
Efficient Federated Random Subnetwork Training

Berivan Isik∗

Department of Electrical Engineering
Stanford University

berivan.isik@stanford.edu

Francesco Pase∗†
Department of Electrical Engineering

University of Padova
pasefrance@dei.unipd.it

Deniz Gunduz
Department of Electrical Engineering

Imperial College London
d.gunduz@imperial.ac.uk

Tsachy Weissman
Department of Electrical Engineering

Stanford University
tsachy@stanford.edu

Michele Zorzi
Department of Electrical Engineering

University of Padova
zorzi@dei.unipd.it

Abstract

One main challenge in federated learning is the large communication cost of ex-
changing weight updates from clients to the server at each round. While prior work
has made great progress in compressing the weight updates through gradient com-
pression methods, we propose a radically different approach that does not update
the weights at all. Instead, our method freezes the weights at their initial random
values and learns how to sparsify the random network for the best performance.
To this end, the clients collaborate in training a stochastic binary mask to find the
optimal sparse random network within the original one. At the end of the training,
the final model is a sparse network with random weights – or a subnetwork inside
the dense random network. We show improvements in accuracy, communication
(less than 1 bit per parameter (bpp)), convergence speed, and final model size
(less than 1 bpp) over relevant baselines on MNIST, EMNIST, CIFAR-10, and
CIFAR-100 datasets, in the low bitrate regime under various system configurations.
(See (Isik et al., 2022a) for the full version.)

1 Introduction

Federated learning (FL) is a distributed learning framework where clients collaboratively train a
model by performing local training on their data and by sharing their local updates with a server
every few iterations, which in turn aggregates the local updates to create a global model, that is
then transmitted to the clients for the next round of training. While being an appealing approach
for enabling model training without the need to collect client data at the server, communication of
local updates is a significant bottleneck in FL (Kairouz et al., 2021). This has motivated research in
communication-efficient FL strategies (McMahan et al., 2017a) and various gradient compression
schemes via sparsification (Lin et al., 2018; Wang et al., 2018; Barnes et al., 2020; Ozfatura et al.,
2021; Isik et al., 2022b), quantization (Alistarh et al., 2017; Wen et al., 2017; Bernstein et al., 2018;

∗First two authors contributed equally to this work.
†Work done while the author was a visiting researcher at the Imperial College London.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

Mitchell et al., 2022), and low-rank approximation (Konečnỳ et al., 2016; Vargaftik et al., 2021, 2022;
Basat et al., 2022).

In this work, while aiming for communication efficiency in FL, we take a radically different approach
from prior work, and propose a strategy that does not require communication of weight updates. To
be more precise, instead of training the weights,

1. the server initializes a dense random network with d weights, denoted by the weight vector
winit = (winit

1 , winit
2 , . . . , winit

d), using a random seed SEED, and broadcasts SEED to the
clients enabling them to reproduce the same winit locally,

2. both the server and the clients keep the weights frozen at their initial values winit at all times,
3. clients collaboratively train a probability mask of d parameters θ = (θ1, θ2, . . . , θd) ∈

[0, 1]d,
4. the server samples a binary mask from the trained probability mask and generates a sparse

network with random weights – or a subnetwork inside the initial dense random network as
follows

wfinal = Bern(θ)⊙winit, (1)
where Bern(·) is the Bernoulli sampling operation and ⊙ the element-wise multiplication.

We call the proposed framework Federated Probabilistic Mask Training (FedPM) and summarize it in
Figure 1. At first glance, it may seem surprising that there exist subnetworks inside randomly initial-
ized networks that could perform well without ever modifying the weight values. This phenomenon
has been explored to some extent in prior work (Zhou et al., 2019; Ramanujan et al., 2020; Pensia
et al., 2020; Diffenderfer & Kailkhura, 2020; Aladago & Torresani, 2021) with different strategies for
finding the subnetworks. However, how to find these subnetworks in a FL setting has not attracted
much attention so far. Some exceptions to this are works by Li et al. (2021); Vallapuram et al. (2022);
Mozaffari et al. (2021), which provide improvements in other FL challenges, such as personalization
and poisoning attacks, while not being competitive with existing (dense) compression methods such
as QSGD (Alistarh et al., 2017), DRIVE (Vargaftik et al., 2021), and SignSGD (Bernstein et al., 2018)
in terms of accuracy under the same communication budget. In this work, we propose a stochastic
way of finding such subnetworks while reaching higher accuracy at a reduced communication cost –
less than 1 bit per parameter (bpp).

Figure 1: High-level description of extracting a randomly weighted sparse network from the trainable
probability mask θt in the forward-pass of round t (for clients and the server). In practice, clients
collaboratively train continuous scores s ∈ Rd, and then at inference time, the clients (or the server)
find θt = Sigmoid(st) ∈ [0, 1]d. We skip this step in the figure for the sake of simplicity.

In addition to the accuracy and communication gains, our framework also provides an efficient
representation of the final model post-training by requiring less than 1 bpp to represent (i) the random
seed that generates the initial weights winit, and (ii) a sampled binary vector Bern(θ) (computed
with the trained θ). Therefore, the final model enjoys a memory-efficient deployment – a crucial

2

feature for machine learning at power-constrained edge devices. Another advantage our framework
brings is the privacy amplification under some settings, thanks to the stochastic nature of our training
strategy. We show that in the presence of a differential privacy mechanism, such as (Abadi et al.,
2016; Agarwal et al., 2021; Andrew et al., 2021), over the probability mask θ, the Bernoulli sampling
step amplifies the privacy further under certain conditions.

Our contributions can be summarized as follows:

• We propose a FL framework, in which the clients do not train the model weights, but instead
a stochastic binary mask to be used in sparsifying the dense network with random weights.
This differs from the standard training approaches in the literature.

• Our framework provides efficient communication from clients to the server by requiring
(less than) 1 bpp per client while yielding faster convergence and higher accuracy than the
baselines.

• We propose a Bayesian aggregation strategy at the server side to better deal with partial
participation and non-IID data splits.

• The final model (a sparse network with random weights) can be efficiently represented
with a random seed and a binary mask which requires (less than) 1 bpp – at least 32×
more efficient storage and communication of the final model with respect to standard FL
strategies.

• We demonstrate the efficacy of our strategy on MNIST, EMNSIT, CIFAR-10, and CIFAR-
100 datasets under both IID and non-IID data splits; and show improvements in accuracy,
bitrate, convergence speed, and final model size over relevant baselines, under various
system configurations.

2 Federated Probabilistic Mask Training (FedPM)

We first describe the simpler version of the FedPM framework in Section 2.1, which provides an
unbiased estimation of the mean of the learned probability masks at the server with bounded error.
Next, we propose a modification in our aggregation strategy by exploiting the underlying Bernoulli
mechanism in Section 2.2. This helps boost the performance of FedPM in the cases of non-IID
data splits and partial participation of clients. We then discuss the details of the distribution of the
initial weights in Section 2.3, and finally describe the privacy benefits of FedPM in Section 2.4.
Throughout the paper, we use capital letters for random variables, small letters for their realization
and deterministic quantities, and bold letters to denote vectors. Moreover, we indicate with xu,t

the state of the local vector x (e.g., the local mask) at client u during round t, and with xu,t
i its i-th

component. Global values are denoted with xg,t and xg,t
i , and sets are indicated with calligraphic

fonts. We denote a neural network with weight vector p as fp.

2.1 FedPM

In this section, we present the general FedPM training pipeline. First, the server randomly initializes
a neural network fwinit , parameterized by the weight vector winit = (winit

1 , winit
2 , . . . , winit

d) ∈ Rd,
whose components are sampled IID according to a distribution Pw using a randomly generated seed
SEED. The random SEED value is then communicated to all the clients, which can locally sample
the same pseudo-random vector winit, which is kept fixed and never modified during training. The
goal for the clients is to collaboratively train a probability mask θ ∈ [0, 1]d, which indicates the
Bernoulli parameters for the global stochastic binary mask M ∼ Bern(θ) ∈ {0, 1}d, such that the
function fẆ maximizes its performance on a given task, where Ẇ = M ⊙ winit. Specifically,
FedPM learns the probabilities for the weights of being active, which are given by the probability
mask θ = (θ1, θ2, . . . , θd) ∈ [0, 1]d. To achieve this, at every round t, the server samples a set Kt

of |Kt| = K participants (out of the total N clients), which individually train their local probability
masks θk,t, k ∈ Kt, by using their local datasets Dk, each composed of Dk = |Dk| samples. These
local masks are then aggregated by the server in a communication-efficient way to estimate the
optimal θ. At test time, at the server, the initial random network fwinit is sparsified using the global
probability mask θg,t, following the stochastic approach in Figure 1. In the following sections, we
provide more details on each step of each round. We give the pseudocode for FedPM in Appendix A.

3

Figure 2: Communication-efficient estimation of the mean of the probability masks θ̄g,t. Each client
communicates a stochastic binary mask mk,t sampled from the local Bernoulli mask θk,t. We reduce
the bitrate to less than 1 bit per parameter by using arithmetic coding to encode mk,t. When the
frequency of 1’s is far from 0.5 (which is usually the case with FedPM), the number of bits per
parameter to communicate mk,t is less than 1. See Figure 3 for more details.

2.1.1 Local Training of Probability Masks

Upon receiving a global probability mask θg,t−1 from the server at the beginning of round t, the
client k performs local training and updates the mask via back-propagation. First, however, we have
to guarantee that the updated probability mask satisfies θk,t ∈ [0, 1]d. While this can be achieved
with a regularization term or clipping, these approaches may lead to a performance drop due to
information loss. Therefore, similarly to the work of Zhou et al. (2019), we introduce another mask,
called score mask s = (s1, s2, . . . , sd) ∈ Rd, that has unbounded support and that can be used to
generate the probability masks through the one-to-one sigmoid function by setting θ = Sigmoid(s).
Then, the procedure for local training of the probability mask at round t is as follows (here, the steps
from Step 2 to 4 describe one local iteration, which is repeated a number τ of times as standard in
FL (McMahan et al., 2017a)):

1. The server sends the global probability mask θg,t−1 to K chosen clients, and the clients set
sk,t = Sigmoid−1(θg,t−1), where Sigmoid−1(·) is the inverse of the sigmoid function.

2. Then, the clients generate a binary mask by first transforming back θk,t = Sigmoid(sk,t),
and then sampling a binary mask Mk,t from θk,t as shown in Figure 1: mk,t ∼ Bern(θk,t).

3. The sampled binary mask then sparsifies the initial weight vector winit: ẇk,t = mk,t⊙winit.

4. ẇk,t is then used for forward pass, and the loss L(fẇk,t ,Dk) on the local task is backprop-
agated to update the score mask as sk,t = sk,t − η∇L(fẇk,t ,Dk) (η is the local learning
rate).

All the local operations from Step 2 to Step 4 are differentiable, except for the Bernoulli sampling.
To backpropagate the gradients through the sampling operation, we use the first-order gradient of the
Bernoulli function, which is simply equal to the probability mask θk,t.

2.1.2 Communication Strategy

Once the local training at round t is completed, the server needs to distill the global probability
mask θg,t, for example, by taking the empirical average of the local probability masks θ̄g,t =
1
K

∑
k∈Kt

θk,t from the clients. However, since we aim for communication efficiency, the clients do
not send their local probability masks directly. Instead, they communicate a stochastic binary sample

4

Mk,t from their probability masks sampled as mk,t ∼ Bern(θk,t), and then the server estimates
the global aggregate θ̄g,t as ˆ̄θg,t = 1

K

∑
k∈Kt

mk,t. This distributed mean estimation problem with

communication constraints is summarized in Figure 2. Our estimator ˆ̄θg,t = 1
K

∑
k∈Kt

mk,t is an
unbiased estimate of the true aggregate, in that

EMk,t∼Bern(θk,t) ∀k∈Kt
[ˆ̄θg,t] = EMk,t∼Bern(θk,t) ∀k∈Kt

[
1

K

∑
k∈Kt

Mk,t

]

=
1

K

∑
k∈Kt

EMk,t∼Bern(θk,t)[M
k,t]

=
1

K

∑
k∈Kt

θk,t

= θ̄g,t.

Moreover, the estimation error is upper bounded as (the proof is given in Appendix B)

EMk,t∼Bern(θk,t) ∀k∈Kt

[
||ˆ̄θg,t − θ̄g,t||22

]
≤ d

4K
. (2)

Since each client communicates a stochastic binary mask Mk,t, 1 bpp is the worst case bitrate for
FedPM. We can further reduce the bitrate to less than 1 bit by using arithmetic coding (Rissanen &
Langdon, 1979) or universal coding (Krichevsky & Trofimov, 1981; Barron et al., 1998) to encode
mk,t, and achieve the empirical entropy since d is large. This gives us smaller bitrates whenever the
frequency of 1’s in mk,t is far from 0.5 – which is usually the case for our method (see Figure 3 and
Appendix E.1 for results). We note that, with a deterministic mask training approach as in FedMask
(Li et al., 2021), arithmetic coding of mk,ts does not provide any further gain in bitrate, as we have
empirically observed that the frequency of 1’s is always around 0.5 (see Figure 3 and Appendix E.1) –
here we apply arithmetic coding for FedMask to improve our baseline although it was not proposed
in the original paper. Moreover, FedMask (Li et al., 2021) and HideNSeek (Vallapuram et al., 2022)
do not enjoy the guarantees we have as their estimator (i) is not unbiased and (ii) does not have an
upper bound on the estimation error due to hard thresholding (Li et al., 2021) and sign operations
(Vallapuram et al., 2022). This is another benefit of our stochastic sampling approach.

2.2 FedPM with Bayesian Aggregation

Another important aspect that differentiates our work from existing masking methods such as
FedMask (Li et al., 2021) and HideNSeek (Vallapuram et al., 2022) is the Bayesian aggregation
strategy, which exploits the underlying stochastic mask to synthesize a global model, boosting the
performance in heterogeneous scenarios, e.g., when local client data are not sampled from the same
distribution. Given the probabilistic interpretation of the FedPM mask’s values, at the server side
we further model the probability mask θg,t with a Beta distribution Beta(αg,t,βg,t), parameterized
by the round-dependent parameters αg,t and βg,t, which are initialized to αg,0 = βg,0 = λ0. At
the beginning of the training process, there is no prior knowledge indicating which network weight
should be more important than the others, and so each entry in the probability mask is uniformly
distributed in [0, 1] – which is the prior distribution. Consequently, the clients’ local binary masks
Mk,ts are the data the server uses to update its belief on each weight score, and so the aggregation
strategy corresponds now to a posterior update. Specifically, given the conjugate relation between
the Beta-Bernoulli distributions, the new posteriors are still Beta distributions with parameters

αg,t = αg,t−1 +M agg,t and βg,t = βg,t−1 +K · 1−M agg,t ∀t ≥ 1, (3)

where M agg,t =
∑

k∈Kt
Mk,t, and 1 is the d-dimensional vector containing all ones. Then, the

server broadcasts to the clients the mode of the Bernoulli distributions, as suggested by Ferreira et al.
(2021), i.e.,

θg,t =
αg,t − 1

αg,t + βg,t − 2
, (4)

5

where the division operation is applied element-wise. However, to obtain the best performance out
of this method, the Beta parameters should be re-initialized to their original values λ0 with some
regularity. Notice that if λ0 = 1, and if α and β are re-initialized at the beginning of each round, the
method is equivalent to the aggregation strategy detailed in Section 2.1.2.

2.3 Weight Distribution

As mentioned in Section 2.1, the fixed weight vector winit is initialized by sampling from the
distribution Pw using the randomly generated SEED. We note that the choice of this distribution
impacts two important aspects of FedPM: (i) the values of winit highly influence the final accuracy
achieved by the model, as they represent the building blocks to extract a subnetwork fẇ (see Figure 1),
which should be rich enough to solve the learning task, and (ii) the size of the sample space of Pw

affects the number of bits needed to store the model during the inference process (this is different
from the 1 bpp model storage when the model is not in use). Regarding (i), as also proposed in
Ramanujan et al. (2020), we sample weights from a uniform distribution, whose domain is {−σ,+σ},
where σ is the standard deviation of the Kaiming Normal distribution (He et al., 2015). In this
way, we control the variance of the neurons’ output to be ∼ 1, which avoids the vanishing or the
explosion of activation values. Previous experiments in (Zhou et al., 2019; Ramanujan et al., 2020)
also demonstrate the superior performance achieved by binary weights distributions when compared
to standard continuous counterparts, e.g., Gaussian. Regarding (ii), even if knowing the value of
SEED is enough to perfectly reconstruct the vector winit, one would have to generate the entire vector
at every inference step. Consequently, to achieve fast inference, the actual values of the weights need
to be stored in the memory of the devices during the inference process. Fortunately, our initialization
allows for efficient storage even during inference since (after reconstructing wfinal using SEED and
mfinal ∈ {0, 1}d) we only need to indicate whether the weight values in wfinal are −σ, 0, or +σ, with
a ternary representation that can be efficiently deployed on hardware (Alemdar et al., 2017).

2.4 Privacy

Privacy is another challenge in FL as the model updates (in our case, Mk,ts) may leak information
about the client data. Differential privacy (DP) guarantees that the probability of an outcome of an
algorithm that runs on client data does not change much by a single client’s data (see Appendix C
for the formal definition). This is typically ensured via injecting noise to a function of the client
data at a particular step in the algorithm with some utility loss in the application. While there have
been many DP strategies developed for FL and deep learning (Abadi et al., 2016; McMahan et al.,
2017b; Agarwal et al., 2021; Andrew et al., 2021), these strategies typically suffer from severe
performance degradation due to noise injection. To make DP practical, researchers have explored
certain randomization mechanisms that amplify the privacy guarantee. When these mechanisms are
part of the FL framework, such as sampling (data (Balle et al., 2018; Wang et al., 2019) or device
(Balle et al., 2020; Girgis et al., 2021; Hasircioglu & Gunduz, 2022)) and shuffling (Erlingsson et al.,
2019; Feldman et al., 2022), the amplification comes for free. This is helpful because the overall
process can meet a stronger privacy guarantee without increasing the noise level. FedPM promises
one such amplification due to the stochastic Bernoulli sampling step. In particular, Imola & Chaudhuri
(2021) have shown that when a sample M ∈ {0, 1}d from an already privatized vector θ ∈ [c, 1−c]d,
where 0 < c < 0.5, is released to a third party (instead of θ itself), the privacy is amplified under some
conditions. More precisely, when there is an (α, ϵ)-Rényi Differential Privacy mechanism (Mironov,
2017) that privatizes θ ∈ [c, 1− c]d, releasing a sample from Bern(θ) yields an improved privacy
budget (the smaller ϵ, the better the privacy): ϵamp ≤ min {ϵ, d · rα(c)}. Here, rα(p) is the binary
symmetric Rényi divergence function defined as rα(p) = 1

α−1 log
(
pα(1− p)1−α + (1− p)αp1−α

)
.

Notice that FedPM already involves this Bernoulli sampling step in the communication protocol
and in the forward pass mk,t ∼ Bern(θk,t). However, the d term in the upper bound limits the
amplification for large model sizes. We believe it is worth exploring a tighter upper bound on ϵamp

to enjoy privacy amplification in FedPM with practical models. Nonetheless, in Appendix C, we
demonstrate the impact of this amplification on a distributed mean estimation problem, described in
Figure 2, where the goal is to estimate the true mean of the probability masks θ̄ = 1

K

∑K
k=1 θ

k under
communication and privacy constraints. We also provide a bias correction mechanism, specific to our
scheme in Figure 4 in Appendix C, that mitigates the bias due to the DP mechanism and reduces the
estimation error.

6

Figure 3: Accuracy and bitrate comparison of FedPM with baselines SignSGD (Bernstein et al.,
2018), TernGrad (Wen et al., 2017), QSGD (Alistarh et al., 2017), DRIVE (Vargaftik et al., 2021),
EDEN (Vargaftik et al., 2022), and FedMask (Li et al., 2021), all performing in the same bitrate
regime, on CIFAR-10, CIFAR-100, MNIST, and EMNIST datasets. Note that the bitrate in QSGD is
adjustable via the number of levels. In these plots, we pick a level number that gives bitrate slightly
larger than 1. However, the accuracy is still lower than FedPM accuracy. It is possible to reduce the
bitrate in QSGD and still have some reasonable accuracy; however, the performance in that regime
(lower bitrate, lower accuracy) is not a meaningful comparison point for FedPM.

3 Experiments

In this section, we empirically show the performance of FedPM in terms of accuracy, bitrate, converge
speed, and the final model size. We consider four datasets: CIFAR-10 with 10 classes, CIFAR-100
(Krizhevsky et al., 2009) with 100 classes, MNIST (Deng, 2012) with 10 classes, and EMNIST
(Cohen et al., 2017) with 47 classes. For CIFAR-100, we use a 10-layer convolutional network (CNN)
CONV-10; for CIFAR-10, a 6-layer CNN CONV-6; and for MNIST and EMNIST, a 4-layer CNN
CONV-4. A detailed description of the architectures can be found in Appendix D. We first compare
FedPM with SignSGD (Bernstein et al., 2018), TernGrad (Wen et al., 2017), QSGD (Alistarh et al.,
2017), DRIVE (Vargaftik et al., 2021), EDEN (Vargaftik et al., 2022), and FedMask (Li et al., 2021)
on IID data split and full client participation in Section 3.1. We then extend our experiments to
non-IID data splits and partial participation in Section 3.2. Clients perform 3 local epochs in all
experiments. We provide additional details on the experimental setup in Appendix D. We present
results averaged over 3 runs.

3.1 IID Data Split and Full Participation (K = N)

In this section, we focus on IID data distribution and the case when all the clients participate in the
training at each round. We set the number of clients to N = K = 10. We report the estimated bitrate
for the arithmetic code that uses the empirical frequency of the symbols (for our method FedPM, this
corresponds to the frequency of 1’s in mk,t) – which is equal to the empirical entropy for blocklength
d as large as the model size. In Figure 3, we compare the accuracy, bitrate, and convergence speed
of FedPM with relevant baselines. As can be seen in the figure, FedPM converges to the highest
accuracy on all four datasets. DRIVE, EDEN, and QSGD (they mostly overlap in the accuracy plots)
seem to be the three baselines that perform the best after FedPM; however, their convergence speed is
significantly lower than FedPM. In terms of convergence speed, FedMask is the fastest among the
baselines – in fact, at the beginning of the training, FedMask is faster than FedPM as well. However,
its final accuracy is lower than the others.

In terms of bitrate, SignSGD and FedMask consistently spend 1 bpp, which is the default number
when a binary mask or sign mask is communicated. This means binary values (1’s and 0’s) are almost
equally distributed in their masks, which prevents them from enjoying additional bitrate gains. Across
all experiments, TernGrad has the highest bitrate. We would like to leave a note about the bitrate
of QSGD. Unlike other baselines, including our work, QSGD can go down to very low bitrates by
adjusting the number of levels in quantization. We have observed that in the extreme quantization
case, QSGD underperforms FedPM. Then, we have decided to increase the number of quantization
levels in QSGD to see if it improves the accuracy. However, as can be seen from the plots, even

7

with bitrate larger than 1, QSGD still underperforms FedPM. The only two baselines that challenge
FedPM in terms of bitrate are DRIVE and EDEN. While FedPM has lower bitrates on CIFAR-10 and
EMNIST; DRIVE and EDEN have better bitrates on CIFAR-100 and MNIST. However, the accuracy
of DRIVE and EDEN on these datasets (specifically CIFAR-100) is significantly lower than that of
FedPM, with slower convergence.

As for the final model size, FedPM needs only 0.8 bpp for the CONV-6 model trained on CIFAR-10,
0.85 bpp for the CONV-10 model trained on CIFAR-100, 0.96 bpp for the CONV-4 model trained on
MNIST, and 0.83 bpp for the CONV-4 model trained on EMNIST. On the other hand, other baselines
that train a dense model, namely SignSGD, TernGrad, QSGD, DRIVE, and EDEN, would need to
represent each weight with their full precision value, i.e., 32 bpp. This implies that FedPM provides
around 38.6× improvement in the storage or the communication of the final model. Since FedMask
also trains a sparse model, it enjoys a similar gain in the final model size requiring 1 bpp across all
the models. Due to the stochastic masking procedure and uneven distribution of 1’s and 0’s in the
binary masks, FedPM has up to 0.17 bpp improvement over the deterministic procedure in FedMask,
which adds up to a large gain due to the huge model size.

We would like to highlight that while some of our baselines, such as FedMask and TernGrad, have a
visibly high variance in accuracy, FedPM shows stable training behavior across all experiments.

3.2 Non-IID Data Split and Partial Participation (K < N)

This section considers more realistic scenarios, in which the local clients’ datasets are generated
from slightly different data distributions. We focus on CIFAR-10 with CONV-6, and we compare
FedPM against (i) the most promising baselines, which, based on the results of Section 3.1, are
DRIVE, EDEN, and QSGD, and (ii) FedMask, as it is the only sparse baseline. To choose the size of
each dataset |Dn| = Dn, for each client n ∈ {1, . . . , N}, an integer jn is sampled uniformly from
{10, 11, . . . , 100}. Then, a coefficient pn = jn∑

n jj
is computed, which represents the size of the

local dataset Dn as a fraction of the size of the full dataset, i.e., the training set of CIFAR-10. In
this way, highly unbalanced datasets can be generated from the central one. Moreover, since the task
is a classification problem, we impose a maximum number of different labels, or classes, cmax, that
one client can see. Consequently, clients need cooperation to learn the statistics of other classes’
distributions, as the test dataset contains samples from all classes. In addition, partial participation is
also considered, meaning that at each round, the server uniformly samples a fraction ρ = K

N of the
clients to participate in the training round. This is motivated in real-world scenarios by the scarcity of
physical communication network resources, which may limit the availability of part of the clients
during one round. The maximum number of classes per local dataset is set to cmax ∈ {2, 4}, and the
participation ratio is set to ρ ∈ {0.1, 0.5, 1}. For ρ = 1 and ρ = 0.5, the total number of clients is
set to N = 10 (and so K is equal to 10 and 5, respectively). For ρ = 0.1, we set N = 50 (and so
K = 5), which is the worst scenario among all combinations, given the small amount of information
the server can collect at the end of each round. When ρ = 1, for the FedPM algorithm, we keep the
same aggregation strategy exposed in Section 2.1.2 and Figure 2; and we switch to the Bayesian
aggregation method (see Section 2.2) when there is partial participation, i.e., when ρ < 1. Indeed,
applying the Bayesian aggregation method is revealed to be crucial for achieving good accuracy when
ρ < 1 and data are non-IID, obtaining a large gain with respect to the simpler version in Section 2.1.2,
which resets the Beta priors at each round (or takes the average of the samples, as explained in
Section 2.2). We adopt a simple heuristic schedule to reset the priors: Reset every 3 rounds when
ρ = 0.5, and every 10 rounds when ρ = 0.1. As expected, the smaller the ratio ρ, the larger the
number of rounds we should wait before resetting the priors in order to collect more information
from a much more diverse pool of clients.

Table 1 reports the results when cmax = 4 and cmax = 2. As we can see, FedPM outperforms all the
baselines in every configuration, as the Bayesian aggregation allows the central node to collect more
data before resetting the priors, which is important when clients’ data distributions are heterogeneous.
This strategy can be seen as the FedPM counterpart of decreasing the learning rate (which we applied
in the other dense compression-based baselines, like DRIVE, EDEN, and QSGD). It is seen from
Table 1 that FedMask (Li et al., 2021) is struggling in the non-IID case, as applying a hard threshold
on the scores to binarize the mask does not provide a proper way to implement multiple-rounds
aggregation, emphasizing the benefit of the stochastic process in FedPM. It is interesting to notice
that, especially when cmax = 4, the lower the value of ρ, the larger the gap between FedPM and the

8

Table 1: Average final accuracy ±σ in non-IID data split with cmax = 4 and cmax = 2, and partial
participation with ratios ρ = {0.1, 0.5, 1}, for FedPM, FedMask, and the strongest baselines in the
IID experiments: EDEN, DRIVE, and QSGD. The training duration was set to tmax = 200 rounds.

Algorithm ρ = 1 ρ = 0.5 ρ = 0.1

DRIVE (Vargaftik et al., 2021) 0.739± 0.005 0.632± 0.010 0.405± 0.018
EDEN (Vargaftik et al., 2022) 0.717± 0.006 0.665± 0.012 0.360± 0.016

cmax = 4 QSGD (Alistarh et al., 2017) 0.709± 0.006 0.644± 0.014 0.399± 0.020
FedMask (Li et al., 2021) 0.531± 0.044 0.435± 0.057 0.362± 0.024

FedPM (Ours) 0.748± 0.003 0.720± 0.007 0.496± 0.007

DRIVE (Vargaftik et al., 2021) 0.434± 0.025 0.376± 0.014 0.221± 0.003
EDEN (Vargaftik et al., 2022) 0.535± 0.050 0.461± 0.016 0.219± 0.005

cmax = 2 QSGD (Alistarh et al., 2017) 0.476± 0.033 0.464± 0.002 0.243± 0.014
FedMask (Li et al., 2021) 0.420± 0.028 0.387± 0.062 0.197± 0.030

FedPM (Ours) 0.643± 0.016 0.556± 0.031 0.277± 0.003

baselines, corroborating the fact that the Bayesian strategy can better deal with partial participation.
Analysis of the communication bitrate is provided in Appendix. E.1.

4 Conclusion

In this work, we introduced Federated Probabilistic Mask Training (FedPM) – a communication-
efficient FL strategy. FedPM relies on the idea of finding a sparse network in a randomly initialized
dense network, which is then sparsified by a collaboratively trained stochastic binary mask. In
addition to reducing the communication cost to less than 1 bit per parameter (bpp), FedPM also
reaches higher accuracy with faster convergence than the relevant baselines, and can potentially
amplify privacy while additionally outputting a compressed final model with a size less than 1 bpp.
Throughout the manuscript, we highlighted the advantages of having a stochastic mask training
approach rather than a deterministic one in terms of accuracy, bitrate, and privacy. For instance, the
proposed Bayesian aggregation strategy boosts the performance of FedPM in the non-IID data split
and/or the partial client participation case by using the prior knowledge from previous rounds during
aggregation rather than hard-replacing the previous global probability mask with the new one.

5 Acknowledgement

The authors would like to thank Zachary Charles, Mahdi Haghifam, Peter Kairouz, and Nicole
Mitchell for inspiring discussions. This work was supported in part by a Sony Stanford Graduate
Fellowship and a Meta research award.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Proceedings of the ACM SIGSAC conference
on computer and communications security, pp. 308–318, 2016.

Naman Agarwal, Peter Kairouz, and Ziyu Liu. The skellam mechanism for differentially private
federated learning. Advances in Neural Information Processing Systems, 34:5052–5064, 2021.

Maxwell M Aladago and Lorenzo Torresani. Slot machines: Discovering winning combinations
of random weights in neural networks. In International Conference on Machine Learning, pp.
163–174. PMLR, 2021.

Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot. Ternary neural networks
for resource-efficient AI applications. In International Joint conference on Neural Networks
(IJCNN), pp. 2547–2554, 2017.

9

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. Advances in Neural Information Processing
Systems, 30, 2017.

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34:17455–
17466, 2021.

B. Balle, G Barthe, and M. Gaboardi. Privacy amplification by subsampling: tight analyses via
couplings and divergences. Advances in neural information processing systems, 2018.

Borja Balle, Peter Kairouz, Brendan McMahan, Om Thakkar, and Abhradeep Guha Thakurta. Privacy
amplification via random check-ins. In Advances in Neural Information Processing Systems, 2020.

Leighton Pate Barnes, Huseyin A Inan, Berivan Isik, and Ayfer Özgür. rtop-k: A statistical estimation
approach to distributed SGD. IEEE Journal on Selected Areas in Information Theory, 1(3):
897–907, 2020.

Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length principle in coding
and modeling. IEEE transactions on information theory, 44(6):2743–2760, 1998.

Ran Ben Basat, Shay Vargaftik, Amit Portnoy, Gil Einziger, Yaniv Ben-Itzhak, and Michael
Mitzenmacher. Quick-fl: Quick unbiased compression for federated learning. arXiv preprint
arXiv:2205.13341, 2022.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending
MNIST to handwritten letters. In International Joint Conference on Neural Networks (IJCNN), pp.
2921–2926, 2017.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

James Diffenderfer and Bhavya Kailkhura. Multi-prize lottery ticket hypothesis: Finding accurate
binary neural networks by pruning a randomly weighted network. In International Conference on
Learning Representations, 2020.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
2468–2479, 2019.

Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple and nearly
optimal analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 954–964, 2022. doi: 10.1109/FOCS52979.2021.
00096.

Paulo Abelha Ferreira, Pablo Nascimento da Silva, Vinicius Gottin, Roberto Stelling, and Tiago
Calmon. Bayesian signSGD optimizer for federated learning. Advances in Neural Information
Processing Systems, 34, 2021.

Antonious M. Girgis, Deepesh Data, and Suhas Diggavi. Differentially private federated learning
with shuffling and client self-sampling. In 2021 IEEE International Symposium on Information
Theory (ISIT), pp. 338–343, 2021. doi: 10.1109/ISIT45174.2021.9517906.

Burak Hasircioglu and Deniz Gunduz. Privacy amplification via random participation in federated
learning. 2022. doi: 10.48550/ARXIV.2205.01556. URL https://arxiv.org/abs/2205.
01556.

10

https://arxiv.org/abs/2205.01556
https://arxiv.org/abs/2205.01556

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Jacob Imola and Kamalika Chaudhuri. Privacy amplification via bernoulli sampling. arXiv preprint
arXiv:2105.10594, 2021.

Berivan Isik, Francesco Pase, Deniz Gunduz, Tsachy Weissman, and Michele Zorzi. Sparse random
networks for communication-efficient federated learning. arXiv preprint arXiv:2209.15328, 2022a.

Berivan Isik, Tsachy Weissman, and Albert No. An information-theoretic justification for model
pruning. In International Conference on Artificial Intelligence and Statistics, pp. 3821–3846.
PMLR, 2022b.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Raphail Krichevsky and Victor Trofimov. The performance of universal encoding. IEEE Transactions
on Information Theory, 27(2):199–207, 1981.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. Fedmask: Joint computation
and communication-efficient personalized federated learning via heterogeneous masking. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pp. 42–55,
2021.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017a.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017b.

Ilya Mironov. Rényi differential privacy. In IEEE 30th computer security foundations symposium
(CSF), pp. 263–275. IEEE, 2017.

Nicole Mitchell, Johannes Ballé, Zachary Charles, and Jakub Konečnỳ. Optimizing the
communication-accuracy trade-off in federated learning with rate-distortion theory. arXiv preprint
arXiv:2201.02664, 2022.

Hamid Mozaffari, Virat Shejwalkar, and Amir Houmansadr. Frl: Federated rank learning. arXiv
preprint arXiv:2110.04350, 2021.

Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Time-correlated sparsification for
communication-efficient federated learning. In IEEE International Symposium on Information
Theory (ISIT), pp. 461–466. IEEE, 2021.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos.
Optimal lottery tickets via subset sum: Logarithmic over-parameterization is sufficient. Advances
in Neural Information Processing Systems, 33:2599–2610, 2020.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11893–11902, 2020.

11

Jorma Rissanen and Glen G Langdon. Arithmetic coding. IBM Journal of research and development,
23(2):149–162, 1979.

Anish K Vallapuram, Pengyuan Zhou, Young D Kwon, Lik Hang Lee, Hengwei Xu, and Pan Hui.
Hidenseek: Federated lottery ticket via server-side pruning and sign supermask. arXiv preprint
arXiv:2206.04385, 2022.

Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak, and Michael
Mitzenmacher. Drive: one-bit distributed mean estimation. Advances in Neural Information
Processing Systems, 34:362–377, 2021.

Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben Itzhak, and Michael
Mitzenmacher. Eden: Communication-efficient and robust distributed mean estimation for fed-
erated learning. In International Conference on Machine Learning, pp. 21984–22014. PMLR,
2022.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. Advances in Neural
Information Processing Systems, 31, 2018.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled renyi differential
privacy and analytical moments accountant. In Kamalika Chaudhuri and Masashi Sugiyama (eds.),
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics,
volume 89 of Proceedings of Machine Learning Research, pp. 1226–1235. PMLR, 16–18 Apr
2019.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. Advances in neural information processing systems, 32, 2019.

12

A FedPM Algorithm

We provide the pseudocode for FedPM in Algorithms 1 and 2. In Algorithm 2, the prior resetting
scheduling policy is controlled by the procedure ResPrior(t), which may depend on quantities other
than the round number t, such as loss.

Algorithm 1 FedPM.
Hyperparameters: learning rate η, minibatch size B, number of local iterations τ .
Inputs: local datasets Di, i = 1, . . . , N
Output: random seed SEED and binary mask parameters mk,T

At the server, initialize a random network with weight vector winit ∈ Rd using a random seed
SEED, and broadcast it to the clients.
At the server, initialize the random score vector sg,0 ∈ Rd, and compute θg,0 ← Sigmoid(sg,0).
At the server, initialize Beta priors αg,0 = βg,0 = λ0.
for t = 1, . . . , T do

Sample a subset Kt ⊂ {1, . . . , N} of |Kt| = K clients without replacement.
On Client Nodes:
for k ∈ Kt do

Receive θg,t−1 from the server and set sk,t = Sigmoid−1(θg,t−1).
for l = 1, . . . , τ do

θk,t ← Sigmoid(sk,t)
Sample binary mask mk,t ∼ Bern(θk,t).
ẇk,t ←mk,t ⊙winit

gradsk,t ← 1
B

∑B
b=1∇ℓ(ẇk,t;Bkj); {Bkj }Bj=1 is uniformly chosen from Dk

sk,t ← sk,t − η · gradsk,t

end for
θk,t ← Sigmoid(sk,t)
Sample a binary mask mk,t ∼ Bern(θk,t).
Send the arithmetic coded binary mask mk,t to the server.

end for

On the Server Node:
Receive mk,t’s from K client nodes.
θg,t = BayesAgg({mk,t}k∈Kt , t) // See Algorithm 2.
Broadcast θg,t to all client nodes.

end for
Sample the final binary mask mfinal ∼ Bern(θg,T).
Generate the final model: ẇfinal ←mfinal ⊙winit.

Algorithm 2 BayesAgg.
Inputs: clients’ updates {mk,t}k∈Kt , and round number t
Output: global probability mask θg,t

if ResPriors(t) then
αg,t−1 = βg,t−1 = λ0

end if
Compute magg,t =

∑
k∈Kt

mk,t.
αg,t = αg,t−1 +magg,t

βg,t = βg,t−1 +K · 1−magg,t

θg,t = αg,t−1
αg,t+βg,t−2

Return θg,t

13

B Proof of the Upper Bound on the Estimation Error

We now provide proof of the upper bound on the estimation error in Eq. 2. Recall that our true mean is
θ̄g,t = 1

K

∑
k∈Kt

θk,t, whereas our estimate is θ̄g,t = 1
K

∑
k∈Kt

mk,t, where mk,t ∼ Bern(θk,t).
Then we can compute the error as

EMk,t∼Bern(θk,t) ∀k∈Kt

[
||ˆ̄θ

g,t
−θ̄g,t||22

]
=

d∑
i=1

EMk,t
i ∼Bern(θk,t

i) ∀k∈Kt

[(
ˆ̄θg,ti − θ̄g,ti

)2]
(5)

=

d∑
i=1

EMk,t
i ∼Bern(θk,t

i) ∀k∈Kt

(1

K

∑
k∈Kt

(Mk,t
i − θk,ti)

)2
 (6)

=
1

K2

d∑
i=1

EMk,t
i ∼Bern(θk,t

i) ∀k∈Kt

(∑
k∈Kt

(Mk,t
i − θk,ti)

)2
 (7)

=
1

K2

d∑
i=1

EMk,t
i ∼Bern(θk,t

i) ∀k∈Kt

[∑
k∈Kt

(
Mk,t

i − θk,ti

)2]
(8)

=
1

K2

d∑
i=1

∑
k∈Kt

EMk,t
i ∼Bern(θk,t

i)

[
(Mk,t

i − θk,ti)2
]

(9)

=
1

K2

d∑
i=1

∑
k∈Kt

(
EMk,t

i ∼Bern(θk,t
i)[(M

k,t
i)2]− (θk,ti)2

)
(10)

=
1

K2

d∑
i=1

∑
k∈Kt

(
θk,ti − (θk,ti)2

)
(11)

≤ d

4K
. (12)

From (5) to (6), we use the definition of ˆ̄θg,ti = 1
K

∑K
k=1 m

k,t
i and θ̄g,ti = 1

K

∑K
k=1 θ

k,t
i . From (7) to

(8), we use the fact that EMk,t
i ∼Bern(θk,t

i) ∀k∈Kt
[Mk,t

i − θk,ti] = 0; and Mk,t
i − θk,ti and M l,t

i − θl,ti

are independent for l ̸= k ∈ [K]. Finally, the inequality in (8) follows from θk,ti ∈ [0, 1] for all
k ∈ [K].

C Privacy Amplification and Bias Correction

We first revisit the definitions of differential privacy (Dwork et al., 2006), Rényi divergence, and
Rényi differential privacy (Mironov, 2017).
Definition 1. [Adjacent Datasets] Two datasets D,D′ ∈ D are called adjacent if they differ in at
most one data sample.
Definition 2. [(ϵ, δ)-DP] A randomized mechanism f : D → R offers (ϵ, δ)-differential privacy if
for any adjacent D,D′ ∈ D and S ⊂ R

Pr[f(D) ∈ S] ≤ eϵPr[f(D′ ∈ S)] + δ.

Definition 3. [Rényi Divergence] For two probability distributions P and Q defined over R, the
Rényi divergence of order α > 1 is

Dα(P ||Q) =
1

α− 1
logEx∼Q

(
P (x)

Q(x)

)α

.

Definition 4. [(α, ϵ)-RDP] A randomized mechanism f : D → R offers ϵ-Rényi differential privacy
of order α (or in short (α, ϵ)-RDP) if for any adjacent D,D′ ∈ D, it holds that

Dα(f(D)||f(D′)) ≤ ϵ.

14

Now, recall our discussion in Section 2.4 that we have an (α, ϵ)-RDP algorithm f that outputs
privatized θk ∈ [c, 1− c]d using local client dataDk. As summarized in Figure 4, we are interested in
what happens when instead of releasing θk = f(Dk), the client k releases a Bernoulli sample from it:
mk ∈ {0, 1}d ∼ Bern(θk). We already explained the advantages in terms of communication bitrate,
estimation error, unbiasedness throughout the manuscript; however, this approach also amplifies the
privacy guarantees, meaning that it makes the overall privacy budget smaller ϵamp ≤ ϵ. Quantitatively,
Imola & Chaudhuri (2021) showed that after the Bernoulli sampling, the privacy budget of the overall
process is

ϵamp ≤ min {ϵ, drα(c)},

where rα(·) is the Rényi divergence of the binary symmetric function. More precisely, consider P,Q
random variables with support on {x1, x2} ⊂ Θ and let p = Pr[P = x1], 1− p = Pr(Q = x1). Then
the Rényi divergence is defined as

rα(p) = Rα(P,Q) =
1

α− 1
log (pα(1− p)1−α + (1− p)αp1−α).

This implies that the stochastic Bernoulli sampling step of FedPM improves the privacy guarantee
without changing the privacy mechanism – e.g. without increasing the injected noise level. We
demonstrate this through a distributed mean estimation problem given in Figure4. We consider
a simple differential privacy (DP) strategy, where the probability masks θk ∈ [c, 1 − c]d are a
function of client data Dk; and are first corrupted by Gaussian noise, and then clipped to the range
[c, 1 − c]d. Our goal is, as before, to estimate the true mean θ̄ = 1

K

∑
k∈Kt

θk by averaging the

sampled binary masks, i.e., ˆ̄θ = 1
K

∑
k∈Kt

mk. Differently from our previous experiments, we have
privacy constraints now, meaning that we want to guarantee (ϵ, δ)-DP by injecting a Gaussian noise
with variance σ2 =

2 ln (1.25/δ)∆2
2

ϵ2 with a small ϵ, where δ ≈ 1
N2 and ∆2 is the ℓ2-sensitivity of the

probability masks (in our case ∆2 = (1 − 2c)
√
d). We transfer the above amplification results in

RDP to DP using the well-known relation:

Remark C.1. Mironov (2017) showed that if f is an (α, ϵ)-RDP mechanism, it also satisfies
(ϵ+ log 1/δ

α−1 , δ)-DP for any 0 < δ < 1.

Figure 4: Distributed mean estimation scheme in FedPM, modified for differential privacy.

Since clipping after the noise addition step would lead to bias in the estimated mean, we work out a
bias correction mechanism. We denote with θ one general parameter at client k for one parameter,
with θ̃ its noisy version, and with θ̂ = clip(θ̃) its clipped version. Specifically, if θ̃ = θ + η is the

15

noisy version of the parameter, where η ∼ N (0, σ2), then

clip(θ̃) =

θ̃, if c ≤ θ + η ≤ 1− c

1− c, if θ + η > 1− c

c, if θ + η < c.

(13)

We now compute E
[
M̂
]
, where M̂ ∼ Bern(θ̂), to analyze the bias E

[
M̂
]
− E [M] = E

[
M̂
]
− θ,

where M ∼ Bern(θ). First of all, notice that

E
[
M̂
]
=

∫ 1

0

E
[
M̂ |θ̂ = ρ

]
f(ρ)dρ =

∫ 1

0

ρf(ρ)dρ = E[θ̂].

And we now compute the mean of the clipped parameter

E
[
θ̂
]
=

∫ 1

0

ρf(ρ)dρ

=

∫ +∞

−∞
clip(θ + η)f(η)dη

=

∫ c−θ

−∞
c · f(η)dη +

∫ 1−c−θ

c−θ

(θ + η) · f(η)dη +

∫ +∞

1−c−θ

(1− c) · f(η)dη

= c · Φσ(c− θ) + θ

∫ 1−c−θ

c−θ

f(η)dη +

∫ 1−c−θ

c−θ

ηf(η)dη + (1− c) (1− Φσ (1− c− θ))

= c · Φσ(c− θ) + θ [Φσ(1− c− θ)− Φσ(c− θ)] +
−σ√
2π

[
e

−(1−c−θ)2

2σ2 − e
−(c−θ)2

2σ2

]
+

+ (1− c) (1− Φσ (1− c− θ))

= 1− c+ [θ − 1 + c]Φσ(1− c− θ) + [c− θ]Φσ(c− θ) +
−σe

−(c−θ)2

2σ2

√
2π

[
e−2(c−θ)−1 − 1

]
,

where Φσ (·) is the cumulative distribution function of a Gaussian random variable with standard
deviation σ, and zero mean. We use this relation to correct the bias in ˆ̄θ.

We conduct our experiments with N = 100 clients, each having independent probability masks
with dimension d = 5 and range [0.2, 0.8], i.e., θ ∈ [0.2, 0.8]5. Figure 5 shows the estimation error

||ˆ̄θ
g,t
− θ̄g,t||22 under no noise injection case (i.e. no DP) with the black line. Recall that we want

to reach a smaller estimation error and smaller ϵ (i.e., a stronger privacy guarantee). The red curve
corresponds to the ϵ vs. estimation error behavior if Bernoulli sampling did not amplify the privacy.
The blue curve shows the amplified ϵ (i.e. ϵamp ≤ ϵ) vs. estimation error behavior, and it overlaps
with the red curve for ϵ values smaller than d · rα(c) = 8.96, where there is no privacy amplification,
i.e., ϵamp = ϵ. However, notice that the blue line never reaches ϵ’s higher than this value due to
amplification, while enjoying smaller estimation errors that the red curve can only achieve with very
large ϵ. This shows the promise of FedPM in having a better privacy-accuracy performance than most
baselines that do not have amplification. Finally, the green curve shows that bias correction improves
this performance further even with ϵ < d · rα(c) = 8.96 by achieving lower estimation errors with
the same ϵ.

D Additional Experimental Details

In Table 2, we provide the architectures for all the models used in our experiments. Clients performed
3 local epochs with a batch size of 128 and a local learning rate of 0.1 in all the experiments. Notice
that there is no server learning rate in FedPM; instead, we tune the prior resetting schedule in Bayesian
aggregation for the experiments in Section 3.2. We conducted our experiments on NVIDIA Titan X
GPUs on an internal cluster server, using 1 GPU per one run.

In the non-IID and partial participation experiments in Section 3.2, to distill the final model, we may
apply both stochastic sampling, as during training, or a hard-threshold method, similar to the one

16

Figure 5: The effect of privacy amplification and bias correction in the privacy budget (ϵ) vs.
estimation error behavior. Comparing red and blue curves, we see that we can reach small estimation
errors without increasing ϵ thanks to the amplification (see the vertical blue line at low estimation
error.). While the red curve and blue curve overlap for ϵ < d · rα(c) = 8.96, in that regime, we
benefit from our bias correction strategy to reach a lower error.

Table 2: Architectures for CONV-4, CONV-6, and CONV-10 models used in the experiments.

Model CONV-4 CONV-6 CONV-10

Convolutional
Layers

64, 64, pool
128, 128, pool

64, 64, pool
128, 128, pool
256, 256, pool

64, 64, pool
128, 128, pool
256, 256, pool
512, 512, pool

1024, 1024, pool

Fully-Connected
Layers 256, 256, 10 256, 256, 10 256, 256, 100

adopted in FedMask (Li et al., 2021). In the latter, a binary mask coefficient mi is set to 1 if θi > αths,
and 0 otherwise. For all experiments but one, when αths ∈ [0.4, 0.6], the thresholding test accuracy
is always higher than the sampling method, and so we use the threshold method. However, in the
extreme case cmax = 2 and ρ = 0.1, the optimal values for αmax were in [0.2, 0.4] and [0.6, 0.8] in
all experiments, probably due to the high randomness given by the highly heterogeneous scenario.
Consequently, for the last experiment, we just adopt the stochastic sampling strategy to evaluate the
model, as further optimizing the αths means adapting to the test dataset, which may corrupt the ability
of the model to generalize.

E Additional Experimental Results

E.1 Bitrate Considerations on non-iid Data

We now report the communication bitrate considerations on the non-IID data split experiments
described in Section 3.2. Table 3 reports the average bitrate needed by different algorithms over the
whole training process when cmax = 4 and cmax = 2. By simply multiplying the obtained average
bitrate by the total number of rounds tmax = 200, we obtain the total number of bits one element

17

in the global probability mask needs to converge to its final value, indicating the total amount of
information communicated during the training process.

We first observe that both DRIVE and EDEN consume almost the same amount of bits no matter the
system configuration and round number (very small variance), and it is instead model dependent (see
Figure 3). On the contrary, FedPM and QSGD report higher bitrate variability, as it depends on both
the training phase and system setting. As already observed in Section 3.1, FedMask balances almost
uniformly the binary updates, leading to a bitrate that is basically fixed to 1. For both cmax = 4 and
cmax = 2, FedPM yields the smallest bitrate when ρ = 1, whereas for the other scenarios, EDEN and
DRIVE are slightly more efficient. We argue that this is motivated by the fact that, as the learning
task becomes harder due to the high system heterogeneity, all the models struggle to converge to
good and stable solutions, which means that FedPM is still uncertain about the weights’ importance
probabilities θ, setting many of them close to 0.5. However, we think that this may be a useful feature
of FedPM to quantify its internal uncertainty, which we will further analyze.

To conclude the analysis, we also report the FedPM bpp for the final model, which is an indication
of the average number of bits needed per one parameter of the model. In the case of cmax = 4, the
final model sizes are 0.79 bpp, 0.834 bpp, and 0.99 bpp, when ρ = {0.1, 0.5, 1}, respectively. When
cmax = 2, the final model sizes are 0.8 bpp, 0.817 bpp, and 0.992 bpp. Consequently, at the end of
the training process, FedPM remains the most efficient option, as already observed in Section 3.1.

Table 3: Average bitrate ±σ over the whole training process in non-IID data split with cmax = 4
and cmax = 2, and partial participation with ratios ρ = {0.1, 0.5, 1}, for FedPM, FedMask, and the
strongest baselines in the IID experiments: EDEN, DRIVE, and QSGD. The training duration was
set to tmax = 200 rounds.

Algorithm ρ = 1 ρ = 0.5 ρ = 0.1

DRIVE (Vargaftik et al., 2021) 0.885± 9 · 10−5 0.885± 1 · 10−4 0.885± 1 · 10−4

EDEN (Vargaftik et al., 2022) 0.885± 1 · 10−4 0.885± 1 · 10−4 0.885± 1 · 10−4

cmax = 4 QSGD (Alistarh et al., 2017) 0.982± 0.027 0.923± 0.029 0.91± 0.05
FedMask (Li et al., 2021) 1± 3 · 10−6 1± 8 · 10−8 1± 6 · 10−7

FedPM (Ours) 0.863± 0.077 0.912± 0.056 0.996± 0.003

DRIVE (Vargaftik et al., 2021) 0.885± 7 · 10−5 0.885± 2 · 10−4 0.885± 2 · 10−4

EDEN (Vargaftik et al., 2022) 0.885± 1 · 10−4 0.885± 7 · 10−5 0.885± 7 · 10−5

cmax = 2 QSGD (Alistarh et al., 2017) 1.230± 0.043 1.234± 0.038 1.082± 0.01
FedMask (Li et al., 2021) 1± 2 · 10−6 1± 2 · 10−6 1± 2 · 10−7

FedPM (Ours) 0.868± 0.076 0.904± 0.063 0.997± 0.01

18

	Introduction
	Federated Probabilistic Mask Training (FedPM)
	FedPM
	Local Training of Probability Masks
	Communication Strategy

	FedPM with Bayesian Aggregation
	Weight Distribution
	Privacy

	Experiments
	IID Data Split and Full Participation (K=N)
	Non-IID Data Split and Partial Participation (K<N)

	Conclusion
	Acknowledgement
	fedpm Algorithm
	Proof of the Upper Bound on the Estimation Error
	Privacy Amplification and Bias Correction
	Additional Experimental Details
	Additional Experimental Results
	Bitrate Considerations on non-iid Data

