye et al. (2024) 73.46
+0.23

75.86
-0.06

75.60
+0.19

76.44
+0.18

75.60
+0.19

76.86
+0.04

71.28
+0.32

70.87
+0.07

71.28
+0.32

68.66
-0.27

74.61
+0.15

76.35
+0.27

MSE Hamidi et al. (2024) 74.56
+1.34

75.01
-0.90

71.76
-3.65

74.89
-1.37

71.76
-3.65

75.58
-1.24

69.99
-0.97

68.62
-2.19

69.99
-0.97

65.42
-3.50

73.31
-1.15

73.86
-2.22

Teachers and students with different architectures
Teacher ResNet-50 ResNet-50 VGG-13 VGG-13 ResNet-50 VGG-13
Student WRN-40-2 VGG-8 ResNet-18 WRN-40-1 WRN-16-2 WRN-40-2
Student accuracy (no KD) 70.76 73.52 73.23 65.03 67.70 70.76

Teacher Type Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student

Deterministic 75.41 73.79 75.41 75.66 74.46 76.36 74.46 67.90 75.41 69.36 74.46 73.71

Bayesian (Ours) 75.67
+0.26

75.82
+2.03

75.67
+0.26

77.27
+1.62

74.72
+0.27

77.41
+1.04

74.72
+0.27

71.37
+3.47

75.67
+0.26

73.63
+4.27

74.72
+0.27

75.45
+1.75

Laplace (Ours) 74.83
-0.58

74.57
+0.77

74.83
-0.58

76.11
+0.46

73.95
-0.50

76.42
+0.06

73.95
-0.50

70.87
+2.97

74.83
-0.58

72.52
+3.16

73.95
-0.50

74.39
+0.69

MCMI Ye et al. (2024) 75.60
+0.19

73.50
-0.30

75.60
+0.19

75.75
+0.09

74.61
+0.15

76.40
+0.04

74.61
+0.15

67.48
-0.42

75.60
+0.19

69.58
+0.22

74.61
+0.15

74.20
+0.49

MSE Hamidi et al. (2024) 71.76
-3.65

71.09
-2.70

71.76
-3.65

74.09
-1.56

73.31
-1.15

74.87
-1.49

73.31
-1.15

65.61
-2.29

71.76
-3.65

68.55
-0.81

73.31
-1.15

71.39
-2.32

Markov Chain Monte Carlo sampling methods Neal (1993); Variational Inference (VI) approaches
which approximate the posterior distribution by optimizing over a family of tractable distributions,
e.g., Bernoulli (as in Monte Carlo Dropout) or Gaussian Fortuin (2022); Graves (2011); and Laplace
Approximations (LAs), which use a quadratic (second-order Taylor) expansion of the log-posterior,
followed by deriving a normal distribution over the NN weights Ritter et al. (2018). A key advantage
of the LA approach is that it can be applied to pre-trained deterministic NNs Gawlikowski et al. (2023).

Bayesian Teachers Our method employs KD with a BNN teacher. We consider both BNNs trained
from scratch using VI, and transforming pre-trained NNs into BNNs via the LA. As such, our approach
can be utilized both in cases where it is desirable to train a teacher model, and in cases where one wishes
to leverage a pre-trained NN. Stochasticity can be introduced across all network weights, in specific lay-
ers, or only in the final layer. This flexibility enables one to adapt the complexity of the teacher model to
the computational budget. The trained Bayesian teacher is incorporated into standard KD practice using
response-based distillation. Specifically, the teacher’s soft labels are obtained via the Monte Carlo ap-
proximation by averaging over S stochastic forward passes (averaging is done after softmax is applied).

4.2 NUMERICAL STUDY

We evaluate our approach on the CIFAR-100 dataset, which contains 60,000 color images of size 32×32
across 100 classes, split into training and test sets with a 5:1 ratio. We evaluate 12 teacher–student pairs:
6 with matching architectures and 6 with different ones. For each pair, we compare five teacher types:
deterministic, Bayesian (BNN trained with variational inference), Laplace (BNN obtained by applying
the LA to the pre-trained deterministic teacher), MCMI Ye et al. (2024) (the deterministic teacher fine-
tuned with a conditional mutual information loss to capture contextual structure), and MSE Hamidi et al.
(2024) (trained with mean squared error loss instead of CE). Unless stated otherwise, we will refer to
students trained from each teacher type as deterministic students, Bayesian students, Laplace students,
etc., even though the student is always the same deterministic model for a given teacher–student pair.

Training follows standard response-based KD Hinton et al. (2015). For each teacher–student pair, we
use 6 combinations of teacher temperature, student temperature, andλ values, and repeat the experiment

8
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Figure 2: Test accuracy stability over the last 50 training epochs with standard one-hot training,
deterministic teachers, and Bayesian teachers.

with each combination 5 times. We report the mean student accuracy achieved by the best configuration.
Accuracy variances and results of all 6 combinations of temperature-λvalues are provided in Appendix J,
while Appendix F contains full details of the training setup. The source code is available at https:
//github.com/Bayesian-KD. As shown in Table 1, Bayesian students consistently achieve the
highest accuracies across the board. The gains over deterministic students reach up to 4.27% (ResNet-
50→WRN-16-2), even though the corresponding Bayesian teachers themselves improve on determin-
istic teachers by up to 0.26% in almost all cases. Laplace students improve in all cases except one, with
gains of up to 3.07% despite all Laplace teachers performing worse than their deterministic counterparts.

We also examine the stability of the students’ performance during training. The average noise level
during the last 50 epochs of the test accuracy curves is reported in Figure 2, measured by (i) the gap
between the highest and lowest accuracies reached and (ii) the standard deviation around the mean.
The results show that Bayesian students not only achieve higher accuracy than deterministic students,
but also consistently converge with less variance, indicating highly stable learning. For example, in
the ResNet-50→ResNet-18 case, Bayesian students show a 30% improvement in convergence noise
compared to deterministic students.

These observations are aligned with our theoretical analysis in Subsection 3.3. There, we proved that
as noise decreases in the supervisory noisy BCP estimates, the neighborhood term in the convergence
bounds for both the weights and the generalization error becomes smaller. In a synthetic experiment we
confirmed this effect in the generalization error, and also observed that accuracy behaves analogously.
The experiments reported here show the same: students distilled from Bayesian teachers, which provide
more calibrated probability estimates (i.e., provide better approximations of the BCPs compared to
deterministic teachers), converge with reduced variance and higher accuracy. The experiments were
performed with the ADAM optimizer in order to show that our theoretical results, which hold for
standard SGD, generalize to related optimizers as well.

5 CONCLUSION

We characterized the learning dynamics of students trained from both exact and noisy approximations of
the BCPs, corresponding to different levels of teacher calibration. Our analysis shows that teachers that
better approximate the true BCPs yield variance reduction in the learning dynamics of the student, and
numerically this leads to improved performance, both in terms of higher accuracy ceilings and reduced
variance of the accuracy curve near convergence. Moreover, we advocate the use of Bayesian deep
learning models as teachers, since they provide better-calibrated outputs. Aligned with our theoretical
analysis, our experimental study shows that students trained from Bayesian teachers achieve higher
accuracies and more stable accuracy curves compared to students trained from deterministic teachers.
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A ADDITIONAL RELATED WORK

Probabilistic supervision The effects of supervision with probability estimates or soft labels have
been investigated in several works. Fan et al. (2024a) examined the dark knowledge provided by teach-
ers of different capacities, showing that larger teachers tend to produce probability vectors with lower
distinction among non-ground-truth classes, and explored multiple ways to address capacity mismatch.
Zhang et al. (2023) argued that a teacher minimizing the CE loss is sub-optimal, and proposed the PT-
Loss objective, which transforms the original teacher into a proxy teacher whose distribution is closer to
the ground truth. They further established a theoretical link between distributional closeness and student
generalizability. Ren et al. (2022) studied the learning paths of models trained with noisy BCPs, one-hot
labels, and BCPs. Yuan et al. (2023) analyzed whether biased soft labels can be effective, proposing con-
ditions under which biased soft-label learning remains classifier-consistent and ERM-learnable. For bi-
nary classification, Jeong et al. (2024) studied probabilistic supervision and introduced theoretical prop-
erties of their estimator, including consistency, unbiasedness, convergence rate, and variance. While we
also develop a theoretical analysis of probabilistic supervision, we focus on the dynamics of SGD-based
convergence and their role in improving student performance. We introduce advantages of KD in
stochastic optimization, whereas prior work focused on generalization gaps and estimator properties.

Customized teachers and improved KD schemes Additional works focused on modifying teacher
predictions to enhance student performance. For example, Guo et al. (2024) recognized that uncertain
classes in teacher outputs hinder learning and proposed increasing the weight on confident classes in
teacher predictions, while Hossain et al. calibrated teacher logits based on the model’s representational
capacity, identifying calibration as a key driver of KD. Dong et al. (2022) established that an ERM
minimizer can approximate the true label distribution under Lipschitz continuity and robustness
of the feature extractor, and introduced a teacher training method with Lipschitz and consistency
regularization. Others explored more novel directions: Yang et al. (2024) drew inspiration from
human educational strategies, Wang et al. (2025) facilitated knowledge sharing within the same
class, Harutyunyan et al. (2023) aligned teacher predictions with the student’s neural tangent kernel,
and Yang et al. (2023) employed meta-learning to strengthen the student’s ability to generate new
knowledge. In contrast, our approach leverages Bayesian teachers, whose outputs are naturally better
calibrated driven by the Bayesian paradigm, which was motivated by our theoretical analysis.

BNNs and KD In addition to the works discussed in Section 2, several additional studies considered
BNNs and KD. The work of Chen et al. (2025) proposes a dynamic dropout (which can be viewed
as a form of Bayesian modeling) self-distillation method for object segmentation, which solves this
problem by discarding the knowledge that the student struggles to learn. The work of Fang et al.
(2024) developed a method named Bayesian Knowledge Distillation (BKD) to provide a transparent
interpretation of the working mechanism of KD. In BKD, the regularization imposed by the teacher
model in KD is formulated as a teacher-informed prior for the student model’s parameters. The work of
Shen et al. (2021) performed KD with a complex BNN MCMC teacher into a BNN VI student. These
works on BNNs and KD have fundamentally different goals from our work. Our approach towards
utilizing BNNs is a direct consequence of our theoretical analysis, and is from the perspective of their
supervisory signal containing better information in KD compared to deterministic models, and not
from the perspective of reducing the cost of Bayesian inference and uncertainty quantification.

B BASIC LINEAR ALGEBRA, FACTS, AND INEQUALITIES

We first review some standard inequalities and basic facts which are used in the proofs.

• The squared norm of the sum of two terms can simply be bounded by the sum of each squared norm
individually

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. (15)

• f(θ) is called L−smooth if its gradient is Lipschitz continuous with constant L ≥ 0 (Definition
2.24 in Garrigos & Gower (2023)), which means that

∥∇f(θ1)−∇f(θ2)∥ ≤ L∥θ1 − θ2∥. (16)
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Additionally, if f(θ) is L−smooth then

f(θ1) ≤ f(θ2) + ⟨∇f(θ2),θ1 − θ2⟩+
L

2
∥θ1 − θ2∥2, (17)

for all θ1,θ2 ∈ Rd (Lemma 2.25 in Garrigos & Gower (2023)).

• Similarly to other analyses that establish linear or exponential rates, in our proofs we rely on a
standard technique: converting a one-step recurrence into a convergence inequality. Assume the
sequence {zt}t≥0 satisfies

zt+1 ≤ (1− η)zt +N, t = 0, 1, 2, . . .

for some constants η ∈ (0, 1] and N ≥ 0. Unfolding the recursion gives

zt ≤ (1− η)tz0 + (1− η)t−1N + (1− η)t−2N + · · ·+ (1− η)0N.

By recognizing the geometric sum, this yields

zt ≤ (1− η)tz0 +N

∞∑
j=0

(1− η)j = (1− η)tz0 +
N

η
. (18)

• We make use of Gibbs’ inequality, which states that for the discrete probability distributions
P = {p1, . . . , pn} and Q = {q1, . . . , qn}, it holds that

−
n∑

i=1

pi log pi ≤ −
n∑

i=1

pi log qi,

with equality if and only if pi = qi for i = 1, . . . , n. A direct consequence of Gibbs’ inequality is that

min
q,s.t.q is a discrete probability distribution

−
n∑

i=1

pi log qi = −
n∑

i=1

pi log pi. (19)

• We make use of the law of total expectation, which states that for random variables (X,Y ) and any
measurable f ,

E[f(X,Y )] = EX

[
EY |X [ f(X,Y ) | X ]

]
. (20)

• It holds that
∂ log(ϕ(θ))

∂θ
=

1

ϕ(θ)
· ∂ϕ(θ)

∂θ
, (21)

for ϕ(θ) > 0.

• For any a ∈ Rm and M ∈ Rm×m,

a⊤Ma = Tr(M aa⊤), (22)

where Tr(·) is the trace operator. Moreover, since both trace and expectation are linear operators, we
can interchange them, i.e.,

E[Tr(M)] = Tr(E[M ]). (23)

• For the generalization error (1), the optimal inference rule in the sense of minimal cross-entropy
risk is the true conditional distribution Shalev-Shwartz & Ben-David (2014), i.e.,

ϕ(x) = [P(y1|x), . . . ,P(yK |x)]. (24)

• We make use of Fermat’s Theorem (proposition 8.9 in Garrigos & Gower (2023)), which states that
for f : Rd → R ∪ {+∞} and θ̄ ∈ Rd; then θ̄ is a minimizer of f if and only if 0 ∈ ∂f(θ̄).

From the definition of interpolation (Definition 1) and from Fermat’s theorem, it is implied that if
interpolation holds at θ̄ then

∇f(x,y)(θ̄) = 0 for every {x,y} pair. (25)
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C DETAILED PROOFS

C.1 PROOF OF PROPOSITION 1

Proof. For ease of presentation, instead of using theK-categorical one-hot vectory, we define the label
variable s ∈ {1, . . . ,K}, and since ϕθ̂(x) represents a K-dimensional probability mass function, we
write p̃(s = k|x) = [ϕθ̂(x)]k. With these notations, the BCP-based risk (6) with the CE loss becomes

f̂P(θ̂) = E(x,y)∼P
[
ℓ(ϕθ̂(x),P(y|x))

]
= E(x,s)∼P

[
ℓ(ϕθ̂(x),P(s|x))

]
= E(x,s)∼P [− log p̃(s|x)]

= E(x,s)∼P

[
− log

p̃(s|x)
P(s|x)

]
+ E(x,s)∼P [− logP(s|x)]

= DKL (p̃(s|x)||P(s|x)) +H(s|x),
where H(s|x) is the conditional entropy of s given x, while DKL(·∥·) is the Kullback-Leibler
divergence Shalev-Shwartz & Ben-David (2014). As DKL is non-negative and equals zero only when
p̃(s|x) ≡ P(s|x), i.e., [ϕθ̂(x)]k = P(yk|x), it holds that the BCP-based risk (6) is minimized when
the inference output is the true conditional distribution. Under Assumption AS4, the minimizer is
attainable by some θ̂∗ ∈ Rd, and the proof is concluded.

C.2 PROOF OF PROPOSITION 2

Proof. To prove that the interpolation property holds, we note that ϕθ̂(x) represents a K-dimensional
probability mass function. Accordingly, under the CE loss, it holds that

min
θ̂∈Rd

ℓ(ϕθ̂(x),P(y|x)) = min
θ̂∈Rd

−
K∑

k=1

P(yk|x) log [ϕθ̂(x)]k

(19)+(AS4)
= −

K∑
k=1

P(yk|x) logP(yk|x)

= ℓ(P(y|x),P(y|x))
(Prop 1)
= ℓ(ϕθ̂∗(x),P(y|x)).

Therefore, ϕθ̂∗(x) = [P(y1|x), . . . ,P(yK |x)] brings ℓ(ϕθ̂(x),P(y|x)) to a minimum for all
x ∈ supp(P) and interpolation holds at θ̂∗, proving the proposition.

C.3 PROOF OF PROPOSITION 3

Proof. In order to express the gradient noise of both the one-hot risk (1) and the noisy BCP risk (10),
we recall the resulting expressions for the gradient noise based on Definition 2, i.e.,

σ∗
f = inf

θ∗∈argmin fP
E(x,y)∼P

[
∥∇θℓ(ϕθ∗(x),y)∥2

]
,

and
σ∗
f̃
= inf

θ̃∗∈argmin f̃P,Pϵ

E(x,y)∼P,ϵ∼Pϵ

[
∥∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ)∥2

]
.

Next, we give an expression for ∇θℓ(ϕθ∗(x), ỹ) for any K-dimensional probability mass function
ỹ. In this case, we have that ∇θℓ(ϕθ∗(x), ỹ) = ∇θ[−ỹT log ϕθ∗(x)], whose ith element is

∂ℓ(ϕθ∗(x), ỹ)

∂θi
= −

K∑
k=1

[ỹ]k · ∂[log ϕθ∗(x)]k
∂θi

(21)
= −

K∑
k=1

[ỹ]k · 1

[ϕθ∗(x)]k
· ∂[ϕθ∗(x)]k

∂θi

(24)
= −

K∑
k=1

[ỹ]k · 1

P(yk|x)
· ∂[ϕθ∗(x)]k

∂θi
.
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Accordingly, ∇θℓ(ϕθ∗(x), ỹ) can be written as

∇θℓ(ϕθ∗(x), ỹ) = Jθ[ϕθ∗(x)] · diag
( 1

P(y|x)

)
· ỹ.

Finally, we are able to plug in the expression for∇θℓ(ϕθ∗(x),y) into the definition of the gradient noise.

σ∗
f = inf

θ∗∈argmin fP
E(x,y)∼P

[
∥∇θℓ(ϕθ∗(x),y)∥2

]
= E(x,y)∼P

[
∥Jθ[ϕθ∗(x)] · diag( 1

P(y|x)
) · [y]k∥2

]
(20)
= Ex∼P [Ey|x[∥Jθ[ϕθ∗(x)] · diag( 1

P(y|x)
) · [y]k∥2|x]]

= Ex∼P [

K∑
k=1

P(yk|x) · ∥
1

P(yk|x)
· Jθ,k[ϕθ∗(x)]∥2]

= Ex∼P [

K∑
k=1

1

P(yk|x)
· ∥Jθ,k[ϕθ∗(x)]∥2]

where Jθ,k[ϕθ(x)] is the kth column of the Jacobian of the student model.

Next, we give an expression for ∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ). In this case, P(y|x) is the true BCP
which is a K-sized vector, and ϵ is the zero-mean noise with variance ν and uncorrelated entries, also
a K-sized vector. Therefore,

∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ) = ∇θ̃ℓ(ϕθ̃∗(x),P(y|x)) +∇θ̃ℓ(ϕθ̃∗(x), ϵ)

= ∇θ̃ℓ(ϕθ̂∗(x),P(y|x)) +∇θ̃ℓ(ϕθ̃∗(x), ϵ)
(25) + (AS4) + (Prop 2)

= ∇θ̃ℓ(ϕθ̃∗(x), ϵ)

= ∇θ̃[−ϵT log ϕθ̃∗(x)]

In the first equality we used the fact that the cross-entropy loss is linear in the second argument. In
the second equality we used the fact that objectives 6 and 10 share the same minimizer, which we
prove in Appendix C.6. Accordingly, we have that

∂∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ)

∂θ̃i
= −

K∑
k=1

[ϵ]k ·
∂[log ϕθ̃∗(x)]k

∂θ̃i

(21)
= −

K∑
k=1

[ϵ]k · 1

[ϕθ̃∗(x)]k
·
∂[ϕθ̃∗(x)]k

∂θ̃i

= −
K∑

k=1

[ϵ]k · 1

P(yk|x)
·
∂[ϕθ̃∗(x)]k

∂θ̃i

In the third equality we used the fact that objectives 6 and 10 share the same minimizer, which we
prove in Appendix C.6, and Proposition 1.

The gradient vector ∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ) can therefore be written as

∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ) = Jθ̃[ϕθ̃∗(x)] · diag(
1

P(y|x)
) · ϵ.
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Finally, we are able to plug in the expression for ∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ) into the definition of the
gradient noise.

σ∗
f̃
= inf

θ̃∗∈argmin f̃P,Pϵ

E(x,y)∼P,ϵ∼Pϵ

[
∥∇θ̃ℓ(ϕθ̃∗(x),P(y|x) + ϵ)∥2

]
= E(x,y)∼P,ϵ∼Pϵ

[∥Jθ̃[ϕθ̃∗(x)] · diag(
1

P(y|x)
) · ϵ∥2]

= E(x,y)∼P,ϵ∼Pϵ
[ϵT · diag( 1

P(y|x)
) · JT

θ̃
[ϕθ̃∗(x)] · Jθ̃[ϕθ̃∗(x)] · diag(

1

P(y|x)
) · ϵ]

(22)
= E(x,y)∼P,ϵ∼Pϵ

[Tr[ϵ · ϵT · diag( 1

P(y|x)
) · JT

θ̃
[ϕθ̃∗(x)] · Jθ̃[ϕθ̃∗(x)] · diag(

1

P(y|x)
)]]

(23)
= Tr[Eϵ∼Pϵ [ϵ · ϵT ] · E(x,y)∼P [diag(

1

P(y|x)
) · JT

θ̃
[ϕθ̃∗(x)] · Jθ̃[ϕθ̃∗(x)] · diag(

1

P(y|x)
)]]

= Tr[ν · IK · E(x,y)∼P [diag(
1

P(y|x)
) · JT

θ̃
[ϕθ̃∗(x)] · Jθ̃[ϕθ̃∗(x)] · diag(

1

P(y|x)
)]]

= ν · Tr[E(x,y)∼P [diag(
1

P(y|x)
) · JT

θ̃
[ϕθ̃∗(x)] · Jθ̃[ϕθ̃∗(x)] · diag(

1

P(y|x)
)]]

(23)
= ν · E(x,y)∼P [Tr[diag(

1

P(y|x)
) · JT

θ̃
[ϕθ̃∗(x)] · Jθ̃[ϕθ̃∗(x)] · diag(

1

P(y|x)
)]]

= ν · Ex∼P [

K∑
k=1

∥ 1

P(yk|x)
· Jθ̃,k[ϕθ̃∗(x)]∥2]

= ν · Ex∼P [

K∑
k=1

1

P(yk|x)2
· ∥Jθ̃,k[ϕθ̃∗(x)]∥2]

where Jθ̃,k[ϕθ̃(x)] is the kth column of the Jacobian of the student model.

We provided expressions for both the gradient noise (Definition 2) of the one-hot risk (1), σ∗
f , and

the noisy BCP risk (10), σ∗
f̃

, which concludes the proof.

C.4 PROOF OF THEOREM 1

Proof. In order to bound the error on the weights, we start by conditioning the expected error on the
weights in the last iteration. We denote byEt[·] := E[·|θ̂t] the conditional expectation w.r.t θ̂t. We
now have that

Et[∥θ̂t+1 − θ∗∥2] (5)
= Et[∥θ̂t − α∇f̂ξ(θ̂

t)− θ̂∗∥2]
= ∥θ̂t − θ̂∗∥2 − 2α⟨θ̂t − θ̂∗,∇f̂(θ̂t)⟩+ α2

Et[∥∇f̂ξ(θ̂
t)∥2]

(25)
= ∥θ̂t − θ̂∗∥2 − 2α⟨θ̂t − θ̂∗,∇f̂(θ̂t)⟩+ α2

Et[∥∇f̂ξ(θ̂
t)−∇f̂ξ(θ̂

∗)∥2]
(AS1)

≤ (1− αµ)∥θ̂t − θ̂∗∥2 − 2α(f̂(θ̂t)− f̂(θ̂∗)) + α2
Et[∥∇f̂ξ(θ̂

t)−∇f̂ξ(θ̂
∗)∥2]

(AS3)

≤ (1− αµ)∥θ̂t − θ̂∗∥2 − 2α(f̂(θ̂t)− f̂(θ̂∗)) + 2α2L(f̂(θ̂t)− f̂(θ̂∗))

= (1− αµ)∥θ̂t − θ̂∗∥2 + 2α(αL − 1)(f̂(θ̂t)− f̂(θ̂∗))

≤ (1− αµ)∥θ̂t − θ̂∗∥2.

In the last inequality we used the bound on the step-size α ≤ 1
L . Next, we apply expectation and unroll

the recursion to get

E[∥θ̂t − θ̂∗∥2] ≤ (1− αµ)E[∥θ̂t−1 − θ̂∗∥2]
(18)

≤ (1− αµ)t∥θ̂0 − θ∗∥2,

which concludes the proof.
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C.5 PROOF OF THEOREM 2

Proof. In a similar fashion to the previous proof, we start by conditioning the expected error on the loss
in the last iteration. We denote byEt[·] := E[·|f̂ t] the conditional expectation w.r.t f̂ t. We note that

Et[f̂(θ̂
t+1)− f∗]

(17)

≤ (f̂(θ̂t)− f̂∗)− α⟨∇f̂(θ̂t),∇f̂(θ̂t)⟩+ Lα2

2
Et[∥∇f̂ξ(θ̂

t)∥2]

(25)
= (f̂(θ̂t)− f̂∗)− α∥∇f̂(θ̂t)∥2 + Lα2

2
Et[∥∇f̂ξ(θ̂

t)−∇f̂ξ(θ̂
∗)∥2]

(AS2)+(AS3)

≤ (f̂(θ̂t)− f̂∗)− 2αµ(f̂(θ̂t)− f̂∗) + LLα2(f̂(θ̂t)− f̂∗)

= (1− αµ)(f̂(θ̂t)− f̂∗)− α(µ− LLα)(f̂(θ̂t)− f̂∗)

≤ (1− αµ)(f̂(θ̂t − f̂∗),

where in the last inequality we used the bound on the step-size α ≤ µ
LL . Next, we apply expectation

and unroll the recursion to get

E[f̂(θ̂t)− f̂∗] ≤ (1− αµ)E[f̂(θ̂t−1)− f̂∗]
(18)

≤ (1− αµ)t(f̂(θ̂0)− f∗),

Which concludes the proof.

C.6 PROOF OF THEOREM 3

Proof. Before diving into the learning dynamics of the student in the noisy case, we explore the
connection between the stochastic optimization problem of the noiseless case (6) and the noisy
case (10). We now note that

f̃(θ̃) = E(x,y)∼P,ϵ∼Pϵ

[
ℓ(ϕθ̃(x),P(y|x) + ϵ)

]
= E(x,y)∼P,ϵ∼Pϵ

[
−

K∑
k=1

(P(yk|x) + ϵk) log
[
ϕθ̃(x)

]
k

]

= E(x,y)∼P,ϵ∼Pϵ

[
−

K∑
k=1

P(yk|x) log
[
ϕθ̃(x)

]
k

]
+ E(x,y)∼P,ϵ∼Pϵ

[
−

K∑
k=1

ϵk log
[
ϕθ̃(x)

]
k

]

= E(x,y)∼P

[
−

K∑
k=1

P(yk|x) log
[
ϕθ̃(x)

]
k

]
+ E(x,y)∼P,ϵ∼Pϵ

[
−

K∑
k=1

ϵk log
[
ϕθ̃(x)

]
k

]

= f̂(θ̃) + E(x,y)∼P,ϵ∼Pϵ

[
−

K∑
k=1

ϵk log
[
ϕθ̃(x)

]
k

]
= f̂(θ̃) + E(x,y)∼P

[
Eϵ∼Pϵ

[
−ϵT log ϕθ̃(x)

∣∣x,y]]
= f̂(θ̃),

where in the last equality we used the fact that ϵ is independent of x,y and is zero-mean. Note that
for the current proof we change between θ̂∗ and θ̃∗, which is allowed since assumption AS1 holds,
which implies uniqueness of the minimizer.

Even though we proved that the generalization error in the case of perfect probabilities and noisy
probabilities is equal, the learning dynamics in the two cases are different. This is because we focus
on SGD-based optimization, and not full gradient-descent. Nevertheless, importantly, this implies
that f̂ and f̃ share the same minimum and minimizer, which means that in our proofs we can switch
between θ̂∗ and θ̃∗ (assuming the minimizer is unique), as well as between f̂∗ and f̃∗ interchangeably.

Again, in order to bound the error on the weights, we start by conditioning the expected error on the
weights in the last iteration. We denote byEt[·] := E[·|θ̃t] the conditional expectation w.r.t θ̃t, and
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obtain

Et[∥θ̃t+1 − θ∗∥2] (5)
= Et[∥θ̃t − α∇f̃ξ(θ̃

t)− θ̃∗∥2]
= ∥θ̃t − θ̃∗∥2 − 2α⟨θ̃t − θ̃∗,∇f̃(θ̃t)⟩+ α2

Et[∥∇f̃ξ(θ̃
t)∥2]

(15)

≤ ∥θ̃t − θ̃∗∥2 − 2α⟨θ̃t − θ̃∗,∇f̃(θ̃t)⟩+ 2α2
Et[∥∇f̃ξ(θ̃

t)−∇f̃ξ(θ̃
∗)∥2] + 2α2

Et[∥∇f̃ξ(θ̃
∗)∥2]

(AS1)

≤ (1− αµ)∥θ̃t − θ̃∗∥2 − 2α(f̃(θ̃t)− f̃(θ̃∗)) + 2α2
Et[∥∇f̃ξ(θ̃

t)−∇f̃ξ(θ̃
∗)∥2] + 2α2σ∗

f̃

(AS3)

≤ (1− αµ)∥θ̃t − θ̃∗∥2 − 2α(f̃(θ̃t)− f̃(θ̃∗)) + 4α2L(f̃(θ̃t)− f̃(θ̃∗)) + 2α2σ∗
f̃

= (1− αµ)∥θ̃t − θ̃∗∥2 + 2α(2αL − 1)(f̃(θ̃t)− f̃(θ̃∗)) + 2α2σ∗
f̃

≤ (1− αµ)∥θ̃t − θ̃∗∥2 + 2α2σ∗
f̃
.

Where in the last inequality we used the bound on the step-size α ≤ 1
2L . Next, we apply expectation

and unroll the recursion to get

E[∥θ̃t − θ̃∗∥2] ≤ (1− αµ)E[∥θ̃t−1 − θ̃∗∥2] + 2α2σ∗
f̃

(18)

≤ (1− αµ)t∥θ̃0 − θ∗∥2 + 2α

µ
σ∗
f̃
,

which concludes the proof.

C.7 PROOF OF THEOREM 4

Proof. Again, in order to bound the error on the loss, we start by conditioning the expected error on
the loss in the last iteration. We denote byEt[·] := E[·|f̃ t] the conditional expectation w.r.t f̃ t.

Note that for the current proof we change between f̂∗ and f̃∗, which is allowed even though the
minimizer might not be unique, since this is the minimum value and not the minimizer.

Et[f̃(θ̃
t+1)− f∗]

(17)

≤ (f̃(θ̃t)− f̃∗)− α⟨∇f̃(θ̃t),∇f̃(θ̃t)⟩+ Lα2

2
Et[∥∇f̂ξ(θ̃

t)∥2]
(15)

≤ (f̃(θ̃t)− f̃∗)− α∥∇f̃(θ̃t)∥2 + Lα2
Et[∥∇f̂ξ(θ̃

t)−∇f̂ξ(θ̃
∗)∥2] + Lα2

Et[∥∇f̂ξ(θ̃
∗)∥2]

(AS2)+(AS3)

≤ (f̃(θ̃t)− f̃∗)− 2αµ(f̃(θ̃t)− f̃∗) + 2LLα2(f̃(θ̃t)− f̃∗) + Lα2σ∗
f̃

= (1− αµ)(f̃(θ̃t)− f̃∗)− α(µ− 2LLα)(f̃(θ̃t)− f̃∗) + Lα2σ∗
f̃

≤ (1− αµ)(f̃(θ̃t − f̃∗) + Lα2σ∗
f̃
,

where in the last inequality we used the bound on the step-size α ≤ µ
2LL . Next, we apply expectation

and unroll the recursion to get

E[f̃(θ̃t)− f̃∗] ≤ (1− αµ)E[f̃(θ̃t−1)− f̃∗] + Lα2σ∗
f̃

(18)

≤ (1− αµ)t(f̃(θ̃0)− f∗) +
Lα

µ
σ∗
f̃
,

which concludes the proof.

D DIRICHLET–PERTURBED BCPS

Our analysis of SGD supervised by noisy BCPs provided in Section 3 used an additive noise model. In
this appendix we show that the insights obtained there also hold for alternative models for noisy BCPs,
using the Dirichlet distribution over probability mass functions. In this case, instead of using additive
perturbations ϵ, we perturb each true BCP P(y|x) using a Dirichlet distribution, which guarantees that
the resulting target remains a valid probability distribution and is unbiased in expectation. Specifically,
for some ε > 0, the perturbation is formulated as follows:

P̄(y|x) ∼ Dir(εP(y|x)). (26)
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Similarly to the definitions of the BCP-based risk 6 and the noisy BCP-based risk 10, the resulting
noisy Dirichlet BCP-based risk is

f̄P,P̄(θ̄) := E(x,y)∼P,P̄(y|x)∼Dir

[
ℓ(ϕθ̄(x), P̄(y|x))

]
. (27)

Dirichlet characteristics For P̄(y|x) ∼ Dir(εP(y|x)) we have Minka (2000)

E
[
P̄(yk|x)|x

]
= P(yk|x), (28)

Var[P̄(yk|x)|x] =
P(yk|x)(1− P(yk|x))

ε+ 1
, (29)

and

Cov[P̄(yi|x), P̄(yj |x)|x] = −P(yi|x)P(yj |x)
ε+ 1

. (30)

Proof of Theorems 3 and 4 for Dirichlet Noisy BCPs

Proof. We explore the connection between the stochastic optimization problem of the noiseless case 6
and the noisy Dirichlet case 27.

f̄P,P̄(θ̄) = E(x,y)∼P,P̄(y|x)∼Dir

[
−

K∑
k=1

P̄(yk|x) log[ϕθ̄(x)]k

]

= E(x,y)∼P

[
−

K∑
k=1

EP̄(y|x)∼Dir[P̄(yk|x) | P(y|x)] log[ϕθ̄(x)]k

]

= E(x,y)∼P

[
−

K∑
k=1

P(yk|x) log[ϕθ̄(x)]k

]
= f̂P(θ̄). (31)

In the third equality in (31), we utilized the expectation characteristic of the Dirichlet distribution 28.
Similarly to the proof of Theorem 3, even though we proved that the generalization error in the case of
perfect probabilities and noisy Dirichlet probabilities is equal, the learning dynamics in the two cases
are different. This is because we focus on SGD-based learning. Nevertheless, importantly this implies
that f̂ and f̄ share the same minimum and minimizer, which means that in our proofs we can switch
between θ̂∗ and θ̄∗ (assuming the minimizer is unique), as well as between f̂∗ and f̄∗ interchangeably.

The remainder of the proofs remain exactly the same as in Appendix C.6 and C.7, but with switching
between f̃ and f̄ , and between θ̃ and θ̄. The difference lies in the resulting expression for the gradient
noise, which depends on how the noisy BCPs are modeled, as stated in the adaptation of Proposition 3
detailed below.

Adaptation of Proposition 3 for Dirichlet Noisy BCPs

Proof. In order to express the gradient noise of the noisy Dirichlet BCP risk (27), we recall the
resulting expressions for the gradient noise based on Definition 2, i.e.,

σ∗
f̄ = inf

θ̄∗∈argmin f̄P,P̄

E(x,y)∼P, P̄(y|x)
[
∥∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x))∥2

]
.

We first give an expression for ∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x)). In this case, P(y|x) is the true BCP which
is a K-sized vector, and P̄(y|x) is its Dirichlet-perturbed version. Since the CE loss is linear in its
second argument, we have

∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x)) = ∇θ̄ℓ(ϕθ̄∗(x),P(y|x)) +∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x)− P(y|x))
= ∇θ̄ℓ(ϕθ̂∗(x),P(y|x)) +∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x)− P(y|x))
(25) + (AS4) + (Prop 2)

= ∇θ̄ℓ(ϕθ̄∗(x), δ(x)),

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where we defined δ(x) := P̄(y|x) − P(y|x). The second equality uses the fact that objectives (6)
and (27) share the same minimizer, which we just proved above.

This means that we have,

∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x)) = ∇θ̄ℓ(ϕθ̄∗(x), δ(x))

= −
K∑

k=1

δk(x)∇θ̄ log[ϕθ̄∗(x)]k

= Jθ̄[ϕθ̄∗(x)] · diag(
1

P(y|x)
) · δ(x),

where Jθ̄[ϕθ̄∗(x)] is the Jacobian of the student outputs with respect to θ̄.

We can now plug the expression for ∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x)) into the definition of the gradient noise.

σ∗
f̄ = inf

θ̄∗∈argmin f̄P,P̄

E(x,y)∼P, P̄(y|x)
[
∥∇θ̄ℓ(ϕθ̄∗(x), P̄(y|x))∥2

]
= E(x,y)∼P, δ(x)

[
∥Jθ̄[ϕθ̄∗(x)] · diag(

1

P(y|x)
) · δ(x)∥2

]
= E(x,y)∼P, δ(x)

[
δ(x)⊤diag(

1

P(y|x)
) JT

θ̄ [ϕθ̄∗(x)]Jθ̄[ϕθ̄∗(x)]diag(
1

P(y|x)
)δ(x)

]
(22)
= E(x,y)∼P, δ(x)

[
Tr[δ(x)δ(x)⊤diag(

1

P(y|x)
) JT

θ̄ [ϕθ̄∗(x)]Jθ̄[ϕθ̄∗(x)]diag(
1

P(y|x)
)]

]
(23)
= E(x,y)∼P [Tr[Eδ(x)|x[δ(x)δ(x)

⊤|x] diag( 1

P(y|x)
) JT

θ̄ [ϕθ̄∗(x)] Jθ̄[ϕθ̄∗(x)] diag(
1

P(y|x)
)]].

We now utilize the covariance characteristic 30 of the Dirichlet distribution, which means that

Eδ(x)|x[δ(x)δ(x)
⊤|x] = 1

ε+ 1

(
diag(P(y|x))− P(y|x)P(y|x)⊤

)
.

Therefore,

σ∗
f̄ =

1

ε+ 1
E(x,y)∼P [Tr[(diag(P(y|x))− P(y|x)P(y|x)⊤) diag( 1

P(y|x)
) ·

· JT
θ̄ [ϕθ̄∗(x)] Jθ̄[ϕθ̄∗(x)] diag(

1

P(y|x)
)]]. (32)

Finally, using the simplex identity Jθ̄[ϕθ̄∗(x)]1 = 0, the second term with P(y|x)P(y|x)⊤ vanishes.
We thus obtain

σ∗
f̄ =

1

ε+ 1
E(x,y)∼P [Tr[diag(P(y|x)) diag( 1

P(y|x)
) JT

θ̄ [ϕθ̄∗(x)] Jθ̄[ϕθ̄∗(x)] diag(
1

P(y|x)
)]]

=
1

ε+ 1
E(x,y)∼P [Tr[J

T
θ̄ [ϕθ̄∗(x)] Jθ̄[ϕθ̄∗(x)] diag(

1

P(y|x)
)]]

=
1

ε+ 1
Ex∼P

[
K∑

k=1

1

P(yk|x)
∥Jθ̄,k[ϕθ̄∗(x)]∥2

]
,

where Jθ̄,k is the k-th column of the Jacobian. This shows that, compared to the additive uncorrelated
noise model, the gradient-noise expression has: (i) a scale factor (ε + 1)−1 instead of ν; and (ii)
weighting by 1/P(yk|x) instead of 1/P(yk|x)2, due to the Dirichlet covariance structure.
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E SYNTHETIC EXPERIMENTS (SECTION 3)

In this section, we empirically demonstrate the effects of different supervisory signals on the learning
dynamics of the student in SGD-based learning. Specifically, we consider the cases of supervision
by one-hot labels (standard learning), perfect BCPs, BCPs corrupted by different noise levels, and
supervision by combinations of one-hot labels and noisy BCPs adjusted based on several λ values.
Since the true BCPs are unknown for popular datasets such as MNIST or CIFAR, we generate a
synthetic dataset for which we are able to calculate the true BCPs.

We generate a dataset ofN = 5×104 samples. Each inputxn, which is a 30×1 vector, i.e.,X = R30, is
associated with a label yn that takes a value fromK = 5 potential classes. To get a sample, we first select
the label yn = k from a uniform distribution over the K classes. Each class is centered around µk, a
30×1 vector where each entry is randomly selected from{−1, 0, 1}. Once the label is selected, the input
xn is drawn from a Gaussian distribution centered at the selected class mean x|y=k ∼ N (µk, σ

2I).
We use σ2 = 2.5, which is the noise level for all samples. For this dataset, we are able to calculate the
true BCP p(yn|xn) for each pair (xn, yn). The true BCP is calculated as follows.

In order to calculate p(y|x) we use the Bayes’ rule

p(y|x) = p(x|y) p(y)
K∑
j=1

p(x|y = j) p(y = j)

.

Since the label is sampled uniformly, p(y) = 1
K for all classes. We know that

p(x|y = k) ∼ N (µk, σ
2I),

so we have

p(x|y = k) =
1

(2πσ2)
30
2

exp

(
−∥x− µk∥22

2σ2

)
.

If we plug the above expression into Bayes’ rule, the expression simplifies into

p(y = k|x) =
exp

(
−∥x−µk∥2

2

2σ2

)
K∑
j=1

exp
(
−∥x−µj∥2

2

2σ2

) .
This allows us to compute the true BCP for each input.

We split our data into 50% for the train set and 50% for the test set. A total of 22 student models super-
vised by different signals were trained. All models were trained in the same manner for 45,000 iterations
via SGD, with a learning rate of 5× 10−4. For the model architecture, we used a standard MLP with
2 hidden layers, each with 128 hidden units and ReLU activation functions. The first student model, re-
ferred to as "One-hot labels" was trained with the standard labels yn. The second student model, referred
to as "True Bayes probabilities" was supervised with the true BCPs p(yn|xn). This student corresponds
to subsection 3.2 in which the dynamics of a student trained with the true BCPs are analyzed. The two
student models, referred to as "Less noisy probabilities" and "More noisy probabilities" were supervised
with the true BCPs corrupted with different noise levels. These students correspond to subsection 3.3
in which the dynamics of a student trained with noisy BCPs are analyzed. The noise was added by per-
turbing each BCP using a Dirichlet distribution, which guarantees that the resulting noisy BCP remains
a valid probability distribution and is unbiased in expectation. Specifically, for some ε > 0, we sample

p̃n ∼ Dir(εpn) ,

so that E[p̃n] = pn. ε controls how noisy the resulting BCPs are. For the "Less noisy probabilities"
student we used ε = 5 and for the "More noisy probabilities" student we used ε = 0.5. The rest of
the student models were supervised by combinations of one-hot labels and noisy BCPs adjusted based
on different λ values between 0 and 1, as in the standard KD framework. The objective in this case
is described in (3).

In the left plot of Figure 1 we plot the generalization error of the model that is calculated using
Equation (1) with the finite test set. The constant line referred to as the "Bayes classifier" is the
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generalization error calculated with a perfect model that produces the true BCPs. In the middle plot
of Figure 1 we plot the accuracy of the model on the test set in each iteration.

Finally, the right plot of Figure 1 illustrates how the generalization error behaves during training
for different values of λ. Each point in the plot represents the average L1 distance between the
generalization error of a given model and the minimal generalization error achieved by the optimal Bayes
classifier. Specifically, for a model trained with a specificλ, noisy BCPs, and one-hot labels, we compute

σ∗
f ≈ 1

T

t0+T∑
i=t0

[ℓfi − ℓperf],

where ℓperf denotes the generalization error achieved by the optimal Bayes classifier, and ℓfi is the
generalization error at iteration i of the corresponding noisy model. We use t0 = 20,000, which is
after the initial phase of rapid convergence. This metric represents the average generalization error
gap between a given student model and the reference optimal loss throughout the training process,
capturing both the overall error level and its variability.

Next, we quantitatively assess the effect of noise in the BCPs on the convergence behavior of student
models. We introduce two complementary metrics, each applied to both accuracy and generalization
error during the final convergence stage of training.

The first metric captures the average performance in the last N iterations:

Lavg =
1

N

T∑
t=T−N+1

Lt, ACCavg =
1

N

T∑
t=T−N+1

At,

where Lt and At denote the generalization error and accuracy at iteration t, respectively. This metric
quantifies the achievable performance while suppressing fluctuations in the curves.

The second metric captures the stability of training by measuring the noise level in the accuracy and
generalization error curves. To smooth out slow transitions, we first compute a moving average X̄t

with window size w for a time series Xt ∈ {Lt, At}. The noise is then calculated by:

σX =

√√√√ 1

N

T∑
t=T−N+1

(
Xt − X̄t

)2
,

which reflects how stable the model’s performance is.

We computed these four metrics for student models trained with different levels of noise corrupting
the true BCPs. The results are shown in Figure 3. Each experiment was performed 15 times; standard
deviations of the computed values are shown in the figure. The bottom plots show that as the noise level
decreases, average accuracy improves, while its variability decreases, indicating improved student per-
formance. The top plots show that for the generalization error metrics, lower noise leads to both reduced
error and reduced variability. In Appendix D, we proved that the gradient noise in the convergence
analysis of Theorems 3 and 4, the adapted case for Proposition 3 in the case of Dirichlet noise, is:

σ∗
f̄ =

1

ε+ 1
Ex∼P

[
K∑

k=1

1

P(yk|x)
∥Jθ̄,k[ϕθ̄∗(x)]∥2

]
.

As seen in Figure 3, for all four accuracy and generalization error metrics, the performance aligns
with the fitted curves proportional to 1

1+ε . These results provide empirical validation for Proposition 3,
demonstrating that decreasing the noise added to the true BCPs reduces variance and improves
convergence behavior.

Next, we examine the relationship between average performance and stability, and between accuracy
and generalization error. Figure 4 plots the four metrics against each other for different noise levels.
Each experiment was performed 15 times; standard deviations of the computed values are shown
in the figure. For comparison, we also include the student trained with the true BCPs and the one
trained from one-hot labels. The plots show that higher average accuracy consistently coincides
with lower variability, and the same pattern can be seen for the generalization error. Moreover,
accuracy behaves similarly to the generalization error, both in terms of average values and noise.
These findings empirically validate two key points: (1) the variance reduction from using less noisy
BCPs (Theorem 4), translates directly into improved average performance and stability; and (2)
improvements in generalization error are reflected as similar improvements in accuracy.
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Figure 3: Effect of noise level ϵ on student performance. Each plot shows results for students trained
with noisy BCPs. Top: average generalization error (left) and variability in generalization error
(right). Bottom: average test accuracy (left) and variability in accuracy (right). Each plot includes

a fit proportional to
1

1 + ε
, alongside the result achieved by a student trained from One-hot labels,

and a student trained with the true BCPs.
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Figure 4: Correlations between performance and stability metrics across different noise levels ϵ. Each
point corresponds to a student trained with noisy BCPs, with baselines for one-hot labels and true BCPs
also included. Top left: higher accuracy is strongly associated with lower generalization error. Top
right: models with noisier generalization error curves also display noisier accuracy curves. Bottom left:
higher accuracy coincides with reduced variability in accuracy. Bottom right: lower generalization
error coincides with reduced generalization error variability.
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F IMPLEMENTATION DETAILS OF THE EXPERIMENTS IN SECTION 4

We elaborate on the implementation and training procedures of all teachers and students used in
the experiments reported in Subsection 4.2. Importantly, all students were trained with an identical
procedure, independent of the type of teacher (deterministic, Bayesian, Laplace, MCMI, or MSE).
The base training setup for students was the same as that of the deterministic teacher. Modifications
were performed only where required by the specific teacher type:

1. Deterministic teacher: trained identically to the student.
2. Bayesian teacher: trained identically to the student in terms of hyperparameters, but with

an additional NLL loss term for variational inference.
3. Laplace teacher: obtained by applying the Laplace approximation post-hoc to a pretrained

deterministic teacher.
4. MCMI teacher: obtained by fine-tuning a pretrained deterministic teacher with an additional

MCMI loss term.
5. MSE teacher: trained identically to the student but with the MSE loss replacing the standard

CE loss.

For all teacher and student training procedures, we train for 200 epochs, with ADAM as the optimizer.
The initial learning rate is set to 0.001 by default, which is decayed by a factor of 0.1 at epoch 100.
The momentum was set to 0.9, alongside a batch size of 100. Deterministic teachers were trained
with the standard CE loss, and all students were trained with the distillation loss (3) with weighting
parameter λ. Additionally, the teacher and student probabilities used in (3) were smoothed using Tt

and Ts, respectively.

For each teacher–student pair, we trained five independent trials under six different (λ, Tt, Ts)
configurations: {1, 1, 1}, {1, 2, 2}, {1, 4, 4}, {1, 2, 1}, {1, 4, 1}, {0.474, 4, 4}. The first combination
corresponds to full distillation without temperature scaling, and the last combination corresponds
to the original implementation in Hinton et al. (2015) with α = 0.9 and T = 4. For each pair, reported
values correspond to the (λ, Tt, Ts) combination in which the best average student accuracy over the
five trials was achieved. The reported noise values in Figure 2 were first computed per trial and then
averaged across the five runs of the best configuration.

Bayesian teacher To train Bayesian teachers with variational inference, we utilized the implemen-
tation provided in https://github.com/microsoft/bayesianize. This implementation
turns a deterministic NN into a Bayesian NN with a configuration file that includes priors on the
weights and related settings. We used the default configuration offered in their repository. Their
training procedure includes an additional NLL loss term, in which we used their default schedule of
100 epochs with the NLL term and 50 epochs of gradual annealing. For distillation, teacher logits
were obtained via Monte Carlo prediction averaging with 10 stochastic forward passes.

Laplace teacher As described earlier, Laplace teachers are obtained by applying the Laplace approx-
imation post-hoc to pretrained deterministic teachers. For this purpose, we used the implementation
provided in https://github.com/aleximmer/Laplace, which allows loading pretrained
model parameters and applying the approximation directly. In our experiments, we approximate the
posterior distribution only over the weights of the final layer, using a Kronecker-factored Hessian to
capture curvature information. The prior precision is optimized via marginal likelihood maximization
on the training data, without requiring a validation split. For predictions, we employ the generalized
linear model formulation with a closed-form probit approximation, which incorporates uncertainty
from the Laplace posterior into the predictive probabilities. As a result, instead of point estimates from
a deterministic teacher, the Laplace teacher produces predictive distributions that reflect uncertainty
in the last-layer weights.

MCMI teacher To realize the MCMI teacher proposed by Ye et al. (2024), we used the official
implementation from https://github.com/iclr2024mcmi/ICLRMCMI. The approach
fine-tunes a pretrained deterministic teacher by adding an MCMI loss term. We used the hyperpa-
rameters which the authors recommend in their paper for fine-tuning. Specifically, we used a cosine
annealing learning-rate schedule with an initial value of 2 × 10−4, fine-tuned for 20 epochs, and
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set the MCMI weighting parameter to 0.2 for ResNet-18, ResNet-50, and VGG-13 teachers, and
0.15 for WRN-40-2. The MCMI weighting values correspond to the best settings reported in the
original paper, which we adopted without hyperparameter searching, as they did. For the ResNet-18
teacher, no best value was reported, and we used 0.2 by default. It is worth noting that training
hyperparameters (epochs, batch size, etc.) used in their training setup differ from those employed
in this work. Additionally, in their work, they reported results for other values of (λ, Tt, Ts) and
did not run several combinations while reporting the best one. This may partly explain performance
differences between our results and those reported in their paper.

MSE teacher To realize the Mean Squared Error (MSE) teacher proposed by Hamidi et al. (2024),
we used the official implementation fromhttps://github.com/ECCV2024MSE. In this setting,
teacher models are trained with the MSE loss instead of the standard CE loss, as suggested by the authors.
It is important to note, however, that the results reported in their paper were obtained under different ex-
perimental settings and hyperparameters than those used in this work. Additionally, they reported results
for other values of (λ, Tt, Ts) and did not run several combinations while reporting the best one. These
differences may explain why the MSE teacher performs poorly in our experiments compared to other
teacher types. In Appendix J, it is shown that for the case of standard distillation setting (temperatures
and λ are equal to 1), the MSE teacher performs well and often outperforms the deterministic teacher.

G FEW-SHOT CLASSIFICATION

Few-shot learning refers to training a model when only a limited number of labeled data is available
for each class Chen et al. (2019). In the context of KD, the few-shot setting is adapted by utilizing
a teacher that was trained on the full dataset, while the student is trained with limited data, specifically
a β-proportion of the samples from every class Ye et al. (2024). Few-shot experiments allow us to
examine how well the student can benefit from distillation when the data available for its training is
limited. Additionally, it highlights the benefits of distillation and its ability to improve generalization
in such scenarios.

We evaluate the effectiveness of Bayesian teachers in several few-shot settings on the CIFAR-100
dataset. We consider VGG-13 as the teacher architecture, and VGG-8, ResNet-18, WRN-40-2, and
WRN-40-1 as student architectures. Students are trained either from Bayesian teachers or from
deterministic teachers, and we compare their performance. For each teacher–student pair, we employ
the (Tt, Ts, λ) configuration that yielded the best performance in Section 4.2. Both teacher and
student training follow the same implementation details and hyperparameters described in Appendix F.
Experiments are conducted for different values of β ∈ {5, 10, 15, 25, 35, 50}, and each setting is
repeated five times. For a fair comparison, we use the same partition of the training set across all
methods in each few-shot level. The results are reported in Table 2.

Table 2: Test accuracy (%) of students trained from both Bayesian teachers and deterministic teachers,
under few-shot setting, averaged over 5 runs. Results are displayed for several teacher-student pairs with
both matching and different architectures. The subscript denotes improvement in the student trained
from the Bayesian teacher relative to the corresponding student trained from the deterministic teacher.

Teacher → Student 5 10 15 25 35 50

Teacher kind Deter. Bayesian Deter. Bayesian Deter. Bayesian Deter. Bayesian Deter. Bayesian Deter. Bayesian

VGG13 → ResNet18 35.79 41.11
+5.32

50.97 55.57
+4.61

58.94 63.43
+4.49

65.75 68.83
+3.08

69.33 71.87
+2.54

72.27 74.04
+1.77

VGG13 → VGG8 41.57 52.45
+10.88

54.23 63.07
+8.84

61.28 67.97
+6.69

66.65 71.44
+4.79

69.50 73.42
+3.92

72.38 75.33
+2.96

VGG13 → WRN-40-2 30.80 40.96
+10.16

44.10 54.17
+10.07

52.04 61.44
+9.40

59.76 67.33
+7.57

64.45 70.20
+5.76

68.08 72.53
+4.45

VGG13 → WRN-40-1 24.53 32.88
+8.35

35.49 45.08
+9.59

43.21 52.76
+9.55

50.40 59.19
+8.79

55.67 63.45
+7.78

60.34 66.39
+6.05

As seen, students trained with Bayesian teachers consistently perform better across the board, compared
to students trained with deterministic teachers. Specifically, as β decreases the improvements are
more substantial, with improvements of over 10% for the case of β = 5. These results show that
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Bayesian teachers are very useful in KD few-shot settings, consistently offering improved performance
compared to deterministic teachers.

H TEMPERATURE SCALING

Temperature scaling was first introduced in KD by Hinton et al. (2015) as a way to soften the teacher’s
output probabilities. The temperature is introduced inside the "softmax" operation applied to the
output of the network:

p(i) =
exp(z(i)/T )∑
j exp(z

(j)/T )
,

where z are the logits, p(i) is the softened probability for class i, and T is the temperature. Choosing
T = 1 corresponds to standard softmax without temperature scaling. Increasing T produces a
smoother distribution, which has been shown to act as a regularizer and improve the transfer of dark
knowledge. Hinton et al. (2015) applied the same temperature to the student’s logits during training,
but this is not necessary. In fact, a recent work by Zheng & Yang (2024) studied temperature scaling,
and shows that dropping temperature scaling on the student side causes the student to generalize better.
From a calibration perspective, temperature scaling also serves as a simple yet effective method to
reduce overconfidence and align predicted probabilities with the true BCPs, thereby improving the
quality of supervision for distillation Kim et al. (2025). Here, we investigate the effects of temperature
scaling in KD settings with both Bayesian (VI) and deterministic teachers, and compare them.
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Figure 5: The accuracy achieved by students (averaged over 5 runs) trained from both deterministic
and Bayesian teachers in KD with different teacher and student temperatures applied. The
teacher-student pairs displayed are ResNet-50 → ResNet-18 (left), ResNet-50→WRN-40-2 (middle),
and WRN-40-2→WRN-16-2 (right).
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We consider three teacher–student pairs. For each pair, the student is trained with teacher temperatures
ranging from Tt = 1 to Tt = 9, with three different student temperatures Ts ∈ {1, 2, 4}. Each
experiment is repeated five times, and the average accuracies across runs are reported. All teacher
and student trainings follow the implementation details and hyperparameters described in Appendix F,
and results are displayed in Figure 5.

It can be seen that students trained with Bayesian teachers consistently achieve higher accuracy
across all temperature combinations and architectures compared to students trained with deterministic
teachers. In particular, under standard distillation without temperature scaling (Tt = 1, Ts = 1),
the gains are substantial: student accuracy improves by up to 3.18% (ResNet-50→WRN-40-2), even
though the Bayesian teacher itself is only 0.26% more accurate than the deterministic teacher.

Additionally, the effect of temperature scaling is consistently smaller for students trained from
Bayesian teachers compared to those trained from deterministic teachers. For example, in the ResNet-
50 → ResNet-18 case, the gap between the highest and lowest student accuracy across all temperature
combinations is 3.32% when using deterministic teachers. On the other hand, for students distilled from
Bayesian teachers this gap is only 1.07%, about three times smaller. This shows that Bayesian teachers
produce probability estimates that are inherently better calibrated than those of deterministic teachers,
making them more suitable for KD. Additionally, it shows that Bayesian teachers are less sensitive
to hyperparameters and are easier to tune, further strengthening them as effective teachers in KD.

I BAYESIAN TEACHER PARAMETERS

BNNs trained with variational inference represent model parameters not as fixed values but as
probability distributions Blundell et al. (2015); Jospin et al. (2022). This allows the model to capture
uncertainty by considering different possible configurations of the weights, rather than a single point
estimate Kabir et al. (2018). As a result, running the same input through the model may yield different
predicted probabilities each time. To obtain reliable predictions, one typically performs Monte Carlo
sampling at inference time, averaging outputs from several stochastic forward passes Gawlikowski
et al. (2023). Increasing the number of samples generally improves the stability and accuracy of the
predictive distribution of the teacher model.

We next investigate how the number of Monte Carlo samples used to compute the teacher’s probability
estimates for distillation affects the performance of the student model. To that aim, we trained two
teacher–student pairs with varying numbers of samples used for Monte Carlo prediction averaging.
For each setting, we report both the average accuracy of the teacher model and the average accuracy
of the corresponding student model. Each experiment was repeated five times, and the average values
across runs are reported. For reference, we also include the performance of the deterministic teacher
and its student. Distillation in this experiment was carried out without temperature scaling and with
λ = 1 (full distillation). In addition, to assess the effect of the number of Monte Carlo samples used
on gradient noise, we report the average noise in the accuracy curves, in a similar fashion to the one
conducted in Subsection 4.2 and shown in Figure 2. Both teacher and student training follow the same
implementation details and hyperparameters described in Appendix F.

The results are displayed in Figure 6 and Figure 7. Teacher performance is in line with prior work
on BNNs trained with VI; accuracy improves substantially as the number of Monte Carlo samples
increases Shen et al. (2024). We observe gains of up to 6% when moving from 1 to 12 samples, with
most of the improvement being in the low-sample regime. Interestingly, the corresponding student
accuracy acts differently. While adding more samples does not harm the student, its effect is modest.
For VGG-13→VGG-8, the student improves by only about 0.4%when increasing from 1 to 7 samples,
after which accuracy saturates, compared to the teacher’s much larger improvement of about 5.5%.
For VGG-13 → WRN-40-1, student accuracy roughly remains unchanged regardless of the number
of samples used. This is explained by the fact that although a single realization is used, the fact that
it is randomized anew on each sample leads to improved calibration when used for supervision in KD
as it is averaged in multiple epochs of SGD. Specifically, the student is trained using the BNN teacher
outputs throughout multiple epochs. This means that although training in each individual iteration
is performed with a noisy BNN teacher sample, over multiple iterations training is performed with
the expected value of the BNN teacher sample, effectively capturing the Monte Carlo sample average.
The noise in this case refers to the noise introduced by the distributions on the weights of the Bayesian
model and not the noise in the probability estimates.
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Figure 6: The accuracy achieved by Bayesian teachers, and their corresponding students (averaged
over 5 runs). Teacher accuracies correspond to the average accuracy achieved while doing inference
with a different number of Monte Carlo samples, and student accuracies correspond to the accuracy
achieved while using that number of Monte Carlo samples to compute teacher predictions for
distillation. Corresponding deterministic teacher and student accuracies are reported for reference.
The teacher-student pairs displayed are VGG-13 → VGG-8 (left) and VGG-13→WRN-40-1 (right).
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Figure 7: The average noise in the accuracy curves present during training for students trained from
Bayesian teachers using a varying number of Monte Carlo samples to compute teacher predictions
in the distillation process (averaged over 5 runs). Corresponding average noise in the accuracy curves
present during training of the students trained from deterministic teachers are reported for reference.
The teacher-student pairs displayed are VGG-13 → VGG-8 (left) and VGG-13→WRN-40-1 (right).

Moreover, for all cases, students distilled from Bayesian teachers show better performance compared
to students distilled from deterministic teachers, regardless of the number of samples used. This shows
that Bayesian teachers are better suited for KD compared to deterministic teachers, even when only
a single sample is used. Finally, the number of samples used seems to have no noticeable effect on
the noise present in the accuracy curves. Nevertheless, students trained from Bayesian teachers exhibit
10-30% less noise in the accuracy curves compared to students trained from deterministic teachers,
regardless of the number of samples used.
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J ACCURACY VARIANCES AND FULL RESULTS

Table 3: Mean and variance of the accuracies corresponding to the numerical study in Subsection 4.2
performed with distillation hyperparameters (λ, Tt, Ts) = (1, 1, 1) (averaged over 5 runs).

Teacher ResNet-18 ResNet-50 ResNet-50 WRN-40-2 WRN-40-2 VGG-13
Student ResNet-18 ResNet-18 ResNet-34 WRN-16-2 WRN-40-1 VGG-8

Deterministic 73.32 ± 0.21 73.48 ± 0.21 73.89 ± 0.36 67.94 ± 0.33 65.07 ± 0.60 73.48 ± 0.27
Bayesian 76.28 ± 0.26 76.20 ± 0.27 76.76 ± 0.29 69.64 ± 0.16 67.55 ± 0.39 76.24 ± 0.15
Laplace 74.88 ± 0.40 75.80 ± 0.20 75.56 ± 0.38 70.45 ± 0.41 68.87 ± 0.42 75.79 ± 0.31
MCMI 73.61 ± 0.28 73.61 ± 0.27 73.85 ± 0.22 68.20 ± 0.18 65.27 ± 0.39 73.36 ± 0.41
MSE 74.84 ± 0.45 74.84 ± 0.28 73.41 ± 1.78 67.74 ± 0.31 54.30 ± 0.54 73.25 ± 0.30

Teacher ResNet-50 ResNet-50 VGG-13 VGG-13 ResNet-50 VGG-13
Student WRN-40-2 VGG-8 ResNet-18 WRN-40-1 WRN-16-2 WRN-40-2

Deterministic 71.28 ± 0.38 73.41 ± 0.30 73.44 ± 0.21 65.32 ± 0.55 67.70 ± 0.34 71.12 ± 0.37
Bayesian 74.47 ± 0.17 75.56 ± 0.10 76.48 ± 0.22 68.37 ± 0.40 70.84 ± 0.30 74.26 ± 0.17
Laplace 74.57 ± 0.41 75.97 ± 0.23 75.84 ± 0.48 70.53 ± 0.33 72.52 ± 0.45 74.39 ± 0.36
MCMI 71.17 ± 0.47 73.34 ± 0.27 73.28 ± 0.21 65.33 ± 0.27 67.99 ± 0.23 71.14 ± 0.17
MSE 70.71 ± 0.24 73.44 ± 0.32 74.65 ± 0.11 53.56 ± 0.73 67.42 ± 0.18 70.64 ± 0.53

Table 4: Mean and variance of the accuracies corresponding to the numerical study in Subsection 4.2
performed with distillation hyperparameters (λ, Tt, Ts) = (0.474, 4, 4) (averaged over 5 runs).

Teacher ResNet-18 ResNet-50 ResNet-50 WRN-40-2 WRN-40-2 VGG-13
Student ResNet-18 ResNet-18 ResNet-34 WRN-16-2 WRN-40-1 VGG-8

Deterministic 75.92 ± 0.24 76.05 ± 0.40 76.76 ± 0.25 70.38 ± 0.27 68.06 ± 0.65 75.62 ± 0.15
Bayesian 76.84 ± 0.17 77.27 ± 0.27 77.54 ± 0.10 72.42 ± 0.47 70.14 ± 0.27 77.51 ± 0.19
Laplace 76.30 ± 0.25 76.69 ± 0.34 76.23 ± 0.12 71.66 ± 0.38 69.65 ± 0.29 76.09 ± 0.26
MCMI 75.83 ± 0.35 76.35 ± 0.20 76.55 ± 0.40 70.40 ± 0.61 68.10 ± 0.20 75.66 ± 0.53
MSE 74.48 ± 0.12 74.46 ± 0.23 75.58 ± 0.22 68.62 ± 0.44 65.42 ± 0.39 73.86 ± 0.34

Teacher ResNet-50 ResNet-50 VGG-13 VGG-13 ResNet-50 VGG-13
Student WRN-40-2 VGG-8 ResNet-18 WRN-40-1 WRN-16-2 WRN-40-2

Deterministic 72.73 ± 0.21 75.56 ± 0.21 76.33 ± 0.27 66.98 ± 0.38 68.64 ± 0.40 73.13 ± 0.26
Bayesian 75.35 ± 0.27 77.27 ± 0.46 77.41 ± 0.20 70.64 ± 0.28 73.19 ± 0.38 75.37 ± 0.23
Laplace 72.84 ± 0.05 76.11 ± 0.35 76.42 ± 0.10 68.02 ± 0.26 70.69 ± 0.36 72.95 ± 0.31
MCMI 72.44 ± 0.34 75.27 ± 0.29 76.31 ± 0.14 67.10 ± 0.51 68.47 ± 0.41 73.23 ± 0.10
MSE 71.09 ± 0.27 74.09 ± 0.20 74.48 ± 0.26 65.61 ± 0.07 68.55 ± 0.26 71.39 ± 0.35

Table 5: Mean and variance of the accuracies corresponding to the numerical study in Subsection 4.2
performed with distillation hyperparameters (λ, Tt, Ts) = (1, 2, 1) (averaged over 5 runs).

Teacher ResNet-18 ResNet-50 ResNet-50 WRN-40-2 WRN-40-2 VGG-13
Student ResNet-18 ResNet-18 ResNet-34 WRN-16-2 WRN-40-1 VGG-8

Deterministic 74.27 ± 0.26 74.13 ± 0.07 74.66 ± 0.21 68.26 ± 0.34 65.80 ± 0.49 74.50 ± 0.21
Bayesian 76.81 ± 0.26 76.92 ± 0.23 77.30 ± 0.04 71.89 ± 0.60 69.75 ± 0.26 77.33 ± 0.15
Laplace 74.14 ± 0.26 75.07 ± 0.40 75.19 ± 0.29 71.79 ± 0.38 69.96 ± 0.28 75.26 ± 0.28
MCMI 74.22 ± 0.21 74.05 ± 0.08 74.78 ± 0.19 68.10 ± 0.38 65.86 ± 0.24 74.39 ± 0.18
MSE 74.19 ± 0.35 74.22 ± 0.34 73.70 ± 2.00 67.73 ± 0.33 49.99 ± 0.55 72.61 ± 1.20

Teacher ResNet-50 ResNet-50 VGG-13 VGG-13 ResNet-50 VGG-13
Student WRN-40-2 VGG-8 ResNet-18 WRN-40-1 WRN-16-2 WRN-40-2

Deterministic 71.64 ± 0.32 74.16 ± 0.27 74.62 ± 0.35 65.41 ± 0.39 68.02 ± 0.18 71.56 ± 0.26
Bayesian 75.60 ± 0.21 76.92 ± 0.30 77.37 ± 0.18 70.75 ± 0.17 72.78 ± 0.25 75.29 ± 0.31
Laplace 74.24 ± 0.22 75.53 ± 0.29 75.00 ± 0.40 70.87 ± 0.44 71.89 ± 0.25 74.18 ± 0.30
MCMI 71.86 ± 0.38 73.95 ± 0.29 74.54 ± 0.13 65.70 ± 0.37 67.82 ± 0.25 71.92 ± 0.17
MSE 69.81 ± 0.33 72.61 ± 1.00 74.55 ± 0.24 49.86 ± 0.30 67.99 ± 0.67 70.06 ± 0.33
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Table 6: Mean and variance of the accuracies corresponding to the numerical study in Subsection 4.2
performed with distillation hyperparameters (λ, Tt, Ts) = (1, 4, 1) (averaged over 5 runs).

Teacher ResNet-18 ResNet-50 ResNet-50 WRN-40-2 WRN-40-2 VGG-13
Student ResNet-18 ResNet-18 ResNet-34 WRN-16-2 WRN-40-1 VGG-8

Deterministic 75.69 ± 0.29 76.20 ± 0.16 76.78 ± 0.35 70.80 ± 0.46 68.92 ± 0.42 76.08 ± 0.25
Bayesian 76.83 ± 0.27 77.14 ± 0.35 77.25 ± 0.16 72.94 ± 0.19 70.77 ± 0.49 77.61 ± 0.20
Laplace 73.77 ± 0.42 74.68 ± 0.41 74.91 ± 0.68 71.01 ± 0.27 70.04 ± 0.33 74.92 ± 0.25
MCMI 75.66 ± 0.32 76.26 ± 0.29 76.86 ± 0.30 70.87 ± 0.52 68.66 ± 0.54 76.35 ± 0.14
MSE 74.03 ± 0.13 73.88 ± 0.14 73.98 ± 0.27 67.73 ± 0.41 49.30 ± 0.21 72.88 ± 0.06

Teacher ResNet-50 ResNet-50 VGG-13 VGG-13 ResNet-50 VGG-13
Student WRN-40-2 VGG-8 ResNet-18 WRN-40-1 WRN-16-2 WRN-40-2

Deterministic 73.79 ± 0.33 75.66 ± 0.39 76.36 ± 0.22 67.90 ± 0.30 69.36 ± 0.38 73.71 ± 0.20
Bayesian 75.82 ± 0.17 77.27 ± 0.14 77.26 ± 0.20 71.37 ± 0.23 73.63 ± 0.36 75.45 ± 0.31
Laplace 73.97 ± 0.33 74.96 ± 0.32 74.57 ± 0.22 69.83 ± 0.30 71.30 ± 0.21 73.76 ± 0.44
MCMI 73.50 ± 0.16 75.75 ± 0.13 76.40 ± 0.34 67.48 ± 0.50 69.58 ± 0.27 74.20 ± 0.27
MSE 69.59 ± 0.49 72.59 ± 0.49 73.89 ± 0.29 49.39 ± 0.33 67.88 ± 0.43 70.11 ± 0.54

Table 7: Mean and variance of the accuracies corresponding to the numerical study in Subsection 4.2
performed with distillation hyperparameters (λ, Tt, Ts) = (1, 2, 2) (averaged over 5 runs).

Teacher ResNet-18 ResNet-50 ResNet-50 WRN-40-2 WRN-40-2 VGG-13
Student ResNet-18 ResNet-18 ResNet-34 WRN-16-2 WRN-40-1 VGG-8

Deterministic 74.36 ± 0.12 74.23 ± 0.40 74.58 ± 0.14 68.16 ± 0.45 65.57 ± 0.40 74.16 ± 0.22
Bayesian 76.92 ± 0.27 77.18 ± 0.28 77.63 ± 0.10 71.73 ± 0.16 69.73 ± 0.19 77.16 ± 0.24
Laplace 74.10 ± 0.30 75.26 ± 0.34 75.20 ± 0.50 71.80 ± 0.40 69.83 ± 0.21 75.51 ± 0.34
MCMI 74.14 ± 0.34 74.16 ± 0.41 74.59 ± 0.22 68.25 ± 0.46 65.70 ± 0.28 74.16 ± 0.34
MSE 74.65 ± 0.21 74.89 ± 0.24 73.34 ± 1.71 67.78 ± 0.63 50.02 ± 0.50 73.09 ± 0.32

Teacher ResNet-50 ResNet-50 VGG-13 VGG-13 ResNet-50 VGG-13
Student WRN-40-2 VGG-8 ResNet-18 WRN-40-1 WRN-16-2 WRN-40-2

Deterministic 71.24 ± 0.35 73.55 ± 0.32 74.66 ± 0.32 65.45 ± 0.44 67.55 ± 0.47 71.66 ± 0.22
Bayesian 75.62 ± 0.19 77.01 ± 0.25 77.41 ± 0.10 70.58 ± 0.16 72.94 ± 0.35 75.43 ± 0.30
Laplace 74.36 ± 0.27 75.49 ± 0.39 75.27 ± 0.43 70.63 ± 0.23 71.96 ± 0.44 74.09 ± 0.38
MCMI 70.87 ± 0.37 73.75 ± 0.15 74.54 ± 0.18 65.33 ± 0.43 67.81 ± 0.31 71.58 ± 0.40
MSE 70.24 ± 0.13 73.25 ± 0.28 74.74 ± 0.39 50.17 ± 0.12 67.58 ± 0.44 70.22 ± 0.51

Table 8: Mean and variance of the accuracies corresponding to the numerical study in Subsection 4.2
performed with distillation hyperparameters (λ, Tt, Ts) = (1, 4, 4) (averaged over 5 runs).

Teacher ResNet-18 ResNet-50 ResNet-50 WRN-40-2 WRN-40-2 VGG-13
Student ResNet-18 ResNet-18 ResNet-34 WRN-16-2 WRN-40-1 VGG-8

Deterministic 75.91 ± 0.32 76.26 ± 0.22 76.82 ± 0.27 70.65 ± 0.14 68.70 ± 0.18 75.74 ± 0.34
Bayesian 76.77 ± 0.23 77.08 ± 0.23 77.18 ± 0.14 72.50 ± 0.27 70.29 ± 0.24 77.30 ± 0.13
Laplace 73.78 ± 0.45 74.83 ± 0.09 75.03 ± 0.56 70.61 ± 0.20 69.66 ± 0.17 74.90 ± 0.41
MCMI 75.86 ± 0.33 76.44 ± 0.21 76.68 ± 0.23 70.64 ± 0.13 68.33 ± 0.14 75.64 ± 0.26
MSE 75.01 ± 0.20 74.75 ± 0.36 74.46 ± 0.47 67.41 ± 0.46 49.62 ± 0.24 72.97 ± 0.29

Teacher ResNet-50 ResNet-50 VGG-13 VGG-13 ResNet-50 VGG-13
Student WRN-40-2 VGG-8 ResNet-18 WRN-40-1 WRN-16-2 WRN-40-2

Deterministic 72.94 ± 0.31 75.43 ± 0.23 76.22 ± 0.28 66.99 ± 0.35 68.71 ± 0.37 73.29 ± 0.33
Bayesian 75.53 ± 0.09 77.06 ± 0.24 76.95 ± 0.21 70.92 ± 0.37 73.14 ± 0.23 75.18 ± 0.33
Laplace 73.88 ± 0.35 75.10 ± 0.31 74.96 ± 0.27 69.79 ± 0.28 71.14 ± 0.38 73.79 ± 0.17
MCMI 72.68 ± 0.37 75.45 ± 0.15 76.40 ± 0.23 67.14 ± 0.22 68.45 ± 0.40 73.09 ± 0.38
MSE 69.74 ± 0.44 73.05 ± 0.33 74.87 ± 0.21 49.65 ± 0.50 67.25 ± 0.24 69.90 ± 0.36
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K LIMITATIONS

• Our theoretical results in Section 3 rely on several assumptions commonly used in optimization
literature, such as strong quasi-convexity or the Polyak–Łojasiewicz condition. We also assume model
expressiveness to ensure convergence to an optimum. These assumptions, while standard, can of
course be questioned.

• To make our claims rigorous, we modeled noisy BCPs as either perfect BCPs with additive noise,
or as Dirichlet-distributed BCPs. One can always question this type of modeling and suggested more
complex modeling, such as incorporating bias or correlation between samples.

•Our work advocates the use of BNNs as teachers in KD, possibly obtained by converting a pre-trained
deterministic teacher model into a BNN using LA. Still, one has to account for the additional
computational complexity of BNNs.
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